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Abstract

In this thesis we consider nondeterministic probabilistic processes modeled by
automata. Our purpose is the analysis of the problem of approximated bisim-
ulations. These relations are used, generally, to simplify the models of some
systems and to model agents and attackers in security protocols. For the lat-
ter field there are several proposals to use metrics, which are the quantitative
analogue of probabilistic bisimilarity and allow a greater precision. A metric
is about a degree of similarity between states. Starting from the formalisation
of approximate (bi)simulation given in [62], we define two metrics on states
and on distributions. These metrics are based on the concept of error allowed
during the simulation of a state with respect to another one. We investigate
the relation between these metrics with a largely used one, the Kantorovich
metric, and discover that they are equivalent. Then we recast for probabilistic
automata the transformer of measures proposed by De Alfaro et al., obtaining
a new functional F that is a conservative extension of the transformers pro-
posed in the literature. We show that the minimum fix point of F coincides
with its over-aproximated by the measures derived from [62], thus showing the
existence of a strict relation between the Turrinis approximate bisimulations
with the literature on metrics.





Sommario

In questa tesi consideriamo i processi probabilistici non-deterministici model-
lati attraverso automi. Il nostro obiettivo è l’analisi dei problemi di bisimu-
lazioni approssimate. Queste relazioni sono usate, generalmente, per semplifi-
care i modelli di alcuni sistemi e per modellare agenti e attaccanti nei protocolli
di sicurezza. In questo ultimo campo ci sono diversi proposte di utilizzo di met-
riche, le quali sono l’analogo quantitativo della bisimulazione probabilistica e
permettono una miglior precisione. Una metrica è grossomodo un grado di sim-
ilarità tra stati. Iniziando dalla formalizzazione di (bi)simulazione approssi-
mata data in [62], definiamo due metriche su stati e su distribuzioni. Queste
metriche sono basate sul concetto di errore ammesso durante la simulazione
di uno stato rispetto un altro stato. Investigheremo la relazione tra queste
metriche con una metrica largamente utilizzata, la metrica di Kantorovich, e
scopriremo che esse sono equivalenti. Poi riadatteremo per gli automi prob-
abilistici il trasformatore di misure proposto da De Alfaro e al., ottenendo
un nuovo funzionale F che è una estensione conservativa dei trasformatori
proposti in letteratura. Mostreremo che il minimo punto fisso di F coincide
con la sua sovra-approssimazione dalle misure derivate da [62], attraverso la
dimostrazione dell’esistenza di una stretta relazione tra le bisimulazioni ap-
prossimate di Turrini con le metriche in letteratura.
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1

Introduction

The evolution of communication networks has led toward increasingly complex
communication protocols to interconnect heterogeneous systems. To function
properly these protocols require formal methodologies for verification, imple-
mentation and testing [8]. The development of a formal specification provides
several advantages:

• insights and an understanding of the software requirements and software
design;

• reveal and remove ambiguity, inconsistency and incompleteness;
• facilitate communication of requirement or design;
• provides a basis for an elegant software design;
• traceability.

The use of formal methods for software and hardware design and for verifica-
tion of the requirements performs an appropriate mathematical analysis, that
contributes to the reliability and robustness of a design and to verify the com-
pletely and accurately implementation. A formal specification is the notion at
the heart of formal methods. Once a formal specification has been produced,
it is a guide while the concrete system is developed during the design process.
After the development, the specification may be used as the basis for proving
properties and by inference the developed system.

We use formal methods in several fields of computer science, from the man-
aging of the complexity of large systems to the reasoning about distributed
systems, i.e. about concurrency, passing through the formal verification of se-
curity protocols. We consider the computer security, in several networks the
attackers have access to every message and can perform a statistical anal-
ysis of intercepted messages to obtain information. To preserve secrecy or
anonymity we model agents, including attackers, as processes in some formal
system and use tools, like model checkers, to verify properties of the pro-
tocol [39, 48]. In this way we check if an agents can be substitute with an
attacker by introducing a concept of equivalence between processes. We con-
sider morphisms that are “structure-preserving” maps. The most basic forms
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of morphism are the homomorphisms that essentially give us a way of embed-
ding a structure, the source, into another one, the target, such that all the
relations in the source are present in the target. The converse need not be true,
for this reason stronger notions of morphism are needed. One such notion is
isomorphism, where strong-isomorphic structures must be the same, i.e., “al-
gebraically identical”. The operations in processes are partial operations, thus
we generalise the notion of isomorphism with a notion in between homomor-
phism and isomorphism, i.e., weak homomorphism. The extension from the
algebraic notion of weak homomorphism into the study of sequential, impera-
tive, and non-terminating programs done by Milner [42] is called bisimulation.
This name is a term that better conveys the imitation of an operation of a
system by another system. Since this is a fundamental notion in the thesis,
we show an example of bisimulation. For instance, isomorphic graphs have
the same number of nodes, which need not be the case for bisimilar graphs.
In rooted directed graphs a bisimulation is coarser than graph isomorphism
because, intuitively, bisimulation allows us to observe a graph only through
the movements that are possible along its edges. By contrast, with isomor-
phisms the identity of the nodes is observable too. The idea of bisimulation is
interesting in two ways: to abstract some irrelevant detail from programs to
come closer to a definition of algorithm, and as a manageable technique for
proving simulation between programs, which in some cases may make easier
the task of proving a program correct.

Probabilistic model allows one to analyse situations where the attacker
uses statistical techniques to extract information, more in general model quan-
titative processes. We model these given quantity by probability, as the prob-
ability that the step will happen [16,37,58] or the resources needed to perform
that step [11,47,68]. Its use is motivated also by the fact that there are many
instances of real-life systems whose behaviour can be accurately modelled by
considering their stochastic characteristics. In fact some real-life systems can
be inherently stochastic in nature, because they include components which
are known to be unreliable or because the exact timing of inputs to system
remain unpredictable, e.g., computer networks. Most existing process calculi
for security lack of these probabilistic constructs. To develop a formalism to
represent probabilistic security protocols and systems the calculus have to in-
corporate mechanisms to express probabilistic choice as done by [61, 62]. We
consider a single-valued and total transition function Tr which represents a
sequence of operation in a program. The development of probabilistic model
considers computation trees rather than sequences, i.e. we consider simulation
of parallel programs. There exists a noticeable difference between the develop-
ment of simulation and the operationally definition of weak homomorphism.
This difference is caused by the nature of the processes studied: in weak homo-
morphism the processes considered are deterministic, thus the alternation of
universal and existential quantifiers does not play a role. The standard notion
of bisimulation can be adapted to these probabilistic systems by treating the
probabilistic quantities as labels, for example [14, 16, 37, 52, 58]. Probabilis-
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tic formal methods [32, 37, 59], that describe the transitions by probabilistic
distributions, allow to generalise the concept of bisimulations to the field of
probabilistic systems with the notions of approximate (bi)simulations [62].
The latter differs from the other probabilistic systems since a transition from
a state s leads to a distribution µ on just a single successor state, instead
of leading to a successor distribution over states. A successor distribution of
µ gives the probability µ(s′) of entering successor state s′. This probabilistic
transition structure is reflected in the definition of simulation. A binary rela-
tion R is a simulation relation if, for all (s, t) ∈ R, t can mimic all stepwise
behaviour of s with respect to R. Intuitively, this means that every distribu-
tion µ leaving state s with label a has a distribution µ′ leaving state t with
the same label a such that the distributions µ and µ′ are related: relations be-
tween distributions are established by weight functions [32]. This is the notion
of bisimulation, that lacks robustness as against system parameter perturba-
tions. Thus it is often useful to identify similar objects that differ only for
a small value, i.e. for an error. These approximate notions appear much less
restrictive than the exact one, which does not provide a robust relation, since
quantities are matched only when they are identical. For instance, processes
that differ for a very small probability would be considered just as different
as processes, that perform completely different actions. This is particularly
relevant to security systems where specifications can be given as perfect, but
impractical processes and other, practical processes are considered safe if they
only differ from the specification with a negligible probability.

A second development of the notion of bisimulation [43] is a proof tech-
nique for giving an inductive definition, which tells us what are the construc-
tors for generating all the elements. The inductive proof principle allows us
to infer the inductive set as a set T closed forward, i.e., for each rule whose
premise is satisfied in T there is an element of T such that the element is the
conclusion of the rule. Since the definition is inductive, then T is the smallest
universe in which such rules live. We model the rule as a monotone operator,
then T is a least fixed point of this operator that yields an inductive defini-
tion for trying to define a bisimulation. In a consecutive refinement [46], with
Park’s contribution [49], the inductive definition turns into a coinductive one.
A coinductive definition tells us what are the destructors that decompose the
elements. Contrary to the constructors, the destructors show what we can
observe of the elements. The coinductive proof principle allows us to infer
that a set T is included in the coinductive set by proving that the given set
satisfies the backward closure, i.e., for each element of T there is a rule whose
premise is satisfied in T such that the element is the conclusion of the rule.
With respect to the previous proof the coinduction is the mathematical dual
to structural induction. As above, we model the rule as a monotone operator,
then T is a greatest fixed point of this operator that yields an coinductive def-
inition for defining a bisimulation. Induction and coinduction is a technique
for defining and proving behavioural properties of systems of concurrent inter-

3
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acting objects studied in [2,45,54,55]. These definitions are based on recursive
function theory and fixed point iteration [6, 49,56].

The standard notion of bisimulation for probabilistic or stochastic systems
cannot distinguish between two processes that are substantially different and
two processes that differ by only a small amount in a real valued param-
eter. It is often more useful to say how similar two processes are than to
say whether they are exactly the same. This idea leads to the development of
metrics, which are robust to small perturbations of the model parameters. For
instance, we consider the case where we want to know whether two processes
are behaving in a similar way, of sure they differ by only a small amount in
real-valued parameters. Thus we define a metric on the set of processes of the
minimal process algebra that will measure how much two processes are alike
in terms of behaviour. In this sense, two processes are at distance zero if and
only if they are bisimilar. Thus, the metrics will be quantitative extensions of
the notion of bisimulation. The metrics assign a real number in the interval
[0, 1], i.e. a distance, to each pair of states of the probabilistic transition sys-
tem. The distance captures the behavioural similarity of the states, smaller
is the distance more the states behave alike. The metrics between processes
are a quantitative analogue of probabilistic bisimilarity and can be introduced
essentially in two separate ways. The first approach employs the probabilistic
conditional kernels underlying the stochastic processes under study - in this
sense, the approximation comes from metrics between (marginals of) proba-
bility measures related to the two processes. The second procedure looks at
distance metrics between trajectories of the two processes and utilizes the
dynamical properties of the two processes to define such metrics: this can be
done either by analyzing the models syntax, or by directly employing their
semantics in order to compare realizations of the two models.

The approximate bisimulation relations and the metrics are two ap-
proaches for analysing the errors existing between two similar probabilistic
systems, which describe processes. As we have discussed above, these approx-
imations are very useful in security protocols. But the connection between
these two approaches is, at the moment, unknown. In this thesis we formalise
this problem and show that the approximate approach followed by Segala and
Turrini [62] is closely related to the metric of Van Breugel [63,65] and of De-
sharnais [17,18]. In the following scheme we give a detailed description of the
contributions of the thesis.

1. Starting from the definition of approximate (bi)simulation [61, 62] it is
possible defining a pseudo-metric on states and probabilistic measures.
The distance between two states is the infimum of the errors that can be
done. The thesis shows that this is an infimum of the pseudo metric.

2. The infimum of the error whereby two measures can be put in relation,
starting from a relation R on states, is the Kantorovich distance between
two measures starting by a pseudo-metric dR which is 0 on pairs of states
in relation and 1 elsewhere.

4
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3. We can define a metric transformer H [65] on probabilistic automata
compatible with the functional transformers defined in literature. Con-
sequently the metrics can also be studied on probabilistic automata. If
on the automata we impose restrictions that have other models, then the
transformer defined in the thesis coincides with the literature transform-
ers.

4. The pseudo-metric of point 1 is the result of the transformer H of point
3 applied to the pseudo-metric dR of point 2. Furthermore H(dR) 6 dR.
Consequently the minimum fixed point of H, i.e. dR is an over approxima-
tion of the metric on probabilistic automata consistent with the literature.
From here the result that the approximate simulations are a sound method
of demonstrating upper limits to the distance between two automata.

Overview of the Thesis

The thesis is structured as follows.

Chapter 1. We give an overview of the issues discuss in the thesis, especially
we give a historical perspective on the bisimulation relation and its refine-
ments generated by considering the probabilistic systems. The latter are
the approximate bisimulations and the metrics, which are useful above all
in security field. Nevertheless in security literature there is a hole in the
study of the metrics in this field.

Chapter 2. In literature we can find several papers that are focused on prob-
abilistic bisimulation based on several model for describing probabilistic
systems and on metrics between probabilistic transitions. In this chapter
we show the related works existing.

Chapter 3. We introduce some preliminary notions about mathematical, prob-
abilistic systems, bisimulation relations, metric theory. We characterise
our definitions with an operational overview and we do not refer to logic,
these two characterisations are related in the paragraph Metric instead of
logic. In this background we analyse the definition bisimulation as fixed
point and the definition of Kantorovich distance, and De Alfaro et al.
operator.

Chapter 4. There exist few papers where the approximate bisimulations are
used to to field of security and cryptography, we show here the study and
the result obtained. These analysis are at the basis of our work and may
be a guideline for future works.

Chapter 5. Based on the concept of lifting with, we introduce the approximate
(bi)simulation with error and relation with error and show some properties
and introduce. The main notions of this chapter are probabilistic metric
defined as the small error that verifies the previous relations. This metric
is closely related, precisely equivalent, with Kantorovich metric. We define
a transformer iterator, as De Alfaro et al. operator, whose fixed point is

5
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our metric. This operator is the basic step for generating a upper limits
to the distances between two automata and use these metric in security
and cryptography field.

Chapter 6. The last chapter contain the conclusions of the thesis, principally
draw attention to the relations between our metric and operator and the
metric and operator present in literature. In the last part we have inserted
the future works, one related to the interesting field of security and another
related to the definition of a limit for our metric.

6



2

Related work

In this chapter we give an extensive overview of existing work on bisimulation,
approximate bisimulation, and metrics.

Concurrent computing is a programming paradigm based on a form of
modular programming, i.e. it factors an overall computation into subcompu-
tations that may be executed concurrently. Pioneers in the field of concur-
rent computing include Edsger Dijkstra [20], Per Brinch Hansen, and C.A.R.
Hoare [29]. In the years a wide variety of formalisms for modelling and under-
standing concurrent systems have been developed, among which the model
of Petri nets [51] and Hennessy-Milner logic [44]. The basic description of a
computer system is as a state machine that computes by moving from one
state to another state. This leads to the idea of Labelled Transition Systems
(LTS) [34,53]. These systems have been used successfully for the modelling of
ordinary distributed systems [23,31,40,41,45], and for their verification [67].

The concept of strong probabilistic bisimulation over a discrete-time,
finite-state Markov chain has been introduced in [37], based on earlier notions
for non-probabilistic models [44,50]. The work in [26] uses similar notions for
Markov decision processes with finite state spaces, and puts forward proce-
dures for finding factored bisimilar models. The notion of weak bisimulation is
discussed in [4,28,52] for a number of (finite-state) probabilistic processes. The
contributions in [32, 60] cover the notion of probabilistic simulation relations
for classes of probabilistic automata. [5] provide a recapitulation and draw
relationships between these notions. The interesting work in [19] discusses ap-
proximate notions of bisimulations for finite state labelled Markov chains, and
elaborates on this notions by using a logical approach as well as one based on
games. The use of approximate notions is advocated in [24] and motivated by
robustness issues related to the verification of specifications over probabilistic
models. Furthermore, approximate notions appear much less restrictive than
the exact one, particularly when applied over models with continuous state
spaces - this is precisely what has been observed also for deterministic mod-
els, where notions of exact bisimulation have been developed only for limited
classes of models. The introduction of approximate versions [25] based on
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distance between trajectories of deterministic models has lead to the study
of approximate abstractions for nonlinear and switched systems. Building on
these results, the material in [17] is relevant in that metrics for labelled Markov
processes are discussed, whereas [18] proposes metrics via weak bisimulations,
and the contributions in [21, 22] discusses metrics for respectively finite- and
infinite-state Markov decision processes. For more details see [1].

Giacalone et al. [24] were the first to suggest a metric between probabilistic
transition systems to formalize the notion of distance between processes. Met-
rics were used also in [36] to give denotational semantics for reactive models.
De Vink and Rutten [13] showed that discrete probabilistic transition sys-
tems can be viewed as coalgebras [17,18,64,65]. Desharnais et al. [17] studied
a logical pseudometric for labelled Markov chains, which is a reactive model
of probabilistic systems. The metric has the property that two processes have
distance of 0 if and only if they are probabilistic bisimilar. They also intro-
duced a probabilistic process calculus and showed that some of the process
constructors are non-expansive. A similar pseudometric was defined by van
Breugel and Worrell [65] via the terminal coalgebra of a functor based on a
metric on the space of Borel probability measures. Interestingly, van Breugel
and Worrell [64] also presented a polynomial-time algorithm to approximate
their coalgebraic distances. In [18] Desharnais et al. dealt with labelled con-
current Markov chains (this model can be captured by the simple probabilistic
automata of [57]). They showed that the greatest fixed point of a monotonous
function on pseudometrics corresponds to the weak probabilistic bisimilarity
of [52]. They also showed that some process constructors of a probabilistic
process calculus are non-expansive.

The first proposal based on metrics was by Giacalone et al. [24] for de-
terministic probabilistic processes. Later, Desharnais et al. [17, 18] and van
Breugel and Worrell [64,65] investigated the notion of metric for more general
probabilistic systems, using much more sophisticated techniques to deal with
the combination of probabilistic distribution, nondeterminism and recursion.
In particular, they used the notion of Hutchinson metric [30] on distributions;
this metric is also known under many different names including Kantorovich
metric [33] and Vaserstein metric [66]. In [17, 18], Desharnais et al. treated
the case of labelled Markov chains and labelled concurrent Markov chains
respectively, and defined the intended metric as the greatest fixed point of
a monotonous function. In contrast, the authors of [64, 65] used a construc-
tion based on the (unique) fixed point of a contractive transformation. They
considered similar classes of automata, namely fully probabilistic systems and
reactive models.

