16 research outputs found

    Pattern Formation and flow to Fracture Transitions in Granular and Sheer Thickening Materials

    Get PDF
    The conditions under which a mixture of water and grains will fracture like a solid, rather than flow like a liquid, is the subject of this thesis. Flow to fracture transitions in saturated granular materials are relevant to numerous geological and engineering environments, in-cluding magma cavern activity, methane venting on seabeds, carbon dioxide storage, food processing, and innovations in body armour. To examine the flow to fracture transition, two systems are considered. The first is gas-driven fracturing of settled granular media, a slow creeping process that forms labyrinthine patterns. The second is gas-driven fractur-ing of suspended cornstarch particles, a system which exhibits fascinating “discontinuous shear thickening” behaviour, a topic of much debate in literature. Both systems are sub-ject to experiments within a Hele-Shaw cell, which enables the visualisation of pseudo-2D invasion flow or fracture patterns. Image analysis performed on these patterns led to the application of theories that can predict their behaviours. Fracture formation is found to be a friction dominated process. The invading pressure pushes on the local grains while surface tension of the receding water pulls on them until frictional forces become strong enough to maintain a front, forcing the pressure to disturb grains elsewhere, and in do-ing so extend and branch the fractures forming a patterned network. Various parameter studies are performed to uncover the variables that determine why a mixture might flow or fracture. Interestingly, the first system is found to transition from fracturing to flowing with increasing pressures, whilst the second system is found to do the opposite

    Sublinear Computation Paradigm

    Get PDF
    This open access book gives an overview of cutting-edge work on a new paradigm called the “sublinear computation paradigm,” which was proposed in the large multiyear academic research project “Foundations of Innovative Algorithms for Big Data.” That project ran from October 2014 to March 2020, in Japan. To handle the unprecedented explosion of big data sets in research, industry, and other areas of society, there is an urgent need to develop novel methods and approaches for big data analysis. To meet this need, innovative changes in algorithm theory for big data are being pursued. For example, polynomial-time algorithms have thus far been regarded as “fast,” but if a quadratic-time algorithm is applied to a petabyte-scale or larger big data set, problems are encountered in terms of computational resources or running time. To deal with this critical computational and algorithmic bottleneck, linear, sublinear, and constant time algorithms are required. The sublinear computation paradigm is proposed here in order to support innovation in the big data era. A foundation of innovative algorithms has been created by developing computational procedures, data structures, and modelling techniques for big data. The project is organized into three teams that focus on sublinear algorithms, sublinear data structures, and sublinear modelling. The work has provided high-level academic research results of strong computational and algorithmic interest, which are presented in this book. The book consists of five parts: Part I, which consists of a single chapter on the concept of the sublinear computation paradigm; Parts II, III, and IV review results on sublinear algorithms, sublinear data structures, and sublinear modelling, respectively; Part V presents application results. The information presented here will inspire the researchers who work in the field of modern algorithms

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios

    Proceedings of the tenth international conference Models in developing mathematics education: September 11 - 17, 2009, Dresden, Saxony, Germany

    Get PDF
    This volume contains the papers presented at the International Conference on “Models in Developing Mathematics Education” held from September 11-17, 2009 at The University of Applied Sciences, Dresden, Germany. The Conference was organized jointly by The University of Applied Sciences and The Mathematics Education into the 21st Century Project - a non-commercial international educational project founded in 1986. The Mathematics Education into the 21st Century Project is dedicated to the improvement of mathematics education world-wide through the publication and dissemination of innovative ideas. Many prominent mathematics educators have supported and contributed to the project, including the late Hans Freudental, Andrejs Dunkels and Hilary Shuard, as well as Bruce Meserve and Marilyn Suydam, Alan Osborne and Margaret Kasten, Mogens Niss, Tibor Nemetz, Ubi D’Ambrosio, Brian Wilson, Tatsuro Miwa, Henry Pollack, Werner Blum, Roberto Baldino, Waclaw Zawadowski, and many others throughout the world. Information on our project and its future work can be found on Our Project Home Page http://math.unipa.it/~grim/21project.htm It has been our pleasure to edit all of the papers for these Proceedings. Not all papers are about research in mathematics education, a number of them report on innovative experiences in the classroom and on new technology. We believe that “mathematics education” is fundamentally a “practicum” and in order to be “successful” all new materials, new ideas and new research must be tested and implemented in the classroom, the real “chalk face” of our discipline, and of our profession as mathematics educators. These Proceedings begin with a Plenary Paper and then the contributions of the Principal Authors in alphabetical name order. We sincerely thank all of the contributors for their time and creative effort. It is clear from the variety and quality of the papers that the conference has attracted many innovative mathematics educators from around the world. These Proceedings will therefore be useful in reviewing past work and looking ahead to the future
    corecore