63 research outputs found

    Performance Confirmation Data Aquisition System

    Full text link

    Intelligent Machining Systems

    Get PDF
    Machining is one of the most widespread manufacturing processes and plays a critical role in industries. As a matter of fact, machine tools are often called mother machines as they are used to produce other machines and production plants. The continuous development of innovative materials and the increasing competitiveness are two of the challenges that nowadays manufacturing industries have to cope with. The increasing attention to environmental issues and the rising costs of raw materials drive the development of machining systems able to continuously monitor the ongoing process, identify eventual arising problems and adopt appropriate countermeasures to resolve or prevent these issues, leading to an overall optimization of the process. This work presents the development of intelligent machining systems based on in-process monitoring which can be implemented on production machines in order to enhance their performances. Therefore, some cases of monitoring systems developed in different fields, and for different applications, are presented in order to demonstrate the functions which can be enabled by the adoption of these systems. Design and realization of an advanced experimental machining testbed is presented in order to give an example of a machine tool retrofit aimed to enable advanced monitoring and control solutions. Finally, the implementation of a data-driven simulation of the machining process is presented. The modelling and simulation phases are presented and discussed. So, the model is applied to data collected during an experimental campaign in order to tune it. The opportunities enabled by integrating monitoring systems with simulation are presented with preliminary studies on the development of two virtual sensors for the material conformance and cutting parameter estimation during machining processes

    Digital twin-driven smart manufacturing: Connotation, reference model, applications and research issues

    Get PDF
    This paper reviews the recent development of Digital Twin technologies in manufacturing systems and processes, to analyze the connotation, application scenarios, and research issues of Digital Twin-driven smart manufacturing in the context of Industry 4.0. To understand Digital Twin and its future potential in manufacturing, we summarized the definition and state-of-the-art development outcomes of Digital Twin. Existing technologies for developing a Digital Twin for smart manufacturing are reviewed under a Digital Twin reference model to systematize the development methodology for Digital Twin. Representative applications are reviewed with a focus on the alignment with the proposed reference model. Outstanding research issues of developing Digital Twins for smart manufacturing are identified at the end of the paper

    Design and development of energy management system for smart homes and buildings

    Get PDF
    The smart grid, as the next generation of power grid, has redefined the positions of the homes and buildings in the contexts of a whole energy system. With the increasing installation of Distributed Energy Resources (DERs) and retention of Electric Vehicles (EVs) and Plug-in Hybrid Electric Vehicles (PHEVs), the energy system of homes and buildings in power distribution network is becoming more and more complex. In order to find the efficient and effective way for managing the appliances and DERs in smart homes and buildings through the Energy Management System (EMS), the pathway of the thesis is to investigate the optimisation and control approaches of EMS from controlling the loads within home, to fully optimising the operation of both loads and DERs in smart home, and at last coordinating the EMSs in the buildings through the aggregator

    Protecting an Industrial AC Drive Application against Cyber Sabotage

    Get PDF
    Vuonna 2010 havaittua, erittäin kehittynyttä tietokonevirusta nimeltä Stuxnet on kuvailtu myös ensimmäiseksi kybersodan aseeksi, koska eri lähteiden mukaan se tuhosi vähintään 1 000 uraania rikastavaa kaasusentrifugia Iranissa. Tämä kybersabotaasi suoritettiin tunkeutumalla teolliseen ohjausjärjestelmään, kytkemällä sentrifugeja ohjaavien taajuusmuuttajien suojatoiminnot pois päältä ja pyörittämällä niitä niin suurilla nopeuksilla, että keskipakoisvoimat aiheuttivat roottoreiden repeämisen. Dekantterit ovat toisenlaisia sentrifugeja, joita käytetään erottamaan kiinteät aineet nestemäisistä useilla eri teollisuudenaloilla, kuten esimerkiksi vedenkäsittelyssä ja kaivostoiminnassa. Dekantterisentrifugit, eli tarkemmin kiinteärumpuiset, ruuvipurkuiset lingot, käyvät usein epätahtikoneilla ja taajuusmuuttajilla. Olettaen, että Stuxnet-tapauksen kaltainen tuho voidaan estää sopivilla turvajärjestelmillä, toimenpiteitä dekantterilingon suojelemiseksi tutkittiin käyttäen kirjallisuutta ja nykyistä tietoturva- ja henkilöturvaominaisuustarjontaa seuraavilta uudenaikaisilta taajuusmuuttajilta, joissa on Ethernet-pohjainen kenttäväyläyhteys: ABB ACS880-01, Rockwell Allen-Bradley PowerFlex 755 ja Siemens SINAMICS S110. Rajoitetun arvioinnin tuloksena taajuusmuuttajien pahin kyberturvallisuuteen liittyvä haavoittuvuus on tyypillinen monille kenttäväyliä käyttäville automaatiolaitteille: täysivaltainen asetusten muutos on mahdollista oletusarvoisesti ilman minkäänlaista käyttäjähallintaa. Kuitenkin toiminnallisen turvallisuuden asetukset voidaan suojata salasanalla, joten standardoitu turvafunktio nimeltä turvallisesti rajoitettu nopeus on toteuttamiskelpoinen ratkaisu dekantterilingon suojelemiseksi kybersabotaasilta. Liitteenä olevaa tarkistuslistaa seuraamalla dekanttereissa käytettävät taajuusmuuttajat voidaan konfiguroida mahdollisimman hyvin kyberturvallisuuden kannalta.Discovered in 2010, the highly advanced computer virus called Stuxnet, also described as the first weapon of cyber warfare, reportedly destroyed at least 1,000 gas centrifuges enriching uranium in Iran. This kind of act of cyber sabotage was conducted by compromising the industrial control system, disabling protection functions of AC drives running the centrifuges, and making them spin at such high speeds that centrifugal forces caused their rotors to rupture. Decanters are another type of centrifuges used to separate solids from liquids in many industries including water treatment and mining for example. Also known as solid-bowl, scroll-discharge centrifuges, decanters are commonly powered by induction motors and AC drives. Assuming havoc similar to the Stuxnet case can be prevented with suitable safety systems, a review was conducted on the protection methods for decanter centrifuges based on literature and the current security and safety features of the following modern AC drives with Ethernet-based fieldbus connectivity: ABB ACS880-01, Rockwell Allen-Bradley PowerFlex 755, and Siemens SINAMICS S110. As a result of the limited assessment, the worst vulnerability related to cybersecurity of the AC drives is typical to many automation devices using fieldbuses: total configuration is possible remotely without any authentication by default. However, the functional safety configuration can be protected by means of a password, therefore allowing a standardized safety function called safely-limited speed (SLS) to become a viable solution for protecting the decanter centrifuge against cyber sabotage. By following the supplied checklist, it is possible to configure AC drives used with decanters optimally in terms of cybersecurity