We model these given quantity by probability, as the probability that
the step will happen [16, 37, 58] or the resources needed to perform that
step [11, 47, 68]. Thus the standard notion of bisimulation can be adapted
to these probabilistic systems by treating the probabilistic quantities as la-
bels, for example [16,37,52,58]. Probabilistic formal methods [32,37,59], that
describe the transitions by probabilistic distributions, allow to generalise the

8
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concept of bisimulations to the field of probabilistic systems with the notions
of approximate (bi)simulations [62].

9





3

Background

Along the chapter we recall some basic notions and properties we will use in
the rest of the thesis. In Section 3.1 we introduce the fundamental arguments
of Measure theory. In Section 3.2 we introduce probabilistic systems and, in
particular, automata. In Section 3.3 we introduce bisimulation relations. In
Section 3.4 we introduce Metric theory.

3.1 Measures

Measure theory is the study of measures, it generalises the intuitive notions
of length, area, and volume. In this section we give the basic definitions of
measure theory, we recall the fundamental definition of σ-algebra and Borel
σ-algebra. More information can be found in [10,35].

3.1.1 σ-algebra

A σ-algebra on a set Ω is a collection of subsets of a set Ω that contains ∅
and Ω, and is closed under complements, finite unions, countable unions, and
countable intersections.

Definition 3.1 (σ-algebra). We say that F ⊆ 2Ω is a σ-algebra (or a σ-
field), if

a) Ω ∈ F and ∅ ∈ F
b) if A ∈ F then Ac ∈ F , where Ac = Ω \A
c) if Ai ∈ F for i = 1, 2, . . . then

⋃
iAi ∈ F

c’) if Ai ∈ F for i = 1, 2, . . . then
⋂
iAi ∈ F .

The conditions c) and c’) are equivalent for De Morgans law, which is
(
⋃
iA

c
i )
c

=
⋂
iAi. If S is any collection of subsets of F , then we can always

find a σ-algebra containing S, namely the power set of F . By taking the
intersection of all σ-algebras containing S, we obtain the smallest such σ-
algebra.
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Definition 3.2 (σ-algebra generators). The σ-algebra generated by S is
the smallest σ-algebra containing S.

Consider a set Ω. A σ-algebra on Ω is a set F ⊆ 2Ω that includes Ω and
is closed under complement and countable union. A measurable space is pair
(Ω,F ) where Ω is a set, also called sample space, and F is a σ-field over Ω.
A measurable space (Ω,F ) is called discrete if F = 2Ω .

A measure is a countably additive, non-negative, extended real-valued
function defined on a σ-algebra.

Definition 3.3 (Measure). For each countable collection {Ωi}i∈I of pair-
wise disjoint elements of F , a measure over a measurable space (Ω,F ) is a
function µ : F → R+ > 0 such that µ(

⋃
I Ωi) =

∑
I µ(Ωi).

A probability measure over a measurable space (Ω,F ) is a measure µ over
(Ω,F ) such that µ(Ω) = 1.

Definition 3.4 (Discrete measure). A discrete measure is a measure over
a discrete measurable space (Ω, 2Ω). We denote by Disc(Ω) the set of discrete
probability measures over the set Ω.

We call a discrete probability measure a Dirac measure, denoted by δx, if
it assigns measure 1 to exactly one object x; in a natural way we define δx by

δx(Ω) =

{
1 if x ∈ Ω
0 otherwise.

A sub-probability measure over (Ω,F ), is a measure over (Ω,F ) such that
µ(Ω) 6 1. The set of discrete sub-probability measures over the set Ω is
denoted by SubDisc(Ω). The support of a measure µ over (Ω,F ), denoted
by Supp(µ), is the set {ω ∈ Ω | µ(ω) > 0 }. A probability space is a triple
(Ω,F, ρ), where (Ω,F ) is a measurable space and ρ is a probability measure
on (Ω,F ). Let (Ω1, F1) and (Ω2, F2) be two measurable spaces. A function
f : Ω1 → Ω2 is said to be a measurable function from (Ω1, F1) to (Ω2, F2) if
the inverse image under f of any element of F2 is an element of F1. In this case,
given a measure ρ on (Ω1, F1) it is possible to define a measure on (Ω2, F2)
via f , called the image measure of ρ under f and denoted by f(ρ), as follows.
For each X ∈ F2, f(ρ)(X) = ρ(f−1(X)). In other words, the measure of X
in F2 is the measure in F1 of those elements whose f -image is in X. The
measurability of f ensures that f(ρ) is indeed a well defined measure.

3.1.2 Borel σ-algebra

A σ-algebra which is related to the topology of a set is the Borel σ-algebra.

Definition 3.5 (Topological space). A topological space is a set T together
with a collection of open subsets O that satisfies the four conditions:

12
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1. the empty set ∅ is in O, i.e. ∅ ∈ O
2. T is in O, i.e. T ∈ O
3. the intersection of a finite number of sets in O is also in O, i.e. {Si }i6n

if Si ∈ O then
⋂
i Si ∈ O

4. the union of an arbitrary number of sets in O is also in O, i.e. {Si }i∈N
if Si ∈ O then

⋃
i Si ∈ O

Given a topological space T , the Borel σ-algebra B is defined to be the
σ-algebra generated by the open sets of T . The closures of B are numerable
union, no more arbitrary union.

For our purposes we are interested in particular topological spaces called
metric spaces, where the notion of closeness is substituted by the notion of
distance that can say when things are close to each other. From any metric
space (T, d) we form a useful σ-algebra, called the Borel sets. We start with
the set of all open balls in T , i.e. B(x, r) = {x′ ∈ T | µ(x, x′) < r} for any
x ∈ T and any r ∈ (0,∞). From the open balls, the Borel sets B are the sets
that can be constructed from these open balls by using the σ-algebra axioms.
By using Borel sets the nonmeasurable sets are avoided.

Example 3.6. A simple example of B can be constructed for R. The open balls
are just the set of all open intervals, (x1, x2) ⊂ R, for any x1, x2 ∈ R such
that x1 < x2. \

Definition 3.7 (Borel σ-algebra). Let (T, d) be a metric space. The Borel
σ-algebra (σ-field) B(T ) is the smallest σ-algebra in T that contains all open
sets of T . The elements of B are called the Borel sets of T .

The metric space (T, d) is called separable if it has a countable dense
subset, i.e. there are x1, x2, . . . in T such that {x1, x2, . . .} = T . A denotes the
closure of A ⊂ T .

Proposition 3.8. If T is a separable metric space, then B(T ) equals the σ-
algebra, called A, generated by the open (or closed) balls of T .

Proof. Clearly, A ⊂ B. Let D be a countable dense set in T . Let U ⊂ X be
open. For x ∈ U take r > 0, r ∈ Q such that B(x, r) ⊂ U(B(x, r) open or
closed ball with center x and radius r) and take yx ∈ D ∩ B(x, r/3). Then
x ∈ B(yx, r/2) ⊂ B(x, r). Set rx := r/2. Then U =

⋃
{B(yx, rx) : x ∈ U },

which is a countable union. Therefore U ∈ A. Hence B ⊂ A. ut

Definition 3.9 (Borel probability measures). Let (T, d) be a metric
space. A finite Borel measure on T is a map µ : B(T )→ [0,∞) such that

1. µ(∅) = 0
2. A1, A2, . . . ∈ B(T ) mutually disjoint implie µ (

⋃∞
i=1Ai) =

∑∞
i=1 µ (Ai)

µ is called a Borel probabiliy measure if in addition µ(T ) = 1.

The following well known continuity properties will be used many times.

13
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Proposition 3.10. Let T be a metric space and µ a finite Borel measure on
T . Let A1, A2, . . . be Borel sets.

1. If A1 ⊂ A2 ⊂ . . . and A =
⋃∞
i=1Ai, then µ(A) = limn→∞ µ(An)

2. If A1 ⊃ A2 ⊃ . . . and A =
⋂∞
i=1Ai, then µ(A) = limn→∞ µ(An)

Proposition 3.11. If µ is a finite Borel measure on T and A is a collection
of mutually disjoint Borel sets of T , then at most countably many elements of
A have nonzero µ-measure.

Proof. For m > 1, let Am := {A ∈ A | µ(A) > 1/m }. For any distinct
A1, . . . , Ak ∈ Am we have µ(T ) > µ (

⋃∞
i=1Ai) = µ(A1) + . . .+ µ(Ak) > k/m,

henceAm has at mostmµ(T ) elements. Thus {A ∈ A | µ(A) > 0 } =
⋃∞
i=1Am

is countable. ut

3.2 Probabilistic systems

In literature concurrency theory performs a study of processes which can be
“exactly” exchanged, thus their behaviours are identical. We consider internal
actions hidden from the external observers, that may indirectly affect exter-
nally visible behaviour. These actions are important when we define behaviour
equivalences, in particular two specifications with different internal actions
may achieve the same “observable” behaviour and could, thus, be considered
equivalent. Since the internal action are formally described by probability dis-
tributions, these processes are describe by probabilistic systems. Thus prob-
abilistic models allow to describe essential details which are not captured by
the nondeterministic model.

3.2.1 General processes

A transition system is an abstract machine that represents either an imple-
mentation, i.e., a physical device or software system, or a specification, i.e., a
description of the required properties of an implementation. It is one of the
first mathematical models for describing the systems and the most common
structure used to describe behaviour of processes.

Definition 3.12. A Labelled Transition System is a triple (W,A, Tr) with
domain W, set of labels A, and for each label a, a relation Tr : W × A→ W
on W called the transition relation.

The infix notation for relations we write is s
a−→ t when (s, a, t) ∈ Tr, in this

case we call t a a-derivative of s, or sometimes simply a derivative of s. In
order to extend Labelled Transition Systems to the probabilistic setting, the
main addition that is needed is some mechanism for representing probabilistic
choices as well as nondeterministic choices. Thus a probabilistic transition
relation s

a−→ µ specifies the probability µ of moving from one state s to

14
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another t. When we deal with a general probabilistic system we refer to a
Probabilistic Labelled Transition Systems (PLTS), i.e. a transition system
with probabilities and labels associated with the transitions.

Definition 3.13. A Probabilistic Labelled Transition Systems (PLTS) is a
triple (Q,A, Tr), where Q is the set of states, A is the set of actions, Tr : Q×
A →Disc(Q) is a transition relation. A transition (q, a, µ) ∈ Tr from a state

q and action a with probability µ is also denoted by q
a−→ µ.

We recall that all probabilistic data is internal and no probabilities associated
with environment show through. Partial labeled Markov chains are the dis-
crete probabilistic analogs of labeled transition systems, where the final state
is governed by a probability distribution and no other indeterminacy.

Definition 3.14. A partial labeled Markov chain (plMc) with a label set L is
a structure (S, { kl | l ∈ L } , s), where S is a countable set of states, s is the
P start state, and ∀l ∈ L.kl : S × S → [0, 1] is a transition function such that
∀s ∈ S.

∑
t kl(s, t) 6 1.

We could have alternatively presented a plMc as a structure (S, { kl | l ∈ L } , µ),
where µ is an initial distribution on S. Given a plMc with initial distribu-
tion P , one can construct an equivalent plMc with initial state Q as follows.
SQ = SP ∪{u} where u is a new state not in SP . u will be the start state of Q.

kQl (s, t) = kPl (s, t) if s, t ∈ SP ; kQl (s, u) = 0, and kQl (u, t) =
∑
kPl (s, t)µP (s).

We will freely move between the notions of initial state and initial distribu-
tion. For example, when a transition P on label l occurs in a plMc P , there
is a new initial distribution given by µ′(t) =

∑
kl(s, t)× µ(s).

When the system interacts with the environment and in addition to the
probabilistic moves, non-deterministic choices are possible. Such choices are
captured by Markov Decision Processes (MDP), which extend Markov chains
with non-determinism.

Definition 3.15 (MDP). A Markov Decision Process (MDP) is (S,A, P,R(·, ·), γ)
such that

• S is a finite set of states
• A is a finite set of actions
• Pa(s, s′) = Pr(st+1 = s′ | st = s, at = a) is the probability that the action
a in states at time t will lead to state s′ at time t+ 1
• Ra(s, s′) is the immediate reward received after transitioning from state s

to state s′, due to action a
• γ ∈ [0, 1] is the discount factor, which represents the difference in impor-

tance between future rewards and present rewards.

A MDP is a submodel of a game structure, where a game is any situa-
tion with the following three aspects. 1) There is a set of participants, whom
we call the players. 2) Each player has a set of options for how to behave;
we will refer to these as the players possible strategies. 3) For each choice

15
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of strategies, each player receives a payoff that can depend on the strate-
gies selected by everyone. The payoffs will generally be numbers, with each
player preferring larger payoffs to smaller payoffs. A game structure G is a
MDP if only one of the two players has a choice of moves. For i ∈ {1, 2}, we
say that a structure is an i-MDP if for all s ∈ S the move assignments of
not such that i |Γj 6=i(s)| = 1. For MDPs, we omit the (single) move of the
player without a choice of moves, and write δ(s, a) for the transition function.
Game structure generalises many common structures in computer science,
from transition systems, to Markov chains and Markov decision processes.
We consider games with simultaneous moves, where the players randomise
their moves at each round. Intuitively, the adversary cannot play the exact
winning move in response to each the individual move played. The players play
not a single move called pure move, rather a probability distribution over the
available moves at a state called mixed move. Before to give the definition
of game structure, we introduce some notation related to basic probabilistic
concept. For a finite set A, let Dist(A) = {µ : A→ [0, 1] |

∑
a∈A µ(a) = 1 }

denotes the set of probability distributions over A. We denote by Di(s) =
Dist(Γi(s)) the set of mixed moves available to player i ∈ {1, 2} in the state
s. We extend the transition function to mixed moves. Given a state s and
x1 ∈ D1(s), x2 ∈ D2(s), we write δ(s, x1, x2) for the next-state probability
distribution induced by the mixed moves x1 and x2, defined for all t ∈ S by
δ(s, x1, x2)(t) =

∑
a1∈Γ1(s)

∑
a2∈Γ2(s)

δ(s, a1, a2)(t)x1(a1)x2(a2).

A valuation over A is a function f : A → [0, 1] that associates to every
element s ∈ A a value 0 6 f(s) 6 1. The set of all valuations is F , where for
f, g ∈ F we write f 6 g if and only if f(s) 6 g(s) at all s ∈ A. We recall that
F under 6 forms a complete lattice.

Definition 3.16 (Game structure [12]). Given a fixed finite set Υ of obser-
vation variables. A (two-player, concurrent) game structure G = 〈S, [·],Moves, Γ1, Γ2, δ〉
consists of the following components:

• a finite set S of states
• a variable interpretation [·] : Υ × S → [0, 1], which asociates with each

variable v ∈ Υ a valuation [v]
• a finite set Moves of moves
• two move assignments Γ1, Γ2 : S →

{
2Moves \ ∅

}
. For i ∈ {1.2}, the as-

signment Γi associates with each state s ∈ S the nonempty set Γi(s) ⊆
Moves of moves available to player i at state s
• a probabilistic transition function δ : S×Moves×Moves→ Dist(S), that

gives the probability δ(s, a1, a2)(t) of a transition from s to t when player
1 plays move a1 and player 2 plays move a2.

Given a valuation f ∈ F , a state s ∈ S, and two mixed moves x1 ∈
D1(s), x2 ∈ D2(s), we define the expectation of f from s under x1, x2 as
Ex1,x2
s (f) =

∑
t∈S δ(s, x1, x2)(t)f(t). For a game structure G, for i ∈ {1, 2}

we define the valuation transformer Prei : F → F by, for all f ∈ F and s ∈ S,
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Prei(f)(s) =
∑
xi∈Di(s)

infx¬i∈D¬i(s) Ex1,x2
s (f). Intuitively, Prei(f)(s) is the

maximal expectation player i can achieve of f after one step from s: this is the
classical one-day or next-stage operator of the theory of repeated games.

The use of mixed moves allows players to win with probability 1 games
that they would lose, i.e. win with probability 0, if restricted to playing moves
without simultaneity. Inserting the probabilities the question of winning a
game is thus a probabilistic one: what is the maximal probability whereby a
player can be guaranteed of winning, regardless of how the other player plays?
This probability is known, in brief, as the winning probability.

3.2.2 Probabilistic automata

The analysis of distributed and concurrent systems developed the mathemat-
ical model of Transition System (TS), that describes the effect of operations
(called transitions) on the systems state. An extension of TS explicit labels
the transitions of the system by actions, such that the execution of an action
is the result of a change of a state. The extended TS is called a Labelled
Transition System (LTS). A TS is used to describe the potential behaviours
of discrete systems.

To model and study randomized distributed algorithms into the concur-
rency theory is used the Probabilistic Automata model. Finite state automata
differ from TS by 1) the sets of states and the set of transition are necessary
finite, or even countable; 2) start state or finite state are given. An automata
is a state machine with labelled steps, call also transitions. Its action describes
he interface with the external environment by specifying which actions model
events that are visible from the external environment and which ones model
internal events. A probabilistic automata differ from an automaton in that the
action and the next stage of a given transition are chosen probabilistically.

Definition 3.17 (Probabilistic Automaton). A Probabilistic Automaton
(PA) is a tuple (S, s̄, A,D) where S is a set of states, s̄ ∈ S is the start state,
A is a set of actions, and D ⊆ S ×A×Disc(S) is a transition relation. The
set of actions A is further partitioned into three sets I, O, H of input, output
and internal (hidden) actions, respectively.

PA model provides the tools to relate executions of different systems. Sim-
ulations and bisimulations allow us to compare the computations of two sys-
tems and to say if they behave in the same way or if their behaviours are not
similar.

17



3.3 Bisimulation

A classical method to simplify the study of a Markov chain is to a simpler
Markov chain consists of founding an equivalence relation ≡ on states of the
chain such that the simplified transition function µ : X → P (X), defined by
≡, does not change the probabilities of the transitions of the original chain.
If we consider a Markov labelled system, two states are equivalent s1 ≡ s2
if we cannot distinguish s1 from s2, i.e. there is no difference between the
probability of pass through s1 toward C or the probability of pass through
s2 toward C. This notion used by [37], it is called bisimulation when X is a
finite space.

The most studied form of behavioural equality for processes in concurrency
is the bisimulation equality, called also bisimilarity. Some of reasons for which
it is widely used are the followings.

