830 research outputs found

    Disturbance observer based control for nonlinear MAGLEV suspension system

    Get PDF
    This paper investigates the disturbance rejection problem of nonlinear MAGnetic LEViation (MAGLEV) suspension system with “mismatching” disturbances. Here “mismatching” refers to the disturbances that enter the system via different channel to the control input. The disturbance referring in this paper is mainly on load variation and unmodeled nonlinear dynamics. By linearizing the nonlinear MAGLEV suspension model, a linear state-space disturbance observer (DOB) is designed to estimate the lumped “mismatching” disturbances. A new disturbance compensation control method based on the estimate of DOB is proposed to solve the disturbance attenuation problem. The efficacy of the proposed approach for rejecting given disturbance is illustrated via simulations on realistic track input

    Control strategies for robotic manipulators

    Get PDF
    This survey is aimed at presenting the major robust control strategies for rigid robot manipulators. The techniques discussed are feedback linearization/Computed torque control, Variable structure compensator, Passivity based approach and Disturbance observer based control. The first one is based on complete dynamic model of a robot. It results in simple linear control which offers guaranteed stability. Variable structure compensator uses a switching/relay action to overcome dynamic uncertainties and disturbances. Passivity based controller make use of passive structure of a robot. If passivity of a feedback system is proved, nonlinearities and uncertainties will not affect the stability. Disturbance observer based controllers estimate disturbances, which can be cancelled out to achieve a nominal model, for which a simple controller can then be designed. This paper, after explaining each control strategy in detail, finally compares these strategies for their pros and cons. Possible solutions to cope with the drawbacks have also been presented in tabular form. © 2012 IEEE

    Decentralized Multi-Agent Formation Control with Pole-Region Placement via Cone-Complementarity Linearization

    Full text link
    [EN] An output-feedback decentralised formation control strategy is pursued under pole-region constraints, assuming that the agents have access to relative position measurements with respect to a set of neighbors in a graph describing the sensing topology. No communication between the agents is assumed; however, a shared one-way communication channel with a pilot is needed for steering tasks. Each agent has a separate copy of the same controller. A virtual structure approach is presented for the formation steering as a whole; actual formation control is established via cone-complementarity linearization algorithms for the appropriate matrix inequalities. In contrast to other research where only stable consensus is pursued, the proposed method allows us to specify settling-time, damping and bandwidth limitations via pole regions. In addition, a full methodology for the decoupled handling of steering and formation control is provided. Simulation results in the example section illustrate the approachThe first author is grateful for the financial support via the grant GVA/2021/082 from Generalitat Valenciana. Part of the authors' research activity in related topics is funded via the grant PID2020-116585GB-I00 through MCIN/AEI/10.13039/501100011033 and by the European Union.González Sorribes, A.; Sala, A.; Armesto, L. (2022). Decentralized Multi-Agent Formation Control with Pole-Region Placement via Cone-Complementarity Linearization. International Journal of Applied Mathematics and Computer Science. 32(3):415-428. https://doi.org/10.34768/amcs-2022-003041542832

    Advanced control designs for output tracking of hydrostatic transmissions

    Get PDF
    The work addresses simple but efficient model descriptions in a combination with advanced control and estimation approaches to achieve an accurate tracking of the desired trajectories. The proposed control designs are capable of fully exploiting the wide operation range of HSTs within the system configuration limits. A new trajectory planning scheme for the output tracking that uses both the primary and secondary control inputs was developed. Simple models or even purely data-driven models are envisaged and deployed to develop several advanced control approaches for HST systems

    A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator

    Get PDF
    In this work, we use a neural network as a substitute for the traditional analytic functions employed as an inversion set in feedback linearization control algorithms applied to hydraulic actuators. Although very efective and with strong stability guarantees, feedback linearization control depends on parameters that are difcult to determine, requiring large amounts of experimental efort to be identifed accurately. On the other hands, neural networks require little efort regarding parameter identifcation, but pose signifcant hindrances to the development of solid stability analyses and/or to the processing capabilities of the control hardware. Here, we combine these techniques to control the positioning of a hydraulic actuator, without requiring extensive identifcation procedures nor losing stability guarantees for the closed-loop system, at reasonable computing demands. The efectiveness of the proposed method is verifed both theoretically and by means of experimental results

    Modelling and Model Predictive Control of Power-Split Hybrid Powertrains for Self-Driving Vehicles

