51 research outputs found

    Efficient and High-Quality Rendering of Higher-Order Geometric Data Representations

    Get PDF
    Computer-Aided Design (CAD) bezeichnet den Entwurf industrieller Produkte mit Hilfe von virtuellen 3D Modellen. Ein CAD-Modell besteht aus parametrischen Kurven und Flächen, in den meisten Fällen non-uniform rational B-Splines (NURBS). Diese mathematische Beschreibung wird ebenfalls zur Analyse, Optimierung und Präsentation des Modells verwendet. In jeder dieser Entwicklungsphasen wird eine unterschiedliche visuelle Darstellung benötigt, um den entsprechenden Nutzern ein geeignetes Feedback zu geben. Designer bevorzugen beispielsweise illustrative oder realistische Darstellungen, Ingenieure benötigen eine verständliche Visualisierung der Simulationsergebnisse, während eine immersive 3D Darstellung bei einer Benutzbarkeitsanalyse oder der Designauswahl hilfreich sein kann. Die interaktive Darstellung von NURBS-Modellen und -Simulationsdaten ist jedoch aufgrund des hohen Rechenaufwandes und der eingeschränkten Hardwareunterstützung eine große Herausforderung. Diese Arbeit stellt vier neuartige Verfahren vor, welche sich mit der interaktiven Darstellung von NURBS-Modellen und Simulationensdaten befassen. Die vorgestellten Algorithmen nutzen neue Fähigkeiten aktueller Grafikkarten aus, um den Stand der Technik bezüglich Qualität, Effizienz und Darstellungsgeschwindigkeit zu verbessern. Zwei dieser Verfahren befassen sich mit der direkten Darstellung der parametrischen Beschreibung ohne Approximationen oder zeitaufwändige Vorberechnungen. Die dabei vorgestellten Datenstrukturen und Algorithmen ermöglichen die effiziente Unterteilung, Klassifizierung, Tessellierung und Darstellung getrimmter NURBS-Flächen und einen interaktiven Ray-Casting-Algorithmus für die Isoflächenvisualisierung von NURBSbasierten isogeometrischen Analysen. Die weiteren zwei Verfahren beschreiben zum einen das vielseitige Konzept der programmierbaren Transparenz für illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle und zum anderen eine neue hybride Methode zur Reprojektion halbtransparenter und undurchsichtiger Bildinformation für die Beschleunigung der Erzeugung von stereoskopischen Bildpaaren. Die beiden letztgenannten Ansätze basieren auf rasterisierter Geometrie und sind somit ebenfalls für normale Dreiecksmodelle anwendbar, wodurch die Arbeiten auch einen wichtigen Beitrag in den Bereichen der Computergrafik und der virtuellen Realität darstellen. Die Auswertung der Arbeit wurde mit großen, realen NURBS-Datensätzen durchgeführt. Die Resultate zeigen, dass die direkte Darstellung auf Grundlage der parametrischen Beschreibung mit interaktiven Bildwiederholraten und in subpixelgenauer Qualität möglich ist. Die Einführung programmierbarer Transparenz ermöglicht zudem die Umsetzung kollaborativer 3D Interaktionstechniken für die Exploration der Modelle in virtuellenUmgebungen sowie illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle. Die Erzeugung stereoskopischer Bildpaare für die interaktive Visualisierung auf 3D Displays konnte beschleunigt werden. Diese messbare Verbesserung wurde zudem im Rahmen einer Nutzerstudie als wahrnehmbar und vorteilhaft befunden.In computer-aided design (CAD), industrial products are designed using a virtual 3D model. A CAD model typically consists of curves and surfaces in a parametric representation, in most cases, non-uniform rational B-splines (NURBS). The same representation is also used for the analysis, optimization and presentation of the model. In each phase of this process, different visualizations are required to provide an appropriate user feedback. Designers work with illustrative and realistic renderings, engineers need a comprehensible visualization of the simulation results, and usability studies or product presentations benefit from using a 3D display. However, the interactive visualization of NURBS models and corresponding physical simulations is a challenging task because of the computational complexity and the limited graphics hardware support. This thesis proposes four novel rendering approaches that improve the interactive visualization of CAD models and their analysis. The presented algorithms exploit latest graphics hardware capabilities to advance the state-of-the-art in terms of quality, efficiency and performance. In particular, two approaches describe the direct rendering of the parametric representation without precomputed approximations and timeconsuming pre-processing steps. New data structures and algorithms are presented for the efficient partition, classification, tessellation, and rendering of trimmed NURBS surfaces as well as the first direct isosurface ray-casting approach for NURBS-based isogeometric analysis. The other two approaches introduce the versatile concept of programmable order-independent semi-transparency for the illustrative and comprehensible visualization of depth-complex CAD models, and a novel method for the hybrid reprojection of opaque and semi-transparent image information to accelerate stereoscopic rendering. Both approaches are also applicable to standard polygonal geometry which contributes to the computer graphics and virtual reality research communities. The evaluation is based on real-world NURBS-based models and simulation data. The results show that rendering can be performed directly on the underlying parametric representation with interactive frame rates and subpixel-precise image results. The computational costs of additional visualization effects, such as semi-transparency and stereoscopic rendering, are reduced to maintain interactive frame rates. The benefit of this performance gain was confirmed by quantitative measurements and a pilot user study