(a) Bisimilarity is accepted as the finest behavioural equivalence one would
like to impose on processes.

(b) The bisimulation proof method is exploited to prove equalities among pro-
cesses. This occurs even when bisimilarity is not the behavioural equiva-
lence chosen for the processes. For instance, one may be interested in trace
equivalence and yet use the bisimulation proof method since bisimilarity
implies trace equivalence.

(c) The efficiency of the algorithms for bisimilarity checking and the compo-
sitionality properties of bisimilarity are exploited to minimise the state-
space of processes.

(d) Bisimilarity, and variants of it such as similarity, are used to abstract from
certain details of the systems of interest. For instance, we may want to
prove behavioural properties of a server that do not depend on the data
that the server manipulates. Further, abstracting from the data may turn
an infinite-state server into a finite one.

Bisimulation has been derived through refinements of notions of morphism
between algebraic structures. We consider automata where the basic descrip-
tion of a behaviour is a single transition denotes the execution of an action.
Here a process is modelled as a sequence of transitions from (a set of) an
initial state s0 and a set of final state O, these states belong to a finite set Q
and the finite set of transitions between states is Tr. A process can also be
described as an element of an algebra of regular expressions [38], by using the
axioms and equational reasoning we can perform calculations with processes.
The simplest model of a process transition is an input/output function, where
a values given in input is processes to obtain the value of the output. This
transition function is a partial one and it is denoted by Tra : Q → Q; simi-
larly, we denote as Oa : Q→ O the output function. The modern parallel and
distributed systems are based on interactions between systems during the ex-
ecution, these interactions are at the base of concurrency theory. We consider
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two automata A,B as in [3], a homomorphism from the automaton A to the
automaton B is a surjective function F : QA → QB such that for all input a:

• F ◦ TrAa ⊆ TrBa ◦ F , that is the condition on the states
• OAa ⊆ OBa ◦ F , that is the condition on the outputs.

We rewrite these constraints as operational constraints on automata, where
s

a−→
b
t denotes the transition from state s and input a produces the output

b and evolves into the state t. Assuming for simplicity that OAa and TrAa are
undefined exactly on the same points, the two conditions above become:
for all s, s′ ∈ QA, if s

a−→
b
s′ then also F (s)

a−→
b
F (s′).

If there is a homomorphism from A to B then automaton B covers automaton
A, i.e., B can do, state-wise, at least all the transitions that A does. That
is, there is a total function ϕ from the states of A to the states of B such
that, for all states s of A, all translations performed by A when started in s
can also be performed by B when started in ϕ(s). The implication becomes
stronger if one uses weak homomorphisms, which are obtained by relaxing the
functional requirement of homomorphism into a relational one. Thus a weak
homomorphism is a total relation R : QA ×QB such that for all input a:

1. TrAa ◦R−1 ⊆ R−1 ◦ TrBa , that is the condition on the states
2. OAa ◦R−1 ⊆ OBa , that is the condition on the outputs.

We give the operational interpretation: whenever sR t and s
a−→
b
s′ hold in A,

then there is t′ such that t
a−→
b
t′ holds in B and s′R t′.

As homomorphisms, so weak homomorphisms imply that automaton B covers
automaton A. The result for weak homomorphism is stronger as the homo-
morphisms are strictly included in the weak homomorphisms. We consider
two automata A,B, some states {si} ∈ A and {ti} ∈ B and the transitions

s1
a−→ s3, s2

b−→ s3, t1
a−→ t3, t2

b−→ t4 showed in the following diagram.

A : s1 s2

s3

a b

B : t1 t2

t3 t4

a b

We cannot establish a homomorphism F from A to B, since a homomorphism
must be surjective and the functional requirement prevents us from relating
s3 with both t3 and t4. F is constructed with the following relations

s1
a−→ s3 =⇒ F (s1) = t1

a−→ F (s3) = t3

s2
b−→ s3 =⇒ F (s2) = t1

b−→ t4 6= F (s3) = t3

By contrast, a weak homomorphism R exists and relates s1 with t1, s2 with
t2, and s3 with both t3 and t4, as shown in the following.
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s1R t1 and s1
a−→ s3 =⇒ t1

a−→ t3 and s3R t3

s2R t4 and s2
b−→ s3 =⇒ t2

a−→ t4 and s3R t4.

3.3.1 Classical bisimulation

Intuitively, two processes should be equivalent if they cannot be distinguished
by interacting with them. The definition of bisimulation relations establish
step-by-step two-directional correspondences of behaviours between two states
or systems. In the following we give the formal definition starting with the
definition of simulation, which are half bisimulations.

We let R range over relations on sets, for example if P denotes the powerset
construct, then a relation R on a set W is an element of P(W ×W ). We use
the infix notation for relations (s, t) ∈ R by means sR t.

Definition 3.18 (Strong simulation). A binary relation R on the states of

an LTS is a strong simulation if sR t implies that for all s1 with s
a−→ s1 there

is t1 such that t
a−→ t1 and s1R t1. Similarity is the union of all simulations.

In the diagrams of the thesis we represent the R-relation between states s
and t such that sR t with an sawtoothed right arrow  from s to t, with
the meaning of “s can be substituted with t”. In Diagram 3.1 the transition
applied to s with the action a is deterministic, i.e. there is at most one state s1
such that s

a−→ s1. t simulates s, thus the action a on t induces the transition
t
a−→ t1 such that t1 simulates s1.

s t

s1 t1

a

R

a

R

(D.3.1)

In the left hand side of Diagram 3.2 we represent a nondeterministic tran-
sition with a set of arrows from state s and action a, which leads to a set
of states {si}16i6n. Each arrow represents a possible transition which leads
to a single state si. In the right hand side of Diagram 3.2 we represent the
nondeterministic transition with action a from the state t.

s1

s
...

sn

a

a

a

t1

t
...

tn

a

a

a

(D.3.2)

t simulates s, thus each si of a possible transition has to be simulated by
an outcome ti of a transition t

a−→ ti, as shown in Diagram 3.3. We highlight
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the strict constraint of the definition of simulation: the number of possible
outcomes {si}16i6n is equal to the number of possible outcomes {ti}16i6n.

s t

s1 t1

· · · · · ·

sn tn

a

aa

R

a

a a

R

R

R

(D.3.3)

When the relation R is an equivalence, s simulates t and the converse too.

Definition 3.19 (Strong bisimulation). An equivalence binary relation R
on the states of an LTS is a strong bisimulation if whenever sR t

• for all s1 with s
a−→ s1, there is t1 such that t

a−→ t1 and s1R t1
• the converse, i.e. for all t1 there exists s1 such that t1Rs1.

The notation of strong bisimulation is represented by a double sawtoothed
arrow as shown in Diagram 3.4.

s t

s1 t1

a

R

a

R

(D.3.4)

Bisimilarity is the union of all bisimulations, i.e. the maximum probabilis-
tic bisimulation.

Definition 3.20 (Bisimilarity). Given a probabilistic system (Q,A, Tr) two
state s, t are bisimilar and denoted by s ∼ t if and only if there exists a strong
bisimulation R such that sR t.

We represent bisimilarity in Diagram 3.5.With respect to Diag. 3.4 we
have add the double arrow labelled ∼, which is nearly a circle since it is the
last step of the definition.

s t

s1 t1

a

R

∼

a

R

(D.3.5)
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The (bi)simulation can be relaxed to be a weak (bi)simulation.

Definition 3.21 (Weak simulation). A binary relation R on the states of

an LTS is a weak simulation if sR t implies that for all s1 with s
a−→ s1 there

is t1 such that t
a−→→ t1 and s1R t1.

If two states s and t are bisimilar and there is an action leading from s to
the state s′, then there must exist a state t′ such that there is some num-
ber, possibly zero, of actions leading from t to t′, that we denote by

a−→→. In
Diagram 3.6 we represent this new notion.

s t

...

s′ t′

a

R

a

0 or n

a

R

(D.3.6)

We define the weak bisimulation as a bidirectional relation.

Definition 3.22 (Weak bisimulation). A weak bisimulation is a binary
relation R on the set of processes such that for all s, t, if sR t then

• for all action a and state s′ if s
a−→ t′, then t

a−→→ t′ and s′R t′

• for all action a and state t′ if t
a−→ t′, then s

a−→→ s′ and t′Rs′.

Since in a weak simulation a single transition of a state is simulated by more
than one transition of the other state, then we cannot generate a diagram
with bidirectional arrows as in Diag. 3.4 and thus we generate two diagrams
in Diagram 3.7.

s t

...

s′ t′

a

R

a

0 or n

a

R

and

s t

...

s′ t′

a

R

0 or n a

a

R

(D.3.7)

Definition 3.23 (Weak bisimularity). Two states s and t of a probabilistic
system are weakly bisimilar, denoted s ' t, if there exists a bisimulation R
such that sR t.
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3.3.2 Probabilistic bisimulation

The extension of strong bisimulation and strong simulation to the probabilistic
framework presents a problem, which is due to the fact that a probabilistic
transition leads to a probability distribution over states rather than to a single
state. This problem is represented in Diagram 3.8, in the left hand side the
probabilistic transition from the state s with action a leads to a set of states
described by the probabilistic distributions µ(s). In the right hand side ν(t) is
the probabilistic distributions of the states {tj}16j6m, which are the results

of the transition t
a−→ ν(t). We note that the number of the resulting states of

two different transitions can be different, as in the diagram where n > m.

s1

s
...

sn

µ(s)

a

a

a

t1

t
...

...

tm

ν(t)

a

a

a

a

(D.3.8)

Thus, to extend the notion of (bi)simulation to the probabilistic framework
a relation over states needs to be lifted to distributions over states.

Definition 3.24 (Lifting). Given a relation R ⊆ X × Y , the lifting of R
is the relation L(R) : Disc(X) → Disc(Y ) such that there exists a weighting
function w : X×Y → [0, 1] satisfying the following properties, for µ ∈ Disc(X)
and ν ∈ Disc(Y )

1. w(s, t) > 0 implies sR t
2.
∑
s∈X w(s, t) = µ(t)

3.
∑
t∈Y w(s, t) = ν(s)

We denote the discrete probability measures in lifting relation by µL(R) ν.

An alternative definition of lifting given in a more probabilistic style is the
following. µL(R) ν if and only if there exists a joint measure w with marginal
measures µ and ν such that the support of w is included in R. If R is an
equivalence relation, then µL(R)ν if and only if, for each equivalence class C
of R, µ(C) = ν(C). The notation of the lifting relation in the original version
is vR ( [57,58]).

In the following we show some properties that we will use in the rest of
the thesis.

Proposition 3.25. Let R is a relation on Q and L(R) is the lifting relation
between measures induced by R, R = ∅ if and only if L(R) = ∅.
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Proof. a

(⇒) For hypothesis we assume R = ∅ and L(R) 6= ∅. For definition of L(R)
there exist two measures µ, ν ∈Disc(Q) such that µL(R) ν, therefore there
exists a weighting function w : Q×Q→ R with marginal distributions µ
and ν. Since µ is a probabilistic measure, then

∑
s∈Q µ(s) = 1 and in

particular there exists a state s ∈ Q such that µ(s) > 0. We calculate the
value of the latter using a properties of w, i.e. µ(s) =

∑
t∈Q w(s, t). Since

w(s, t) > 0, this implies that there exists a t ∈ Q which is, for a second
properties of w, in relation sR t. This is an absurd since R is empty, so
we have shown that R = ∅ =⇒ L(R) = ∅.

(⇐) We recall the definition of a Dirac measure, that is a measure δx on a set
X defined for a given x ∈ X and any measurable set A ⊆ X by δx(A) = 1
if x ∈ A and δx(A) = 0 if x /∈ A. If R 6= 0, then there exist s, t ∈ Q such
that sR t. We define two Dirac measures δs, δt and we want to obtain
δs L(R) δt. We define a weighting function w as, for every x, y ∈ Q

w(x, y) =

{
1 if x = s and y = t

0 otherwise

We have w(s, t) = 1 and for the other cases we have 0, i.e.
∑
x,y∈Q.x6=s∧y 6=t w(x, y) =

0, except for
∑
y∈Q w(s, y) = δt and

∑
y∈Q w(x, t) = δs. Thus the axioms

3. and 4. are verified above, the function is non-negative and thus also the
axiom 1. is verified. To verify the axiom 2. we check when w(x, y) > 0,
the only case is w(s, t) = 1 for x = s, y = t and thus sR t.

ut

Proposition 3.26 (Reflexive lifting). If R is reflexive, then L(R) is reflex-
ive.

Proof. R is reflexive and for each x ∈ Q we have xRx. Let µ ∈Disc(Q) is a
probabilistic measure, on which we define the following function w : Q×Q→ R
for each x, y ∈ Q

w(x, y) =

{
µ(x) if x = y

0 otherwise

It verifies the weighting function axioms:

1. µ is a measure, i.e. with outcomes in the interval [0, 1], and thus w is
non-negative

2. for each x, y ∈ Q if w(x, y) > 0, then x = y. Since R is reflexive, we have
xR y

3. for each x ∈ Q we have
∑
y∈Q w(x, y) = w(x, x) = µ(x); in the other cases

y 6= x implies w(x, x) = 0
4. As above, for each y ∈ Q we have

∑
x∈Q w(x, y) = w(y, y) = µ(y)

ut
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Proposition 3.27 (Symmetric lifting). If R is symmetric, then L(R) is
symmetric.

Proof. Let R be a symmetric relation on Q and µ1 ∈Disc(Q1), µ2 ∈Disc(Q2)
be two measures such that µ1L(R)µ2. This means that there exists a w : Q1×
Q2 → [0, 1] which is a weight function. w verifies the lifting properties:

• for each u ∈ Q1 and v ∈ Q2 we have w(u, v) > 0 that implies uR v
• for each u ∈ Q1 and

∑
v∈Q2

w(u, v) = µ1(u)
• for each v ∈ Q2 and

∑
u∈Q1

w(u, v) = µ2(v)

We define w′ : Q1 ×Q2 → [0, 1] as w′(u, v) = w(v, u). It is easy to show that
w′ verifies the lifting properties:

• for each u ∈ Q1, v ∈ Q2 we have w′(u, v) > 0 that implies w(v, u) > 0,
thus v Ru and since R is symmetric, we have that uR v
• for each u ∈ Q1 and

∑
v∈Q2

w′(u, v) =
∑
v∈Q2

w(v, u) = µ2(u)
• for each v ∈ Q2 and

∑
u∈Q1

w′(u, v) =
∑
u∈Q1

w(v, u) = µ1(v)

This implies that µ2L(R)µ1. ut

Proposition 3.28 (Transitive lifting). If R is transitive, then L(R) is tran-
sitive.

To show this proposition we have to show the following property.

Proposition 3.29. Let R and S be two relations and µ1, µ2, µ3 be three prob-
ability measures. If µ1L(R)µ2 and µ2L(R)µ3, then µ1L(R ◦ S)µ3.

Proof. Let R,S be two relations from Q1 to Q2 and from Q2 to Q3, respec-
tively. Let µ1 ∈Disc(Q1), µ2 ∈Disc(Q2), µ3 ∈Disc(Q3) be three probability
measures such that µ1L(R)µ2 and µ2L(S)µ3. This implies that there exist
wr : Q1 ×Q2 → [0, 1] and ws : Q2 ×Q3 → [0, 1] such that

• for each u ∈ Q1, v ∈ Q2 we have wr(u, v) > 0 that implies (u, v) ∈ R
• for each u ∈ Q1 we have

∑
v∈Q2

wr(u, v) = µ1(u)
• for each v ∈ Q2 we have

∑
u∈Q1

wr(u, v) = µ2(v)
• for each u ∈ Q2, v ∈ Q3 we have ws(u, v) > 0 that implies (u, v) ∈ S
• for each u ∈ Q2 we have

∑
v∈Q3

ws(u, v) = µ2(u)
• for each v ∈ Q3 we have

∑
u∈Q2

ws(u, v) = µ3(v)

We define wrs : Q1 ×Q3 → [0, 1] as wrs =
∑
t∈Q2,µ2(t)6=0

wr(u,t)ws(t,v)
µ2(t)

. wrs is

a weight function:

• for each u ∈ Q1 and v ∈ Q3, since wrs(u, v) > 0, we have that the value
of the sum defining wrs(u, v) via the state t is positive and thus there

exists q ∈ Q2 such that µ2(q) 6= 0 and wr(u,q)ws(q,v)
µ2(q)

> 0. Since µ2(q) is a

probability measure, it follows that µ2(q) > 0 and thus wr(u, q)ws(q, v) >
0 that implies wr(u, q) > 0 and ws(q, v) > 0. Hence we have that uR q
and q R v and thus uR ◦ S v
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• for each u ∈ Q1 we have∑
v∈Q3

wrs(u, v) =
∑
v∈Q3

∑
t∈Q2,µ2(t)6=0

wr(u, t)ws(t, v)

µ2(t)

=
∑

t∈Q2,µ2(t)6=0

∑
v∈Q3

wr(u, t)ws(t, v)

µ2(t)

=
∑

t∈Q2,µ2(t)6=0

wr(u, t)

µ2(t)

∑
v∈Q3

ws(t, v)

=
∑

t∈Q2,µ2(t)6=0

wr(u, t)

µ2(t)
µ2(t)

=
∑

t∈Q2,µ2(t)6=0

wr(u, t)

=
∑
t∈Q2

wr(u, t)

= µ1(u)

We can remove the condition on µ2(t) 6= 0 from the summation since by
definition of weighting function, if µ2(t) = 0, the

∑
u∈Q1

wr(u, t) = 0 and
thus for each u ∈ Q1 we obtain wr(u, t) = 0
• for each v ∈ Q3 we have∑

u∈Q1

wrs(u, v) =
∑
u∈Q1

∑
t∈Q2,µ2(t)6=0

wr(u, t)ws(t, v)

µ2(t)

=
∑

t∈Q2,µ2(t)6=0

∑
u∈Q1

wr(u, t)ws(t, v)

µ2(t)

=
∑

t∈Q2,µ2(t)6=0

ws(t, v)

µ2(t)

∑
u∈Q1

wr(u, t)

=
∑

t∈Q2,µ2(t)6=0

ws(t, v)

µ2(t)
µ2(t)

=
∑

t∈Q2,µ2(t)6=0

ws(t, v)

=
∑
t∈Q2

ws(t, v)

= µ3(v)

We can remove the condition on µ2(t) 6= 0 from the summation since by
definition of weighting function, if µ2(t) = 0, the

∑
v∈Q3

wr(t, v) = 0 and
thus for each v ∈ Q3 we obtain ws(t, v) = 0
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This implies that wrs is a weighting function from µ1 to µ3 and thus µxL(R ◦
S)µ3. ut

Proof. Transitivity of L(R). Let R be a transitive relation on Q and let
µ1, µ2, µ3 ∈Disc(Q) be three probability measures such that µ1L(R)µ2 and
µ2L(R)µ3. By the Property 6, we have that µ1L(R ◦R)µ1. If R ◦R ⊆ R, then
by Property 3 we have that µ1L(R)µ3, as required. So, let x, z ∈ Q be two
states such that (x, z) ∈ R ◦ R. By definition of composition, it follows that
there exists y ∈ Q such that (x, y) ∈ R and (y, z) ∈ R. Since R is transitive,
we have that (x, z) ∈ R and thus R ◦R ⊆ R. ut

We give the definition of probabilistic simulation.

