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Abstract 

Designing an autonomous vehicle system architecture requires extensive vehicle simulation prior to its 

implementation on a vehicle. Simulation provides a controlled environment to test the robustness of an 

autonomous architecture in a variety of driving scenarios. In any autonomous vehicle project, high-

fidelity modelling of the vehicle platform is important for accurate simulations. For power-split hybrid 

electric vehicles, modelling the powertrain for autonomous applications is particularly difficult. The 

mapping from accelerator and brake pedal positions to torque at the wheels can be a function of many 

states. Due to this complex powertrain behavior, it is challenging to develop vehicle dynamics control 

algorithms for autonomous power-split hybrid vehicles. 

The 2015 Lincoln MKZ Hybrid is the selected vehicle platform of Autonomoose, the University of 

Waterloo’s autonomous vehicle project. Autonomoose required high-fidelity models of the vehicle’s 

power-split powertrain and braking systems, and a new longitudinal dynamics vehicle controller. In 

this thesis, a grey-box approach to modelling the Lincoln MKZ’s powertrain and braking systems is 

proposed. The modelling approach utilizes a combination of shallow neural networks and analytical 

methods to generate a mapping from accelerator and brake pedal positions to the torque at each wheel. 

Extensive road testing of the vehicle was performed to identify parameters of the powertrain and 

braking models. Experimental data was measured using a vehicle measurement system and CAN bus 

diagnostic signals. Model parameters were identified using optimization algorithms. The powertrain 

and braking models were combined with a vehicle dynamics model to form a complete high-fidelity 

model of the vehicle that was validated by open-loop simulation. 

The high-fidelity models of the powertrain and braking were simplified and combined with a 

longitudinal vehicle dynamics model to create a control-oriented model of the vehicle. The control-

oriented model was used to design an instantaneously linearizing model predictive controller (MPC). 

The advantages of the MPC over a classical proportional-integral (PI) controller were proven in 

simulation, and a framework for implementing the MPC on the vehicle was developed. The MPC was 

implemented on the vehicle for track testing. Early track testing results of the MPC show superior 

performance to the existing PI that could improve with additional controller parameter tuning. 
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Chapter 1 

Introduction 

1.1     Overview of Self-Driving Vehicle Architecture 

For the purposes of this thesis a self-driving or autonomous car is defined as any car that meets the SAE 

standard of level 3 automation, conditional automation, or higher. This is defined as any vehicle where 

an autonomous system monitors the driving environment, and in at least some driving modes the system 

is capable of controlling all aspects of dynamic driving, subject to fallback on a human driver for certain 

interventions [1]. Development of self-driving cars typically involves the design of a complex system 

architecture composed of five fundamental subsystems: perception, localization, behavior and path 

planning, vehicle control, and system management [2] [3]. 

The perception subsystem uses available sensors, such as cameras or Light Detection and Ranging 

(LIDAR) sensors, to understand and map the vehicle’s surrounding environment. This process includes 

object tracking, road mapping, and interpretation of traffic signage. The localization subsystem uses 

Global Positioning System (GPS) and Inertial Measurement Unit (IMU) sensors, in addition to the 

perception sensors, to estimate the pose of the car within its environment. A common problem in 

autonomous vehicle development is the simultaneous localization and mapping of a vehicle within its 

environment [4]. To address this problem, perception and localization are frequently combined into a 

process that fuses data from both sets of sensors.  

The planning subsystem uses the vehicle’s estimated states and  information on the car’s environment 

to determine a desired path of travel for the vehicle. Planning includes both high-level route planning 

from the road map and local behavior planning at the vehicle level. The behavior planner outputs a 

local path plan over a known time horizon to the vehicle controller. The vehicle control subsystem 

attempts to track the local path plan by actuating vehicle control inputs, which include the acceleration 

command, braking command, and a steering command. System management is a supervisory 

subsystem that has a variety of functions including subsystem fault detection, sensor monitoring, data 

logging, and human machine interface [3]. 
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1.2     Autonomoose Project 

Autonomoose is a project within the University of Waterloo (UW) that is focused on the development 

of a fully autonomous car for driving on Canadian roads. The vehicle platform selected for the project 

is a 2015 Lincoln MKZ Hybrid (referred to as the “Moose”) that has been outfitted for drive-by-wire 

control by the company AutonomousStuff [5] in collaboration with Dataspeed Inc [6]. All subsequent 

work on hardware selection, software development, integration, and testing has been performed by a 

multidisciplinary team of UW faculty and students. In September of 2016 the Moose became the first 

vehicle platform to be approved for autonomous driving on Canadian roads. Figure 1 depicts a photo 

of the Moose during road testing. 

 

Figure 1.1: The Moose, UW's autonomous vehicle platform, depicted during road testing. 

The primary research interest of Autonomoose is solving self-driving vehicle development problems 

that are unique to the conditions of Canada. Unlike more common locales for autonomous vehicle road 

testing, such as Southern California, Canadian roadways are susceptible to snow, freezing rain, fog, 
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and other adverse driving conditions. The project also has research interests in autonomous vehicle fuel 

economy, robust system architecture design, and other topics. 

The vehicle modelling and controls team focuses on development of a high-fidelity model of the 

Moose and path-tracking controller development. The fully integrated vehicle model must include 

experimentally verified dynamic models of the suspension, steering, tires, and powertrain. The model 

will be used by the simulation team to test autonomous system architecture on a variety of autonomous 

driving scenarios prior to real vehicle implementation. The high-fidelity vehicle model will also be used 

to develop lower fidelity control-oriented models for vehicle path-tracking controller design. 

1.3     Objectives 

The content of this thesis focuses on modelling and controls applications for the Lincoln MKZ’s hybrid 

electric powertrain. The Autonomoose project requires an accurate mapping from the accelerator pedal 

position (𝐴𝑃𝑃) and brake pedal position (𝐵𝑃𝑃) to the torque applied at the vehicle’s wheels. 𝐴𝑃𝑃 and 

𝐵𝑃𝑃 are two of the control inputs, in addition to steering wheel angle, that are used to control the 

Moose’s vehicle dynamics. Due to the complexity of the vehicle’s power-split powertrain system, the 

𝐴𝑃𝑃 mapping must include modelling of the powertrain control system as well as the drivetrain 

dynamics. The Autonomoose Project has no association with the Ford Motor Company©, so a priori 

knowledge of the system is limited. A major contribution of this thesis is the development of a suitable 

method of modelling the complete powertrain system. Identification of model parameters requires 

extensive experimental vehicle testing and data acquisition. 

Based on performance limitations of the current vehicle dynamics control system for the Lincoln MKZ, 

the Autonomoose project requires the development of a better longitudinal velocity tracking controller. 

The second main objective of this thesis work is to utilize the identified APP and BPP mapping models 

and other vehicle dynamics parameters to develop a longitudinal dynamics controller for the Moose. 

The controller must initially be tested in simulation on a high-fidelity model of the vehicle before being 

implemented on the actual vehicle. Completion of this objective solves an important controls problem 

for the Autonomoose project, but in addition it will create a procedural framework for development and 

implementation of future model-based vehicle dynamics controllers on the Moose. 
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1.4     Thesis Organization 

Chapter 1 of this thesis begins with a brief description of self-driving vehicle architecture. UW’s 

autonomous vehicle project, Autonomoose, is introduced, and the goals of the project are discussed. 

The objectives of the work contained within this thesis are then explained. 

Chapter 2 discusses some required background information for the reader’s consideration. Shallow 

feedforward neural networks are introduced. Two types of neural network that are relevant to this work 

are explained in detail. The concept of model predictive control is introduced, and the fundamentals of 

linear model predictive control are explained. Two literature reviews are also discussed. The first is a 

review of current methods for modelling power-split hybrid powertrains such as the one used in the 

Lincoln MKZ. The second review is of applications and methods for longitudinal dynamics control of 

vehicles explored in literature. 

Chapter 3 presents the proposed method of modelling the powertrain and brakes of the Lincoln MKZ. 

A grey-box modelling approach that separates the power-split powertrain into three subsystems is 

introduced. The modelling methods used in each powertrain subsystem are explained in detail. The 

model of the front and rear brakes is introduced, and a method of integrating it with the powertrain 

model is proposed. The interface of the brake and powertrain models with a vehicle dynamics model 

to form a complete high-fidelity vehicle model is briefly explained. 

Chapter 4 discusses the experimentation process used to gather data for model parameter 

identification. Details of two vehicle testing apparatus, the A&D Technology Vehicle Measurement 

System and the Vector Canalyzer Tool, are provided. An outline of vehicle tests used for parameter 

identification was provided. 

Chapter 5 discusses the methods and results of parameter identification for the models presented in 

chapter 3. Neural network training algorithms were used to identify the weighting and offset parameters 

of neural network subsystem models. The physical parameters of the drivetrain were identified by 

multiple methods that are described in detail. 
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Chapter 6 presents the design of an instantaneously linearizing model predictive controller for 

longitudinal velocity tracking. The powertrain and braking models were adapted to a control-oriented 

model of the longitudinal vehicle dynamics. The velocity tracking controller was tested in multiple 

driving simulation scenarios against a benchmark PID controller. Simulation results and the advantages 

of the model predictive controller over the classical PID controller are discussed. 

Chapter 7 outlines the process of how the model predictive controller was implemented on the Moose 

by integrating it with the existing autonomous stack. The process required the controller to be converted 

to a Robot Operating System (ROS) node. The procedure for implementing and testing the control is 

explained, and test results are discussed in detail. 

Chapter 8 presents the conclusions of this thesis, and its major contributions to the Autonomoose 

project are summarized. Recommendations for future work are also discussed. These include possible 

improvements to the model’s level of fidelity and some proposed methods for improving or extending 

the vehicle dynamics controller. 
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Chapter 2 

Background and Literature Review 

2.1     Feedforward Neural Networks 

Artificial neural networks (NNs) were originally conceived as a means of modelling the input-output 

functionality of complex functions and systems. The structure of NNs was inspired by the behavior of 

the human brain.  Much of the brain is composed of a system of neurons that are connected in a web-

like structure by synapses. Decision-making within the brain is performed by the transference of 

electrical signals along these synapses. When a neuron receives a signal from a connected synapse, it 

will perform a decision-making process before transmitting an electrical signal along different synapses 

to other neurons. 

Shallow feedforward NNs were some of the first artificial NNs to be devised. A fixed number of 

input signals are used by the network to calculate a fixed number of output signals. The synapses are 

modelled as fixed gain terms applied to individual signals, and the neurons are modelled with known 

nonlinear functions, which are called activation functions. As opposed to the complex web of neurons 

in the brain, shallow feedforward NNs typically include only one hidden layer with a preselected 

number of neurons and a unidirectional flow of information. One of the most common forms of NN is 

the double layer perceptron. An example layout of a three input, four hidden neuron, two output double 

layer perceptron is depicted in Figure 2.1, but the procedure may be generalized to a network of  𝑛𝑥 

inputs, 𝑛𝑛 hidden neurons, and 𝑛𝑦 outputs. 
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Figure 2.1: A generic double layer perceptron NN with three inputs, four hidden neurons, and 

two outputs. 

As depicted in Figure 2.1, at the input to each hidden neuron, 𝑗, the values of each input signal, 𝑥𝑖, 

are each scaled by an input gain term 𝑤𝑗,𝑖
1 . The scaled input terms and a constant offset term 𝑏𝑗

1 are 

added together, and a nonlinear function 𝑓𝑗 is applied to calculate the neuron’s output. One of the most 

common choices for the nonlinear function is a sigmoid. The hidden neuron passes its output to the 

linear layer of the NN. At each linear neuron, 𝑘, the output of each hidden layer neuron, 𝑗, is scaled by 

an output gain term 𝑤𝑘,𝑗
2 . The scaled hidden neuron outputs and a constant term 𝑏𝑘

2 are added together 

to calculate each NN output 𝑦𝑘. The generalized equation of a double layer perceptron NN is 

represented by Equation 1.1: 

𝑌 = 𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2    (1.1) 
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where 𝑋 is a column vector of 𝑛𝑥 inputs, 𝑌 is a column vector 𝑛𝑦 outputs, 𝑊1 is a matrix of 𝑛𝑛 × 𝑛𝑥 

parameter terms, 𝑊2 is a matrix of 𝑛𝑦 × 𝑛𝑛 parameter terms, 𝐵1 is a column vector of 𝑛𝑛 parameter 

terms, and 𝐵2 is a column vector of 𝑛𝑦 parameter terms. The function 𝑆𝑖𝑔 is defined by Equation 1.2: 

𝑆𝑖𝑔(𝑈) =

[
 
 
 
 
 

1

1+𝑒𝑢1

1

1+𝑒𝑢2

⋮
1

1+𝑒𝑢𝑛]
 
 
 
 
 

     (1.2) 

Early research in the field of NNs mathematically proved that double layer feedforward NN, such as 

the double layer perceptron, are universal approximators of nonlinear functions [7]. 

A second type of feedforward NN that is pertinent to the content of this thesis is a double layer 

classifier NN. These types of NNs attempt to classify the sets of inputs into target categories. For 

example parameters such as weight, number of seats, and engine size could be used to guess the class 

of car (sedan, coup, etc.). An example layout of a three input, four hidden neuron, two output double 

layer classifier is depicted in Figure 2.2, but the procedure may be generalized to a system of  𝑛𝑥 inputs, 

𝑛𝑛 hidden neurons and 𝑛𝑦 outputs. 
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Figure 2.2: A generic softmax output double layer classifier NN with three inputs, four hidden 

neurons, and two outputs. 

As depicted in Figure 2.2, The classifier NN has a similar form to the double layer perceptron. The 

difference is that the linear layer is replaced with a classifier layer. Each neuron of the classifier layer 

uses a softmax function that calculates the probability of a corresponding classification being true. The 

output with the highest value corresponds to the classification that the network identifies as most likely 

to be the true classification. The number of outputs 𝑛𝑦 must be equal to the number of possible 

classifications. The generalized equation of a softmax classification NN is represented by Equation 1.3: 

𝑌 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2)   (1.3) 

where 𝑋 is a column vector of 𝑛𝑥 inputs, 𝑌 is a column vector 𝑛𝑦 outputs, 𝑊1 is a matrix of 𝑛𝑛 × 𝑛𝑥 

parameter terms, 𝑊2 is a matrix of 𝑛𝑦 × 𝑛𝑛 parameter terms, 𝐵1 is a column vector of 𝑛𝑛 parameter 
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terms, and 𝐵2 is a column vector of 𝑛𝑦 parameter terms.  the function 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 is defined by Equation 

1.4: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑈) =

[
 
 
 
 
 
 
 

𝑒𝑢1   

∑ 𝑒𝑢𝑛
𝑛          

𝑖=1           

𝑒𝑢2   

∑ 𝑒𝑢𝑛
𝑛          

𝑖=1           

⋮
𝑒𝑢𝑛   

∑ 𝑒𝑢𝑛
𝑛          

𝑖=1           ]
 
 
 
 
 
 
 

     (1.4) 

It is clear from Equation 1.4 that the sum of the output terms of a softmax function is equal to 1, which 

corresponds to the full range of classification probabilities. 

