6,722 research outputs found

    The multifrequency Siberian Radioheliograph

    Full text link
    The 10-antenna prototype of the multifrequency Siberian radioheliograph is described. The prototype consists of four parts: antennas with broadband front-ends, analog back-ends, digital receivers and a correlator. The prototype antennas are mounted on the outermost stations of the Siberian Solar Radio Telescope (SSRT) array. A signal from each antenna is transmitted to a workroom by an analog fiber optical link, laid in an underground tunnel. After mixing, all signals are digitized and processed by digital receivers before the data are transmitted to the correlator. The digital receivers and the correlator are accessible by the LAN. The frequency range of the prototype is from 4 to 8 GHz. Currently the frequency switching observing mode is used. The prototype data include both circular polarizations at a number of frequencies given by a list. This prototype is the first stage of the multifrequency Siberian radioheliograph development. It is assumed that the radioheliograph will consist of 96 antennas and will occupy stations of the West-East-South subarray of the SSRT. The radioheliograph will be fully constructed in autumn of 2012. We plan to reach the brightness temperature sensitivity about 100 K for the snapshot image, a spatial resolution up to 13 arcseconds at 8 GHz and polarization measurement accuracy about a few percent. First results with the 10-antenna prototype are presented of observations of solar microwave bursts. The prototype abilities to estimate source size and locations at different frequencies are discussed

    Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics

    Full text link
    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailed description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics

    LOFAR discovery of the fastest-spinning millisecond pulsar in the Galactic field

    Get PDF
    We report the discovery of PSR J0952-0607, a 707-Hz binary millisecond pulsar which is now the fastest-spinning neutron star known in the Galactic field (i.e., outside of a globular cluster). PSR J0952-0607 was found using LOFAR at a central observing frequency of 135 MHz, well below the 300 MHz to 3 GHz frequencies typically used in pulsar searches. The discovery is part of an ongoing LOFAR survey targeting unassociated Fermi Large Area Telescope γ\gamma-ray sources. PSR J0952-0607 is in a 6.42-hr orbit around a very low-mass companion (Mc0.02M_\mathrm{c}\gtrsim0.02 M_\odot) and we identify a strongly variable optical source, modulated at the orbital period of the pulsar, as the binary companion. The light curve of the companion varies by 1.6 mag from r=22.2r^\prime=22.2 at maximum to r>23.8r^\prime>23.8, indicating that it is irradiated by the pulsar wind. Swift observations place a 3-σ\sigma upper limit on the 0.3100.3-10 keV X-ray luminosity of LX<1.1×1031L_X < 1.1 \times 10^{31} erg s1^{-1} (using the 0.97 kpc distance inferred from the dispersion measure). Though no eclipses of the radio pulsar are observed, the properties of the system classify it as a black widow binary. The radio pulsed spectrum of PSR J0952-0607, as determined through flux density measurements at 150 and 350 MHz, is extremely steep with α3\alpha\sim-3 (where SναS \propto \nu^{\alpha}). We discuss the growing evidence that the fastest-spinning radio pulsars have exceptionally steep radio spectra, as well as the prospects for finding more sources like PSR J0952-0607.Comment: 9 pages, 3 figures, 1 table, published in ApJ letter

    ASCR/HEP Exascale Requirements Review Report

    Full text link
    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio

    KM3NeT: Towards a km3 Mediterranean Neutrino Telescope

    Get PDF
    The observation of high-energy extraterrestrial neutrinos is one of the most promising future options to increase our knowledge on non-thermal processes in the universe. Neutrinos are e.g. unavoidably produced in environments where high-energy hadrons collide; in particular this almost certainly must be true in the astrophysical accelerators of cosmic rays, which thus could be identified unambiguously by sky observations in "neutrino light". To establish neutrino astronomy beyond the detection of single events, neutrino telescopes of km3 scale are needed. In order to obtain full sky coverage, a corresponding detector in the Mediterranean Sea is required to complement the IceCube experiment currently under construction at the South Pole. The groups pursuing the current neutrino telescope projects in the Mediterranean Sea, ANTARES, NEMO and NESTOR, have joined to prepare this future installation in a 3-year, EU-funded Design Study named KM3NeT. This report will highlight some of the physics issues to be addressed with the KM3NeT detector and will outline the path towards its realisation, with a focus on the upcoming Design Study.Comment: Presented at VLVnT2 Workshop, Catania, Siciliy, Italy, 8-11 Nov 200

    The structure and emission model of the relativistic jet in the quasar 3C 279 inferred from radio to high-energy gamma-ray observations in 2008-2010

    Get PDF
    We present time-resolved broad-band observations of the quasar 3C 279 obtained from multi-wavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported gamma-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears delayed with respect to the gamma-ray emission by about 10 days. X-ray observations reveal a pair of `isolated' flares separated by ~90 days, with only weak gamma-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the gamma-ray flare, while the peak appears in the mm/sub-mm band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broad-band spectra during the gamma-ray flaring event by a shift of its location from ~ 1 pc to ~ 4 pc from the central black hole. On the other hand, if the gamma-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission.Comment: 23 pages, 18 figures 5 tables, Accepted for publication in The Astrophysical Journa
    corecore