Definition 3.30 (Strong probabilistic simulation). A strong probabilis-
tic simulation between two probabilistic automata A1 and A2, without common
states, is a relation R ⊆ Q(A1)×Q(A2) such that

• each start state s̄ of A1 is in relation with at least one start state t̄i of A2,
i.e., s̄ R {t̄i}i
• for each pair of states sR t and each transition s

a−→ µ of A1, there exists
a transition t

a−→ ν of A2 such that µL(R) ν.

The main difference with classical simulation in Def. 3.18 is the use of proba-
bilistic distributions for describing the resulting states, as shown in Diag. 3.8.
We update Diag. 3.3 inserting the distributions in Diagram 3.9. The latter new
diagram covers also the update of Diag. 3.1, since µ(s) includes all the possible
resulting states. Now the relation between the two set of reached states, i.e.,
{si}i and {ti}i, is described by the lifting relation (Def. 3.24) instead of the
simple given relation R. In Diagram 3.9 this is represented by an arrow with
label L(R) instead of R.

s t

µ ν

a

R

a

L(R)

(D.3.9)

We consider R to be an equivalence relation between states, thus sR t and
also tR s.

Definition 3.31 (Strong probabilistic bisimulation). A strong proba-
bilistic bisimulation between two probabilistic automata A1 and A2, without
common states, is an equivalence relation R over states Q(A1) ∪Q(A2) such
that

• each start state s̄ of A1 is in relation with at least one start state t̄i of A2

and vice versa, i.e., s̄ R {t̄i}i and t̄ R {s̄i}i
• for each pair of states sR t and each transition s

a−→ µ of A1, there exists
a transition t

a−→ ν of A2 such that µL(R) ν and vice versa.
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We represent the probabilistic bisimulation relation on R in Diagram 3.10.
Since lifting relation preserves the equivalence property, then we draw the
more precise diagram Diag. 3.11 where both R and L(R) are represented by
a double arrow.

s t

µ ν

a

R

a

L(R)

and

t s

ν µ

a

R

a

L(R)

(D.3.10)

s t

µ ν

a

R

a

L(R)

(D.3.11)

Definition 3.32 (Strong probabilistic bisimilarity). Two states s, t, that

belong to probabilistic automata A1 and A2, are bisimilar s
L∼ t, iff there exists

a strong bisimulation R ⊆ Q×Q such that sR t and µL(R) ν.

We represent bisimilarity in Diagram 3.12.With respect to Diag. 3.10 we

have add the double arrow labelled
L∼, which is nearly a circle since it is the

last step of the definition.

s t

µ ν

a

R

L∼

a

L(R)

(D.3.12)

Bisimilariry technique

The definition of bisimilarity suggests a proof technique to demonstrate that
two states s and t are bisimilar, i.e. find a bisimulation relation containing
the pair (s, t), called the bisimulation proof method. The common way of pro-
ceeding to prove a bisimilarity s ∼ t is starting with a relation R containing
at least the pair (s, t) as an initial guess for a bisimulation. We check the
bisimulation clauses, if some pairs are missing R is not a bisimulation. We
add the pairs, we check the clauses of the new relation to guess for a bisim-
ulation. We repeat the method until a bisimulation is found. Then we search
for the smaller bisimulation, this is the bisimulation proof method. A smaller
bisimulation, that contains fewer pairs, reduces the amount of bisimulation
clauses to check.

28



CHAPTER 3. BACKGROUND 3.3. BISIMULATION

The bisimulation proof method has the two interesting features. The first
one is the locality of the checks on the states, since we check only the out-
side transitions. The second one is the no of a hierarchy on the pairs of the
bisimulation, since there is no temporal order on the checks is required. As
a consequence, bisimilarity can be effectively used to reason about infinite or
circular objects. This is in clear contrast with inductive techniques, that re-
quire a hierarchy, and that therefore are best suited for reasoning about finite
objects. Thus there is a clear contrast with the inductive definitions and the
inductive proofs. In the case of induction, there is always a basic case where
to start from, followed by an inductive part where one builds on top of what
one has so obtained so far. The definition of ∼, and its proof technique, are
not inductive, but coinductive.

Coinduction is the dual to structural induction, we show the duality with
the following schema.

Induction Coinduction

inductive definitions coinductive definitions
induction technique coinductive technique
constructors destructors
smallest universe largest universe
congruence bisimulation
least fixed-points greatest fixed-points

For more details see [3, 46].

3.3.3 Bisimilarity as a fixed-point

The main elements of the duality between induction and coinduction are evi-
dent. An inductive definition tells us what are the constructors for generating
the elements. A coinductive definition tells us what are the destructors for
decomposing the elements. The destructors show what we can observe of the
elements. If we think of the elements as black boxes, then the destructors tell
us what we can do with them. This is clear in the case of infinite lists, and also
in the definition of bisimulation. A second element of duality is the definition
by means of some rules. If the definition is inductive, we look for the smallest
universe in which such rules live. If it is coinductive, we look for the largest
universe.

Intuitively a bisimulation is a relation closed under the destructors, thus
the dual of bisimulation is a congruence, which is a relation closed under the
constructors. Also, we have not explained yet how induction and coinduction
are related to least and greatest fixed points. We do this in the next section,
where, in fact, we use fixed-point theory to explain the meaning of induction
and coinduction.

We recall that the definitions of least and greatest fixed point. On com-
plete lattices generated by the powerset construction, if F : P(X)→ P(X) is
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monotone, then

lfp(F )
def
=
⋂
{ S | F (S) ⊆ S }

gfp(F )
def
=
⋃
{ S | S ⊆ F (S) } .

The functional of bisimilarity

Intuitively, a set A is defined coinductively if it is the greatest solution of an
inequation of a certain form. The coinduction proof principle just says that
any set that is a solution of the same inequation is contained in A. Dually,
a set A is defined inductively if it is the least solution of an inequation of a
certain form, and the induction principle then says that any other set that is
a solution to the same equation contains A. Familiar inductive definitions and
proofs can be formalised in this way. To see how bisimulation and its proof
method fit the coinaductive schema, let (W,A, Tr) be an LTS, and consider
the function on powersets F∼ : P(W ×W )→ P(W ×W ), so defined.

Definition 3.33. F∼, called the functional associated to bisimulation, is the
set of all pairs (s, t) such that:

1. for all s′ with s
a−→ s′, there is t′ such that t

a−→ t′ and s′R t′

2. for all t′ with t
a−→ t′, there is s′ such that s

a−→ s′ and t′Rs′.

A simple application of fixed-point theory, in particular the Knaster-Tarski
Theorem (that we discuss below), leads to the following theorem.

Proposition 3.34. 1. ∼ is the greatest fixed point of F
2. ∼ is the largest relation R such that R ⊆ F∼(R), thus R ⊆∼ for all R

with R ⊆ F∼(R).

We recall that a complete lattice is a partially ordered set where all its
subsets have a supremum, called least upper bound. This implies that there
are all subsets with an infimum, called greatest lower bound. Using ≤ to
indicate the partial order, a point x in the lattice is a post-fixed point of an
endofunction F on the lattice if x ≤ F (x); it is a pre-fixed point if F (x) ≤ x.

Theorem 3.35 (Knaster-Tarski). Let (L,6) is a complete lattice and let
f : L→ L is a continuous function. Then

1. u{x ∈ L | f(x) 6 x } is the least fixed point of f
2. t{x ∈ L | x 6 f(x) } is the greatest fixed point of f

We deduce from the theorem that:

• a monotone endofunction on a complete lattice has a greatest fixed point;
• for an endofunction F on a complete lattice the following rule is sound:

F monotone x ≤ F (x)
(1)

x ≤ gfp (F )
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where gfp(F ) indicates the greatest fixed point of F. The existence of the
greatest fixed point justifies coinductive definitions, while rule (1) expresses
the coinduction proof principle, using Knaster-Tarski theorem.

Proposition 3.34 is a consequence of the Knaster-Tarski theorem because
the functional associated to bisimulation gives us precisely the clauses of a
bisimulation, and is monotone on the complete lattice of the relations on
W ×W , in which the join is given by relational union, the meet by relational
intersection, and the partial order by relation inclusion:

Lemma 3.36. • R is a bisimulation iff R ⊆ F∼(R)
• F∼ is monotone (that is, if R ⊆ S then also F∼(R) ⊆ F∼(S)).

For such functional F∼, the rule (1) asserts that any bisimulation only
relates pairs of bisimilar states. Example 3.38 shows that ∼ω is not a fixed
point for it.

Approximants of bisimilarity

We can approximate bisimilarity using the following inductively-defined rela-
tions.

Definition 3.37. Let W be the states of an LTS. We define the approximate
bisimilarity ∼ω inductively as

• ∼0
def
= W ×W

• s ∼n+1 t for n > 0 if

– for all s′ with s
a−→ s′, there is t′ such that t

a−→ t′ and s′ ∼n t′
– for all t′ with t

a−→ t′, there is s′ such that s
a−→ s′ and s′ ∼n t′

• ∼ω
def
=
⋂
n>0 ∼n.

In general, ∼ω does not coincide with ∼, as the following example shows.

Example 3.38. Suppose a ∈ A, and let a0 be a state with no transitions, aω a
state whose only transition is aω

a−→ aω, and an, for n > 1, states with only
transitions an

a−→ an−1. Also, let s, t be states with transitions s
a−→ an for

all n > 0 and t
a−→ an t

a−→ aω for all n > 0. By induction on n, for all n
we can prove that s ∼n t and hence s ∼ω t. However, it holds that s � t:
the transition t

a−→ aω can only be matched by s with one of the transitions
s
a−→ an. But, for all n, we have aω � an, as only from the former state n+ 1

transitions are possible. \

In order to reach ∼, in general we need to replace the ω-iteration that
defines ∼ω with a transfinite iteration, using the ordinal numbers. However,
the situation changes if the LTS is finitely branching, meaning that for all s
the set { s′ | s a−→ s′, for some a } is finite. In this case, the natural numbers
are sufficient.

Theorem 3.39. On finitely branching LTSs, relations ∼ and ∼ω coincide.
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Also Theorem 3.39, about approximating bisimilarity using the natural
numbers, can be seen as an application of fixed-point theory, in which one
uses the extra hypothesis of cocontinuity of the functional. Let

⋂
denote the

meet operation of the complete lattice; then an endofunction on such a lattice
is cocontinuous if for all sequences α0, α1, . . . of decreasing points in the lattice
(i.e., αi > αi+1, for i > 0) we have F (

⋂
i αi) =

⋂
i F (αi).

Theorem 3.40 (Kleene fixed point). For a cocontinuous endofunction F
on a complete lattice we have

gfp(F ) =
⋂
n>0

Fn (>)

where > is the top element of the lattice, and Fn(>) indicates the n-th itera-

tion of F on > F 0(>)
def
= > and Fn+1(>)

def
= F (F (>)).

The cocontinuity of the functional associated to bisimilarity is guaranteed
by the finitely branching property of the LTS, and thus Theorem 3.39 becomes
an instance of Theorem 3.40. Without cocontinuity, to reach the greatest fixed
point using inductively-defined relations we need to iterate over the transfinite
ordinals, as the following theorem shows.

Theorem 3.41. If F is a monotone endofunction on a complete lattice, then
there is an ordinal α of cardinality less than or equal to that of the lattice
such that for β > α the greatest fixed point of F is F β(>) where > is the
top element of the lattice and Fλ(>), where λ is an ordinal, is so defined

F 0(>)
def
= > and Fλ(>)

def
= F

(⋂
β>λ F

β(>)
)

for λ > 0.

As the ordinals are linearly ordered, and each ordinal is either the successor
of another ordinal or the least upper bound of all its predecessors, the above

definition can also be given thus F 0(>)
def
= >, Fλ+1(>)

def
= F

(
Fλ(>)

)
for

λ > 0 for a successor ordinal, and Fλ(>)
def
= F

(⋂
β>λ F

β(>)
)

for a limit

ordinal. Theorem 3.41 tells us that at some ordinal α the function reaches
its greatest fixed point. On ordinals larger than α, of course, the function
remains on such fixed point. Therefore essentially the theorem tells us that
Fλ(>) returns the greatest fixed point of F for all sufficiently large ordinals
λ. In case F is cocontinuous, Theorem 3.40 assures us that we can take α to
be the first limit ordinal, ω (not counting 0 as a limit ordinal). The property
dual to cocontinuity, on increasing sequences, least fixed points and joins,
is called continuity. Theorems 3.40 and 3.41 give us constructive proofs of
the existence of greatest- fixed points. The constructions are indeed at the
heart of the algorithms used today for bisimilarity checking. Complete lattices
are dualisable structures: we can reverse the partial order and get another
complete lattice. Thus the definitions and results above about joins, post-
fixed points, greatest fixed points, cocontinuity have a dual in terms of meets,
pre-fixed points, least fixed points, and continuity. As the results we gave
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justify coinductive definitions and the coinductive proof method, so the dual
theorems can be used to justify familiar inductive definitions and inductive
proofs for sets.

3.4 Metric theory

The notions of bisimulation, Section 3.3, are too sensitive to a slight pertur-
bation of the probabilities, that would make two systems non-bisimilar. To
solve this problem the approach is to introduce the metrics. Unlike an equiv-
alence relation, a metric can vary smoothly as a function of the probabilities
and it can be used to measure the similarity of two systems in a more infor-
mative way than an equivalence relation. This motivate a shift to the study
of the notion of metric, which provides a tight limit for how much the value
of distributions of some actions can differ at states of the system. Given two
states s and t the metric distance in the deterministic case can be defined as
supϕ∈Φ |ϕ(s) − ϕ(t)|, where ϕ(·) is a distribution on a state. If we focus on
bisimilar states, a bisimulation is the kernel of the metric. A standard way to
define these metrics is to adapt the characterisation of the bisimulation with
fixed point for the metrics. We identify the main rules we are interested of
the systems, from these rules we create a functional operator that calculate
at each iteration the better distance on a pair of states, the fixed point of the
operator is the metric searched.

3.4.1 Metric instead of logic

In literature [7] probabilistic bisimulation is commonly characterised using
a negation free logic L : T |ϕ1 ∧ ϕ2|〈a〉qϕ, where a is a label from the set of
labels L and q ∈ [0, 1) is a rational number. It is relevant that two plMcs
are bisimilar if and only if their start states satisfy the same formulas, i.e.
given the states t, s and the formula ϕ, then t |=P ϕ and s |=P ϕ where
P is the plMc. There exist several alternate characterisations of probabilistic
bisimulation, that use functions into R instead of the logic L. We define a set of
functions which are sufficient to characterise bisimulation. We give an explicit
syntax of a set of functional expressions, which become functions when we
interpret them in a system. Thus when we move from one system to another
we have the same functional expression, nevertheless we may say “the same
function”. This is no different from having syntactically defined formulas of
some logic which become boolean-valued functions when they are interpreted
on a structure. We now give the class of functional expressions. First, we give
some notation. Let brcq = r − q if r > q, and 0 otherwise. dreq = q if r > q,
and r otherwise. Note that brcq + dreq = r. For each c ∈ (0, 1], we consider a
family Fc of functional expressions generated by the following grammar. Here
q is a rational in [0, 1].
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f c ::= λs.1 Constant schema

| λs.1− f c(s) Negation schema

| λs.min(f c1(s), f c2(s)) Min schema

| λs. supi∈N{f ci (s)} Sup schema

| λs.c
∫
t∈S τa(s, t)f c(t) Prefix schema

| λs.bf c(s)cq
| λs.df c(s)eq Conditional schemas

F c+ is the sub-collection of Fc that does not use the negation schema.

Property 3.42. The functions 1, 1 − f,min(f1, f2), bfcq, dfeq can be used to
approximate any continuous Lipschitz function from [0, 1] to [0, 1].

This shows that we can replace the constant schema, negation schema and
conditional schemas with one schema: λs.g(f(s)), where g is any continuous
Lipschitz function. To get positive functions F c+, we can restrict g to monotone
continuous Lipschitz functions. A routine induction on the structure of the
functional expression f c ∈ F c+, shows the monotone property.

Lemma 3.43 (monotone). If P is a sub-plMc of Q, then (∀f ∈ F c+)(∀s ∈
SP )[f cP (s) ≤ f cQ(s)].

Each function of a class F assigns a value in the interval [0, 1] to states
of a plMc. The result of evaluating these functions at a state corresponds to
a quantitative measure of the extent to which the state satisfies a formula of
L. The identification of this class motivates the intuition of using a metric d,
which is a function that yields a real number distance for each pair of pro-
cesses. It should satisfy the usual metric conditions, i.e. d(P,Q) = 0 implies
P is bisimilar to Q, d(P,Q) = d(Q,P ) and d(P,R) 6 d(P,Q) + d(Q,R). We
formalise this intuitions defining a family of metrics { dc | c ∈ (0, 1] }. These
metrics support the spectrum of possibilities of relative weighting of the two
factors that contribute to the distance between processes. The complexity of
the functions distinguishing them versus the amount by which each function
distinguishes them. d1 captures only the differences in the probability num-
bers, probability differences at the first transition are treated on par with
probability differences that arise very deep in the evolution of the process.
In contrast, dc for c < 1 give more weight to the probability differences that
arise earlier in the evolution of the process, i.e. differences identified by sim-
pler functions. As c approaches 0, the future gets discounted more. As is usual
with metrics, the actual numerical values of the metric are less important than
properties like the significance of zero distance, relative distance of processes,
contractivity and the notion of convergence.