The weighting parameters, 𝑊1 and 𝑊2, and the offset parameters, 𝐵1 and 𝐵2, of shallow 

feedforward NNs must be identified from a training data set. Experimental measurements of inputs and 

their corresponding outputs must be available, and the accuracy of the training is dependent on the size 

of the data set. 𝑛𝑦 must be suitably selected to model the behavior of the subsystem without overfitting 

the experimental data. Typically, network training is performed using a backpropagation-based 

algorithm. Backpropagation determines the gradient of the tunable parameters with respect to a 

predefined error function, and it is combined with a gradient-based optimizer, such as damped least-

squares, to determine a local minima of the error function [8]. 

2.2     Model Predictive Control 

Model predictive control (MPC) is an advanced controls method that is typically used for complex 

dynamical systems. MPC uses a discretized control-oriented model of plant dynamics that predicts how 

changes to the control input will affect the outputs of the system. The controller calculates the control 

action by solving an online optimization problem at each time step [9]. Figure 2.3 depicts a visualization 

of an MPC scheme for a single-input single-output (SISO) plant. 
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Figure 2.3: MPC control scheme for a SISO system [10]. 

As depicted in Figure 2.3, at each time step, 𝑘, a desired reference trajectory for the plant output is 

provided over a finite time horizon of 𝑝 time steps. The optimization algorithm determines an optimal 

sequence of control inputs, 𝑢, for the predicted plant output to track the reference trajectory. At each 

time step, 𝑘, only the first control input is applied. The optimization routine is repeated at each time 

step. 

The primary means of tuning an MPC controller is in the selection of function to be optimized, 

referred to as the objective function. The objective function may include terms for tracking error of the 

plant output, magnitude of control action applied, rate of change of control action, and other terms 

related to plant states. Equation 1.5 defines a generic objective function for a multi-input multi-output 

system: 

𝐽 = ∑
𝑖=𝑘+1

𝑘+𝑝

𝐹(𝑒1(𝑖), 𝑒2(𝑖),… 𝑒𝑛(𝑖)) + ∑
𝑗=𝑘

𝑘+𝑝−1

𝐺(𝑢1(𝑗), Δ𝑢1(𝑗), 𝑢2(𝑗), Δ𝑢2(𝑗),…𝑢𝑚(𝑗), Δ𝑢𝑚(𝑗))   (1.5) 
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where 𝑒 is the error between reference state, 𝑥𝑟𝑒𝑓, and actual state, 𝑥. Δ𝑢 represents the change in 𝑢 

between two time steps. Typically the objective function is defined such that its convexity is guaranteed 

over the feasible region of the system. Constraints can also be applied to the controller such that the 

boundaries of terms 𝑢, Δ𝑢, or 𝑥 are limited to a given solution space. The ability to handle constraints 

is an important advantage of MPCs because real world dynamics often impose soft or hard constraints 

on performance. For example, there is a maximum torque that any engine is capable of outputting, and 

a controller should not demand a torque that is greater than this value. 

The primary problem for implementation of an MPC is ensuring that the algorithm can be computed 

at a faster than real-time speed on control hardware. If the computation of the control input is slower 

than real-time, then the controller will not be able to keep up with real system dynamics. A common 

method of attaining real-time performance is linearization of the control-oriented model. If the control-

oriented model is approximated as a linear system, the objective function is convex, and the constraints 

are linear, then the optimization problem may be solved by a quadratic programming (QP) solver 

algorithm [9]. The ability to implement the MPC optimization as a QP problem does not guarantee real-

time implementation, but generally reduces computation time significantly compared to nonlinear 

optimization problems. 

2.3     Power-Split Hybrid Powertrain Modelling 

The introduction of hybrid electric vehicles (HEVs) to the automobile industry has been a significant 

part of a larger push for ‘green’ transportation options. HEVs combine the advantages of internal 

combustion vehicles and electric vehicles by integrating both power sources into a single powertrain 

system. One of the most common forms of HEV available for purchase in the modern consumer vehicle 

market is the power-split HEV. The Toyota Prius, Ford Focus Hybrid, and Lincoln MKZ Hybrid are 

all examples of power-split HEVs. The powertrain of power-split HEVs are designed such that they 

can switch powertrain operating modes to behave similarly to a pure electric vehicle, a series hybrid, 

or a parallel hybrid. 

The versatility of power-split powertrains makes them significantly more complex than the 

powertrains of internal combustion vehicles, electric vehicles, or series and parallel HEVs. As a result, 
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modelling the dynamics of power-split powertrains for the purposes of vehicle dynamics control or 

energy management control can be challenging. Previous work in the literature has modelled power-

split powertrains primarily using analytical models of the engine, electric motors, battery, and 

drivetrain. Analytical modelling has proved to be a robust method for simulating power-split 

powertrains, but such approaches have all required significant a priori knowledge of the powertrain 

control architecture of the vehicle [11] [12]. In [13] Syed et al. derives an analytical approach to 

modelling the dynamics of a Ford Escape Hybrid that separately models the power sources, driveline, 

and braking. Some transient behavior is captured by empirically determined transfer functions. This 

method generated good simulation results, but the model treated desired driveline torque from each 

power source and braking torque at each disc brake as inputs to the system. Ford provided Syed et al. 

with a model of the vehicle’s powertrain control module that computes the required 𝐴𝑃𝑃 and 𝐵𝑃𝑃 

commands from desired torques [13]. Liu et al. proposed an analytical modelling approach for a Toyota 

Prius in [14], but bypassed the problem of modelling the vehicle’s powertrain control module by 

replacing it with a custom rule-based controller. Liu extends this modelling approach for optimal 

control applications in [15]. No analytical modelling approach in literature has included the powertrain 

control module as a part of its system identification. Other approaches to modelling of power-split 

powertrains have relied heavily on experimentally determined maps of individual component 

performance. In [16] the authors describe a semi-empirical modelling approach for a Toyota Prius that 

utilized efficiency maps of the engine, motors, and the battery. Empirical approaches result in accurate 

models of system performance, but they require powertrain disassembly and extensive testing of 

individual components.  

2.4     Longitudinal Vehicle Dynamics Control 

Designing a suitable longitudinal vehicle dynamics control algorithm is a common requirement for both 

autonomous and semi-autonomous vehicles. Many modern production vehicles apply a longitudinal 

dynamics controller for adaptive cruise control (ACC) systems. ACC systems on production cars 

typically utilize radar, LIDAR, or cameras to measure the distance and relative velocity to the vehicle 

in front of the car during highway driving. Depending on the measured distance and velocity, an 

acceleration or braking command is used to maintain a minimum following distance. Development of 
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longitudinal vehicle dynamics control for autonomous driving is a more generalized form of the ACC 

problem where for any given time a desired velocity trajectory over a future time horizon is  prescribed 

by the autonomous stack’s local planner. Additional controller design considerations include the effects 

of vehicle steer angle on vehicle dynamics and the feasibility of the desired trajectory.   

In addition to classical methods, numerous controller designs have been explored in literature for 

both ACC and autonomous longitudinal dynamics control. Ganji et al. proposes an ACC algorithm for 

a hybrid vehicle based on sliding mode control [17]. Moon et al. proposed a rule-based system that 

swaps between cruise control modes depending on driving situations [18]. Depending on whether the 

vehicle is in a normal driving or collision avoidance scenario, the controller will switch between linear 

quadratic control and a nonlinear method, respectively. Although many successful methods of advanced 

controls for both ACC and autonomous vehicle control have been developed, MPC has become the 

most frequently investigated method in literature. Both linear and nonlinear MPC has proven to be a 

particularly promising method for longitudinal vehicle control for three primary reasons: the desired 

trajectory of vehicle speed over a finite time horizon is usually known, the fundamental equations 

governing longitudinal vehicle dynamics are well understood, and there is usually an established set of 

constraints on control inputs and system states.  

Controllers designed for traditional internal combustion (IC) engine vehicles or pure electric vehicles 

have typically assumed that a simple mapping from accelerator pedal position to wheel torque exists. 

Batra et al. proposed a non-linear MPC for anti-jerk cruise control of a Toyota Rav4 EV [19]. The paper 

primarily addresses the issue of half-shaft oscillations in electric vehicles while assuming a linear 

mapping from an input desired torque to torque at the wheels. In [20] Corona and Schumer propose a 

piecewise affine system MPC approach for ACC in an IC engine Smart car. The relationship between 

engine throttle and engine torque is modelled by a simple mapping for each gear. Li et al. presented an 

ACC design for a heavy-duty truck that highlighted the benefits of MPC by managing multiple 

objectives: ensuring that tracking error of a reference vehicle following distance converges to zero, 

ensuring ride comfort by limiting vehicle acceleration and jerk, and preservation of vehicle fuel 

economy [21]. In [22] the controller was implemented and experimentally validated on a test vehicle. 

The design employs an approach that separates the controller into two subsystems. A high-level linear 
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MPC prescribes a desired vehicle acceleration while a low-level controller handles the powertrain 

nonlinearities to select suitable values for throttle and brake inputs. It is straightforward to implement 

this approach on ICE or electric powertrain configurations, but handling of the powertrain dynamics is 

a more complex problem for power-split hybrid vehicles. 

Most publications on designing longitudinal dynamics controllers for power-split hybrid vehicles 

have focused on optimizing fuel efficiency by designing custom powertrain control modules. Vajedi 

and Azad proposed a nonlinear MPC approach to design an ecological ACC (eco-ACC) for a Toyota 

Prius [23]. The eco-ACC utilizes an onboard map of upcoming road path and slope information to 

optimize demanded wheel torque over the prediction horizon, and the demanded torque is inputted 

directly to a custom-designed energy management system. Borhan et al. proposes a linearizing MPC 

strategy for tracking reference velocity and minimizing fuel consumption by controlling the speed and 

output torque of the engine [24]. In all previous literature, an accurate model of the hybrid powertrain 

control module is either provided by the OEM or is designed by the authors specifically for the relevant 

application. No methods for retrofitting a longitudinal dynamics controller to a power-split hybrid 

vehicle’s existing powertrain control system have been explored. 
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Chapter 3 

Power-Split Hybrid Powertrain and Brake Modelling 

3.1     Lincoln MKZ Powertrain Architecture 

The Lincoln MKZ is equipped with the Ford Motor Company© HF-35 power-split powertrain system 

that is controlled by a complex and proprietary hybrid energy management system. Like other power-

split hybrids, the system includes an IC engine and two sources of electric power conversion, the 

traction motor and the generator. For modelling purposes, the powertrain system is divided into three 

primary subsystems. Certain elements of the drivetrain were identified using MATLAB/Simulink 

toolboxes, but the complete powertrain model was assembled in the acausal modelling environment, 

MapleSim. Figure 3.1 depicts a diagram of the powertrain control architecture. 

 

Figure 3.1: The Lincoln MKZ Hybrid powertrain control architecture. 

The diagram in Figure 3.1 accounts for the effects of only one input to the system, 𝐴𝑃𝑃, on powertrain 

dynamics. As an aside, the powertrain system also responds to the gear selection (Park, Reverse, 

Neutral, Drive, or Low) and the brake pedal position (𝐵𝑃𝑃) input. For the application discussed in this 

thesis, the only relevant selection of gear is Drive. For reasons that are discussed later in this chapter, 

the effects of 𝐵𝑃𝑃 on powertrain dynamics could not be modelled. A separate braking model that is 

decoupled from the powertrain dynamics is discussed in Section 3.3. 
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The supervisory torque controller maps 𝐴𝑃𝑃, expressed as a range of 0 to 100%, to a desired total 

output torque at the wheels, 𝑇𝑑𝑠𝑑. Since total available torque typically depends on the speed of the 

vehicle, 𝑣𝑥, it is also an input to the subsystem. Ford did not provide a model of the 𝑇𝑑𝑠𝑑 mapping. 

The torque control module (TCM) and power source dynamics compose the second subsystem. The 

TCM receives 𝑇𝑑𝑠𝑑 from the supervisory torque controller and takes measurements of battery state of 

charge (SOC), and rotational speeds of the traction motor, 𝜔𝑚𝑜𝑡, and engine, 𝜔𝑒𝑛𝑔. The TCM then uses 

a proprietary Ford decision-making algorithm to determine desired torques for each of the three power 

sources. The desired torques, 𝜏𝑒𝑛𝑔𝑑𝑠𝑑
, 𝜏𝑚𝑜𝑡𝑑𝑠𝑑

, and 𝜏𝑔𝑒𝑛𝑑𝑠𝑑
, are inputted to their local control modules, 

and unknown internal dynamics determine the actual torques, 𝜏𝑒𝑛𝑔, 𝜏𝑚𝑜𝑡, and 𝜏𝑔𝑒𝑛. 

The final subsystem is composed of the drivetrain and its interface with vehicle dynamics model. 

The output shafts of the engine, motor, and generator transfer torques to the drivetrain. Torque flows 

through the drivetrain and is outputted as torques at the front right wheel, 𝜏𝐹𝑅𝑤ℎ, and front left wheel, 

𝜏𝐹𝐿𝑤ℎ. At the start of this project the layout of the drivetrain was known, but none of the kinematic or 

dynamic parameters were provided by Ford. 

3.2     Powertrain Subsystem Modelling 

As discussed in Section 3.1, at the beginning of this project there was limited a priori knowledge of the 

Lincoln MKZ’s powertrain system. Many of the components, such as the supervisory controller and 

the TCM, contained a completely opaque control logic. To address these components of the powertrain, 

a grey-box modelling approach was proposed. Portions of the system where only inputs and outputs 

can be measured were modelled using NNs, while portions of the system with well-understood 

components were modelled using analytical approaches. 

3.2.1     Supervisory Torque Controller 

The Supervisory Torque Controller determines 𝑇𝑑𝑠𝑑 as a function of 𝐴𝑃𝑃 and 𝑣𝑥. Observation of 

experimental data for 𝑇𝑑𝑠𝑑 also indicated that the supervisory controller implemented some form of 

transfer function to smooth the controller’s performance. This observation is supported by a 2009 patent 
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owned by Ford outlining a proposed supervisory controller for implementation on future vehicles [25]. 

