11 research outputs found

    Quantifying Masking Fault-Tolerance via Fair Stochastic Games

    Full text link
    We introduce a formal notion of masking fault-tolerance between probabilistic transition systems using stochastic games. These games are inspired in bisimulation games, but they also take into account the possible faulty behavior of systems. When no faults are present, these games boil down to probabilistic bisimulation games. Since these games could be infinite, we propose a symbolic way of representing them so that they can be solved in polynomial time. In particular, we use this notion of masking to quantify the level of masking fault-tolerance exhibited by almost-sure failing systems, i.e., those systems that eventually fail with probability 1. The level of masking fault-tolerance of almost-sure failing systems can be calculated by solving a collection of functional equations. We produce this metric in a setting in which one of the player behaves in a strong fair way (mimicking the idea of fair environments).Comment: In Proceedings EXPRESS/SOS2023, arXiv:2309.05788. arXiv admin note: substantial text overlap with arXiv:2207.0204

    Batteries in Space:Designing Energy-Optimal Satellites with Statistical Model Checking

    Get PDF

    Collective Adaptive Systems: Qualitative and Quantitative Modelling and Analysis (Dagstuhl Seminar 14512)

    Get PDF
    This report documents the program and the outcomes of Dagstuhl Seminar 14512 "Collective Adaptive Systems: Qualitative and Quantitative Modelling and Analysis". Besides presentations on current work in the area, the seminar focused on the following topics: (i) Modelling techniques and languages for collective adaptive systems based on the above formalisms. (ii) Verification of collective adaptive systems. (iii) Humans-in-the-loop in collective adaptive systems

    On the connection of probabilistic model checking, planning, and learning for system verification

    Get PDF
    This thesis presents approaches using techniques from the model checking, planning, and learning community to make systems more reliable and perspicuous. First, two heuristic search and dynamic programming algorithms are adapted to be able to check extremal reachability probabilities, expected accumulated rewards, and their bounded versions, on general Markov decision processes (MDPs). Thereby, the problem space originally solvable by these algorithms is enlarged considerably. Correctness and optimality proofs for the adapted algorithms are given, and in a comprehensive case study on established benchmarks it is shown that the implementation, called Modysh, is competitive with state-of-the-art model checkers and even outperforms them on very large state spaces. Second, Deep Statistical Model Checking (DSMC) is introduced, usable for quality assessment and learning pipeline analysis of systems incorporating trained decision-making agents, like neural networks (NNs). The idea of DSMC is to use statistical model checking to assess NNs resolving nondeterminism in systems modeled as MDPs. The versatility of DSMC is exemplified in a number of case studies on Racetrack, an MDP benchmark designed for this purpose, flexibly modeling the autonomous driving challenge. In a comprehensive scalability study it is demonstrated that DSMC is a lightweight technique tackling the complexity of NN analysis in combination with the state space explosion problem.Diese Arbeit prĂ€sentiert AnsĂ€tze, die Techniken aus dem Model Checking, Planning und Learning Bereich verwenden, um Systeme verlĂ€sslicher und klarer verstĂ€ndlich zu machen. Zuerst werden zwei Algorithmen fĂŒr heuristische Suche und dynamisches Programmieren angepasst, um Extremwerte fĂŒr Erreichbarkeitswahrscheinlichkeiten, Erwartungswerte fĂŒr Kosten und beschrĂ€nkte Varianten davon, auf generellen Markov Entscheidungsprozessen (MDPs) zu untersuchen. Damit wird der Problemraum, der ursprĂŒnglich mit diesen Algorithmen gelöst wurde, deutlich erweitert. Korrektheits- und OptimalitĂ€tsbeweise fĂŒr die angepassten Algorithmen werden gegeben und in einer umfassenden Fallstudie wird gezeigt, dass die Implementierung, namens Modysh, konkurrenzfĂ€hig mit den modernsten Model Checkern ist und deren Leistung auf sehr großen ZustandsrĂ€umen sogar ĂŒbertrifft. Als Zweites wird Deep Statistical Model Checking (DSMC) fĂŒr die QualitĂ€tsbewertung und Lernanalyse von Systemen mit integrierten trainierten Entscheidungsgenten, wie z.B. neuronalen Netzen (NN), eingefĂŒhrt. Die Idee von DSMC ist es, statistisches Model Checking zur Bewertung von NNs zu nutzen, die Nichtdeterminismus in Systemen, die als MDPs modelliert sind, auflösen. Die Vielseitigkeit des Ansatzes wird in mehreren Fallbeispielen auf Racetrack gezeigt, einer MDP Benchmark, die zu diesem Zweck entwickelt wurde und die Herausforderung des autonomen Fahrens flexibel modelliert. In einer umfassenden Skalierbarkeitsstudie wird demonstriert, dass DSMC eine leichtgewichtige Technik ist, die die KomplexitĂ€t der NN-Analyse in Kombination mit dem State Space Explosion Problem bewĂ€ltigt