Each collection of functional expression Fc be the set of all such expressions
induces a distance function as follows: dc(P,Q) = supfc∈F c |f cP (sP )−f cQ(sQ)|.

Theorem 3.44. For all c ∈ (0, 1], dc is a metric.
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Each of these metrics agree with bisimulation, indeed dc(P,Q) = 0, if and
only if P and Q are bisimilar. For c < 1, we show how to compute dc(P,Q) to
within ε. To show this we need the relation between plMcs and formulas. For
any state in a finite plMc that satisfies a formula, there is a partial witness
from F c+. Given any ϕ ∈ L and a finite plMc P, and any c ∈ (0, 1], there is
a functional expression f c ∈ F c+ such that 1) ∀s ∈ SP .f cP (s) > 0 iff s |=P ϕ,
and 2) for any plMc Q for all s ∈ SQ.s 2P ϕ =⇒ f cQ(s) = 0. In [cita articolo
Metrics for labeled markov systems] the authors have showed the following
theorem.

Theorem 3.45. For any plMc P, (∀c ∈ (01]),∀s, s′ ∈ SP then
(

(∀ϕ ∈

L) s �P ϕ←→ s′ �P ϕ
)
←→ (∀f ∈ F c)[f cP (s) = f cP (s′)].

Example 3.46. Consider the plMc P with two states, and a transition going
from the start state to the other state with probability p. Let Q be a similar
process, with the probability q. Then we show that dc(P,Q) = c|p− q|. Now
if we consider P ′ with a new start state, which makes a b transition to P
with probability 1, and similarly Q′ whose start state transitions to Q on b
with probability 1, then dc(P

′, Q′) = c2|p− q|, showing that the next step is
discounted by c. \

Example 3.47. Consider the family of plMcs {Pε | 0 6 ε < r } where Pε =
ar−ε. Q, i.e. Pε is the plMc that does an a with probability r − ε and then
behaves like Q. We demand that d(Pε1 , Pε2) 6 |ε1 − ε2|. This implies that Pε
converges to P0 as ε tends to 0. We evaluate the function expression (〈a〉.1)c

to r−εc at Pε. This functional expression witnesses the distance between any
two P (other functions will give smaller distances). Thus, we get d(Pε1 , Pε2) =
c|ε1 − ε2|. \

3.4.2 Kantorovich metric

A metric provides a way of measuring the distance between two distribu-
tions. A famous and useful metric is the Kantorovich metric, that has a nat-
ural interpretation in terms of the transportation problem. More information
in [9, 15, 27]. We describe the problem in the following. Let (Ω, d) is a met-
ric space and ν, ν′ are two measures of total mass 1, i.e.

∑
s∈Ω ν(s) = 1 and∑

s∈Ω ν
′(s) = 1. These measure ν and ν′ are two divisions of the masses on Ω.

The problem of Monge-Kantorovich consists of founding the minimal trans-
portation from a mass described by ν to a division ν′. The cost of moving a
mass k from a location x to location y is k · d(x, y), then we describe a trans-
port by a measure ν2 on Ω ×Ω. When ν2 is simple, the probability of (x, y)
represents the mass moved from point x to point y. The cost of this transport
is
∫
(x,y)∈Ω×Ω d(x, y) dν2, with canonical projections πx, πy : Ω × Ω → Ω. We

insert the constraint that ν2 is a transport from ν to ν′, that means to impose
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the marginals πx(ν2) = ν and πy(ν2) = ν′. The Kantorovich-Rubinstein theo-
rem declares that if Ω is complete and separable, then there exists an optimal
transport with minimal cost equal to the Hutchinson distance between ν and
ν′. We give the definition of Hutchinson metric.

Definition 3.48. Let Ω is a space, the Hutchinson distance between two mea-
sures µ and ν is defined by

dH(µ, ν) = sup
f∈〈Ω→R+〉1

∣∣∣∣∫
x∈Ω

f(x)dµ−
∫
x∈Ω

f(x)dν

∣∣∣∣ ,
where 〈Ω → R+〉1 is the set of all the measurable functions 1-Lipschitz f : Ω →
R+.

The Kantorovich metric d(µ, ν) gives an alternative characterisation of the
problem via the Borel probability measures, which we introduced in Def. 3.7.
We denote by Bm(Ω) the set of all Borel probability measures on Ω, as conse-
quence for all z ∈ Ω, if µ ∈ Bm(Ω) then

∫
Ω
d(x, z)µ(x) <∞. We writeM(µ, ν)

for the set of all Borel probability measures on the product space Ω×Ω with
marginal measures µ and ν, i.e. if m ∈ M(µ, ν) then

∫
y∈Ω dm(x, y) = µ(x)

and
∫
x∈Ω dm(x, y) = ν(y) hold.

Definition 3.49. For µ, ν ∈ Bm(Ω), we define the Kantorovich metric dK as

dK(µ, ν) = inf

{ ∫
Ω×Ω

d(x, y) dm(x, y)

∣∣∣∣ m ∈M(µ, ν)

}
,

where M(µ, ν) is the set of all the joint probability distribution measure with
marginals µ and ν, d : Ω ×Ω → R is a given distance.

When the distance is not explicit, we refer to the distance dR : Ω×Ω → R
defined by

dR(s, s′) =

{
0 if sR s′

1 otherwise.
(3.13)

The function m, defined on the set of joint distributions with marginal dis-
tributions µ(s), ν(t) of the Kantorovich metric, sounds like a weighting func-
tion w : Ω×Ω → R (Def. 3.24). At a closer look this metric is a lifting function,
since it lifts a given distance d : Ω × Ω → R in dK : Dist(Ω)×Dist(Ω) → R.
This property have been highlighted by Van Breugel and Worrell [63, 65].

Many problems in computer science only involve finite state spaces, so
discrete distributions with finite supports are sometimes more interesting than
continuous distributions. For two discrete distributions µ and ν with finite
supports {x1, . . . , xn} and {y1, . . . , ym}, respectively, minimising the total cost
of a discretised version of the transportation problem reduces to the following
linear programming problem

dMK(µ, ν) = min
∑
x∈Q

∑
y∈Q

d(x, y) ·m(x, y) (3.14)
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conditions: ∀x ∈ Q .
∑
y∈Q

m(x, y) = µ(x)

∀y ∈ Q .
∑
x∈Q

m(x, y) = ν(y)

∀x, y ∈ Q .m(x, y) > 0

(3.15)

3.4.3 Metric and bisimulation

[12] States close in the metric should yield similar values. Specifically, for any
game structure G and states s, t of G a bisimulation metric needs the con-
tinuity property on the pair s, t. This definition of bisimulation require, for
every mixed move from s, the existence of a mixed move from t, such that the
moves induce probability distributions over successor states that are equiva-
lent modulo the underlying bisimulation. Unfortunately, the generalisation of
this definition to games fails. Thus the definition has been phrased in terms
of expectations of certain metric-bounded quantities.

First we give the definition of metrics for Markov decision processes on
probabilistic distributions, which is the traditional definition and called a
posteriori form. Then we transform this definition in a metric on expectation
values, called a priori form. The latter form satisfies the reciprocity property,
i.e. the probability that player 1 achieves a goal ψ is one minus the probability
that player 2 achieves the goal ¬ψ (i.e. not ψ). Reciprocity ensures that there is
one, canonical, notion of game equivalence. Neither the logical characterization
nor the reciprocity result hold for the a posteriori metrics and relations.

Probabilistic bisimulation on MDP as fixpoint

In Section 3.3.3 we have shown how to generate a functional associated to a
bisimulation, the purpose was using this functional to generate an algorithm
to compute if two states are bisimilar or not. In this section the purpose is
the converse, we construct a bisimulation by the fixed point of a functional,
called H, that we will produce.

We define the probabilistic bisimulation (3.31) on MDPs as a fipoint of
a new functional/relation called F , which maps probabilistic distributions on
states. We generate F by lifting any given relation between states. To give
an idea considering the colours the elements of a space and the function the
distance between them. The basic distance measures dissimilarity between
individual colours. If we consider image colours distributions, then a dissimi-
larity is a lifted distance. We have recall the lifting definition in Def. 3.24 and
here we use the notation ∆. Given a MDP M , it is also a game structure and
thus [v](s) is the interpretation of the variable v on a state s with real value
between [0, 1]. First we define the relation [≡] ∈M for all s, t ∈ S as
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[s ≡ t] = max
v∈V
|[v](s)− [v](t)|.

Definition 3.50 (Relation transformer). The relation transformer F : 2S×S →
2S×S is defined, for all states s, t ∈ S and for all relations R ⊆ S × S, as

s ≡ t ∧ ∀x1 ∈ D1(s).∃y1 ∈ D1(t) . δ(s, x1) vR δ(t, y1).

We define the fixpoint of F , this corresponds to bisimulation on MDPs.

Definition 3.51 (Probabilistic (bi)simulation on MDPs). The proba-
bilistic simulation is the greatest fixpoint of F. The probabilistic bisimulation
is the greatest symmetrical fixpoint of F.

Metric for a probabilistic simulation

We relax the strictly definition of probabilistic bisimulation by introducing
the definition of metric. To obtain a metric we lift the fixpoint of relation
transformers 3.50, i.e. from subsets of S2 to maps S2 → R. Before defining
the new transformer, we introduce a distance of distributions that we will
define later. The distribution distance D(µ, ν)(d), with µ, ν ∈ Dist(S) and
for all metric d ∈ M , is a measure of the cost d(s, t) of moving a unit of
probability mass form s ∈ S to t ∈ S.

Definition 3.52 (Metric transformer). For s, t ∈ S and for all metric
d ∈M , a metric transformer HMDP

post : M →M is defined as

HMDP

post (d)(s, t) = [s ≡ t] t sup
x1∈D1(s)

inf
y1∈D1(t)

D(δ(s, x1), δ(t, y1))(d), (3.16)

where a t b = max{a, b}.

The distribution distance D(µ, ν)(d) is the metric between µ, ν, it is de-
fined via the trans-shipping problem, as the minimum cost of shipping the
distribution µ into ν, with edge costs d. Thus, D(µ, ν)(d) is the solution of
the following linear programming problem over the set of variables {λs,t}s,t∈S

Minimise
∑
s,t∈S

d(s, t)λs,t

subject to
∑
t∈S

λs,t = µ(s),
∑
s∈S

λs,t = ν(t), λs,t > 0.

Definition 3.53. The simulation metric in MDPs is defined as the least fix-
point of 3.16, since equivalent states should have distance 0. The bisimulation
metric is defined as the least symmetrical fixpoint of 3.16.
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Every solution for a linear programming problem gives a bound on the
optimal value of the objective function. The problem can be converted into a
dual problem. We define in the following the dual problem of D(µ, ν)(d) with
respect to a metric d ∈ M and C(d) ⊆ F be the subset of valuations k ∈ F
such that k(s) − k(t) 6 d(s, t) for all s, t ∈ S. Then the dual formulation is
the following.

Maximise
∑
s∈S

µ(s)k(s)−
∑
s∈S

ν(s)k(s) subjects to k ∈ C(d). (3.17)

We replace the definition of distance 3.17 into the equation 3.16

HMDP

post (d)(s, t) = [s ≡ t] t sup
x1∈D1(s)

inf
y1∈D1(t)

sup
k∈C(d)

(Ex1
s (k)− Ey1t (k)) . (3.18)

We call the metric transformer HMDP
post the a posteriori metric transformer,

since the valuation k in equation 3.18 is chosen after the moves x1 and y1 are
chosen. We can define an a priori metric transformer, where k is chosen before
x1 and y1.

HMDP

prio (d)(s, t) = [s ≡ t] t sup
k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

(Ex1
s (k)− Ey1t (k)) . (3.19)

Given a MDP M we calculate the distance between two states a, b ∈ M , the
results of a posteriori metric and a priori metric coincide, i.e. HMDP

post = HMDP
prio

as shown in Theorem 3.1 in [12].

Definition 3.54 (bisimulation). [∼] ∈ M is the least symmetrical fixpoint
of HMDP

post of a MDP M.

Consider a game structure with only a single player is not useful for our
purpose, if we want to redefine the bisimulation with probability we have to
consider a game with two independent players. the a priori and the a posteriori
metrics do not coincide over games. A posteriori metrics are defined via the
metric transformer Hv1

: M →M as follows, for all d ∈M and s, t ∈ S.

Hv1
(d)(s, t) = [s ≡ t] t sup

x1∈D1(s)

inf
y1∈D1(t)

sup
y2∈D1(s)

inf
x2∈D1(t)

D(δ(s, x1, x2), δ(t, y1, y2))(d)

= [s ≡ t] t sup
x1∈D1(s)

inf
y1∈D1(t)

sup
y2∈D1(s)

inf
x2∈D1(t)

sup
k∈C(d)

(Ex1 x2
s (k)− Ey1 y2t (k))

(3.20)

A priori metrics are defined by bringing the supk outside. Precisely, we define
a metric transformer H41

: M →M as follows, for all d ∈M and s, t ∈ S.

H41
(d)(s, t) = [s ≡ t] t sup

k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

sup
y2∈D1(s)

inf
x2∈D1(t)

(Ex1 x2
s (k)− Ey1 y2t (k))

= [s ≡ t] t sup
k∈C(d)

(
sup

x1∈D1(s)

inf
x2∈D1(t)

Ex1 x2
s (k)− sup

y1∈D1(s)

inf
y2∈D1(t)

Ey1 y2t (k)
)

= [s ≡ t] t sup
k∈C(d)

(Pre1(k)(s)− Pre1(k)(t)) .

(3.21)
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Lemma 3.55 (Monotonic). The functions H41
and Hv1

are monotonic in
the lattice of metrics (M,6).

On the basis of this lemma, we can define the least fixpoints of H41 and
Hv1

, which will yield our game simulation and bisimulation metrics.

Definition 3.56. The a priori simulation metric [41] is the least fixpoint of
H41

. The a priori bisimulation metric ['1] is the least symmetrical fixpoint
of H41

.
The a posteriori game simulation metric [v1] is the least fixpoint of Hv1

. The
a posteriori game bisimulation metric [∼=1] is the least symmetrical fixpoint of
Hv1 .
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Security analysis with ε-simulations

In this chapter we consider security analysis of concurrent systems with proba-
bility elements. Describing the systems with the probabilistic automata we use
the notion of bisimulation and simulation to check the security constraints.
We recall the notions of polynomially accurancy of security constraints by
recalling the ε-simulations. In Section 4.1 we introduce security and cryp-
tographic and list their importance in the real systems. In Section 4.2 we
describe the systems as a probabilistic automata. In Section 4.3 we introduce
the ε-simulations.

4.1 Security and cryptography

Security and cryptography are branches of computer science that have an im-
mediate relevance and feedback in the present world. A computer program
can execute a procedure in another computer on a shared network, commonly
Internet. Internet is the global system of interconnected computer networks
and gives the possibility of using remote procedures between wherever com-
puters. The remote interaction causes the problem of security identity and
security messages, which is a central problem in the present society. As ex-
ample, we can think to email exchange and login in a bank account. With
Internet diffusion the network protocols has been refined introducing a pre-
section with cryptographic methods in the algorithms, called cryptographical
protocols and encryption protocols. These security protocols are considered
safe only when we are able to check that each adversary is not able to at-
tack it successfully. The set of the possible attacks is called the problem of
cryptographic protocol verification, it has been largely studied in literature.
To be sure that at least the theoretical protocol is correct, the better way is
to perform the analysis using a formal and rigorous model that ensures the
correctness of our reasoning. Thus, following [62], we focus on Probabilistic
Automata (PA) model, which provides the mathematical rigour that is nec-
essary to study rigorously randomised systems. This model permits protocol
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verification approaches, where messages are represented as symbols and the
adversary can try to attack the protocol using a restricted set of actions, which
usually does not include the possibility to guess secrets as private keys. This
means that PA model provides the tools to relate executions of different sys-
tems, simulations and bisimulations allow us to compare the computations of
two systems and to say if they behave in the same way or if their behaviours
are not similar.

To reduce the possibility of an attack, and also the chance that an intruder
can obtain reserved informations, we can use random values and randomised
primitives. As example we consider the nonce, it is a random number used
once during the authentication protocol to ensure that old communications
cannot be reused. But this implies that, when we analyse the correctness of
a protocol, we must consider also all probabilistic aspects that occur in the
protocol. Furthermore another source of difficulty when we generate the ideal
model is the nondeterminism, induced by several components that interact
with each other. These components have different execution speeds and pos-
sible input from users, for example different protocol participants, adversary,
external entities (as a key generator). Moreover, we can use nondeterminism
to model underspecification and abstraction. We use the first one when we
are not interested to specify all details of a component, we have only need
to know the actions available and not all the details. The second one when
we derive no desired properties from the knowledge of an element, then its
actual probability values is ignored. The analysis of systems that present both
probability and nondeterminism is a problem already studied in the context
of randomized distributed algorithms. In particular, we can find several com-
mon aspect between cryptography and distributed algorithms. For example,
in both cases we have to consider probabilistic and nondeterministic behaviors
and the analysis is usually performed comparing the executions of two systems
that behave in a similar way or transforming the execution of one system to
the execution of another one that represents an attacker. One example of the
last case is the analysis of indistinguishability property: given an attacker, we
build another machine which behaviour is very close to the one of the original
attacker and that it is able to break the indistinguishability property.

Concurrency theory allows us to prove properties of randomised dis-
tributed algorithm in an hierarchical and compositional way. The possibility
to work hierarchically permits to model the problem at several level of abstrac-
tion, and each level represents the algorithm in a more or less detailed way.
This means, for example, that we can define an abstract level where almost
all probabilistic aspects are missing and where we can focus our attention on
the specification of the problem, studying its properties to see if the specifi-
cation satisfies our requirements. If it is the case, then we can define other
levels where we detail the single components that form the overall algorithm.
The compositionality allows us to study each single component independently
from the others and to extends its properties to the overall system. This means
that if we prove that a component at level i is an implementation of the same
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component in the level i+1, then we can say that the overall system at level i
is an implementation of the system at level i+1. So this implies that whenever
we generate a chain of implementations from the fully detailed system to the
abstract system, by transitivity we can conclude that the fully detailed sys-
tem is an implementation of the abstract system and thus it satisfies the same
properties of the specification. The compositionality is very useful since it per-
mits to consider small independent components instead of a big system with
several interacting modules and moreover we can reuse already known results
in several proofs. So, if we already know that a functionality is implemented
by a specific component, then we simply replace the functionality with it and
by compositionality we derive that the new system is an implementation of
the old one without proving it another time.