The selected approach for modelling this controller is a double layer perceptron NN with time-delayed 

feedback of the output parameter, 𝑇𝑑𝑠𝑑, at a time step of 0.05 seconds. The time step was selected based 

on the available sample rate of experimental data. At any given time step, 𝑘, 𝑇𝑑𝑠𝑑𝑘
 is defined as a 

function of 𝐴𝑃𝑃, 𝑣𝑥, and 𝑇𝑑𝑠𝑑𝑘−1
.  A modified form of Equation 1.1, written as Equation 3.1, defines 

the supervisory controller model: 

𝑇𝑑𝑠𝑑𝑘
= 𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2    (3.1) 

where 𝑋 is a 3 × 1 column vector of the inputs 𝐴𝑃𝑃, 𝑣𝑥, and 𝑇𝑑𝑠𝑑𝑘−1
. Saturation limits on the range of 

possible 𝑇𝑑𝑠𝑑 were applied to the output of the NN to ensure its behavior is always within the physical 

limits of the real supervisory controller. Section 5.2.1 describes details of parameter identification for 

the supervisor controller. 

3.2.2     TCM and Power Source Dynamics 

For the purposes of the model, the TCM, traction motor dynamics, generator dynamics, and engine 

dynamics were lumped into a single subsystem. This choice is due to the interdependent behavior of 

each of these portions of the control system. The high voltage battery distributes power to the generator 

and traction motor;  however, the high voltage battery also regulates charge of the vehicle’s low voltage 

battery, which in turn powers onboard electronics, air conditioning, and other vehicle systems. Because 

of these factors, SOC of the high voltage battery depends on several factors that are outside the scope 

of this work. Battery SOC is hence treated as a random and measurable disturbance variable for the 

TCM and power source dynamics subsystem. 

The TCM of the power-split hybrid powertrain is more complex than traditional internal combustion 

or fully electric vehicles because there are multiple modes of operation to consider. Each operating 

mode adjusts how desired torque distributes to the power sources and alters the kinematic constraints 

of the drivetrain. In the case of the Lincoln MKZ’s power-split powertrain, discrete modes of operation 

were identified by observation of experimental data, referencing the model of a previous generation of 
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the powertrain described in [13], and referencing Ford’s hybrid electric control software 

documentation. The following modes were identified for forward driving: 

1. EV mode: This mode engages when torque demand is sufficiently low and battery SOC is 

sufficiently high for the engine to remain off. In this mode, the engine shaft is locked in place. 

2. Engine cranking: The TCM has determined that power output from the engine is required, and 

the engine shaft is unlocked. Positive torque is produced by the generator to accelerate the 

engine up to its ignition speed. 

3. Power-split mode: At high speeds or high torque demands, the engine is running and being 

used to provide torque to the driveshaft. Depending on overall desired torque, the generator 

and traction motor may be used to either charge the high voltage battery or transmit additional 

torque to the driveshaft. Two sub-modes of power-split mode exist. 

a. Positive-split: If the high voltage battery is below a threshold SOC, then torque from 

the engine splits between the path to the driveshaft and the path through the generator 

to charge the high voltage battery. 

b. Negative-split: This mode is not preferred but is necessary when the high voltage 

battery is fully charged and the vehicle speed is high. The generator transmits torque 

through the planetary gear train to drive the vehicle. Due to the kinematics of the 

planetary gear set, torque from the generator also regulates the engine speed to keep it 

in the high efficiency operating range. Negative-split mode establishes a power 

circulation path where some of the power produced by the generator returns to the 

high-voltage battery through the traction motor (negative motor torque value). Power 

circulation results in negative-split mode being a less efficient mode of operation than 

positive-split. 

Additional modes of operation exist for when the vehicle is parked or driving in reverse, but 

modelling them is outside the scope of this thesis. Figure 3.2 depicts a sample window of experimental 

data where each operating mode is observed. 
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Figure 3.2: Snapshot of experimental data showing the power-split powertrain switching 

between operating modes. 

EV, engine cranking, and power-split modes were each denoted by indices 1, 2, and 3, respectively 

(positive and negative-split were not differentiated by mode). Each experimental data sample was 

categorized into one of the operating modes based on measured engine speed, generator torque, and 

operating mode of the previous time step. 

The modelled switching behavior of the TCM uses a system of two double layer classifier networks. 

Both classifiers are feed-forward networks with a hidden sigmoid layer and a softmax output layer, as 

described in Section 3.1. The first classifier network predicts the conditions for the TCM to begin 

starting the engine (switch from EV mode to engine cranking mode). The network predicts if the mode 
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will switch to engine cranking mode based on the following inputs: 𝑣𝑥, 𝑆𝑂𝐶, and 𝑇𝑑𝑠𝑑. A modified 

form of Equation 1.3, written as Equation 3.2, defines the engine-start mode selection model: 

𝑌𝑒𝑛𝑔𝑜𝑓𝑓 = 𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2   (3.2) 

where 𝑋 is a 3 × 1 column vector of the inputs 𝑣𝑥, 𝑆𝑂𝐶 and 𝑇𝑑𝑠𝑑𝑘
, and 𝑌𝑒𝑛𝑔𝑜𝑓𝑓 is a 2 × 1 column 

vector of the probabilities that it is currently EV mode, 𝑦1, or engine cranking mode, 𝑦2. If 𝑦2 > 𝑦1 the 

TCM commands that the operating mode switches to engine cranking. 

The second classifier network determines the current TCM mode if the engine shaft is currently 

rotating. The network predicts if the TCM would select engine cranking mode, power-split mode, or 

EV mode (meaning the engine shaft begins braking) based on the following inputs: 𝑣𝑥, 𝑆𝑂𝐶, 𝑇𝑑𝑠𝑑, 

𝜔𝑒𝑛𝑔, and the operating mode of the TCM at the previous sample time, 𝑘 − 1. A modified form of 

Equation 1.3, written as Equation 3.3, defines the engine-on mode selection model: 

𝑌𝑒𝑛𝑔𝑜𝑛 = 𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2    (3.3) 

where 𝑋 is a 5 × 1 column vector of the inputs 𝑣𝑥, 𝑆𝑂𝐶, 𝑇𝑑𝑠𝑑𝑘
, 𝜔𝑒𝑛𝑔, and 𝑚𝑜𝑑𝑒𝑘−1, and 𝑌𝑒𝑛𝑔𝑜𝑛 is a 

3 × 1 column vector of the probabilities that it is currently EV mode, 𝑦1, engine cranking mode, 𝑦2, or 

power-split mode, 𝑦3. The largest index value of 𝑌 is the predicted operating mode. In addition to the 

two mode selection NNs, constraints on mode switching behavior as a function of current states were 

applied. The constraints were based on observations of experimental powertrain performance and 

available Ford documentation, and are used to prevent the model from erroneously entering an 

impossible set of system states. The additional mode switching constraints are listed below: 

1. If 𝑇𝑑𝑠𝑑 < 0 the powertrain will never switch from EV mode to engine cranking mode. 

2. If the powertrain is in power-split mode and the engine speed drops below a threshold of 

operating efficiency, 𝜔𝑏𝑟𝑎𝑘𝑒, the powertrain switches to EV mode to conserve fuel. 

3. If the powertrain is in engine cranking mode and the engine speed rises above the threshold 

ignition speed, 𝜔𝑖𝑔𝑛𝑖𝑡𝑒,  then the powertrain switches to power-split mode. 
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4. Once engine cranking mode has initiated, the powertrain cannot switch directly back into 

EV mode without reaching engine ignition. 

Once the TCM has selected the powertrain operating mode, desired torques 𝜏𝑒𝑛𝑔𝑑𝑠𝑑
, 𝜏𝑚𝑜𝑡𝑑𝑠𝑑

, and 

𝜏𝑔𝑒𝑛𝑑𝑠𝑑
 are selected. The low-level dynamics of each power source determines their actual torque 

outputs 𝜏𝑒𝑛𝑔, 𝜏𝑔𝑒𝑛, and 𝜏𝑚𝑜𝑡, respectively; however, limitations of the data acquisition sample rate 

prevented desired and actual torque signals from being measured at a sample rate greater than 10Hz. 

The sample rate was insufficient to determine a transient response between desired torque and actual 

torques, so the low-level dynamics of each power source were neglected. Instead the mapping from 

𝑇𝑑𝑠𝑑 to 𝜏𝑒𝑛𝑔, 𝜏𝑔𝑒𝑛, and 𝜏𝑚𝑜𝑡 was modeled using an individual double layer perceptron NN. Determining 

a method of modelling power source transients will be a part of future work. The inputs to the NN are: 

𝑇𝑑𝑠𝑑, 𝜔𝑒𝑛𝑔, 𝜔𝑚𝑜𝑡, 𝑚𝑜𝑑𝑒, and 𝑆𝑂𝐶. Based on these inputs, the network assumes quasi-static behavior 

of each power source, so the model does not include transient behavior. A modified form of Equation 

1.1, written as Equation 3.4, defines the torque selection model: 

{𝜏𝑒𝑛𝑔; 𝜏𝑚𝑜𝑡; 𝜏𝑔𝑒𝑛} = 𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2   (3.4) 

where 𝑋 is a 5 × 1 column vector of the inputs 𝑇𝑑𝑠𝑑𝑘
, 𝜔𝑒𝑛𝑔, 𝜔𝑚𝑜𝑡, 𝑚𝑜𝑑𝑒, and 𝑆𝑂𝐶. Saturation limits 

on the ranges of 𝜏𝑒𝑛𝑔, 𝜏𝑔𝑒𝑛, and 𝜏𝑚𝑜𝑡 were applied to the output of the NN to ensure its behavior is 

always within the physical limits of the real powertrain system. Section 5.2.1 describes details of 

parameter identification for the TCM.  

3.2.3     Drivetrain Dynamics 

Unlike the other two subsystems, sufficient measurable signals were available to identify a physics-

based model of the drivetrain. The drivetrain configuration of the Lincoln MKZ is depicted in Figure 

3.3. 
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Figure 3.3: Diagram of the Lincoln MKZ Hybrid's power-split drivetrain configuration. 

Arrows indicate how positive directions of rotation, ω, and torque, τ, are defined. As depicted in Figure 

3.3, the system includes a planetary gear set that connects the output shafts of all three power sources. 

The generator drives the sun gear of the planetary while the engine drives the planet carrier. The 

planetary gear ratio is defined by Equation 3.5: 

𝜌 =
𝑑𝑠𝑢𝑛

𝑑𝑟𝑖𝑛𝑔
      (3.5) 

where 𝑑𝑠𝑢𝑛 and 𝑑𝑟𝑖𝑛𝑔 are the pitch diameters of the sun and ring gears, respectively. The ring gear 

connects to the output shaft of the traction motor through fixed gear ratios 𝑅1 and 𝑅2. Similarly, both 

the ring gear and traction motor shaft connect through the intermediary shaft and final reduction ratio 

to the driveshaft. The driveshaft connects to the right and left halfshafts through an open differential. 

For the purposes of longitudinal dynamics modelling and control, it is useful to replace individual wheel 

speeds and torques with a virtual speed and torque at the driveshaft. In this model the drivetrain 

reduction that exists in the differential has been lumped with the final drivetrain reduction to form a 
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single ratio, 𝑅𝑓, and the wheel torques are assumed to always be equal. On the real drivetrain system 

compliance of the halfshafts and high frequency tire dynamics will create small differences in wheel 

torques, but for simplicity these effects are neglected. The simplified kinematic and dynamic equations 

relating the halfshafts to the driveshaft are shown in Equations 3.6, 3.7, and 3.8: 

𝜏𝑑𝑠 = 𝜏𝐹𝑅𝑤ℎ + 𝜏𝐹𝐿𝑤ℎ      (3.6) 

𝜏𝐹𝑅𝑤ℎ = 𝜏𝐹𝐿𝑤ℎ      (3.7) 

𝜔𝑑𝑠 =
𝜔𝐹𝑅𝑤ℎ+𝜔𝐹𝐿𝑤ℎ

2
      (3.8) 

where 𝜏𝑑𝑠 and 𝜔𝑑𝑠 are the torque and speed of the driveshaft, respectively. 

After lumping the components of the right and left wheels into a single driveshaft component, the 

layout of  Figure 3.3 shows that the model has only two degrees of freedom (DOF), which are defined 

as 𝜔𝑒𝑛𝑔 and 𝜔𝑚𝑜𝑡. The kinematics and dynamics of the drivetrain are dependent on the powertrain 

operating mode. When operating in EV mode the engine shaft locks, forcing 𝜔𝑒𝑛𝑔 to zero, and the 

system reduces to have one DOF. The kinematics of the drivetrain in EV mode are defined by Equations 

3.9 and 3.10a: 

𝜔𝑑𝑠 =
𝜔𝑚𝑜𝑡

𝑅2𝑅𝑓
      (3.9) 

𝜔𝑔𝑒𝑛 = −
𝑅1

𝑅2𝜌
𝜔𝑚𝑜𝑡     (3.10a) 

The engine shaft is unlocked when operating in engine cranking or power-split modes. The additional 

DOF added by the engine shaft changes the kinematics and dynamics of the drivetrain system. For these 

operating modes Equation 3.10a is replaced by 3.10b: 

𝜔𝑔𝑒𝑛 =
1+𝜌

𝜌
𝜔𝑒𝑛𝑔 −

𝑅1

𝑅2𝜌
𝜔𝑚𝑜𝑡     (3.10b) 
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The gear train efficiency losses are dependent upon direction of torque transmission at each gear 

meshing, but efficiencies were assumed constant and equal in each direction of torque transmission. 

This model behavior is well suited for the acausal modelling environment of MapleSim. For forward 

velocity and acceleration in EV mode, the dynamics are defined by Equations 3.11, 3.12, and 3.13a: 

𝐼𝑔𝑒𝑛�̇�𝑔𝑒𝑛 = 𝜏𝑔𝑒𝑛 − 𝜏𝑠      (3.11) 

𝐼𝑚𝑜𝑡�̇�𝑚𝑜𝑡 = 𝜏𝑚𝑜𝑡 −
1

𝑅𝑓𝑅2𝜂𝑓𝜂2
𝜏𝑑𝑠 −

𝑅1𝜂𝑟1

𝑅2𝜂𝑓𝜂𝑠𝜌
𝜏𝑠       (3.12) 

0 = 𝜏𝑒𝑛𝑔 +
1

𝜂𝑠
(1 +

1

𝜌
) 𝜏𝑠     (3.13a) 

where 𝜏𝑠 is the torque applied to the sun gear by the planet gears, and 𝐼𝑔𝑒𝑛 and 𝐼𝑚𝑜𝑡 are the lumped 

rotational inertias of the generator and the motor respectively. 𝐼𝑔𝑒𝑛 is the inertia of the generator and 

sun gear. 𝐼𝑚𝑜𝑡 combines the inertias of the motor, ring gear, intermediary shaft, gear meshings 𝑅1, 𝑅2, 

and 𝑅𝑓, the driveshaft, and the halfshafts. The components of 𝐼𝑚𝑜𝑡 are lumped at the motor. For engine 

cranking and power-split operating modes, Equation 3.13a is replaced by Equation 3.13b: 

𝐼𝑒𝑛𝑔�̇�𝑒𝑛𝑔 = 𝜏𝑒𝑛𝑔 +
1

𝜂𝑠
(1 +

1

𝜌
) 𝜏𝑠    (3.13b) 

where 𝐼𝑒𝑛𝑔 is the lumped rotational inertia of the engine, which includes the inertia of the engine, the 

carrier, and the planets about the axis of the engine shaft. The inertia contributions of rotation of the 

planet gears about their own axes are typically considered very small in power-split powertrain 

configurations [13], so they are neglected. The efficiency terms are summarized in table 3.1. 
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Table 3.1: Summary of drivetrain lumped efficiency terms. 

