Optimisation of a water company’s waste pumping asset base with a focus on energy reduction

Abstract

This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University LondonWater companies use a significant quantity of electricity for the operation of their clean and wastewater assets. Rising energy prices have led to higher energy bills within the water companies, which has increased operating costs. Thus, improvements in demand side energy management are needed to increase efficiency and reduce costs, which forms the premise for this research project. Thames Water Utilities Ltd has identified that improvements in demand side energy management is required and is currently researching various methods to reduce energy consumption. One initiative included the upgrade of a variety of site telemetry assets. By deploying these new telemetry assets, Thames Water Utilities Ltd are more able to liberate the asset data and as such, be able to make informed decisions on how better to control and optimise the target sites, which is where this research project has seen further opportunities. This enhanced telemetry and SCADA infrastructure will enable successful research to further develop an intelligent integrated system that tackles pump scheduling and process control with the emphasis on energy management. The use of modern techniques, such as artificial intelligence, to optimise the network operation is gradually gaining traction. The balance between implementing new technology (with the benefits it may bring) and reluctance to change from the incumbent operating model will always provide challenges in the technology adoption agenda. The main work of this research project included the physical surveying of a wastewater hydraulic catchment, inclusive of all wet well dimensions, lidar overlays, and pump electrical power characteristics. These survey results where then able to be programmed by the research into the company’s' hydraulic model to enable a higher degree of accuracy in the modelling, as well as enabling electrical power as a measurable output. From here, the model was then able to be optimised, focussing on electrical energy as an output variable for reduction. The research concluded that electrical energy consumption over time can be reduced using the aforementioned strategies and as such recommends further work to move from the model environment to physical architecture. It does so with the key message that risk tolerances on water levels must be pre-agreed with hydraulic specialists prior to deployment

    Similar works