4.2 Polynomially accurate simulation relation

The main element of the compositionality is the implementation, which is
transitive and it has logical characterization that permits to know which kind
of properties the implementation relation preserves. But it is difficult to check
this property in a system. Fortunately, the simulation and bisimulation rela-
tions allow us to derive global properties of objects checking the properties
preserved by each computational step of the system independently from the
other steps. In fact, usually we reason about the properties that are satisfied
in a state and the ones that are satisfied after performing an execution step.
Then, just composing all reasoning we derive the properties that are valid in
the global object. Since probabilistic automata are an useful framework that
help the analysis of randomized distributed system, we want to check if the
probabilistic automata can help the verification of cryptographic protocols.
To do this, we use the probabilistic automata directly in the computational
model and to utilise the mathematical rigour and the simulation relations of
the framework to study the correctness of cryptographic protocols.

The use of an ideal model generates a problem. A real adversary can al-
ways generate a message that breaks the protocol, he can generate a random
sequence of bits that violates the protocol. In the ideal model the adversary
can not generate a message randomly, but it can only derive new messages
from old ones. This implies that standard simulation relations of probabilistic
automata model cannot be used to relate real and ideal adversaries, because a
real attacker can generate messages and hence it can perform actions that an
ideal adversary can not simulate. For this reason Turrini ( [62]) defines an ex-
tension of simulation relations, which permits to match the step condition up
to some error. Moreover, adding an error in the simulations the computational
model verifies that both the security of the protocol and the computational
power of the adversary depend on a security parameter.

In the computational model both agents and adversaries are parameterized
by a security parameter. This means that for each value of security parameter,
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we have different adversaries and agents that work always in the same way
but using different values (for example, the length of nonces) and usually
the security parameter is used to fix the computational power of adversaries.
Hence we should extend the simulation relation to consider also families of
automata (and not only single automata), families that are parameterized by
the security parameter. To consider the computational power of adversary, we
can extend ordinary simulations adding some information about how many
steps we have spent to reach a particular state of the automaton. To do this,
we can base our simulation on automaton executions instead of automaton
states, because an execution describes the sequence of states and actions that
has led to its final state. In this way we are able to provide an upperbound
to the computational power of an adversary bounding the execution lengths,
that can be related to the security parameter via a polynomial, for example.
As we said previously, a real adversary can generate messages that an ideal
adversary can not simulate but such messages must have negligible probability
(otherwise the protocol is not secure). To consider these messages, we can
extend simulations permitting that the matching transition matches up to an
error. If we relate such error to the security parameter, then we can provide
an upperbound to the global error made by a real adversary with respect to
an ideal adversary after a given number of steps. In this way, if we force the
number of steps to be polynomial with respect to the security parameter and
the step error to be negligible, then the global error is negligible and hence
the protocol is secure with respect to the computational model meaning.

Main advantages of this simulation are that we can fix an upperbound to
the adversarial adversary bounding the length of executions; we can decide if
the probability of unmatched executions is negligible and hence to decide if
there exist attacks such that their probabilities of success are not negligible.
Moreover, the verification of the protocol correctness is local, step-based and
not global. In this way we can focalize our attention to a restricted set of
adversarial actions and this permits to simplify the verification. This holds
because the check of the step condition reduces directly to the statement of
correctness of the underlying cryptographic protocols and if we have con-
sidered enough level of abstractions, for each simulation we can analyze a
single cryptographic aspect: a simulation considers only that nonces are not
repeated, another considers only signs, and so on. On the contrary, when the
analysis is global, we must consider all computational aspects at the same
time and this makes the correctness proof more difficult.

This new simulation becomes useful if we can prove some properties of it.
An indispensable result we need is the one that allows us to extends results
on single steps to the complete chain of steps because if we do not have such
result, then it could not be easily used in a hierarchical correctness proof.
In fact, in the hierarchical approach we define several levels of abstraction,
we prove a simulation from a level to the next one and then we obtain a
simulation from the lowest to the highest level of abstraction. Without such
result, we can not use intermediate result to relate the lowest level to the
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higher, but we must prove the simulation directly but this proof could be not
so easy to obtain. We can obtain such result proving the transitivity or other
properties of the polynomially accurate simulations. Another useful property
is the composition property, that permits to preserve the simulation when
we put other automata (like agents or other adversaries) beside simulation
related automata. So, for example, if we have that A is simulated by B, then
for each C we have that A composed C is simulated by B composed C. Once we
have the compositional property, we can model real and ideal cryptographic
primitives using automata and then relate them using our new simulation. In
this way we obtain a library of basic results that can be used each time we
want to replace a real primitive with its ideal counterpart. This library allows
us to easily prove the existence of the simulation between contiguous levels
defined in the hierarchical correctness proof. We can also check if the new
simulation is a conservative extension of literature simulations. In this case,
ordinary simulations are particular cases of our relation and the study of the
logical characterization or of relations with other models is probably easier.

The idea described is a way to relate the ideal and the computational
model: we base our modeling on probabilistic automata and we represent
each actor (cryptographic primitive, protocol, adversary, and so on) with an
automaton. In particular, we model them as in the computational model: ex-
changed messages are bitstrings which length depends on a security parameter
k that parameterize the automaton; the probabilistic aspects are considered
directly by the transitions of the involved automata. Once we have the au-
tomata that model all actors, their composition models the concrete protocol
that interacts with the concrete adversary. The correctness proof is obtained
relating this concrete automaton with another automaton that implements ac-
tors ideally. This means that in this abstract automaton, encryptions satisfy
the properties as in the ideal model, the adversary can generate a message m
only if it is able to derive m from its knowledge, and so on. Standard relations
defined on probabilistic automata are not suitable for our purpose, since they
do not consider the computational constraints we impose to the adversary.
For this reason, we have defined a new simulation relation that takes account
of the length of the execution but it is still too restrictive for our aims. In
fact, we have that in the ideal model, the probability to decrypt an encrypted
message is zero if we do not know the decryption key; in the computational
model, the same event has negligible probability. So we can not use an exact
matching, but we need to match up to an error. This consideration leads us
to define the polynomially accurate simulation that takes account of the secu-
rity parameter that characterizes the concrete primitives, the computational
aspects of the system and the admitted error.

aim define a relation where transitions are matched up to some error that
is smaller than any polynomial in some security parameter k provided that
computations are of polynomial length. First step: define a relation that can
see lengths of computation. For this purpose, we define a relation on sets of
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executions rather than sets of states. This definition is based on a derived
notion of transition that shows how finite executions evolve in a single step.

Definition 4.1. We say that there is a step from a finite execution α to a
measure ν ∈ Disc(Execs(A)), denoted by α → ν, if there exists a transition
(lstate(α), a, µ) such that, for each finite execution αas, ν(αas) = µ(s).

Now we are able to define a simulation that relates executions instead of
single states. This allows us to know how many steps we have performed in a
computation, since we can obtain them from the length of the execution.

Definition 4.2. An execution simulation from a probabilistic automaton A1

to a probabilistic automaton A2 is a relation R from Execs(A1) to Execs(A2)
such that:

• s̄1R s̄2
• for each pair α1Rα2, if α1 → ν1, then there exists ν2 such that α2 → ν2

and ν1 L(R) ν2.

The introduction of errors in execution simulations is then straightforward.

Definition 4.3. An ε-simulation from a probabilistic automaton A1 to a prob-
abilistic automaton A2 is a relation R from Execs(A1) to Execs(A2) such that:

• s̄1R s̄2
• for each pair α1Rα2, if α1 → ν1, then there exists ν2 such that α2 → ν2

and ν1 L(R, ε) ν2.

4.3 ε-(bi)simulation

In literature two states are bisimilar only if the probabilistic distributions
of outgoing transitions match exactly, where the distributions are the basis
of the mathematical models for nondeterministic probabilistic systems. This
leads to discard from the bisimulation also the processes that have closed be-
haviours, since their distributions are closed but not identical. This definition
of bisimulation is too exact by using probabilistic distributions, since it is not
robust with respect to small variation of the transition probabilities.

In this section we recall the notion of ε-bisimulation, that is a lifting rela-
tion from bisimulation on states to an approximate bisimulation on distribu-
tions of these states. In the first step we extend the notion of lifting inserting
the error ε, we give also some properties. In the second step we give the
definition of approximate (bi)simulation.
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4.3.1 ε-lifting

Now we recall the relation of ε-(bi)simulation and define the ε-relation via
the notion of ε-lifting, whose pairs of states have distributions which are not
related exactly, but up to some error ε.

We relax the notion of lifting, Def. 3.24, inserting an error that we refer
with the notation ε. This signifies that a distribution can be decomposed into
two parts, where the second is related to the error allowed and we call “error
part”. Given a state s and a transition s

a−→ µ we decompose µ into µ1 and
µ2, as represented in the left hand side of Diagram 4.1.
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a

a
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(D.4.1)

For a second distribution ν, resulting from the transition t
a−→ ν represented

in the right hand part of the diagram, we search a decomposition with the
same error ε such that µ1 and ν1 are in lifting-R relation as represented in
Diagram 4.2. Thus the error part can be ignored.

Definition 4.4 (ε-lifting). Let R ⊆ X × Y be a relation and let ε > 0. The
ε-lifting of R is a relation L(R, ε) ⊆ Disc(X) × Disc(Y ) defined as follows.
For each pair µ and ν of probability measures on X and Y, respectively,

• ε > 1 =⇒ µL(R, ε) ν
• ε ∈ [0, 1) =⇒ µL(R, ε)ν if there exists µ1, µ2 ∈ Disc(X) and ν1, ν2 ∈
Disc(Y ) such that

– µ = (1− ε)µ1 + εµ2

– ν = (1− ε)ν1 + εν2
– µ1 L(R) ν1.
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Proposition 4.5. For each relation R ⊆ Q1×Q2 and ε = 0 we have L(R, 0) =
L(R).

Proof. a

(⇒) Let µ1 ∈Disc(Q1), µ2 Disc(Q2) be two distributions such that µ1 L(R, 0)µ2.
By definition of 0-lifting, there exist µ′1, µ

′′
1 ∈Disc(Q1), µ′2, µ

′′
2 ∈Disc(Q2)

such that

µ1 = (1− 0)µ′1 + 0µ′′1

µ2 = (1− 0)µ′2 + 0µ′′2

µ′1 L(R)µ′2.

Since µ1 = µ′1 and µ2 = µ′2, then µ1 L(R)µ2.
(⇐) Let µ1 ∈Disc(Q1), µ2 ∈Disc(Q2) be two distributions such that µ1 L(R)µ2.

We define µ′1 = µ′′1 = µ1 and µ′2 = µ′′2 = µ2, this implies that

µ1 = (1− 0)µ′1 + 0µ′′1 ,

µ2 = (1− 0)µ′2 + 0µ′′2 .

Since µ′1 = µ1 and µ′2 = µ2, then µ′1L(R)µ′2 and thus µ1 L(R, 0)µ2.

ut

The following properties of L(R, ε) show that this relation is an the equiv-
alence, as the bisimulation needed.

Proposition 4.6 (reflexivity of ε-lifting). For each relation R on Q, and
each ε > 0, if R is reflexive then L(R, ε) is reflexive.
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Proof. Since R is reflexive, then for each s ∈ Q we have sR s. We consider
a transition of s, i.e. s

a−→ µ, where µ ∈Disc(Q) is a measure. If ε > 1, then
µL(R, 1)µ by definition of ε-lifting. If 0 ≤ ε < 1, then we decompose µ in
µ = (1 − ε)µ + εµ. The reflexivity of R implies the reflexivity of L(R), i.e.
sR s implies µL(R)µ. Thus µL(R, ε)µ for definition of L(R, ε). ut

Proposition 4.7 (symmetry of ε-lifting). For each relation from X to Y ,
and each ε >= 0, if R is symmetric then L(R, ε) is symmetric.

Proof. Let ε > 0 and consider two measures µ ∈Disc(X) and ν ∈Disc(Y )
such that µL(R, ε) ν. If ε ≥ 1, then by definition of ε-lifting, it follows that
µL(R, ε) ν. If 0 ≤ ε < 1, then we have that there exist µ1, µ2, ν1, ν2 such that

µ =(1− ε)µ1 + εµ2,

ν =(1− ε)ν1 + εν2,

µ1 L(R, ε) ν1.

Since R is symmetric, by Property 2.1(5) we have that µ1 L(R, ε) ν1 and thus
µL(R, ε) ν. ut

4.3.2 ε-(bi)simulation

Given a probabilistic system (Q,A, Tr) and two probabilistic states s and t, a
simulation checks that one state simulates the other. That is if the first state
can apply a set T ⊆ Tr of transitions with probability µ, then the second has
to simulate the whole set T with a set of transitions with at most an error ε
on its probability of transitions. The ε-lifting on R links the approximation
of µ with the approximation of the second distribution as shown in Diag. 4.2.
That is, the action a on the first state s generates a set of resulting states
described by the distribution µ, the same happens applying a to the second
state t and we obtain the distribution ν. If we apply the ε-lifting to these
distributions, we decompose µ into µ1 and µ2 and decompose ν into ν1 and
ν2. Since we ignore the error parts of the these decompositions, i.e. µ2 and
ν2, we relate µ1 L(R) ν1 as shown in Diagram 4.2. Thus we relate also the
original distributions by the approximate simulation with error ε as shown in
Diagram 4.3.
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Definition 4.8 (ε-simulation). Given a probabilistic system (Q,A, Tr) a re-
lation R on Q is an ε-simulation, denoted by s 6s t, if for each pair of states
(s, t) ∈ Q such that sR t and for each s

a−→ µ ∈ Tr, then there exists a

transition t
a−→ ν ∈ Tr such that µL(R, ε) ν.

We represent only the ε-simulation and the R relation in Diagram 4.4, where
≈ indicates the approximation of the distribution by means of the first part
of the decomposition.

s t

µa ≈ µa1 νa1 ≈ νa

. . . . . .

µz ≈ µz1 νz1 ≈ νz

a

z

R=6s

a

z

L(R,ε)

L(R)

L(R,ε)

L(R,ε)

L(R)

(D.4.4)

In general we are interesting that s simulates t and vice versa too. s makes a
transition with distribution µ, there exists a transition t → ν that simulates
the first one with error ε. If s → µ simulates t → ν too, then the relation
between these states is an approximate bisimulation. That is, there exists an
approximation for µ, that we write µ ≈ µ1, and an approximation ν ≈ ν1.
These approximations are related by an equivalence relation, that we depict
by µ1! ν1 in Diagram 4.5.
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s t
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(D.4.5)

But this constraint is too strong for our purposes, thus we relax it imposing
only the simulation in one direction and another simulation for the reverse.

Definition 4.9 (ε-bisimulation). Given a relation R if R and R−1 are ε-
simulations, then R is an ε-bisimulation.

The difference between the constraint of equivalence relation for simulation
and the only existence of a reverse simulation lies in the decompositions of the
distributions. In Definition 4.9 there exists a pair of decompositions µ ≈ µ1

and ν ≈ ν1, generated by the error ε in the first simulation, such that µ1 is
related by a lifting relation to ν1 and we write µ1  ν1. There exists a second
pair of decompositions µ ≈ µ′ and ν ≈ ν′, generated by the error ε′ in the
second simulation, such that the reverse is verified ν′  µ′, i.e. ν′ is related
by a lifting relation to µ′. These two pairs of decompositions generally are
different, since the two simulation can allow different errors. For this reason
we represent an ε-bisimulation in Diagram 4.6 with two diagrams placed side
by side.
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. . . . . .
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With the notion of approximate bisimulation we define the notion of approx-
imate bisimilarity, which relates two states that are interchangeable.

Definition 4.10 (ε-bisimilarity). Two states s, t ∈ Q are ε-bisimilar, de-

noted by s
ε∼ t, if there exists a relation R ⊆ Q × Q such that R is an

ε-bisimulation and sR t.

To emphasise the equivalence relations between states we condense the two
diagrams represented in Diag. 4.6 in a single one in Diagram 4.7; in addition
we depict the relation

ε∼ with a dash and dotted line in the above part of the
diagram, although this relation be the last one created.
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Particular cases

We have two particular cases related to the errors allowed: ε = 0 and ε = 1.
In the first case, given two state s, t, the distributions µ, ν are already related
by R-lifting relation, thus there is no needed for decomposing them. The first
part of each decomposition, called mu1, ν1, is equal to each distribution, i.e.
µ1 = µ and ν1 = ν, as shown in Diagram 4.8 and proved in Prop. 4.5.
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In the second case it is not possible to find a decomposition for one of the
distributions or to both, however small it is the error allowed. Thus we impose
ε = 1, i.e. the maximum error permitted. This means that we generate a
relation between any pair of distributions only if the actions of the first states
are always simulated by the second state, as shown in Diagram 4.9.
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5

From approximated simulations to
pseudometrics

In this Chapter we analyse the close relation between the main notions of
approximation of the bisimulation for probabilistic systems, i.e. between the
approach of (bi)simulation relation and the approach of metrics. In Section 4.3
we recall the notion of approximate (bi)simulation, called ε-bisimulation, that
extends the standard notion of (bi)simulation relaxing the definition of sim-
ulation introducing an error in each single step. In Section 5.3 we define two
pseudometrics, called both dL,R, that calculate the smallest error given a pair
of states and of distributions. We show that dL,R on distributions is equivalent
to the standard Kantorovich metric. In Section 5.5 to study the metrics on
probabilistic automata we define a functional transformer and impose some
restrictions to be compatible with the models in literature. These transformer
is an over-approximation of the metric on probabilistic automata and it is
consistent with the literature.