𝜂𝑟1 
Lumped efficiency between the ring gear and the planet 

gears, through gear ratio 𝑅1, and through the differential 

𝜂2 Efficiency through ratio 𝑅2 

𝜂𝑓 Efficiency through ratio 𝑅𝑓 

𝜂𝑠 Efficiency between the sun gear and the planet gears 

 
When switching from engine unlocked to engine locked operating modes, a braking torque is applied 

to the engine shaft. The applied braking torque is a proportional feedback of the current engine shaft 

speed, 𝜔𝑒𝑛𝑔, that is multiplied by the gain term 𝐾𝑒𝑛𝑔𝑜𝑓𝑓. 𝐾𝑒𝑛𝑔𝑜𝑓𝑓 was tuned manually to ensure engine 

braking behavior matched experimental data. 

The complete drivetrain subsystem was modelled using the 1-D mechanical library of MapleSim. 

3.3     Brake Modelling 

Braking behavior of the Lincoln MKZ is more complex than traditional IC engine vehicles. Like many 

other hybrid vehicles, it increases fuel efficiency by implementing regenerative braking behavior in 

addition to mechanical braking. During regenerative braking, power flows from the wheels through the 

drivetrain to apply negative torques to the motor and generator. The motor and generator both absorb 

the torque and use it to charge the high voltage battery. Similar to APP in the powertrain model, the 

supervisory controller uses 𝐵𝑃𝑃 to determine a desired braking torque applied at the wheels. 𝐵𝑃𝑃 is 

represented as a unitless range from 0.1385 to 0.5. For any given set of vehicle states, the TCM selects 

the proportion of desired braking torque that will come from regenerative braking, and a separate 

braking control module (BCM) allocates how the remaining desired torque will be generated by 

mechanical braking at each wheel. 



 

 27 

Due to limitations of measurable signals during experimentation, it was not possible to separately 

measure the effects of regenerative braking and mechanical braking in the front wheels; only total 

braking torque was measurable at each wheel. This introduced a problem for integrating a braking 

model with the powertrain model used for APP mapping since regenerative and mechanical braking are 

applied to different parts of the drivetrain subsystem. The proposed solution is a black-box approach 

that utilizes a cascading system of NNs. The model calculates a front axle torque 𝜏𝐹𝐵 and a rear axle 

torque 𝜏𝑅𝐵. For the purposes of the model only the longitudinal dynamics of braking were considered, 

so distribution of braking torque to the right and left wheels was assumed to be equal. Figure 3.4 depicts 

a diagram of the braking model. 

 

Figure 3.4: Diagram of the braking model. 

As depicted in Figure 3.4, the braking model is dependent on only two inputs, 𝐵𝑃𝑃 and 𝑣𝑥. 𝜏𝐹𝐵 is 

calculated directly by a front brake mapping that is modelled with a double layer perceptron NN. A 

modified form of Equation 1.1, written as Equation 3.14, defines the front brake map model: 

𝜏𝐹𝐵 = 𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2    (3.14) 

where 𝑋 is a 2 × 1 column vector of the inputs 𝐵𝑃𝑃 and 𝑣𝑥. 

Calculation of 𝜏𝑅𝐵 required a more complex mapping. Observation of experimental data showed that 

for a subset of the input space, {𝐵𝑃𝑃, 𝑣𝑥}, no rear braking torque is applied. A classifier NN was 
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implemented to predict if, for any given combination of 𝐵𝑃𝑃 and 𝑣𝑥, the rear brakes will be engaged. 

A modified form of Equation 1.3, written as Equation 3.15, defines the front rear braking engagement 

model: 

𝑌𝐵𝑟 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2)    (3.15) 

where 𝑋 is a 2 × 1 column vector of the inputs 𝐵𝑃𝑃 and 𝑣𝑥, and 𝑌𝐵𝑟 is a 2 × 1 column vector of the 

probabilities that the rear brakes are not engaged, 𝑦1, and that the rear brakes are engaged, 𝑦2. If 𝑦2 >

𝑦1, then the rear brakes are engaged. 𝜏𝑅𝐵 is set to zero if the brakes are disengaged. 

If the rear brakes are engaged, then 𝜏𝑅𝐵 is calculated by the rear braking map. The rear braking map 

was modelled with another double layer perceptron NN. A modified form of Equation 1.1, written as 

Equation 3.16, defines the rear brake map model: 

𝜏𝑅𝐵𝑚𝑎𝑝
= 𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2   (3.16) 

where 𝑋 is a 2 × 1 column vector of the inputs 𝐵𝑃𝑃 and 𝑣𝑥. 

For the purposes of reducing oscillations during simulation, first-order transfer functions with very 

low time constants are applied to the outputs of the brake model, 𝜏𝐹𝐵 and 𝜏𝑅𝐵. These transfer functions 

increase the brake model from an index-0 to an index-1 system to increase model stability during 

simulation. 

3.4     Powertrain and Brake Model Integration 

The limitations of the available braking torque signals, and the subsequently chosen method of 

modelling the brakes, created a problem for integration of the two models. The output torques of the 

braking model, 𝜏𝐹𝐵 and 𝜏𝑅𝐵, are applied directly at the wheels of the vehicle model. The model was 

identified based on the torques measured at each wheel during experiments. The left and right wheel 

components of 𝜏𝐹𝐵 cannot be applied directly to the halfshafts of the drivetrain model, as it is 

formulated, because the map of 𝜏𝐹𝐵 implicitly includes the inertial effects of the drivetrain. It is not 
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sufficient to subtract an inertial torque proportional to 𝐼𝑚𝑜𝑡 from 𝜏𝐹𝐵 because, based on the drivetrain 

dynamics, there is coupling between 𝜔𝑒𝑛𝑔 and 𝜔𝑚𝑜𝑡. 

The proposed solution to this problem is to introduce a virtual switching clutch component at the 

drivetrain model’s driveshaft that engages and disengages as a function of BPP. The clutch engages 

when there is a negligible brake pedal input applied to the system. During this mode of operation, the 

drivetrain model behaves exactly as described in Section 3.2.3. Application of the brake pedal input, 

defined as a BPP value greater than 0.14, disengages the clutch at the driveshaft to decouple torque at 

the front wheels from the inertia of the drivetrain. A virtual powertrain braking torque, 𝜏𝑃𝐵𝑟, is then 

applied on the inboard side of the driveshaft clutch to maintain a very small relative speed, 𝜔𝑟𝑒𝑙, 

between the inboard and outboard sides of the clutch. This limits torque oscillations during clutch 

reengagement. Future work will re-examine this ad hoc solution. Figure 3.5 depicts a diagram of how 

the drivetrain behaves during braking maneuvers.  

 

Figure 3.5: Drivetrain diagram for braking maneuvers. 
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𝜏𝑃𝐵𝑟 is calculated as a function of 𝜔𝑟𝑒𝑙 by Equation 3.17: 

𝜏𝑃𝐵𝑟 = 𝐾𝑃𝐵𝑟𝜔𝑟𝑒𝑙      (3.17) 

where 𝐾𝑃𝐵𝑟 is a high gain proportional term that was tuned manually. The clutch is a component of the 

drivetrain MapleSim model. Parameters of the clutch component were manually tuned to ensure smooth 

simulation performance and minimal oscillations during engagement and disengagement. 

3.5     Interaction with Vehicle Dynamics Model 

The combined powertrain and braking model is modular such that it can be integrated with any type of 

vehicle dynamics model in MapleSim. The two drivetrain halfshaft flanges connect with two front 

wheel components while the braking torques are applied at each wheel using a MapleSim brake 

component. The details of the vehicle dynamics model, including tire dynamics, suspension 

configuration, and chassis inertial terms, are independent of the powertrain and braking models. Van 

Gennip developed a high-fidelity model of the Lincoln MKZ’s vehicle dynamics [26] to integrate with 

the powertrain and braking models. This vehicle dynamics model was integrated with the powertrain 

and braking models for all simulations discussed in later chapters. 
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Chapter 4  

Experimentation 

4.1     Apparatus 

Multiple apparatus were used during vehicle road testing to gather data for model parameter 

identification. The full suite of data acquisition systems included the A&D Vehicle Measurement 

System, the CAN bus data acquisition system, and signals read from the Moose’s onboard computer. 

In this chapter each system is described in detail. A summary of measured signals and sampling rates 

used for powertrain and braking parameter identification is in Appendix A. 

4.1.1     Vehicle Measurement System 

The Vehicle Measurement System (VMS), by A&D Technology, is a complex system of sensors 

designed for vehicle road testing. The VMS consists of three subsystems of sensors packaged at each 

wheel. Due to some component failures, the VMS system was not available for the rear right wheel of 

the vehicle. Figure 4.1 depicts the VMS mounted at the Moose’s front left wheel. 
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Figure 4.1: The VMS sensor packaging mounted at the front left wheel of the Moose. 

Wheels with custom VMS compatible hubs replaced the stock vehicle wheels for road testing. The 

custom hubs were designed such that the first sensor subsystem, the wheel force sensor (WFS), mounts 

at the center of the hub. The WFS consists of an array of strain gauges that measure force and moment 

through each principal axis of the hub. The measured moment about the 

 rotation axis of each wheel corresponds to wheel torques in the powertrain and braking models. In 

addition, the WFS includes a digital encoder that measures the speed of rotation, 𝜔𝑤ℎ, at each wheel. 

The second VMS subsystem is the wheel position sensor (WPS). The WPS connects at the center of 

the wheel hub, and is mounted to the chassis through a set of rigid linkages with 5 DOF. Each DOF 

results from a revolute joint with a built-in digital encoder. The VMS monitors the angle of rotation of 

all five digital encoders to determine the translational and rotational position of the wheel relative to 
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the chassis. These measurements are not required for powertrain parameter identification, but they can 

be useful for modelling suspension kinematics and dynamics. 

The third VMS subsystem is the laser ground sensor/laser doppler velocimeter (LGS). This 

subsystem uses an array of laser sensors to detect the ground speed at each wheel, the effective radius 

of the tire, and other signals. The LGS was not used for any part of the powertrain or braking model 

parameter identification, but it was important for suspension and tire dynamics parameter identification 

[27]. 

4.1.2     Vector CANalyzer and Diagnostics 

In addition to the signals measured at the wheel by the VMS, parameter identification required 

measurement of several internal powertrain system states. These states could only be measured through 

the vehicle’s control area network (CAN) bus. The CAN bus signals were measured with a Vector CAN 

bus measurement Tool and the Vector CANalyzer software. The generic OBD II list of signals were 

automatically measurable through the CAN bus, and 𝐴𝑃𝑃, 𝜔𝑒𝑛𝑔, 𝑣𝑥, and 𝑆𝑂𝐶 could be measured 

through this protocol. The CANalyzer simultaneously records signals from the VMS, so no CAN bus 

data synchronization was required during parameter identification pre-processing; however, parameter 

identification also required measurements of 𝜔𝑚𝑜𝑡, 𝜔𝑔𝑒𝑛 and all internal powertrain torques. 

The Ford VCM II is a diagnostics tool that is capable of sampling all required powertrain signals 

through a proprietary set of CAN bus commands, but it cannot log the diagnostic signals in a usable 

format. By using a CAN bus cable splitter, both the VCM II and the Vector tool were simultaneously 

connected to the Moose’s CAN bus. The VCM II sent command messages requesting packets of 

diagnostics powertrain data, and the return messages that contained the data were recorded by the 

CANalyzer. The limitation of this approach is that all diagnostic signals were restricted to a sample rate 

of approximately 10 Hz while all other signals were available at either 100Hz or 50Hz. 
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4.1.3     Brake Pedal Position Data Acquisition 

According to Ford diagnostic signal documentation, 𝐵𝑃𝑃 was not available for measurement through 

the VCM II. 𝐵𝑃𝑃 had to be measured and recorded using the Moose’s onboard Linux computer system. 

The Moose’s computer is capable of reading 𝐵𝑃𝑃 using a Dataspeed hardware component, the Throttle-

Brake Combination By-Wire Interface. The Moose also uses this hardware to send 𝐴𝑃𝑃 and 𝐵𝑃𝑃 

commands to the vehicle when it is operating in autonomous driving mode. The module communicates 

with the vehicle using a custom CAN bus command protocol summarized in Dataspeed Incorporated’s 

documentation [28]. Figure 4.2 depicts the computer’s data acquisition user interface during road 

testing. 

 

Figure 4.2: Onboard display of the Moose's computer during road testing. 

𝐵𝑃𝑃 data was recorded at a rate of 50Hz. During parameter identification, pre-processing the 𝐵𝑃𝑃 

data’s timestamp was synchronized with CANalyzer data using the MATLAB signal processing 

toolbox. 
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4.2     Vehicle Testing Procedure 

Selecting an appropriate test procedure for vehicle dynamics and powertrain parameter identification 

usually depends on the unknown parameters. For any parameters that need to be identified, it is a 

necessary but not sufficient condition that the inputs to the system, such as acceleration command or 

steering angle, create a system behavior that is persistently exciting. For linear system models, the 

required conditions for persistence of excitation are well established [29], but high-fidelity models of 

vehicle systems are highly nonlinear. In addition, identification of NN-based models require more than 

a persistently exciting input. Shallow NN training requires large data sets that cover the full input space. 