    Explanation of the Model Checker Verification Results

    Get PDF
    Immer wenn neue Anforderungen an ein System gestellt werden, mĂŒssen die Korrektheit und Konsistenz der Systemspezifikation ĂŒberprĂŒft werden, was in der Praxis in der Regel manuell erfolgt. Eine mögliche Option, um die Nachteile dieser manuellen Analyse zu ĂŒberwinden, ist das sogenannte Contract-Based Design. Dieser Entwurfsansatz kann den Verifikationsprozess zur ÜberprĂŒfung, ob die Anforderungen auf oberster Ebene konsistent verfeinert wurden, automatisieren. Die Verifikation kann somit iterativ durchgefĂŒhrt werden, um die Korrektheit und Konsistenz des Systems angesichts jeglicher Änderung der Spezifikationen sicherzustellen. Allerdings ist es aufgrund der mangelnden Benutzerfreundlichkeit und der Schwierigkeiten bei der Interpretation von Verifizierungsergebnissen immer noch eine Herausforderung, formale AnsĂ€tze in der Industrie einzusetzen. Stellt beispielsweise der Model Checker bei der Verifikation eine Inkonsistenz fest, generiert er ein Gegenbeispiel (Counterexample) und weist gleichzeitig darauf hin, dass die gegebenen Eingabespezifikationen inkonsistent sind. Hier besteht die gewaltige Herausforderung darin, das generierte Gegenbeispiel zu verstehen, das oft sehr lang, kryptisch und komplex ist. DarĂŒber hinaus liegt es in der Verantwortung der Ingenieurin bzw. des Ingenieurs, die inkonsistente Spezifikation in einer potenziell großen Menge von Spezifikationen zu identifizieren. Diese Arbeit schlĂ€gt einen Ansatz zur ErklĂ€rung von Gegenbeispielen (Counterexample Explanation Approach) vor, der die Verwendung von formalen Methoden vereinfacht und fördert, indem benutzerfreundliche ErklĂ€rungen der Verifikationsergebnisse der Ingenieurin bzw. dem Ingenieur prĂ€sentiert werden. Der Ansatz zur ErklĂ€rung von Gegenbeispielen wird mittels zweier Methoden evaluiert: (1) Evaluation anhand verschiedener Anwendungsbeispiele und (2) eine Benutzerstudie in Form eines One-Group Pretest-Posttest Experiments.Whenever new requirements are introduced for a system, the correctness and consistency of the system specification must be verified, which is often done manually in industrial settings. One viable option to traverse disadvantages of this manual analysis is to employ the contract-based design, which can automate the verification process to determine whether the refinements of top-level requirements are consistent. Thus, verification can be performed iteratively to ensure the system’s correctness and consistency in the face of any change in specifications. Having said that, it is still challenging to deploy formal approaches in industries due to their lack of usability and their difficulties in interpreting verification results. For instance, if the model checker identifies inconsistency during the verification, it generates a counterexample while also indicating that the given input specifications are inconsistent. Here, the formidable challenge is to comprehend the generated counterexample, which is often lengthy, cryptic, and complex. Furthermore, it is the engineer’s responsibility to identify the inconsistent specification among a potentially huge set of specifications. This PhD thesis proposes a counterexample explanation approach for formal methods that simplifies and encourages their use by presenting user-friendly explanations of the verification results. The proposed counterexample explanation approach identifies and explains relevant information from the verification result in what seems like a natural language statement. The counterexample explanation approach extracts relevant information by identifying inconsistent specifications from among the set of specifications, as well as erroneous states and variables from the counterexample. The counterexample explanation approach is evaluated using two methods: (1) evaluation with different application examples, and (2) a user-study known as one-group pretest and posttest experiment