    Appearance Preserving Rendering of Out-of-Core Polygon and NURBS Models

    Get PDF
    In Computer Aided Design (CAD) trimmed NURBS surfaces are widely used due to their flexibility. For rendering and simulation however, piecewise linear representations of these objects are required. A relatively new field in CAD is the analysis of long-term strain tests. After such a test the object is scanned with a 3d laser scanner for further processing on a PC. In all these areas of CAD the number of primitives as well as their complexity has grown constantly in the recent years. This growth is exceeding the increase of processor speed and memory size by far and posing the need for fast out-of-core algorithms. This thesis describes a processing pipeline from the input data in the form of triangular or trimmed NURBS models until the interactive rendering of these models at high visual quality. After discussing the motivation for this work and introducing basic concepts on complex polygon and NURBS models, the second part of this thesis starts with a review of existing simplification and tessellation algorithms. Additionally, an improved stitching algorithm to generate a consistent model after tessellation of a trimmed NURBS model is presented. Since surfaces need to be modified interactively during the design phase, a novel trimmed NURBS rendering algorithm is presented. This algorithm removes the bottleneck of generating and transmitting a new tessellation to the graphics card after each modification of a surface by evaluating and trimming the surface on the GPU. To achieve high visual quality, the appearance of a surface can be preserved using texture mapping. Therefore, a texture mapping algorithm for trimmed NURBS surfaces is presented. To reduce the memory requirements for the textures, the algorithm is modified to generate compressed normal maps to preserve the shading of the original surface. Since texturing is only possible, when a parametric mapping of the surface - requiring additional memory - is available, a new simplification and tessellation error measure is introduced that preserves the appearance of the original surface by controlling the deviation of normal vectors. The preservation of normals and possibly other surface attributes allows interactive visualization for quality control applications (e.g. isophotes and reflection lines). In the last part out-of-core techniques for processing and rendering of gigabyte-sized polygonal and trimmed NURBS models are presented. Then the modifications necessary to support streaming of simplified geometry from a central server are discussed and finally and LOD selection algorithm to support interactive rendering of hard and soft shadows is described

    Stylized medieval village modular 3D asset package

    Get PDF
    This document describes and explains the process of developing a three-dimensional stylized medieval village asset package. The pack is modular, so lots of different combinations are possible. Meshes, textures, materials, and scenes are all created from scratch. The project results into an asset package with more than 140 unique meshes, several materials and material instances that allow to change several parameters, some prefabs, as well as two example scenes, one to show the deployed props and the other with a ready-to-play scene with already constructed buildings and street decorations placed. Though this document, the objectives, research, some analysis, along with the management and planning of the project, are explained. Then, there is the development process, where the techniques and procedures used for the package are described. This step goes from the modeling of the first meshes, through creating procedural materials, the adaptation of the tool into Unreal Engine 4 and the different problems and difficulties encountered during the whole development process. Once the project was finished, it was concluded that it could be good to adapt the package into Unity Engine, in conjunction with a wider variety of props and materials as well as resolving bugs, errors, and add possible improvements

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation

    Application of mixed and virtual reality in geoscience and engineering geology

    Get PDF
    Visual learning and efficient communication in mining and geotechnical practices is crucial, yet often challenging. With the advancement of Virtual Reality (VR) and Mixed Reality (MR) a new era of geovisualization has emerged. This thesis demonstrates the capabilities of a virtual continuum approach using varying scales of geoscience applications. An application that aids analyses of small-scale geological investigation was constructed using a 3D holographic drill core model. A virtual core logger was also developed to assist logging in the field and subsequent communication by visualizing the core in a complementary holographic environment. Enriched logging practices enhance interpretation with potential economic and safety benefits to mining and geotechnical infrastructure projects. A mine-scale model of the LKAB mine in Sweden was developed to improve communication on mining induced subsidence between geologists, engineers and the public. GPS, InSAR and micro-seismicity data were hosted in a single database, which was geovisualized through Virtual and Mixed Reality. The wide array of applications presented in this thesis illustrate the potential of Mixed and Virtual Reality and improvements gained on current conventional geological and geotechnical data collection, interpretation and communication at all scales from the micro- (e.g. thin section) to the macro- scale (e.g. mine)

    Simulation of conforming contact in real-time multibody dynamics using a volumetric force model