To meet this requirement, a large set of vehicle tests were performed, but specific drive cycle test plans 

were not generally followed. Unlike some types of vehicle testing, such as vehicle fuel-economy 

benchmark tests, neural network modelling benefits from randomness in driver behavior. Most vehicle 

testing occurred at the Region of Waterloo’s Emergency Services Training Centre, which has a vehicle 

maneuvering test track. However, some public road testing data was used to augment the data sets for 

supervisory controller and TCM neural network training. The speed profiles of some sample test 

maneuvers are depicted in Figure 4.3.  
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Figure 4.3: Speed profile data for braking maneuvers with various BPP values (top left), laps of 

the Waterloo regional test track (top right), Hard accelerations from various starting speeds 

(bottom left), and public driving on a road with traffic lights (bottom right). 
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Chapter 5 

Parameter Identification 

5.1     Drivetrain Parameters 

Due to limited a priori knowledge of the drivetrain, all gear ratios, gear train efficiencies, and lumped 

inertia parameters needed to be identified from experimental data. Gear train ratios were identified from 

experimental measurements of 𝜔𝑒𝑛𝑔, 𝜔𝑔𝑒𝑛, 𝜔𝑚𝑜𝑡, 𝜔𝐹𝑅𝑤ℎ, 𝜔𝐹𝐿𝑤ℎ and Equations 3.8, 3.9, 3.10a, and 

3.10b. However, without a measurement of speed for the intermediary shaft, not all gear ratios could 

be identified individually. Instead of identifying 𝑅1, 𝑅2, and 𝑅𝑓 directly, lumped gear ratios 𝑅𝑓𝑅1 and 

𝑅𝑓𝑅2 were identified in addition to the planetary ratio 𝜌. Identification of gear ratios was performed by 

determining the mean ratios between measurements of 𝜔𝑒𝑛𝑔, 𝜔𝑔𝑒𝑛, 𝜔𝑚𝑜𝑡, and 𝜔𝑑𝑠 from multiple 

driving test runs. Each ratio was determined with a standard deviation of less than 1%. Table 5.1 

summarizes the mean and standard deviation of each effective gear ratio. 

Table 5.1: Effective drivetrain gear ratios. 

Symbol Mean Value Standard Deviation 

𝜌 0.395 0.001 

𝑅𝑓𝑅1 4.08 0.03 

𝑅𝑓𝑅2 10.4 0.05 

For identification of drivetrain dynamics parameters, the MapleSim drivetrain model was converted 

to an S-function. Parameter identification was performed using the Simulink Parameter Identification 

toolbox. For each iteration of parameter identification, a test’s experimental measurements of 𝜏𝑒𝑛𝑔, 

𝜏𝑚𝑜𝑡, 𝜏𝑔𝑒𝑛, 𝜏𝐹𝐿𝑤ℎ, 𝜏𝐹𝑅𝑤ℎ, and powertrain mode were applied to the drivetrain model, and experimental 

measurements of 𝜔𝑒𝑛𝑔 and 𝜔𝑚𝑜𝑡 were set as references for the drivetrain model to track. Using a 
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nonlinear least squares trust-region reflective algorithm, the parameter estimator attempted to identify 

the inertial and efficiency parameters that resulted in the minimum mean-squared error between 

experimental and simulated measurements of 𝜔𝑒𝑛𝑔 and 𝜔𝑚𝑜𝑡. Identification of all dynamic parameters, 

which includes the three lumped inertias and four gear meshing efficiencies, was challenging because 

all seven parameters needed to be identified for a system of only two DOFs. It was not possible to 

identify a unique set of parameters from experimental data. 

A sensitivity analysis was performed on the drivetrain model to observe how model performance was 

affected by a random variance in each parameter within their range of possible values. The influence 

of each parameter was measured by observing how the simulated outputs for 𝜔𝑒𝑛𝑔 and 𝜔𝑚𝑜𝑡 were 

affected by parameter variance. Figure 5.1 is a tornado plot summarizing the parameter influence results 

of the sensitivity analysis. 
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Figure 5.1: Tornado plot showing correlations between parameters and model performance. 

It is clear from Figure 5.1 that the Kendal, Spearman (rank), and linear correlations for the three lumped 

inertial parameters is much greater than the four efficiency terms. Based on the results of sensitivity 

analysis, each efficiency term was set to a generic reference value of 0.98. This simplification of the 

model made identifying unique values for 𝐼𝑒𝑛𝑔, 𝐼𝑚𝑜𝑡, and 𝐼𝑔𝑒𝑛 possible. Depending on the road test 

used, each iteration of parameter identification converged to marginally different values for the 

parameters. The final combination of selected parameters is an approximated mean of several parameter 

identification results. Approximated inertial parameter values are depicted in table 5.2. 
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Table 5.2: Approximated lumped rotational inertia parameters of the drivetrain model. 

Symbol Approximated Rotational Inertia (𝒌𝒈𝒎𝟐) 

𝐼𝑚𝑜𝑡 0.15 

𝐼𝑔𝑒𝑛 0.015 

𝐼𝑒𝑛𝑔 0.14 

5.2     Neural Network Training 

NN training required data to be pre-processed and compiled into a specific format. For each NN, 

experimental measurements were organized into a matrix of experimental inputs with a width equal to 

the number of inputs, 𝑛𝑥, and a length equal to the number of data samples, 𝑛𝑠. A corresponding matrix 

of experimental outputs was organized to have a width equal to the number of outputs, 𝑛𝑦, and a length 

equal to 𝑛𝑠.  

NN training was performed using the MATLAB Neural Net Fitting and Neural Net Pattern Recognition 

toolboxes. At the start of NN training, these toolboxes randomly divide the experimental samples into 

three sets: training data, validation data, and testing data. Training data is used by the NN training 

algorithm to iteratively optimize weight and offset terms 𝑊1, 𝑊2, 𝐵1, and 𝐵2 such that the error 

between the mapping of NN outputs and training data outputs is minimized. At the end of each iteration 

of optimization the NN performance is checked against the validation data outputs. When the validation 

error stops improving, the optimization procedure halts. Once optimization is completed, the NN 

performance is checked against the testing data outputs. The testing data is not used at any point in the 

optimization procedure, so it is a fully independent measure of the network’s fit. The default ratios of 

70% training data, 15% validation data, and 15% testing data were used for all NNs. 

The overall quality of fit for each double layer perceptron NN was assessed by observing the trained 

network’s linear regression for each combined data set. The fit of each regression is represented by the 

correlation coefficient R, which will always have a value between 0 and 1. A perfect NN fit is 
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represented by an R-value of 1 for the combined data set. Similarly, the quality of fit of each classifier 

NN was assessed by observing the network’s confusion matrix compared to experimental data. The 

confusion matrix indicates how frequently a classifier NN makes a misclassification, and expresses 

performance as a percent accuracy (or percent confusion). A confusion matrix that depicts 100% 

accuracy (0% confusion) means that the network correctly classified all experimental data samples. In 

general, as the selected number of hidden neurons, 𝑛𝑛, increases, the training algorithm will identify 

NNs with higher R-value or percent accuracy on the combined data set. This is because increasing 𝑛𝑛 

increases the DOFs in the model by increasing the total number of terms in 𝑊1, 𝑊2, and 𝐵1. However, 

increasing 𝑛𝑛 also increases the likelihood that the NN will overfit the data. An overfitted NN is a poor 

generalization of the actual function it is trying to model, and will likely perform poorly for a set of 

inputs that are not contained in the training dataset. Overfitting was identified by comparing the NN’s 

training and validation performance with its testing performance. When the testing performance is 

significantly worse, then the NN is likely overfitted to the training data. An accepted rule-of-thumb is 

that the number of neurons in the hidden layer should be between the number of network inputs and 

the number of network outputs [30]. Details of training and results for each NN are provided below. 

5.2.1     Supervisory Torque Controller 

For identification of the supervisory torque controller NN model, represented by Equation 3.1, the 

supervisory controller NN model was trained using the Levenberg-Marquardt algorithm. The best 

training performance without overfitting the data was observed for a network with two hidden neurons. 

For the case where the transient behavior has decayed (𝑇𝑑𝑠𝑑𝑘
= 𝑇𝑑𝑠𝑑𝑘−1

) the supervisory torque 

controller NN model is depicted in Figure 5.2. 
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Figure 5.2: Equilibrium points of the supervisory torque controller NN. 

The combined data R-value of the supervisory controller model is 0.999, which indicates an excellent 

fit to the data. Refer to Appendix B for the full regression plot. 

5.2.2     TCM Mode Selection Mapping 

The two classifier NNs used for the TCM mode selection map were trained using the scaled conjugate 

gradient backpropagation algorithm. The engine-start mode selection model, represented by Equation 

3.2, showed the best performance without overfitting the data when three hidden neurons were used. 

The combined data confusion plot for the engine-start mode selection model is depicted in Figure 5.3, 

where class 1 is EV mode and class 2 is engine cranking mode. Boxes along the diagonal, which are 
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colored green, indicate instances where classification is correct, while red boxes indicate instances 

where classification is incorrect. Each light grey box summarize the percent accuracy and percent 

confusion of all data points in its respective row or column. Green text indicates percent accuracy, and 

red text indicates percent confusion. The percentages in the dark grey box in the bottom right-hand 

corner of the matrix give the accuracy and confusion for the entire dataset. 

 

Figure 5.3: TCM engine-start mode selection model confusion matrix. 

As depicted in Figure 5.3, the model correctly predicted whether or not the engine will start at the next 

time step 98.6% of the time. The largest source of error in the model is that in 4% of samples, it falsely 

predicts EV mode when experimental data indicates engine cranking mode. 

The engine-on mode selection model, represented by Equation 3.3, showed best performance without 

overfitting the data when five hidden neurons were used. The combined data confusion plot for the 

engine-on mode selection model is depicted in Figure 5.4, where class 1 is EV mode, class 2 is engine 

cranking mode, and class 3 is power-split mode. 
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Figure 5.4: TCM engine-on mode selection model confusion matrix. 

As depicted in Figure 5.4, when the engine shaft is unlocked, the model correctly identified the 

operating mode at the next time step in 99.6% of samples. This indicates an excellent fit to the data. 

The only significant source of error in the map is that the model falsely classified 9.7% of experimental 

engine cranking mode classifications as EV mode. Most of these errors occurred when the powertrain 

was in engine cranking mode at the previous time step. This error does not factor into model 

performance because this switching behavior would violate powertrain mode constraint 4 (see Section 

3.2.2). 

5.2.3     Output Torque Model 

The double layer perceptron NN used for the output torque model, represented by Equation 3.4, was 

identified using the Levenberg-Marquardt algorithm. The best neural network performance without 
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overfitting the data occurred when five hidden neurons were used. The identified NN has an R-value 

of 0.979 compared to the combined experimental data. Refer to Appendix B for the full regression plot. 

Since the NN does not model transient behavior in the power sources, the accuracy of this model was 

limited. 

5.2.4     Braking Torque Model 

The double layer perceptron NN used for the front axle braking model, represented by Equation 3.14, 

was identified using the Levenberg-Marquardt algorithm. The best neural network performance without 

overfitting the data occurred when two hidden neurons were used. The identified NN has an R-value of 

0.976 compared to the combined experimental data. Refer to Appendix B for the full regression plot. 

The front axle braking model does not consider transient behavior, which may have affected the 

accuracy of the model. 

 Braking torque was not available for measurement at the rear right wheel, so the rear axle braking 

torque used for model identification was assumed as double the torque measured at the rear left wheel. 

The classifier NN used to model the rear brake engagement, represented by Equation 3.15, was 

identified using the scaled conjugate gradient backpropagation method. The combined data confusion 

plot for the rear brake engagement model is represented by Figure 5.5. 
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Figure 5.5: Rear brake switch model confusion matrix. 

As depicted in Figure 5.5, the rear brake switch model correctly guesses whether or not the rear brakes 

will engage in 95.2% of the experimental data. Since experimental torque was only available at one 

rear wheel, it is possible that the rear brake switching behavior responds to unmodeled vehicle lateral 

dynamics effects. The rear brake switch model also does not consider transient brake behavior. Both of 

these factors may have influenced the accuracy of the model. 

The double layer perceptron NN used for the rear axle braking model, represented by Equation 3.16, 

was identified using the Levenberg-Marquardt algorithm. The best neural network performance without 

overfitting the data occurred when two hidden neurons were used. The identified NN has an R-value of 

0.920 compared to the combined experimental data. Refer to Appendix B for the full regression plot. 

The same factors that affected the rear brake switching model likely influenced the accuracy of the rear 

axle braking model. 
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The combined braking torque map, which combines the front and rear axle braking torque models, 

is depicted in Figure 5.6. 

 

Figure 5.6: Braking map of the combined front and rear axle torques. 

The discontinuity of the surface, indicated by the white line depicted in Figure 5.6, shows the boundary 

of rear braking torque engagement. The accuracy of the complete braking model was tested by 

comparing the output of the combined map, 𝜏𝐹𝐵𝑟 + 𝜏𝑇𝐵𝑟, to the combined experimentally measured 

torques, 𝜏𝐹𝑅𝑤ℎ + 𝜏𝐹𝐿𝑤ℎ + 2𝜏𝑅𝐿𝑤ℎ. Figure 5.7 depicts the error histogram of total brake torque map. 
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Figure 5.7: Error Histogram of the total braking torque model. 

The mean error of the total torque model is  𝜇 = 35.7𝑁𝑚, and the standard deviation is 𝜎 = 309𝑁𝑚. 

The boundaries for one standard deviation and three standard deviations are depicted in Figure 5.7 as 

the green and red bars, respectively. Relative to the total available braking torque, which exceeds 

6000𝑁𝑚, this error in the model is approximately 5%. 

Some restrictions of the braking torque model are worth noting. Due to the small size of the test track, 

limited braking maneuver data was available at speeds greater than 90 km/h. In addition, values of 𝐵𝑃𝑃 

greater than 0.37 generally resulted in the vehicle’s tire entering the nonlinear region of high 

longitudinal slip, causing considerable torque oscillations in the experimental data. For both of these 

regions, the accuracy of the braking model is uncertain. 
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5.3     Full Model Validation 

The full high-fidelity vehicle model, which includes the powertrain, braking, and vehicle dynamics 

models, was validated using an experimental driving dataset. The selected dataset was used as training 

data for the braking model map, but otherwise it was unused during parameter identification. 

Experimental measurements of vehicle inputs 𝐴𝑃𝑃, 𝐵𝑃𝑃, and steer angle were inputted to the high-

fidelity model, and open-loop simulation output states 𝑣𝑥 and 𝜔𝑒𝑛𝑔 were compared to experimental 

measurements. Figures 5.8, 5.9, and 5.10 depict some snapshots of full model validation. 

 

Figure 5.8: Snapshot 1 of Full Vehicle Model Validation. 
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Figure 5.9: Snapshot 2 of Full Vehicle Model Validation. 

 

Figure 5.10: Snapshot 3 of Full Vehicle Model Validation. 
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Observation of the engine speed plots in Figures 5.8 to 5.10 show that the model’s powertrain 

operating mode tracks the general trend of experimental data well.  The model tends to initiate engine 

cranking at the same times as the actual vehicle, but during braking maneuvers the model will switch 

back to EV mode (engine speed returns to zero) more slowly than the actual vehicle. This effect is due 

to the virtual drivetrain clutch component described in Section 3.4.  However, the average engine speeds 

predicted by the model are higher than the speeds observed in experimental data. It is possible that 

some unobserved powertrain controller dynamics serve to regulate engine speed. Despite these engine 

speed tracking errors in the powertrain model, the output vehicle speed tracking is not affected.  