    Behavioural Preorders on Stochastic Systems - Logical, Topological, and Computational Aspects

    Get PDF
    Computer systems can be found everywhere: in space, in our homes, in our cars, in our pockets, and sometimes even in our own bodies. For concerns of safety, economy, and convenience, it is important that such systems work correctly. However, it is a notoriously difficult task to ensure that the software running on computers behaves correctly. One approach to ease this task is that of model checking, where a model of the system is made using some mathematical formalism. Requirements expressed in a formal language can then be verified against the model in order to give guarantees that the model satisfies the requirements. For many computer systems, time is an important factor. As such, we need our formalisms and requirement languages to be able to incorporate real time. We therefore develop formalisms and algorithms that allow us to compare and express properties about real-time systems. We first introduce a logical formalism for reasoning about upper and lower bounds on time, and study the properties of this formalism, including axiomatisation and algorithms for checking when a formula is satisfied. We then consider the question of when a system is faster than another system. We show that this is a difficult question which can not be answered in general, but we identify special cases where this question can be answered. We also show that under this notion of faster-than, a local increase in speed may lead to a global decrease in speed, and we take step towards avoiding this. Finally, we consider how to compare the real-time behaviour of systems not just qualitatively, but also quantitatively. Thus, we are interested in knowing how much one system is faster or slower than another system. This is done by introducing a distance between systems. We show how to compute this distance and that it behaves well with respect to certain properties.Comment: PhD dissertation from Aalborg Universit

    Behavioural Preorders on Stochastic Systems - Logical, Topological, and Computational Aspects

    Get PDF

    Measures on probabilistic automata

    Get PDF
    In questa tesi consideriamo i processi probabilistici non-deterministici modellati attraverso automi. Il nostro obiettivo \`e l'analisi dei problemi di bisimulazioni approssimate. Queste relazioni sono usate, generalmente, per semplificare i modelli di alcuni sistemi e per modellare agenti e attaccanti nei protocolli di sicurezza. In questo ultimo campo ci sono diversi proposte di utilizzo di metriche, le quali sono l'analogo quantitativo della bisimulazione probabilistica e permettono una miglior precisione. Una metrica \`e grossomodo un grado di similarit\`a tra stati. Iniziando dalla formalizzazione di (bi)simulazione approssimata data nel lavoro di Turrini, definiamo due metriche su stati e su distribuzioni. Queste metriche sono basate sul concetto di errore ammesso durante la simulazione di uno stato rispetto un altro stato. Investigheremo la relazione tra queste metriche con una metrica largamente utilizzata, la metrica di Kantorovich, e scopriremo che esse sono equivalenti. Poi riadatteremo per gli automi probabilistici il trasformatore di misure proposto da De Alfaro e al., ottenendo un nuovo funzionale F che \`e una estensione conservativa dei trasformatori proposti in letteratura. Mostreremo che il minimo punto fisso di F coincide con la sua sovra-approssimazione dalle misure derivate dal lavoro di Turrini, attraverso la dimostrazione dell'esistenza di una stretta relazione tra le bisimulazioni approssimate di Turrini con le metriche in letteratura.In this thesis we consider nondeterministic probabilistic processes modeled by automata. Our purpose is the analysis of the problem of approximated bisimulations. These relations are used, generally, to simplify the models of some systems and to model agents and attackers in security protocols. For the latter field there are several proposals to use metrics, which are the quantitative analogue of probabilistic bisimilarity and allow a greater precision. A metric is about a degree of similarity between states. Starting from the formalisation of approximate (bi)simulation given in Turrini's work, we define two metrics on states and on distributions. These metrics are based on the concept of error allowed during the simulation of a state with respect to another one. We investigate the relation between these metrics with a largely used one, the Kantorovich metric, and discover that they are equivalent. Then we recast for probabilistic automata the transformer of measures proposed by De Alfaro et al., obtaining a new functional F that is a conservative extension of the transformers proposed in the literature. We show that the minimum fix point of F coincides with its over-aproximated by the measures derived from Turrini's work thus showing the existence of a strict relation between the Turrini\u2019s approximate bisimulations with the literature on metrics
    corecore