    Get PDF
    Designing an autonomous vehicle system architecture requires extensive vehicle simulation prior to its implementation on a vehicle. Simulation provides a controlled environment to test the robustness of an autonomous architecture in a variety of driving scenarios. In any autonomous vehicle project, high-fidelity modelling of the vehicle platform is important for accurate simulations. For power-split hybrid electric vehicles, modelling the powertrain for autonomous applications is particularly difficult. The mapping from accelerator and brake pedal positions to torque at the wheels can be a function of many states. Due to this complex powertrain behavior, it is challenging to develop vehicle dynamics control algorithms for autonomous power-split hybrid vehicles. The 2015 Lincoln MKZ Hybrid is the selected vehicle platform of Autonomoose, the University of Waterloo’s autonomous vehicle project. Autonomoose required high-fidelity models of the vehicle’s power-split powertrain and braking systems, and a new longitudinal dynamics vehicle controller. In this thesis, a grey-box approach to modelling the Lincoln MKZ’s powertrain and braking systems is proposed. The modelling approach utilizes a combination of shallow neural networks and analytical methods to generate a mapping from accelerator and brake pedal positions to the torque at each wheel. Extensive road testing of the vehicle was performed to identify parameters of the powertrain and braking models. Experimental data was measured using a vehicle measurement system and CAN bus diagnostic signals. Model parameters were identified using optimization algorithms. The powertrain and braking models were combined with a vehicle dynamics model to form a complete high-fidelity model of the vehicle that was validated by open-loop simulation. The high-fidelity models of the powertrain and braking were simplified and combined with a longitudinal vehicle dynamics model to create a control-oriented model of the vehicle. The control-oriented model was used to design an instantaneously linearizing model predictive controller (MPC). The advantages of the MPC over a classical proportional-integral (PI) controller were proven in simulation, and a framework for implementing the MPC on the vehicle was developed. The MPC was implemented on the vehicle for track testing. Early track testing results of the MPC show superior performance to the existing PI that could improve with additional controller parameter tuning

    A Hybrid Controller for Stability Robustness, Performance Robustness, and Disturbance Attenuation of a Maglev System

    Get PDF
    Devices using magnetic levitation (maglev) offer the potential for friction-free, high-speed, and high-precision operation. Applications include frictionless bearings, high-speed ground transportation systems, wafer distribution systems, high-precision positioning stages, and vibration isolation tables. Maglev systems rely on feedback controllers to maintain stable levitation. Designing such feedback controllers is challenging since mathematically the electromagnetic force is nonlinear and there is no local minimum point on the levitating force function. As a result, maglev systems are open-loop unstable. Additionally, maglev systems experience disturbances and system parameter variations (uncertainties) during operation. A successful controller design for maglev system guarantees stability during levitating despite system nonlinearity, and desirable system performance despite disturbances and system uncertainties. This research investigates five controllers that can achieve stable levitation: PD, PID, lead, model reference control, and LQR/LQG. It proposes an acceleration feedback controller (AFC) design that attenuates disturbance on a maglev system with a PD controller. This research proposes three robust controllers, QFT, Hinf , and QFT/Hinf , followed by a novel AFC-enhanced QFT/Hinf (AQH) controller. The AQH controller allows system robustness and disturbance attenuation to be achieved in one controller design. The controller designs are validated through simulations and experiments. In this research, the disturbances are represented by force disturbances on the levitated object, and the system uncertainties are represented by parameter variations. The experiments are conducted on a 1 DOF maglev testbed, with system performance including stability, disturbance rejection, and robustness being evaluated. Experiments show that the tested controllers can maintain stable levitation. Disturbance attenuation is achieved with the AFC. The robust controllers, QFT, Hinf , QFT/ Hinf, and AQH successfully guarantee system robustness. In addition, AQH controller provides the maglev system with a disturbance attenuation feature. The contributions of this research are the design and implementation of the acceleration feedback controller, the QFT/ Hinf , and the AQH controller. Disturbance attenuation and system robustness are achieved with these controllers. The controllers developed in this research are applicable to similar maglev systems

    Whole-Body MPC for a Dynamically Stable Mobile Manipulator

    Full text link
    Autonomous mobile manipulation offers a dual advantage of mobility provided by a mobile platform and dexterity afforded by the manipulator. In this paper, we present a whole-body optimal control framework to jointly solve the problems of manipulation, balancing and interaction as one optimization problem for an inherently unstable robot. The optimization is performed using a Model Predictive Control (MPC) approach; the optimal control problem is transcribed at the end-effector space, treating the position and orientation tasks in the MPC planner, and skillfully planning for end-effector contact forces. The proposed formulation evaluates how the control decisions aimed at end-effector tracking and environment interaction will affect the balance of the system in the future. We showcase the advantages of the proposed MPC approach on the example of a ball-balancing robot with a robotic manipulator and validate our controller in hardware experiments for tasks such as end-effector pose tracking and door opening
    • …
    corecore