    OPERATION AND PROCESS CONTROL DEVELOPMENT FOR A PILOT-SCALE LEACHING AND SOLVENT EXTRACTION CIRCUIT RECOVERING RARE EARTH ELEMENTS FROM COAL-BASED SOURCES

    Get PDF
    The US Department of Energy in 2010 has identified several rare earth elements as critical materials to enable clean technologies. As part of ongoing research in REEs (rare earth elements) recovery from coal sources, the University of Kentucky has designed, developed and is demonstrating a ¼ ton/hour pilot-scale processing plant to produce high-grade REEs from coal sources. Due to the need to control critical variables (e.g. pH, tank level, etc.), process control is required. To ensure adequate process control, a study was conducted on leaching and solvent extraction control to evaluate the potential of achieving low-cost REE recovery in addition to developing a process control PLC system. The overall operational design and utilization of Six Sigma methodologies is discussed. Further, the application of the controls design, both procedural and electronic for the control of process variables such as pH is discussed. Variations in output parameters were quantified as a function of time. Data trends show that the mean process variable was maintained within prescribed limits. Future work for the utilization of data analysis and integration for data-based decision-making will be discussed

    A Comprehensive Survey on the Cyber-Security of Smart Grids: Cyber-Attacks, Detection, Countermeasure Techniques, and Future Directions

    Full text link
    One of the significant challenges that smart grid networks face is cyber-security. Several studies have been conducted to highlight those security challenges. However, the majority of these surveys classify attacks based on the security requirements, confidentiality, integrity, and availability, without taking into consideration the accountability requirement. In addition, some of these surveys focused on the Transmission Control Protocol/Internet Protocol (TCP/IP) model, which does not differentiate between the application, session, and presentation and the data link and physical layers of the Open System Interconnection (OSI) model. In this survey paper, we provide a classification of attacks based on the OSI model and discuss in more detail the cyber-attacks that can target the different layers of smart grid networks communication. We also propose new classifications for the detection and countermeasure techniques and describe existing techniques under each category. Finally, we discuss challenges and future research directions

    Digitalization of Battery Manufacturing: Current Status, Challenges, and Opportunities

    Get PDF
    As the world races to respond to the diverse and expanding demands for electrochemical energy storage solutions, lithium-ion batteries (LIBs) remain the most advanced technology in the battery ecosystem. Even as unprecedented demand for state-of-the-art batteries drives gigascale production around the world, there are increasing calls for next-generation batteries that are safer, more affordable, and energy-dense. These trends motivate the intense pursuit of battery manufacturing processes that are cost effective, scalable, and sustainable. The digital transformation of battery manufacturing plants can help meet these needs. This review provides a detailed discussion of the current and near-term developments for the digitalization of the battery cell manufacturing chain and presents future perspectives in this field. Current modelling approaches are reviewed, and a discussion is presented on how these elements can be combined with data acquisition instruments and communication protocols in a framework for building a digital twin of the battery manufacturing chain. The challenges and emerging techniques provided here is expected to give scientists and engineers from both industry and academia a guide toward more intelligent and interconnected battery manufacturing processes in the future
    corecore