Qualitative assessment of Figures 5.8 to 5.10 indicates that the full vehicle model tracks experimental 

data well. The model’s vehicle speed tracks the experimental data within 3km/h for the majority of 

simulation time. The high-fidelity model’s speed tracking performance has also proven to be robust. 

Even after the model’s speed diverges from experimental data, such as at 10 seconds for Figure 5.8 or 

at 262 seconds for Figure 5.10, the model tends to converge again with experimental data over time. 

This indicates that at some operating points there is mismatch between the high-fidelity model and the 

actual vehicle performance, but the average speed tracking performance over the vehicle’s entire 

operating range is accurate. Over the entire open-loop simulation, which ran continuously for 580 

seconds, The root-mean-square (RMS) error of the simulated vehicle velocity was 7.2 km/h.  

There were several unmeasured disturbances acting on the actual car that were not used in the high-

fidelity vehicle model simulation. Time-dependent factors such as road slope, road surface, and wind 

could have caused the model to diverge from experimental data. In addition, some lateral dynamics 

effects on the powertrain and braking dynamics have yet to be modelled, so divergence of the model 

from experimental data occurred at high speeds and high steer angles. 
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Chapter 6 

MPC for Longitudinal Vehicle Dynamics 

6.1     Control-Oriented Model 

To design an MPC for longitudinal dynamics of the Moose, a control-oriented model of combined 

powertrain, braking, and vehicle dynamics was required. Using the high-fidelity model described in 

Chapter 3 as a baseline, the control-oriented model needed to be simplified to allow real-time controller 

implementation. The control-oriented model equations needed to be smooth and differentiable in their 

entire operating space, so that linearization and linear MPC techniques could be applied. 

Converting the supervisory controller and TCM models to a control-oriented form was a challenge 

during controller development. Using Maple, the supervisory controller model was converted to an 

optimized symbolic function that estimates the desired torque 𝑇𝑑𝑠𝑑𝑘

∗ , represented by Equation 6.1: 

𝑇𝑑𝑠𝑑𝑘

∗ = 𝑓𝑇𝑑𝑠𝑑
∗ (𝐴𝑃𝑃, 𝑣𝑥, 𝑇𝑑𝑠𝑑𝑘−1

∗ )    (6.1) 

where * is used to denote any variables that are predicted by the model instead of measured. By 

definition, the NN function is guaranteed to be smooth and differentiable. The time-delayed estimated 

desired torque term 𝑇𝑑𝑠𝑑𝑘

∗  was introduced to the state space equations as an augmented vehicle state.  

Attempting to predict the switching of powertrain mode over the MPC prediction horizon is 

logistically challenging since the drivetrain equations of motion (EOMs) change with operating mode. 

As such, the control-oriented model was designed to make a rule-based estimate of powertrain mode 

based only on the previous time step’s powertrain mode, previous estimated desired torque 𝑇𝑑𝑠𝑑𝑘

∗ , 

current speed 𝑣𝑥𝑘
, and current and previous engine speeds 𝜔𝑒𝑛𝑔𝑘

 and 𝜔𝑒𝑛𝑔𝑘−1
. The rule-based behavior 

was modelled from experimental powertrain performance. The ruled-based system has a slower mode 

switching response than the high-fidelity NN models, but it will be more robust to any unmodelled 

behavior of the powertrain system. The torque selection model, and its interaction with the drivetrain 

dynamics, was too complex for direct implementation into the control-oriented model. Adding the NN 
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directly into the control-oriented model caused the resulting symbolic linearization to be too large for 

MATLAB implementation. Instead the torque selection NN model is numerically linearized at each 

time step to calculate the partial derivatives 
𝜕𝜏𝑒𝑛𝑔

∗

𝜕𝑇𝑑𝑠𝑑
∗ , 

𝜕𝜏𝑔𝑒𝑛
∗

𝜕𝑇𝑑𝑠𝑑
∗ , and 

𝜕𝜏𝑚𝑜𝑡
∗

𝜕𝑇𝑑𝑠𝑑
∗ . The partial derivatives are 

determined by the finite difference method. At each time step the approximated linearized equations 

for torque at each power source are represented by Equations 6.2, 6.3, and 6.4: 

 𝜏𝑒𝑛𝑔
∗ ≅ 𝜏𝑒𝑛𝑔 𝑘−1

∗ +
𝜕𝜏𝑒𝑛𝑔

∗

𝜕𝑇𝑑𝑠𝑑
(𝑇𝑑𝑠𝑑𝑘

∗ − 𝑇𝑑𝑠𝑑 𝑘−1
∗ )    (6.2) 

𝜏𝑔𝑒𝑛
∗ ≅ 𝜏𝑔𝑒𝑛 𝑘−1

∗ +
𝜕𝜏𝑔𝑒𝑛

∗

𝜕𝑇𝑑𝑠𝑑
(𝑇𝑑𝑠𝑑𝑘

∗ − 𝑇𝑑𝑠𝑑 𝑘−1
∗ )    (6.3) 

𝜏𝑚𝑜𝑡
∗ ≅ 𝜏𝑚𝑜𝑡 𝑘−1

∗ +
𝜕𝜏𝑚𝑜𝑡

∗

𝜕𝑇𝑑𝑠𝑑
(𝑇𝑑𝑠𝑑𝑘

∗ − 𝑇𝑑𝑠𝑑 𝑘−1
∗ )    (6.4) 

where 𝑇𝑑𝑠𝑑𝑘

∗  is calculated by Equation 6.1. At each time step 𝜏𝑒𝑛𝑔 𝑘−1
∗ , 𝜏𝑔𝑒𝑛 𝑘−1

∗ , and 𝜏𝑚𝑜𝑡 𝑘−1
∗  are all 

calculated directly by the torque selection NN using states from the previous time step. 

The drivetrain dynamic equations introduced in Section 3.2.3 were simplified to ignore gear meshing 

efficiency losses, and the difference in speed between the front left and front right wheels resulting 

from the drivetrain differential is disregarded. The drivetrain output speed and torque used in the 

control-oriented model are 𝜔𝑑𝑠 and 𝜏𝑑𝑠, respectively. The driveshaft is assumed to pass torque from 

the front axle, through the two front wheels, and onto the road. 

The NN front and rear braking torque models were replaced by a simpler nonlinear map of total 

braking torque that is a function of only 𝐵𝑃𝑃. Based on observation of experimental braking torque 

data, a generic asymmetrical sigmoid function was selected to map braking in the control-oriented 

model. The parameters of the function were identified in the MATLAB Curve Fitting Tool using the 

trust-region algorithm. Equation 6.5 represents the simplified braking map used in the control-oriented 

model: 

𝜏𝐵𝑟
∗ = 𝑓𝐵𝑟(𝐵𝑃𝑃) =

𝑎

(𝑏(1+𝑒𝐵𝑃𝑃−𝑑))

1
𝑣

 𝑁𝑚     (6.5) 
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where 𝑎 = 6261, 𝑏 = 25.07, 𝑑 = 0.2522, and 𝑣 = 0.4388 are all unitless constants, which were 

determined from parameter identification. The equation fit has an 𝑅2 value of 0.9478, which indicates 

a good fit for the simplified model. Figure 6.1 depicts the fit of curve to experimental data. 

 

Figure 6.1: Fit of the control-oriented Braking Torque Map to the experimental data. 

Rather than handle the dynamic changes in torque distribution between the front and rear axle, the 

control-oriented model assumes a static front-rear braking bias of 3:1, which is the approximate bias 

ratio when the rear brakes are engaged; therefore, 𝜏𝐹𝐵𝑟
∗ = 0.75𝜏𝐵𝑟

∗  and 𝜏𝑅𝐵𝑟
∗ = 0.25𝜏𝐵𝑟

∗ . The 

assumptions of the simplified braking torque model limit its accuracy in certain ranges of operating 

conditions. Notably, as depicted in Figure 6.1, high frequency tire slip oscillations occurring when 𝐵𝑃𝑃 

is greater than 0.35 cause the output wheel torque to be unpredictable. In addition, assuming a static 
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front-rear braking bias may result in degraded model performance for conditions where front and rear 

wheel slip are significantly different, such as when individual wheels hit ice. 

The discontinuity between the powertrain and braking models, which was handled in the high-fidelity 

model using a clutch component, cannot be added to the control-oriented model. The discontinuity 

between acceleration and braking was handled by introducing an analytic approximation of the 

Heaviside switching function. First, since 𝐴𝑃𝑃 and 𝐵𝑃𝑃 are never applied simultaneously, the control-

oriented model was simplified to include only one control input, the generalized pedal position (𝐺𝑃𝑃). 

The 𝐺𝑃𝑃 input has a range of -100 to 100, and it maps to 𝐴𝑃𝑃 and 𝐵𝑃𝑃 by Equations 6.6 and 6.7, 

respectively: 

𝐴𝑃𝑃 = 𝐺𝑃𝑃       (6.6) 

𝐵𝑃𝑃 = −0.004615𝐺𝑃𝑃 + 0.1385    (6.7) 

The approximated Heaviside function is represented by Equation 6.8: 

𝐻 =
1

1+𝑒−5𝐺𝑃𝑃       (6.8) 

𝐻 is applied to individual terms of the drivetrain dynamics equations such that during braking, the 

drivetrain inertias are fully decoupled from the motor speed in the control-oriented model. 

Based on the control-oriented model simplifications described above, and rearranging the drivetrain 

dynamic equations described in Sections 3.2.3 and 3.4, the drivetrain dynamic equations of the control-

oriented model were formulated. Equation 6.9 represents the control-oriented model’s simplified 

nonlinear dynamics of the drivetrain during EV mode (engine shaft is locked): 

[
(𝐼𝑚𝑜𝑡 + (

𝑅1

𝑅2𝜌
)
2
𝐼𝑔𝑒𝑛) �̇�𝑚𝑜𝑡

𝐼𝑒𝑛𝑔�̇�𝑒𝑛𝑔

] = [
(𝜏𝑚𝑜𝑡

∗ −
𝑅1

𝑅2𝜌
𝜏𝑔𝑒𝑛

∗ )𝐻 −
1

𝑅𝑓𝑅2
𝜏𝑑𝑠 − 𝜏𝐹𝐵

∗

0
]  (6.9) 

Similarly the control-oriented model’s simplified nonlinear dynamics of the drivetrain during engine-

cranking or power-split mode (engine shaft unlocked) is represented by Equation 6.10: 
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[
(𝐼𝑚𝑜𝑡 + (

𝑅1

𝑅2𝜌
)
2
𝐼𝑔𝑒𝑛) �̇�𝑚𝑜𝑡 − (

𝑅𝑓𝑅1(1+𝜌)

𝑅𝑓𝑅2𝜌2 ) �̇�𝑒𝑛𝑔

(𝐼𝑒𝑛𝑔 + (
1+𝜌

𝜌
)
2
𝐼𝑔𝑒𝑛) �̇�𝑒𝑛𝑔 − (

𝑅𝑓𝑅1(1+𝜌)

𝑅𝑓𝑅2𝜌2 ) �̇�𝑒𝑛𝑔

] =

[
 
 
 (𝜏𝑚𝑜𝑡

∗ −
𝑅1

𝑅2𝜌
𝜏𝑔𝑒𝑛

∗ )𝐻 −
1

𝑅𝑓𝑅2
𝜏𝑑𝑠 − 𝜏𝐹𝐵

∗

𝜏𝑒𝑛𝑔
∗ + ((

1+𝜌

𝜌
) 𝜏𝑔𝑒𝑛

∗ )𝐻
]
 
 
 
    (6.10) 

Note that when the engine is unlocked, the dynamics of the motor and engine are coupled. Equations 

6.9 and 6.10 were both obtained by replacing 𝜏𝑠 in Equations 3.12 and 3.13b with a rearranged form of 

equation 3.11, and combining terms. 

A simple longitudinal dynamics vehicle model integrates with the drivetrain in the control-oriented 

model. Figure 6.2 depicts a diagram of the vehicle model. 

 

Figure 6.2: Simplified longitudinal dynamics vehicle model [31]. 

The acceleration of the vehicle is determined by the longitudinal tire forces, 𝐹𝐹𝑥 and 𝐹𝑅𝑥, road slope 

force, 𝑚𝑔𝑠𝑖𝑛𝜃, force of drag, 𝐹𝐷, and tire rolling resistance forces, 𝐹𝐹𝑟 and 𝐹𝑅𝑟. The small angle 

approximations, 𝑠𝑖𝑛𝜃 ≈ 𝜃 and 𝑐𝑜𝑠𝜃 ≈ 1, were applied to the road slope force and rolling resistance 

terms. The model assumes that on each axle the left and right wheels rotate at the same velocity. The 

EOM for longitudinal motion of the vehicle is represented by Equation 6.11: 

𝑚�̇�𝑥 = 𝐹𝐹𝑥 + 𝐹𝑅𝑥 − 𝐹𝐷 − 𝐹𝐹𝑟 − 𝐹𝑅𝑟 − 𝑚𝑔𝜃    (6.11) 
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where forces of drag and rolling resistance are represented by Equations 6.11 and 6.12, respectively: 

𝐹𝐷 =
1

2
𝐶𝑑𝜌𝑎𝑖𝑟𝐴𝑓𝑣𝑥

2      (6.11) 

𝐹𝐹𝑟 + 𝐹𝑅𝑟 = 𝐹𝑟 = 𝑚𝑔𝐶𝑟     (6.12) 

Refer to Appendix C for a complete table defining longitudinal vehicle dynamics variables and 

parameters. The longitudinal tire forces were modelled as functions of longitudinal slip, 𝜎, and normal 

force. For simplicity, linear tire models were used. Equations 6.13 and 6.14 depict the equations for 

linear longitudinal tire forces acting on the front wheels and rear wheels, respectively: 

𝐹𝐹𝑥 = 𝐶𝑙𝐹𝐹𝑧𝜎𝐹       (6.13) 

𝐹𝑅𝑥 = 𝐶𝑙𝐹𝑅𝑧𝜎𝑅       (6.14) 

where the normal forces on the tires are determined by Equations 6.15 and 6.16: 

𝐹𝐹𝑧 = 𝑚𝑔(
𝑙−𝑙𝐹

𝑙
) −

ℎ

𝑙
(𝑚�̇�𝑥 + 𝐹𝐷 + 𝑚𝑔𝜃)   (6.15) 

𝐹𝑅𝑧 = 𝑚𝑔 (
𝑙𝐹

𝑙
) +

ℎ

𝑙
(𝑚�̇�𝑥 + 𝐹𝐷 + 𝑚𝑔𝜃)    (6.16) 

The longitudinal slip ratios of the front and rear axles are represented as functions of a linear relaxation 

length equation, defined in Equations 6.17 and 6.18: 

�̇�𝐹 =

𝜔𝑚𝑜𝑡𝑟

𝑅𝑓𝑅2
−𝑣𝑥−𝑣𝑜𝑝𝜎𝐹

𝑙𝑟𝑙𝑥
      (6.17) 

�̇�𝑅 =
𝜔𝑅𝑟−𝑣𝑥−𝑣𝑜𝑝𝜎𝑅

𝑙𝑟𝑙𝑥
        (6.18) 

where 𝜎𝐹 and 𝜎𝑅 are the longitudinal slips of the front and rear wheels, respectively. The velocity 

operating point, 𝑣𝑜𝑝, is usually the vehicle velocity at the point of linearization, but the value must 

never be small enough to create instability in the control-oriented model. For this system, a minimum 



 

 58 

operating speed, 𝑣𝑜𝑝𝑚𝑖𝑛
= 1 𝑚/𝑠, was found to be sufficient to ensure stability. The relaxation length 

term, 𝑙𝑟𝑙𝑥, was not selected based on any known tire parameters. Instead 𝑙𝑟𝑙𝑥 was used as a means of 

combating stiffness in the set of equations and stabilizing the response of the control-oriented model. 