5.1 Transitivity of ε-lifting

We have recalled in Chapter 4 that the definition of L(R, ε), Def. 4.4, verifies
the reflex and symmetric properties. The transitive property is not as easy to
verify as the reflexivity and the symmetry, since we have inserted the notion
of error that propagates at every transition. We consider three states s, t, u
and their distributions, respectively, µ, ν,and λ, that are represented in Dia-
gram 5.1. The introduction of the error ε1 allows us to create a lifting on R
relation that links µ with ν; in the same way, error ε2 allows the creation of
lifting on R relation that links ν with λ. The state t is a binder that connects
the first state with the third by means of the decompositions ν1 and ν′, which
relates, respectively, µ with ν and ν with λ by the lifting relation on R. In the
lifting between µ and λ the error necessary is the sum of the previous two.
In the following we give the proof that L(R, ε) is transitive and, for Prop. 4.6
and Prop. 4.7, it is yet an equivalence.
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Proposition 5.1 (Transitivity of ε-lifting). Given a probabilistic system
(Q,A, Tr), let R be a transitive relation on Q and µ, ν, λ ∈ Disc(Q) are
probability measures. For all ε1, ε2 ∈ [0, 1] if µL(R, ε1) ν and ν L(R, ε2)λ
then µL(R, ε1 + ε2)λ.

We give a simplify diagram to represent the transitive property, in Diagram 5.2
we abstract from the internal states.
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Proof. We consider several cases that depends on the values of the errors.

ε1 + ε2 > 1: we have µL(R, ε1 + ε2)λ for Definition 4.4.
ε1 = ε2 = 0: by hypothesis we have µL(R, 0) ν and ν L(R, 0)λ, that are equal

to µL(R) ν and ν L(R)λ for Proposition 4.5. The lifting of R is transi-
tive (Prop. 3.28), thus we infer µL(R)λ and with Prop. 4.5 we obtain
µL(R, 0)λ.

ε1 = 0, ε2 ∈ (0, 1): by hypothesis we have µL(R, 0) ν and ν L(R, ε2)λ. From
first one with Prop. 4.5 we obtain µL(R) ν. From the second one with
definition of lifting we have

ν =(1− ε2)ν1 + ε2ν2,

λ =(1− ε2)λ1 + ε2λ2,

ν1 L(R)λ1.

We apply Prop. 3.5(7) of [62] to λ = (1 − ε2)λ1 + ε2λ2 and ν1 L(R)λ1
and obtain µ = (1− ε)µ1 + εµ2 such that µ1 L(R)λ1 and µ2 L(R)λ2. We
have a decomposition for µ with ε1, a decomposition for λ with ε2 and
µ1 L(R)λ1. This is the definition of approximation, thus µL(Rε2)λ, that
is µL(R, ε1 + ε2)λ since ε1 = 0.

ε1 ∈ (0, 1), ε2 = 0: similar to the previous.
ε1 + ε2 < 1: with ε1 6= 0 and ε2 6= 0. By hypothesis we have µL(R, ε1) ν

and ν L(R, ε2)λ, thus we have a decomposition for µ and ν with error
ε1 and a decomposition for ν and λ with error ε2. We highlight the two
decomposition for ν:

ν =(1− ε1)ν1 + ε1ν2,

ν =(1− ε2)ν′ + ε2ν
′′.

We want to find a decomposition for ν such that it includes both the
errors, thus we consider ε = max{ε1, ε2} and

ν′1 =
min {(1− ε1)ν1, (1− ε2)ν′}

1− ε

ν′′2 =
max {ε1ν2, ε2ν′′}

ε
.

ν′1 is a measures, since ν1, ν
′ are measures, (1− ε) = 0 only if ε = 1, and

ν′1(Q) =
min {(1− ε1)1, (1− ε2)1}

1− ε
=

1−max {ε1, ε2}
1− ε

=
1− ε
1− ε

= 1.

Similar ν′′2 is a measure.
By definition of ν′1 and ν′′2 we can easily infer that ν = (1 − ε̄)ν′1 + ε̄ν′′2 ,
since for all q ∈ Q we have

min {(1− ε1)ν1(q), (1− ε2)ν′(q)} = (1− ε1)ν1(q)
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if and only if
max {ε1ν2(q), ε2ν

′′(q)} = ε1ν2(q).

We consider ε̄ = ε1 + ε2. The inequalities ν = (1 − ε̄)ν′1 + ε̄ν′′2 and ε̄ > ε
satisfy the conditions of Prop. 3.5(3) of [62], thus we have

ν = (1− ε̄)ν′1 + ε̄ν3, where ν3 =
(

1− ε1
ε̄

)
ν′1 +

ε1
ε̄
ν′′2 .

Since ε̄ > ε and, by hypothesis µL(R, ε1) ν and ν L(R, ε2)λ, then we can
infer µ1 L(R) ν′1 and ν′1 L(R)λ′. For Prop. 3.28, i.e. transitivity of L(R),
we have µ1 L(R)λ′ and thus µL(R, ε̄)λ, which is µL(R, ε1 + ε2)λ.

ut

5.2 ε-relation

In this section we generalise the notion of equivalence between states of a
probabilistic system. We relax the constraint included in bisimulation defini-
tion, Def. 4.9, it requires that the ε-lifting relation between distributions is
verified for every pair of states of the system.

Definition 5.2 (ε-relation). Given a relation R ⊆ Q×Q two states s, t ∈ Q
are in relation s

ε∼R t if

• for each s
a−→ µ ∈ Tr there exists t

a−→ ν ∈ Tr such that µL(R, ε) ν,

• for each t
a−→ ν ∈ Tr there exists s

a−→ µ ∈ Tr such that ν L(R, ε′)µ.

We represent the ε-relation with Diagram 5.3. Several arrows start from state
s, each one has a label that denotes the transition represented. These arrows
represent all the possible transitions from s, specularly these transitions are
possible also from t. Each transition generates a distribution from s which is
in ε-lifting relation with the distribution generated from t. This constraint is
verified for each transition, thus the states s and t are in ε-relation.

s t

µa νa

. . . . . .

µz νz

a

z

R

ε∼R

a

z

L(R,ε)

L(R−1,ε′)

L(R,ε)

L(R−1,ε′)

L(R,ε)

L(R−1,ε′)

(D.5.3)
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Nevertheless,
ε∼R is not an ε-bisimilarity: the relation is verified only for the

single pair of states (s, t). The above diagram and Diag. 4.7 differ for the
symbols in the above parts; but they represent two relations very different.
This difference is visible by the subscripts in Diag. 4.7, where si represents an
element of the set of states of the system, as well as ti, that are not present
in Diag. 5.3.

In the above definition there are two particular cases depending on the
values of the error ε, thus we introduce some notations to easily identify
them.

ε = 0: if there is a direct simulation between two states and there is no need
to insert an error, then we write

0∼R.
ε = 1: if the actions of a set of transitions of a state is equal to the actions

of the set of transitions of the simulating state, but the distributions are

never in relation either by introducing any error. Then we write
1∼R.

Problem: the ε-relation defined seems to be not transitive, since we have
inserted an error that propagates on transitions. We show the property of
light transitivity for ε-relation by using Def. 5.1.

Proposition 5.3. Given (Q,A, T ) a probabilistic system, let R be a transitive
relation on Q and p, s, q ∈ Q are states of the system. For all ε1, ε2 ∈ [0, 1] if

p
ε1∼R s and s

ε2∼R q, then we have p
ε3∼R q where ε3 = ε1 + ε2.

Before proving the proposition we give a representation of the transitive
property with Diagram 5.4. To avoid the representation of too much informa-
tion, we have eliminated the approximations of the distributions with respect
to Diag. 5.2. Here different errors, as ε1, ε2, represent different decompositions
of also a single distribution.

p s q

µ ν ξ

µ ν ξ

ε1+ε2∼ R

a

a

R

ε1∼R

a

R

ε2∼R

a

a

L(R,ε1+ε2)

L(R,ε1) L(R,ε2)

L(R−1,ε′1+ε
′
2)

L(R−1,ε′1) L(R−1,ε′2)

(D.5.4)
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Proof. By hypothesis we have

1. p
ε1∼R s, thus for each p

a−→ µ there exists a state s ∈ Q such that s
a−→ ν

and µL(R, ε1) ν.

2. s
ε2∼R q, thus for each s

a−→ ν there exists a state q ∈ Q such that q
a−→ ξ

and ν L(R, ε2) ξ.

By Proposition 5.1, that is the transitivity of ε-lifting, we have µL(R, ε1+ε2) ξ

for each p
a−→ µ with the existence of q

a−→ ξ. Since
ε1∼R is symmetric, we have

also ν L(R, ε1)µ and ξ L(R, ε2) ν. Thus the sequence ξ L(R, ε2) ν ◦ν L(R, ε1)µ

gives us ξ L(R, ε1 + ε2)µ for each q
a−→ ξ with the existence of p

a−→ µ.

µL(R, ε1+ε2) ξ and ξ L(R, ε1+ε2)µ leads to the definition of p
ε1+ε2∼ R q.

ut

5.3 Probabilistic metrics with ε-lifting

In this section we define a metric on probabilistic automata, rather a pseudo-
metric, since we do not need that the difference between two distinct elements
has a value greater of zero. A pseudometric differs from an ordinary metric
since different elements can have distance 0. The pseudodistance between
states is a real number between 0 and 1, it is used to express the similarity
of the behaviour of those states. Using a terminology introduced by Sangiorgi
[12], we say that a relation between processes P1 progresses to P2 if for ev-
ery pair of processes in P1, every transition from one process is matched by
a transition from the other, and the derivative processes are related by P2.
Thus a metric d1 on states progresses to a metric d2 on distributions over
states if, for all processes at d1-distance ε, every transition from one process
is matched by a transition from the other and the resulting distributions are
at d2-distance at most ε. Then d1 is a bisimulation metric if it progresses to
its own lifting L(d1) on distributions. Among the bisimulation metrics, those
based on the Kantorovich lifting are the most popular.

Definition 5.4 (Pseudometric). A function d : Ω × Ω → R is a pseudo-
metric if

1. (nonnegativity) for all x, y ∈ Ω we have d(x, y) > 0
2. (reflexivity) for all x ∈ Ω we have d(x, x) = 0
3. (symmetry) for all x, y ∈ Ω we have d(x, y) = d(y, x)
4. (triangle inequality) for all x, y, z ∈ Ω we have d(x, y) + d(y, z) > d(x, z)

We deduce d(x, y) > 0 from item 1. and 3. Furthermore, if d also satisfies
d(x, y) > 0 when x 6= y, then d is a metric.

We introduce two pseudometrics based on the relation of ε-lifting with
the purpose of studying the approximate probabilistic bisimilarity. The first
pseudometric that we create is a distance between discrete distributions, we
calculate the minimum error that verifies ε-simulation L(R, ε).
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Definition 5.5 (Distance dL,R). Let (Q,A, Tr) be a probabilistic system and
R an equivalence relation on Q, for each (µ, ν) ∈ Disc(Q) the function 1-
bounded dL,R(µ, ν) : Disc(Q)×Disc(Q)→ R is defined by

dL,R(µ, ν) = inf
ε∈[0,1]

µ L(R, ε) ν.

In Diagram 5.5 we give a representation of dL,R(µ, ν). At the left hand side we
have represented with an arrow each approximate lifting with indicated the
error, for example ε1. The blue arrow represents the lifting with the minimum
error, which is the distance dL,R. The dotted line, with the label ε′, represents
an error which is a lower bound, for accuracy is the greatest lower bound. This
element is the infimum and is the value of dL,R, if it is not possible to create
an ε-lifting relation between the two distributions given. This case is shown
in the right hand side of Diagram 5.5.

s
a−→ µ ν

a←− t

L(R,ε1)

L(R,εi)

L(R,εi)

L(R,εi)

L(R,εn)

ε′

s
a−→ µ ν

a←− t

ε′

ε′′

(D.5.5)

Proposition 5.6. Given a probabilistic system (Q,A, Tr) if R ⊆ Q×Q is an
equivalence relation, then dL,R(µ, ν) is a pseudometric.

Proof. 1. (nonnegativity) is the definition of ε-simulation (Def. 4.4)
2. (reflexivity) R is an equivalence relation, then L(R, ε) is reflexive for

Proposition 4.6. For each s ∈ Q such that s
a−→ µ we have µL(R, ε)µ,

in particular ε = 0 verifies µL(R, 0)µ. Since the distance is non negative,
the minimum is ε = 0 and thus dL,R(µ, µ) = 0.

3. (symmetry) Since R is an equivalence relation, then for Proposition 4.7
L(R, ε) is symmetric. We generate S = { ε ∈ [0, 1] | µL(R, ε) ν and ν L(R, ε)µ }.
Since both dL,R(µ, ν) and dL,R(ν, µ) calculate the infimum on S, the result
must be equal and thus dL,R(µ, ν) = dL,R(ν, µ).

4. (triangle inequality) We consider µL(R, ε1) ν and ν L(R, ε2) η, by Prop. 5.1
we have µL(R, ε1+ε2) ν. Let S1 = { ε1 | µL(R, ε1) ν }, S2 = { ε2 | ν L(R, ε2) η }
and S = { ε1 + ε2 | µL(R, ε1 + ε2) ν } = S1 ∪ S2 are sets. We consider
inf S3 = inf{S1 ∪ S2} = inf S1 + inf S2. For definition of metric we
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have dL,R(µ, ν) + dL,R(Rν, η) = dL,R(µ, η), thus the triangle inequality
dL,R(µ, ν) + dL,R(Rν, η) > dL,R(µ, η) is verified.

ut

The second pseudometric that we create is a distance between states. We
calculate the minimum error that verifies ε-simulation L(R, ε).

Definition 5.7 (Distance dL,R). Given a probabilistic system (Q,A, Tr) and
a relation R ⊆ Q×Q a function dL,R : Q×Q→ R is defined for all s, t ∈ Q
as

dL,R(s, t) =

{
1 if s

a−→ µ and t
a9

infε∈[0,1] s
ε∼R t otherwise.

In this definition on states we need to consider if all the actions of the first state
are simulated by the second state; for each a such that s

a−→ µ we check if there
exists t

a−→ ν that simulate the transition of s with action a, otherwise t
a9 and

we impose value 1 to the distance. This process is not necessary for Def. 5.5,
since ν is a parameter and thus every action is simulated. In Diagram 5.6 we
represent Def. 5.7, where the arrows with labels � represent the lower or upper
bound. Every arrow represents a set of L(R, ε) and L(R−1, ε′′) relations, i.e.
represents a whole diagram as Diag. 5.3.

s t
εi∼R

ε1∼R

εi∼R

εi∼R

εn∼R

ε′�R

s t

ε�R

ε′�R

(D.5.6)

Theorem 5.8. Given a probabilistic system (Q,A, Tr), if R ⊆ Q × Q is an
equivalence relation then dL,R is a pseudometric.

Proof. First we consider a particular case, when two states s, t ∈ Q execute the
same action with very different distributions, then ε = 1 and the approximate
bisimilarity is verified. For the remaining cases we verify the axioms of the
definition of pseudometric, Definition 5.4.

1. (nonnegativity) is the definition of ε-bisimulation (Def. 4.4)
2. (reflexivity) since R is a bisimulation, that defines the two-bisimilar equiv-

alence
ε∼R, and it is reflexive, then for all x ∈ Q we have x

0∼R x and
x
ε�R x.
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3. (symmetry) for all pair x, y ∈ Q we show that dL,R(x, y) = dL,R(y, x). Let

are S1 = { ε | x ε∼R y } and S2 = { ε | y ε∼R x }. We suppose there exists

ε′ ∈ [0, 1] such that ε′ ∈ S2 and ε′ /∈ S1, thus y
ε′∼R x. For definition the

relation R is a ε′-bisimulation, i.e. R and R−1 are two ε′-simulation. Since

R−1 is an ε′-simulation, then y
ε′∼R−1 x that is equivalent to x

ε′∼R y. This

is in contrast with the hypothesis ε′ /∈ S1, where x
ε′�R y. There is no

element that belongs to S2 and does not belong to S1, thus S2 = S1 and
inf S2 = inf S1, i.e. dL,R(x, y) = dL,R(y, x).

4. (triangle inequality) Let Sxy = { ε1 | x
ε1∼R y } and Syz = { ε2 | y

ε2∼R z }
are sets. We consider x

ε1∼R y and y
ε2∼R z, by Prop. 5.3 we have x

(ε1+ε2)∼ R

z. Thus we construct the set Sxz = Sxy ∪Syz = { ε1 + ε2 | x
ε1∼R y and y

ε2∼R z } =

{ ε1 + ε2 | x
ε1+ε2∼ R z }. We consider the elements e1 = inf Sxy, e2 =

inf Syz, and e1 + e2 = inf Sxz = inf{Sxy ∪ Syz} = inf Sxy + inf Syz. For
Definition 5.7 we have dL,R(x, y) + dL,R(y, z) = dL,R(x, z), the triangle
inequality dL,R(x, y) + dL,R(y, z) > dL,R(x, z) is verified.

ut

5.4 Equivalence of pseudometrics

The pseudometric with approximation on measures is equivalent with the
widely used Monge-Kantorovich metric, that we have described in Section 3.4.

Theorem 5.9. Given a probabilistic system (Q,A, Tr), for each relation R
and for each probabilistic distributions µ, ν ∈ Disc(Q) we have

dL,R(µ, ν) = dK(µ, ν). (5.7)

Proof. Since we are handing with discrete distributions, we consider For-
mula 3.14 to calculate the Kantorovich metric. We split the proof in two
step

1. dL,R(µ, ν) > dK(µ, ν)
2. dL,R(µ, ν) 6 dK(µ, ν).

1. We consider µL(R, ε) ν, by definition of L(R, ε) µ, ν can be decomposed
in µ = (1 − ε)µ1 + εµ2 and ν = (1 − ε)ν1 + εν2 such that µ1 L(R) ν1.
By L(R) there exists a weighting function w : Q × Q → [0, 1] such that∑
s∈Q w(s, t) = ν1(t),

∑
t∈Q w(s, t) = µ1(s) and, for each pair (s, t) ∈ Q,

w(s, t) > 0 implies sR t. We construct an element
∑
x∈Q

∑
y∈Q d(x, y) ·

m(x, y), where we choose d = dR (Def.3.13) that defines the metric space
(Ω, dR). We defining m by

m = (1− ε)m1(s, t) + εm2(s, t),
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where m1(s, t) = w(s, t) and m2(s, t) = µ2(s) · ν2(t). With this def-
inition m is an upper bound of w compatibles with (µ, ν). The func-
tions m1,m2 are Borel probability measures and verify the three con-
ditions of Def. 3.9. Since we are in the discrete case, then we simplify
the proof as following. We have

∑
s∈Qm1(s, t) =

∑
s∈Q w(s, t) = ν1(t)

and
∑
t∈Qm1(s, t) =

∑
t∈Q w(s, t) = µ1(s), then m1 ∈ M1(µ1, ν1).∑

s∈Qm2(s, t) = ν2(t),
∑
t∈Qm2(s, t) = µ2(s), then m2 ∈ M2(µ2, ν2).