    Get PDF
    Programa Oficial de Doutoramento en Enxeñaría Naval e Industrial . 5015V01[Abstract] Simulation is a tool on the rise, especially in the industrial field. The usage of simulators grants the ability of studying, predicting and improving the behavior of a system, as well as designing a new one. In the case of mechanical processes simulators, the characterization of contacts and collisions between the different elements at play is one of the key factors to achieve a realistic simulation. If, furthermore, the simulator is designed to interact with machines or people, the need of real-time execution is imposed. Usually, these requirements produce a conflict of interest, since more complex algorithms demand larger execution times. Furthermore, all this is worsened by some application’s need of conforming contact simulation, this is, complex contacts where the size of the contact footprint is not negligible compared to the size of the bodies in collision. This work studies two methods suitable for conforming contact simulation and their possibilities to be used in real-time simulators are discussed.[Resumo] A simulación é unha ferramenta en auxe, especialmente no ámbito industrial. O emprego de simuladores otorga a capacidade de estudar, predecir e mellora-lo comportamento dun sistema, así como de deseñar un novo. No caso dos simuladores de procesos mecánicos, a caracterización do contacto e das colisións entre os diferentes elementos en xogo é un dos factores clave para conseguir unha simulación fidedigna. Se, ademáis, ésta está deseñada para interactuar con máquinas ou persoas, imponse a necesidade de que a execución da simulación sexa en tempo real. Xeralmente, estos requerimentos producen un conflicto de intereses, xa que algoritmos máis complexos esixen tempos de execución máis amplos. Ademáis, todo isto vese perxudicado pola necesidade dalgunhas aplicacións de simular contactos conformes, isto é, contactos complexos nos que o tamaño da pegada de contacto non é desprezable en comparación ó tamaño dos corpos en colisión. Neste traballo estúdianse dous métodos adecuados para simular contactos conformes e debátense as súas posibilidades para ser aplicados en simuladores en tempo real.[Resumen] La simulación es una herramienta en auge, especialmente en el ámbito industrial. El empleo de simuladores otorga la capacidad de estudiar, predecir y mejorar el comportamiento de un sistema, así como de diseñar uno nuevo. En el caso de los simuladores de procesos mecánicos, la caracterización del contacto y las colisiones entre los diferentes elementos en juego es uno de los factores clave para conseguir una simulación fidedigna. Si, además, ésta está diseñada para interactuar con máquinas o personas, se impone la necesidad de que la ejecución de la simulación sea en tiempo real. Generalmente, estos requerimientos producen un conflicto de intereses, ya que algoritmos más complejos exigen tiempos de ejecución más amplios. Además, todo esto se ve perjudicado por la necesidad de algunas aplicaciones de simular contactos conformes, esto es, contactos complejos en los que el tamaño de la huella de contacto no es despreciable en comparación al tamaño de los cuerpos en colisión. En este trabajo se estudian dos métodos adecuados para simular contactos conformes y se debaten sus posibilidades para ser aplicados en simuladores en tiempo real

    Terrainosaurus: realistic terrain synthesis using genetic algorithms

    Get PDF
    Synthetically generated terrain models are useful across a broad range of applications, including computer generated art & animation, virtual reality and gaming, and architecture. Existing algorithms for terrain generation suffer from a number of problems, especially that of being limited in the types of terrain that they can produce and of being difficult for the user to control. Typical applications of synthetic terrain have several factors in common: first, they require the generation of large regions of believable (though not necessarily physically correct) terrain features; and second, while real-time performance is often needed when visualizing the terrain, this is generally not the case when generating the terrain. In this thesis, I present a new, design-by-example method for synthesizing terrain height fields. In this approach, the user designs the layout of the terrain by sketching out simple regions using a CAD-style interface, and specifies the desired terrain characteristics of each region by providing example height fields displaying these characteristics (these height fields will typically come from real-world GIS data sources). A height field matching the user's design is generated at several levels of detail, using a genetic algorithm to blend together chunks of elevation data from the example height fields in a visually plausible manner. This method has the advantage of producing an unlimited diversity of reasonably realistic results, while requiring relatively little user effort and expertise. The guided randomization inherent in the genetic algorithm allows the algorithm to come up with novel arrangements of features, while still approximating user-specified constraints

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    A review of image-based simulation applications in high-value manufacturing

    Get PDF
    Image-Based Simulation (IBSim) is the process by which a digital representation of a real geometry is generated from image data for the purpose of performing a simulation with greater accuracy than with idealised Computer Aided Design (CAD) based simulations. Whilst IBSim originates in the biomedical field, the wider adoption of imaging for non-destructive testing and evaluation (NDT/NDE) within the High-Value Manufacturing (HVM) sector has allowed wider use of IBSim in recent years. IBSim is invaluable in scenarios where there exists a non-negligible variation between the ‘as designed’ and ‘as manufactured’ state of parts. It has also been used for characterisation of geometries too complex to accurately draw with CAD. IBSim simulations are unique to the geometry being imaged, therefore it is possible to perform part-specific virtual testing within batches of manufactured parts. This novel review presents the applications of IBSim within HVM, whereby HVM is the value provided by a manufactured part (or conversely the potential cost should the part fail) rather than the actual cost of manufacturing the part itself. Examples include fibre and aggregate composite materials, additive manufacturing, foams, and interface bonding such as welding. This review is divided into the following sections: Material Characterisation; Characterisation of Manufacturing Techniques; Impact of Deviations from Idealised Design Geometry on Product Design and Performance; Customisation and Personalisation of Products; IBSim in Biomimicry. Finally, conclusions are drawn, and observations made on future trends based on the current state of the literature
    • …
    corecore