The parameter was tuned manually to maximize controller stability and minimize MPC turnaround 

time. A non-physical value of 𝑙𝑟𝑙𝑥 = 100 𝑚 was selected despite the fact that typical tire relaxation 

lengths are three orders of magnitude smaller. Future work will explore the unusual response of the 

control-oriented model that makes controller stability highly dependent on the value of 𝑙𝑟𝑙𝑥. 

The time step of the supervisory controller model, 𝑇𝑠𝑁𝑁 = 0.05𝑠, will not necessarily be the same 

as the time step of the MPC, 𝑇𝑠. Therefore, the augmented vehicle state 𝑇𝑑𝑠𝑑
∗

𝑘−1
 was converted to 

continuous form before discretizing the entire system of equations.  Equation 6.19 represents the desired 

torque dynamics in continuous form: 

�̇�𝑑𝑠𝑑𝑘−1

∗ ≈
𝑇𝑑𝑠𝑑𝑘

∗ −𝑇𝑑𝑠𝑑𝑘−1
∗

𝑇𝑠𝑁𝑁
    (6.19) 

Performing this approximation allows the supervisory torque map to be interpolated at any MPC time 

step size. 

The dynamic equations of the control-oriented model, in continuous form, were rearranged into a 

nonlinear state space representation. Equation 6.20 depicts the nonlinear state space for EV mode: 
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[
 
 
 
 
 
 
 
 
 (𝑚 +

𝜎𝐹𝑚ℎ

𝑙
−

𝐶𝑙𝜎𝑅𝑚ℎ

𝑙
) �̇�𝑥

−𝐶𝑙𝜎𝐹𝑚ℎ
𝑟

𝑅2𝑅𝑓𝑙
�̇�𝑥 + (𝐻 (𝐼𝑚𝑜𝑡 + (

𝑅1

𝑅2𝜌
)
2
𝐼𝑔𝑒𝑛) +

2𝐼𝑤ℎ

(𝑅2𝑅𝑓)
2) �̇�𝑚𝑜𝑡

𝐼𝑒𝑛𝑔�̇�𝑒𝑛𝑔

𝐶𝑙𝜎𝑅𝑚ℎ
𝑟

𝑙
�̇�𝑥 + 2𝐼𝑤ℎ�̇�𝑅

�̇�𝐹

�̇�𝑅

�̇�𝑑𝑠𝑑
∗

𝑘−1 ]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 𝐶𝑙𝜎𝐹 (

𝑚𝑔𝑙𝐹

𝑙
−

ℎ

𝑙
(𝐹𝐷 + 𝑚𝑔𝜃)) + 𝐶𝑙𝜎𝑅 (

𝑚𝑔𝑙𝐹

𝑙
+

ℎ

𝑙
(𝐹𝐷 + 𝑚𝑔𝜃)) − 𝐹𝐷 − 𝐹𝑟 − 𝑚𝑔𝜃

(𝜏𝑚𝑜𝑡
∗ −

𝑅1

𝑅2𝜌
𝜏𝑔𝑒𝑛

∗ )𝐻 −
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 (6.20) 

Equation 6.21 represents the nonlinear state space for engine cranking and power-split modes: 
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 (6.21) 

6.2      Linearizing MPC Algorithm 

To address the nonlinear dynamics of the control-oriented model, a continuously linearizing MPC 

algorithm was designed. The proposed method provides the computational speed of linear MPC while 

allowing the controller to respond to large changes in plant dynamics at different operating points. 

Figure 6.3 depicts the block diagram of the linearizing MPC. 
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Figure 6.3: Block diagram of the longitudinal dynamics MPC. 

As depicted in Figure 6.3, at each time step, 𝑘, the controller receives a reference speed vector, 𝑣𝑟𝑒𝑓,  

that represents the desired speed of the Moose between time step 𝑘 + 1 and time step at the end of the 

prediction horizon, 𝑘 + 𝑛. Current measurements of 𝑣𝑥, 𝜔𝑒𝑛𝑔, 𝜔𝑤ℎ (of each wheel), and 𝑆𝑂𝐶 are used 

to calculate the states of the vehicle. 𝜔𝑚𝑜𝑡 is calculated as the average of the two front wheel speeds, 

divided by the ratio 𝑅𝑓𝑅2, and 𝜔𝑅 is calculated as the average of the two rear wheels speeds. As 

described in Section 6.1, at each time step the simplified TCM model predicts the powertrain operating 

mode and calculates the numerically linearized terms of Equations 6.2 to 6.4. Road slope, 𝜃, is treated 

as a measurable disturbance. Future work will investigate integrating a road slope estimator with the 

controller.  

Using Maple offline, Equations 6.20 and 6.21 were symbolically linearized and discretized by the 

Forward Euler method to determine two forms of the Jacobian matrices, 𝐴 and 𝐵, and the state 

increment, Δ𝑋. By computing these matrices symbolically offline, linearization about a given operating 

point can be computed online without performing numerical differentiation. At each time step the 

controller uses the predicted operating mode to select which linearized state space equations to use. The 
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model is linearized about the previous time step, 𝑘 − 1. Equation 6.22 represents the linearized state 

space equation at controller time step 𝑘: 

𝑋𝑘+𝑖+1 ≅ 𝑋𝑘−1 + 𝐴𝑘−1(𝑋𝑘+𝑖 − 𝑋𝑘−1) + 𝐵𝑘−1(𝐺𝑃𝑃𝑘+𝑖 − 𝐺𝑃𝑃𝑘−1) + Δ𝑋𝑘−1  (6.22) 

where 𝐴𝑘−1, 𝐵𝑘−1, and Δ𝑋𝑘−1 are computed algebraically from the terms of state vector 𝑋𝑘−1, which 

is represented by Equation 6.23: 

𝑋𝑘−1 = {𝑣𝑥𝑘−1
,  𝜔𝑚𝑜𝑡𝑘−1

, 𝜔𝑒𝑛𝑔𝑘−1
, 𝜔𝑅𝑘−1, 𝜎𝐹𝑘−1, 𝜎𝑅𝑘−1, 𝑇𝑑𝑠𝑑

∗
𝑘−2

}
𝑇
  (6.23) 

The longitudinal slip operating point terms are calculated by Equations 6.24 and 6.25: 

𝜎𝐹𝑘−1 =
𝜔𝑚𝑜𝑡𝑘−1𝑟−𝑅𝑓𝑅2𝑣𝑥𝑘−1

𝜔𝑚𝑜𝑡𝑘−1𝑟
    (6.24) 

𝜎𝑅𝑘−1 =
𝜔𝑅𝑘−1𝑟−𝑣𝑥

𝜔𝑅𝑘−1𝑟
     (6.25) 

A quadratic objective function was selected for the MPC to ensure convexity of the optimization 

problem. The cost function includes the speed tracking error over the prediction horizon. A weighting 

was assigned to the rate of change of control input, Δ𝐺𝑃𝑃, over the control horizon. The weighting 

assigned to Δ𝐺𝑃𝑃 was tuned to limit the jerk of the vehicle’s response. Equation 6.26 depicts the 

objective function used for the MPC: 

𝐽 = ∑ ‖𝑣𝑥𝑖
− 𝑣𝑟𝑒𝑓 𝑖‖

2𝑘+𝑛
𝑖=𝑘+1 + ∑ 𝑅Δ𝑢Δ𝐺𝑃𝑃𝑗

2𝑘+𝑐
𝑗=𝑘   (6.26) 

subject to the constraints: 

−100 ≤ 𝐺𝑃𝑃 ≤ 100 

−50/𝑠 ≤ Δ𝐺𝑃𝑃 ≤ 50/𝑠 

where 𝑛 is the prediction horizon, 𝑐 is the control horizon, and 𝑅Δ𝑢 is the relative weighting of Δ𝐺𝑃𝑃. 

The horizon lengths are constrained such that 𝑐 ≤ 𝑛. For any prediction step after the end of the control 
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horizon, 𝑖 > 𝑘 + 𝑐, the control input is set to the control input at the final control horizon step, 𝐺𝑃𝑃𝑘+𝑐. 

The MPC was implemented for model in the loop (MIL) simulation of the high-fidelity vehicle model 

described in Chapter 3. The parameters 𝑛, 𝑐, 𝑅Δ𝑢, and the controller time step, 𝑇𝑠, were tuned using 

multiple 𝑣𝑟𝑒𝑓 tracking scenarios. The tuned MPC parameters are summarized in Table 6.1. 

Table 6.1: List of tuned MPC parameter values. 

Symbol Value Units 

𝑛 50 N/A 

𝑐 25 N/A 

𝑅Δ𝑢 0.15 N/A 

𝑇𝑠 0.02 s 

An additional modification was made to the controller to ensure its stability at low speeds. The 

definition of longitudinal slip used in the control-oriented model creates an instability at low speeds. 

At low speeds the denominator terms of Equations 6.24 and 6.25 will approach zero, which will cause 

the magnitudes of longitudinal slip to grow very large. MPC performance will become unpredictable 

as it attempts to prevent excessive wheel slip. To prevent instability, at velocities below 14km/h the 

controller switches from an MPC to a low gain PI algorithm for low velocity tracking. A ±4 km/h 

switching dead band was implemented to prevent chatter between the control modes. The PI algorithm 

was tuned specifically for smooth velocity tracking at low speeds with low gain control action. 

As depicted in Figure 6.3, at the output of the controller, 𝐺𝑃𝑃 is converted to the real controller 

commands 𝐴𝑃𝑃 and 𝐵𝑃𝑃 by Equations 6.6 and 6.7, respectively. The two outputs are subjected to 

saturation limits such that 0% ≤ 𝐴𝑃𝑃 ≤ 100% and  0.1385 ≤ 𝐵𝑃𝑃 ≤ 0.5 based on the input range of 

the Dataspeed drive-by-wire system. 
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6.3     Controller Simulation Results 

For the purposes of performance comparison, a PI controller was used as a benchmark for testing the 

MPC because a similarly designed controller is currently implemented on the Moose. Like the MPC, 

the PI controller outputs a value for 𝐺𝑃𝑃 that are converted to 𝐴𝑃𝑃 and 𝐵𝑃𝑃 values at its output. The 

PI controller was tuned manually to minimize rise time, maximum overshoot, and settling time, but 

high-fidelity model nonlinearities affect its performance at different operating points. To track 𝑣𝑟𝑒𝑓 at 

high speeds, the PI must have high values of proportional and integral gain, which makes the controller 

sensitive to unmeasured disturbances. In each of the following simulated tests, an unmeasured 

disturbance was added to the loop as white noise in the measured states. The noise is intended to test 

the controller’s disturbance rejection characteristics.  

6.3.1     Ramping Velocity Simulation 

The first simulated benchmark test is the ramping velocity test. After an initial model settling time of 2 

seconds, 𝑣𝑟𝑒𝑓 is set to 0 and ramped up with a constant acceleration of 1m/s2 (3.6km/h/s). Figures 6.4 

and 6.5 depict the velocity tracking and velocity error, respectively, of the ramp simulation.  

 

Figure 6.4: Velocity tracking performance of the ramp simulation. 
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Figure 6.5: Velocity tracking error for the ramp test. 

Both the MPC and PI controllers track 𝑣𝑟𝑒𝑓 within 2.5 km/h during the entire simulation. At speeds 

below 18km/h, which is the upper threshold of the switching deadband, the MPC defaults to using its 

low gain PI controller, and tracking performance is marginally worse than the higher gain benchmark 

PI controller. This was an intentional design choice to prevent high frequency pedal actuation at low 

speeds, but the controller may be tuned for other preferred performance characteristics. After 8 seconds, 

the MPC switches to MPC control mode and smoothly tracks the 𝑣𝑟𝑒𝑓 profile; however the MPC has a 

small tracking offset error (less than 0.5km/h) at velocities greater than 80km/h. This is likely the result 

of model mismatch between the control-oriented model and high-fidelity model in the high speed 

operating range. 

 By comparison, the high gain PI controller fails to handle the white noise disturbance, so it oscillates 

with high frequency about 𝑣𝑟𝑒𝑓. The comparatively jerky behavior of the high gain PI controller is 

clearly displayed in the plots of 𝐴𝑃𝑃 and 𝐵𝑃𝑃 that are depicted in Figures 6.6 and 6.7, respectively. 
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Figure 6.6: APP control input for the ramp simulation. 

 

Figure 6.7: BPP control input for the ramp simulation. 

The MPC controller rejects disturbances well, and shows minimal oscillation of the 𝐴𝑃𝑃 control input. 

It also does not chatter between 𝐴𝑃𝑃 and 𝐵𝑃𝑃 control action. The only notable spike In the MPC 

controller’s performance is at 8 seconds, when the controller switches from PI to MPC mode. Future 
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controller modifications could be used to ensure bumpless transfer during switching from PI to MPC 

mode. Comparatively, due to its poor disturbance rejection characteristics, the high gain PI controller 

performance shows large oscillations in the 𝐴𝑃𝑃 control input. At low speeds it occasionally chatters 

between 𝐴𝑃𝑃 and 𝐵𝑃𝑃 control action. 

6.3.2     Multi-Ramp Velocity Simulation 

The second simulated benchmark test is the multi-ramp velocity test. In this test 𝑣𝑟𝑒𝑓 is ramped at 

different rates to several velocity set points. The intention of the simulation is to test the controller’s 

ability to track various accelerations and hold different velocity set points. Figures 6.8 and 6.9 depict 

the velocity tracking performance and velocity error for the multi-ramp test. 