Since µ and ν are compositions of, respectively, µ1, µ2 and µ1, µ2, then
m = (1−ε)m1(s, t)+εm2(s, t) is a Borel measures, i.e. m ∈M(µ, ν). Now
we calculate

∑
x∈Q

∑
y∈Q dR(x, y) ·m(x, y).∑

s,t∈Q
dR(s, t)m(s, t) =

∑
s,t∈Q

dR(s, t) ((1− ε)m1(s, t) + εm2(s, t))

= (1− ε)
∑
s,t∈Q

dR(s, t)m1(s, t) + ε
∑
s,t∈Q

dR(s, t)m2(s, t)

= 0 + ε
∑
s,t∈Q

dR(s, t)m2(s, t)

= 0 + ε
∑
s,t∈Q

1 µ2(s) · ν2(t)

= 0 + ε · 1

The first sum is always 0 since when dR(s, t) = 0 then m1(s, t) = 1 and
when dR(s, t) = 1 then m1(s, t) = 0.
For each ε such that µL(R, ε) ν, we construct

∑
s,t∈Q dR(s, t)m(s, t) = ε.

We have considered an ε which is a lower bound of dL,R, we have con-
structed a corresponding element in the set of dK with value 6 ε. If
dL,R = ε, then we dK(µ, ν) 6 ε. Since dK(µ, ν) 6 ε = dL,R(µ, ν), we
conclude that dK(µ, ν) 6 dL,R(µ, ν).

2. We consider m ∈ M(µ, ν) that defines
∑
s,t∈Q dR(s, t)m(s, t) = ε. We

recall that the distance dR(s, t) is defined 0 if sR t and 1 otherwise. Thus∑
s,t∈Q

dR(s, t)m(s, t) = ε

=
∑

s,t.sR t

dR(s, t)m1(s, t) +
∑

s,t.(s,t)/∈R

d(s, t)m2(s, t)

= 0 +
∑

s,t.(s,t)/∈R

1m2(s, t).

We define µ, ν using the affinity/compatibility between the conditions on
the marginals µ, ν of M and the weighting function w defined by L(R, ε).
We define a first set M1(µ1, ν1) with elements m1 such that

m1(s, t) =

{
1−m(s, t) = 1− ε if sR t

0 otherwise.
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We define a second set M2(µ2, ν2) with elements m2 as

m2(s, t) =

{
0 if (s, t) /∈ R
m2(s, t) = m(s, t) = ε otherwise.

We use the projections, respectively, on the first state πs and on the second
state πt to define

µ1 =
πs(m1)

(1− ε)
, ν1 =

πt(m1)

(1− ε)
, µ2 =

πs(m2)

ε
, ν2 =

πt(m2)

ε
.

We calculate µ and ν as the compositions

(1− ε)µ1 + εµ2 = πs(m1) + πs(m2)

= πs(m)

= µ

and

(1− ε)ν1 + εν2 = πt(m1) + πt(m2)

= πt(m)

= ν.

Since m1(s, t) + m2(s, t) = (1 − ε) + ε = 1, then µ, ν 6 1 and thus they
are distributions. We have define µ, ν such that µL(R, ε) ν is verified.
We consider the particular case where ε is the greatest lower bound of
dK , i.e. dK(µ, ν) = ε. The corresponding element in dL,R has value ε and
belongs to µL(R, ε) ν, thus dL,R(µ, ν) = ε. It follows that dL,R(µ, ν) =
ε 6 dK(µ, ν) and dL,R(µ, ν) 6 dK(µ, ν).

ut

5.5 Bisimilarity as fixed-point of the operator F

In this section we recast the iterator operator of the fixed point definition of
bisimulation recalled in Section 3.3.3. In particular we consider the De Alfaro
et al. operatorHMDP

post (Def. 3.52). De Alfaro et al.’s operator works with Markov
Decision Process (MDP), this implies that the sets of actions of two states are
always equivalent. The operator we want generate is based on probabilistic
automata, here the set of actions of a state could not be simulated by the
set of actions of another state of the automata. For this reason we create a
pseudo-evaluation va(s), that checks if the label of an action is enabled in a
state, and an equivalence of actions s ≡a t, that impose the value 1 to the
states with different sets of actions.
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Definition 5.10 (Action evaluation). Given a probabilistic system (Q,A, Tr)
and an action a ∈ A, we define the function action evaluation va : Q→ (0, 1)
by

va(s) =

{
1 if s

a−→ µ

0 if s
a9

Definition 5.11 (Equivalence of actions). Given a probabilistic system
(Q,A, Tr) and s, t ∈ Q we define the equivalence of actions, for each action
a ∈ A, by

s ≡a t = |va(s)− va(t)| .

We extend for every action: s ≡A t = maxa∈A |va(s)− va(t)| .

We define a fixed point operator such that it takes in input a distance and
gives as output a new distance with determinate properties.

Definition 5.12 (Distance iterator F ). Given a probabilistic system (Q,A, Tr),
states s, t ∈ Q, an action a ∈ A, a probabilistic distributions µ, ν ∈Dist(Q), a
probabilistic pseudometric d : Q×Q→Disc(Q), we define the operator between
metrics F : Disc(Q)→Disc(Q) as

F (d (s, t)) = max

{
s ≡A t , sup

µ∈(s
a−→µ)

inf
ν∈(t

a−→ν)

d(µ, ν)

}
(5.8)

where d(µ, ν) is a distance defined between the probabilistic distributions gen-

erated by the transitions s
a−→ µ and t

a−→ ν.

The element s ≡a t considers the set of actions of both the states. If s, t do
not support the same action, i.e. there exists a ∈ A such that s

a−→ µ and
t

a9, then we have |va(s) − va(t)| = |1 − 0| = 1. In this case the resulting
pseudometric fixes always the value 1, indeed the value of d is in the interval
[0, 1]. If the sets of actions of, respectively, s and t are identical, then we
have |va(s) − va(t)| = |0 − 0| = 0. This happen also when two states are
not bisimilar, for this reason F chooses the maximum between the result of
equivalence of actions and the better value of the distance d.

In the left hand side of Diagram 5.7 we represent the operator F with
input the distance d1, which we calculate on states (s1, t1), (s2, t2), . . . , (sn, tn),
and each iteration by an arrow with label F . The domain of the resulting
distance coincides with the domain of d1, thus F (d1(si, ti)) = d2(si, ti) for
i ∈ {1, 2, . . . , n}. For this reason we create a simplify version of the diagram
in the right hand side of Diag. 5.7, where we omit the states. The fixed point
is the distance dj(s, t), depicted in blue.
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d1(s1, t1)

d1(s2, t2) d1
. . .

d1(sn, tn)

d2(s1, t1)

d2(s2, t2) F (d1) = d2
. . .

d2(sn, tn)

dj(s1, t1)

dj(s2, t2) F (F (d1)) = dj
. . .

dj(sn, tn)

F
F

F
F

(D.5.7)

Given several distances on states, we choose a pair of states (s, t) of a prob-
abilistic system and calculate the value of each distance on them. With these
values we create an order on the distances, which we represent as a lattice in
Diagram 5.8.

d3(s, t) = ε′′′

c1(s, t) = ε1 c2(s, t) = ε2

c3(s, t) = ε3 d2(s, t) = ε′′ c4(s, t) = ε4

c5(s, t) = η5 c6(s, t) = η6

d1(s, t) = ε′

(D.5.8)
Defined an order on distances we show that the operator F has an useful

property: it is monotone.

Theorem 5.13 (F monotone). Given a probabilistic system (Q,A, Tr) the
transformer F is monotonic, that is for each pair of pseudometrics d1, d2 ∈
[0, 1] if d1 6 d2 implies F (d1) 6 F (d2).

Now we consider Diag. 5.5 and apply the operator F to each distance. Since
F is monotone (Th.5.13), F preserves the order on distances and we represent
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them in Diagram 5.9. In particular we consider the distances d1 and d2 such
that d1 6 d2, F preserves the order whereby F (d1) 6 F (d2).

F (d3)

F (c1) F (c2)

F (c3) F (d2) F (c4)

F (c5) F (c6)

F (d1)

(D.5.9)
In the following we give the proof of the theorem.

Proof. We show the monotony with a pointwise comparison assuming that
the domain of d1 is the same for d2. By hypothesis we have d1 6 d2, i.e. for
each pair of states (s, t) of the domain Q we have

d1(s, t) 6 d2(s, t).

We apply the infimum operator on distribution of t to both the distances, since
the outcomes of each pseudometric is a monotone sequence of real numbers
belonging to the interval [0, 1]. Since the first distance is less than the second
one in each pair of states, then we have

inf
ν∈(t

a−→ν)

d1(s, t) 6 inf
ν∈(t

a−→ν)

d2(s, t). (5.12)

We apply the supremum operator on distribution of s to the previous formula,
since the above considerations are still verifies. We obtain

sup
µ∈(s

a−→µ)

inf
ν∈(t

a−→ν)

d1(s, t) 6 sup
µ∈(s

a−→µ)

inf
ν∈(t

a−→ν)

d2(s, t), (5.13)

where each element at left hand side of inequality 5.12 has value less or equal
to the right hand side of this inequality.

We consider the equivalence of actions s ≡A t, it is independent from any
distances. For pair of states we have

max

{
s ≡A t , sup

µ∈(s
a−→µ)

inf
ν∈(t

a−→ν)

d1(µ, ν)

}
6 max

{
s ≡A t , sup

µ∈(s
a−→µ)

inf
ν∈(t

a−→ν)

d2(µ, ν)

}
,

(5.14)
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since the value of the formula at left hand side of 5.13 is less than the value
of the formula at right hand side of this inequality. For Def. 5.12 and for
inequality 5.14 we obtain

F (d1(s, t)) 6 F (d2(s, t)).

ut

In the following we show that F has a fixed point.

Theorem 5.14. Let (Q,A, Tr) be a probabilistic system, PMetric a set of
monotone pseudometrics on Q with value interval [0, 1], 6 be a partial order
on pointwise distances, and d ∈Dist(Q) be a probabilistic pseudometric on
distributions generated on Q.

1. (PMetric,6) is a complete lattice,
2. F has the least fixed point (lfp) defined by

lfp(F ) =
⋂
{ d(x, y) | F (d (x, y)) 6 d(x, y) }

Proof. 1. We consider a subset S ⊆PMetric, we construct the infimum, i.e.
a greatest lower bound in (PMetric,6). Let is di ∈ S. Since it is de-
fined monotone on all the state in Q, we have that for each s, t, s′, t′ ∈ Q
with a partial order 6 if s 6 s′ and t 6 t′, then we have di(s, t) 6
di(s

′, t′). We call lower bound of S the distance d′ ∈ S such that
d′(s, t) 6 di(s, t) for each di ∈ S and for each s, t ∈ Q. Since Q is
finite and and each di ∈ S is monotone on all the state in Q, then
the inequality is always defined and the element d′ exists. We consider
S′ = { d′ ∈ S | d′ is a lower bound of S }, let d ∈ S′ such that for each
d′ ∈ S′ and for each s, t ∈ Q we have d(s, t) 6 d′(s, t). It is defined since
Q is finite and and each di ∈ S is monotone. The element d is the infimum
of S.
A similar construction shows the supremum of S, i.e. a least upper bound
in (PMetric,6).
Since every subset S has both infimum and supremum, the partially or-
dered set (PMetric,6) is a complete lattice.

2. Since (PMetric,6) is a complete lattice and F is monotonous, then for
Knaster-Tarski’s theorem 3.35 lfp(F ) is the least fixed point of F .

ut

Definition 5.15. The probabilistic simulation metric 0 is the least fixpoint
(lfp) of F .

Given a relation R with Def. 5.7 we construct the distance dL. Now we
consider the distance dR and we apply the operator F . The evaluation of the
first step of F on dR is equivalent to dL,R.
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Lemma 5.16. Given a probabilistic system (Q,A, Tr), a bisimulation R, and
dR the distance such that dR(s, t) = 0 if sR t and dR(s, t) = 1 otherwise, we
have

F (dR) = dL,R.

Proof. Given two states s, t ∈ Q and the bisimulation R, we have two cases.

(s, t) ∈ R: in this case there is no approximation on the simulation. From

the transitions s
a−→ µ and t

a−→ ν, we can generate a weighting function
w : Q × Q → [0, 1] such that

∑
s∈Q w(s, t) = ν(t),

∑
t∈Q w(s, t) = µ(t)

and w(s, t) > 0. Thus for Def. 3.24 we have µL(R) ν, that is equivalent

to µL(R, 0) ν. In general for each s
a−→ µ there exists t

a−→ ν such that

µL(R, 0) ν. For Def. 5.2 we have s
0∼R t, thus dL,R = 0 by Def. 5.7.

For Def. 3.13 dR(s, t) = 0, since F (dR) is a monotonically decreasing
function, i.e. F (dR) 6 dR, then F (dR(s, t)) = 0.

(s, t) /∈ R: We split the problem in two steps:
1.F (dR) > dL,R. Since (s, t) /∈ R, then for definition dR(s, t) = 1. The

operator F is a monotonically decreasing function, thus we have
F (dR) 6 dR and F (dR) 6 1.

Since (s, t) /∈ R we consider µ, ν such that s
a−→ µ, t

a−→ ν ∈ Tr and a
variance ε such that we generate the decompositions µ = µ1(1− ε) +
µ2ε and ν = ν1(1−ε)+ν2ε. If these decompositions do not exist, then
for Def. 5.11 (s ≡A t) = 1. Otherwise µL(R, ε) ν, we consider for each

µ ∈ s a−→ µ there exists ν ∈ t a−→ ν such that µL(R, ε) ν and obtain

infε s
ε∼R t for Def. 5.7. We replace the formulation “for each” with

sup and “there exists” with inf, we consider the infimum ε and obtain

inf
ε∈[0,1]

sup
µ∈s

a−→µ

inf
ν∈t

a−→ν

µL(R, ε) ν = dL,R (5.15)

Formula 5.15 is the definition of dL,R. This formula is closed to For-
mula 5.12 defining F , the first part is equal. Then in Formula 5.15 we
insert the the choice of minimum ε. Thus dL,R 6 F (dR).
We resume that dL,R 6 1 and F (dR) 6 dR = 1, thus dL,R 6 F (dR).

2.F (dR) 6 dL,R. We consider the worst case where there exists no action
a for t that simulates the action a of s. For Def. 5.7 dL,R = 1. This case
implies that |va(s)− va(t)| = 1, for Def. 5.10 and Def. 5.11, and thus
(s ≡A t) = 1. For Def. 5.12 1 is the maximum value, thus F (dR(s, t)) =
1. This implies that F (dR(s, t)) 6 dL,R.

ut
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6

Conclusions

In this thesis we have considered probabilistic processes, modelled by au-
tomata, to analyses the problem of approximated bisimulations. These rela-
tions are used, generally, to simplify the models of some systems and to model
agents and attackers in security protocols. In the latter field these relations
have been replaced by the metrics, which are the quantitative analogue of
probabilistic bisimilarity. Metrics allow a greater precision, since they assign
a real number which describes the distance between states or between prob-
abilistic distributions of states. Each one of these distributions describes the
probability to enter, from a given state, in a successor state after a transition.
Thus a metric is about a degree of similarity between states.

Starting from the notion of ε-(bi)simulation given in [62], we have defined
two pseudometrics, called both dL,R, on states and on distributions. Our def-
inition of metric between two states is well defined: it is the infimum error ε
such that two given states are still ε-bisimilar, i.e. the probabilistic distribu-
tions of these states match except for an error ε which is the smallest. This
formalisation is the main difference with the definitions of metrics in the ac-
tual literature. We have considered the largely used Kantorovich metrics, that
is the lifting of a given relation R on states which describes the property of
the processes to whom we are interested. We have put in relation our metrics
with the Kantorovich one. If we consider dR as starting relation, which is the
relation that has value zero on pairs of states in relation and 1 elsewhere, the
two metrics are equivalent.

In literature the metrics are operational defined as the fixed point of an
iterative transformer. Since this operator is monotone and any set of metrics is
a lattice, we can apply Tarski theorem, whose says that a monotonic operator
defined on a lattice always has a minimum (or maximum) fixed point. In [12]
the operator is a functional transformer H defined on metrics that increases
at each iteration. By Tarski theorem the least fixed point is the bisimulation
searched. In the thesis we have proposed a recast of this transformer defin-
ing a metric transformer called F on probabilistic automata. F and H are
similar at high level, the only difference is the definition of the actions: we
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have labels for the transitions. In our case at each iteration the operator F
decreases the values of each pair of states, thus given any metric in input we
search the better distance calculating the minimum error error ε and consider
the overlapping (maximum) distance. We have considered the metrics dR on
probabilistic automata, it is a post-fixed-point of F . Used as input metric of
F , after a single iteration the given result is dL,R. The value of F (dR) is less
than the initial value of dR, thus the fixed point of F is an over approxima-
tion of a metric generated by H, which calculates the minimum fixed point as
shown in Diagram 6.1. This show also that our operator F is consistent with
the literature.

d1

...

...

d3

d4 d5

d6

...

...

d7

F

F

F

H

H

H

(D.6.1)

The results of this thesis can be expanded to several directions. Using our
metrics on automata as basis to study security, the approximate polynomial
simulation techniques transposed in metrics is a proof of soundness of logics
that generate processes/systems, as simulation techniques are basis for impli-
cation languages. This will lead to consider the Turrini’s approach as a sound
method for verifying distances on automata. A consequent development is
investigate the completeness.
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Another possible new direction is the extension of our metric dL,R inserting
a limit. In details we could fix a limit on the error values, thus the metric will
assume only a range of values. The advantage of this consideration is the
possibility of analysis of the errors on states directly in a computational level.
Until now it has never been possible this approach, the limitations on metrics
defined in literature followed a converse approach based on linking a distance
with its logical formulation.

As future work we can be use the metrics created and the theorems and
the lemma as first step in the analysis of the relation between languages and
metrics. A second and interesting future work is the analysis of hemimetrics
with simulations, i.e. the pseudometric can be make perfect erasing a con-
straint and obtaining the definition of hemimetric that better reproduces the
asymmetry property of simulation.
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