 

Figure 6.8: Velocity tracking performance of the multi-ramp simulation. 
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Figure 6.9: Velocity tracking error for the multi-ramp simulation. 

Between 5 seconds and 75 seconds the MPC controller operates entirely in MPC mode. The tracking 

performance is smooth, and the predictive nature of the controller allows it to ramp into the hard 

acceleration and hard braking maneuvers beginning at 32 seconds and 62 seconds, respectively. Like 

the previous test, the MPC has a small offset tracking error at high speeds due to model mismatch. The 

MPC only switches back to PI mode for the low speed tracking between 75 and 93 seconds.  

Like the previous simulation the benchmark high gain PI controller displays unacceptable levels of 

oscillation in reference tracking, particularly at high speeds. Due to integral windup, the PI controller 

is slow to respond to changes in the slope of 𝑣𝑟𝑒𝑓, which results in large tracking errors at 12 seconds, 

32 seconds, and 42 seconds. Both the high gain PI and the MPC fail to track the steep negative ramp of 

𝑣𝑟𝑒𝑓 since the demanded acceleration is outside the limits of the high-fidelity vehicle model’s braking 

ability. 

The 𝐴𝑃𝑃 and 𝐵𝑃𝑃 control inputs for the multi-ramp simulation are depicted in Figures 6.10 and 

6.11. 
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Figure 6.10: APP control input for the multi-ramp simulation. 

 

Figure 6.11: BPP control input for the multi-ramp simulation. 

The MPC control action is much smoother than the high gain PI controller. The high gain PI displays 

highly jerky behavior and frequently chatters between 𝐴𝑃𝑃 and 𝐵𝑃𝑃 control action. 



 

 70 

6.3.3     Sinusoidal Velocity Simulation 

The third simulated benchmark test is the sinusoidal velocity test. In this simulation, 𝑣𝑟𝑒𝑓 follows a 

sinusoidal path through a range of speeds that are typical on city roads with light traffic. Figures 6.12 

and 6.13 depict the velocity tracking performance and velocity error for the sinusoidal test. 

 

Figure 6.12: Velocity tracking performance of the sinusoidal simulation. 
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Figure 6.13: Velocity tracking error for the sinusoidal simulation. 

After the initial 6 seconds required to reach the reference speed, the MPC tracks 𝑣𝑟𝑒𝑓 smoothly for 

the remainder of the simulation. The MPC’s tracking error never exceeds 0.5km/h, and the predictive 

quality of the controller helps it to follow changes to the slope of 𝑣𝑟𝑒𝑓. Comparatively, the high gain PI 

controller displays much larger tracking error, and high frequency oscillations persist throughout the 

simulation. Like the multi-ramp test, integral windup causes the high gain PI controller to diverge from 

the reference path at the peaks and troughs of the 𝑣𝑟𝑒𝑓 sinusoid.  

Figures 6.14 and 6.15 depict the 𝐴𝑃𝑃 and 𝐵𝑃𝑃 control inputs for the sinusoidal simulation. 
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Figure 6.14: APP control input for the sinusoidal simulation. 

 

Figure 6.15: BPP control input for the sinusoidal simulation. 

Like the previous simulations, the MPC control input is smooth and does not chatter between 𝐴𝑃𝑃 and 

𝐵𝑃𝑃. The high gain PI applies more aggressive 𝐴𝑃𝑃 and 𝐵𝑃𝑃 inputs that oscillate with high 

frequencies. 
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6.3.4     Simulation Discussion 

Comparison of the MPC and the high gain PI controller in all three benchmark simulation scenarios 

indicates that the MPC has several advantages over classical control. The only way to obtain adequate 

PI tracking performance at high speeds was to tune the controller to respond aggressively to 𝑣𝑟𝑒𝑓 

tracking error. The MPC can achieve similar or superior tracking performance over a broad range of 

velocities while also applying smoother control inputs.  

The high gain PI’s oscillating behavior and chatter between 𝐴𝑃𝑃 and 𝐵𝑃𝑃 implies that classical 

control is poorly suited to the highly nonlinear behavior of the vehicle, particularly at high speeds. The 

more conservative PI controller that is currently used by the Moose will only perform satisfactorily for 

low speed driving, and it is untested at velocities greater than 50km/h. Simulation results indicate that 

implementation of an MPC will allow the Moose to smoothly track reference velocities up to 100 km/h. 
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Chapter 7 

Full Vehicle MPC Testing 

7.1     MPC Implementation 

The Moose’s software stack communicates between modules using the Robot Operating System (ROS). 

ROS is an open-source communication structure that allows various modules and processes in a robotic 

system to send and receive messages. The modules and processes are each implemented as ROS nodes, 

and they communicate messages, such as measurements and commands, over ROS topics. ROS 

provides an excellent environment for integration, logging, and testing distributed computing systems. 

These functions make it a powerful tool for implementation of complex autonomous systems, such as 

self-driving cars. To implement the MPC into the Moose’s stack, it must be converted to a form that is 

implementable as a ROS node. 

Using the Simulink embedded Coder tool, the full MPC controller block was exported as an 

embedded real-time target (ERT) model. The model consists of a C code header and source file, as well 

as several supporting files. For integration into the Moose’s software stack, the controller code was 

restructured as a C++ class. Carlos Wang, a research engineer with the Autonomoose team, added a 

ROS node wrapper to the MPC controller and integrated it into a custom build of the Moose’s stack.  

The MPC controller node receives messages containing measurements of wheel speeds, 𝑣𝑥 , 𝜔𝑒𝑛𝑔 , 

𝑆𝑂𝐶, and the vector 𝑣𝑟𝑒𝑓 over the prediction horizon. The road slope, 𝜃, is assumed to be zero. At the 

time of testing, the Moose’s stack was not capable of extracting the 𝜔𝑒𝑛𝑔 or 𝑆𝑂𝐶 signals from the 

vehicle’s CAN bus. For initial controller testing, 𝑆𝑂𝐶 was set to a constant value of 70%, and 𝜔𝑒𝑛𝑔 

was set to 0. The implication of this is that the MPC will always assume the Moose is operating in EV 

mode. It is likely that this will affect controller performance, particularly at higher speeds. The MPC 

controller outputs signals for 𝐴𝑃𝑃 and 𝐵𝑃𝑃. 
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7.2     Vehicle Test Procedure 

For controlled proof of concept testing of the MPC, it was implemented in a controlled test scenario at 

the Region of Waterloo’s Emergency Services Training Centre test track. For all MPC tests, the 

Moose’s steering wheel was locked in neutral position, and the vehicle was driven down a straight 

section of track. Due to the size of the test track, tests were limited to approximately 250m of vehicle 

travel. 

Two of the three benchmark tests, the ramped velocity test and the sinusoidal velocity test, were 

repeated for vehicle testing. Before the start of each test run, the Moose was driven to the start of the 

straight length of track. When the supervising test engineer, Carlos Wang, provided the command for 

autonomous control to begin, the MPC controller began reading the vector 𝑣𝑟𝑒𝑓 from a time-stamped 

CSV file. Due to the limited length of track, all tests ended after 15 to 25 seconds. 

7.3     Vehicle Testing Results 

7.3.1     Ramping Velocity Vehicle Test 

The first benchmark vehicle test was the ramping velocity test. Figures 7.1 and 7.2 depict the velocity 

tracking performance and the velocity error, respectively, for the vehicle ramp test. 
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Figure 7.1: Velocity tracking performance for the vehicle ramp test. 

 

Figure 7.2: Velocity tracking error for the vehicle ramp test. 
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It is evident that during the ramp test the MPC performs satisfactorily. For the first 9.5 seconds, the 

controller operates in low gain PI mode. In PI mode the controller is tuned for smooth control 

application, so it is tolerant of some tracking error. The tracking error could be eliminated by selecting 

different gains for the PI controllers. After 9.5 seconds the controller switches to MPC mode, and the 

tracking error smoothly converges to zero. 

Figures 7.3 and 7.4 depict the 𝐴𝑃𝑃 and 𝐵𝑃𝑃 control inputs for the vehicle ramp test. 

 

Figure 7.3: APP control input for the vehicle ramp test. 
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Figure 7.4: BPP control input for the vehicle ramp test. 

The application of 𝐴𝑃𝑃 is smooth throughout the test; only one small discontinuity occurs at 9.5 

seconds where the controller switches to MPC mode. 

7.3.2     Sinusoidal Velocity Test 

The second benchmark vehicle test was the sinusoidal velocity test. Figures 7.5 and 7.6 depict the 

velocity tracking performance and velocity error for the sinusoidal test. 



 

 79 

 

Figure 7.5: Velocity tracking performance for the sinusoidal test. 

 

Figure 7.6: Velocity tracking error for the sinusoidal velocity test. 
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The MPC rapidly accelerates the vehicle up to 𝑣𝑟𝑒𝑓 and begins tracking the sinusoidal reference. The 

controller tracks well during the braking maneuver between 6 and 12 seconds, but during acceleration 

some tracking error occurs. The MPC successfully reduces tracking error back to zero by the end of the 

test. A possible cause of the tracking error can be inferred by referring to the plots of 𝐴𝑃𝑃 and 𝐵𝑃𝑃, 

depicted in Figures 7.7 and 7.8 respectively. 

 

Figure 7.7: APP control input for the sinusoidal test. 
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Figure 7.8: BPP control input for the sinusoidal test. 

During the initial acceleration up to 𝑣𝑟𝑒𝑓 and the subsequent braking maneuver, the MPC applies a 

suitable control input for velocity reference tracking. At the start of the first few seconds of the 

acceleration maneuver, from 11.5 to 15 seconds, the MPC produces an 𝐴𝑃𝑃 input that oscillates with 

low frequency; later in the acceleration maneuver this behavior is damped out. It is likely that the cost 

function weighting on Δ𝐺𝑃𝑃, which was tuned in simulation, is too large. Further tuning of this 

weighing parameter, as well as the predication and control horizons, could be used to improve the 

performance of the MPC on the Moose. It is also likely that acquiring live measurements of 𝜔𝑒𝑛𝑔 and 

𝑆𝑂𝐶 would improve the predictive qualities of the MPC, and, as a result, the tracking performance 

would improve. 
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Chapter 8 

Conclusions 

8.1     Summary 

The three primary objectives of this thesis have been successfully completed. Chapters 3, 4, and 5 

described the process of modelling and identifying parameters of high-fidelity models of the Lincoln 

MKZ hybrid powertrain and braking systems. A grey-box modelling approach utilizing a combination 

of shallow neural networks and analytical modelling was used to emulate the system behavior. The 

models were identified from empirical vehicle performance data and fully integrated with a high-

fidelity model of the vehicle dynamics. The complete model was validated by open-loop simulation.  

In Chapter 6 the high-fidelity model of the powertrain and braking was used to inform the design of 

an instantaneously linearizing MPC for longitudinal vehicle dynamics control. The viability of the MPC 

and its advantages over classical control were proven by MIL simulation of multiple velocity tracking 

scenarios. Compared to a benchmark PI controller, the MPC showed superior reference tracking 

performance and better disturbance rejection. In addition, the MPC control action was smoother than 

the PI, and it did not chatter between 𝐴𝑃𝑃 and 𝐵𝑃𝑃 control application.   

Finally, in chapter 7 a process was developed for integration of the MPC into the Moose’s 

autonomous stack. The extent of vehicle testing was limited by the length of available straight road at 

the test track. Early vehicle testing of the MPC has shown promising results, but some tracking error 

was observed. Acquisition of live measurements of 𝜔𝑒𝑛𝑔 and 𝑆𝑂𝐶 and tuning of MPC parameters will 

likely improve performance. 

8.2     Future Work 

Multiple improvements can be made to the powertrain and braking models that will improve their 

accuracy. A limitation of the models described in this thesis is that they are both modelled for 

longitudinal applications only. Neither model considers the effects of lateral dynamics on torque 

transmission, but some experimental data has shown asymmetrical distribution of torque at the front 
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wheels during lateral maneuvers. It is possible that the Lincoln MKZ has an unmodeled torque 

vectoring controller that applies asymmetrical mechanical braking to aid in lateral maneuvers. These 

effects should be considered if the lateral dynamics of the Moose are to be modelled accurately. 

The braking model of the Moose may be improved considerably if a means of isolating the 

measurements of mechanical and regenerative braking is determined. Modelling the regenerative 

behavior of the braking would eliminate the need for the virtual drivetrain clutch component, so the 

powertrain and braking models could fully integrate with one another. Modelling regenerative braking 

would also be necessary for any future modelling of the Moose’s high voltage battery. An accurate 

battery model will allow the Autonomoose team to consider fuel efficiency in the design of future local 

planners and vehicle controllers.  

The longitudinal dynamics MPC described in this thesis must undergo rigorous track testing before 

it can confidently be implemented for driving on public roads. The controller parameters should be 

tuned using a larger set of 𝑣𝑟𝑒𝑓 profiles. In addition, live measurements of 𝑆𝑂𝐶 and 𝜔𝑒𝑛𝑔 should be 

added to the controller to improve its predictive capabilities. The MPC should also be tested 

simultaneously with the Moose’s existing lateral dynamics controller to confirm that its performance is 

satisfactory through lateral maneuvers. Additional modifications to account for lateral effects may be 

required. 

A major contribution of this thesis work to the Autonomoose team was identifying a method for 

transferring controllers designed in Maple and MATLAB/Simulink to the Moose’s autonomous stack. 

Using this method it is now straightforward to prototype new vehicle controllers and transfer them over 

to the Moose’s stack for vehicle testing. There are several improvements that can be made to the 

existing MPC controller and implemented for future vehicle tests. One advantage of the existing MPC 

design is that it is possible to account for effects of measured or estimated disturbances. A state 

estimator for road slope, road conditions, drag, and other time-varying effects should be implemented 

alongside the controller, which will improve the predictions of the control-oriented model. 

Future controller design work will explore the viability of nonlinear methods for the longitudinal 

dynamics MPC. Recent development of advanced strategies for model-order reduction by other 
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members of the Motion-Research Group may facilitate the real-time implementability of nonlinear 

MPC. A more advanced MPC for control of both lateral and longitudinal dynamics should also be 

designed and implemented to eliminate the need for two independent vehicle dynamics controllers. The 

combined controller should account for the interdependence of longitudinal and lateral dynamics on 

vehicle behavior, particularly with the tire forces. By simultaneously controlling the actuation of 𝐴𝑃𝑃, 

𝐵𝑃𝑃, and steering wheel angle, the combined MPC would control all aspects of local path tracking.
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Appendix A 

Signals Measured During Vehicle Parameter Identification Testing 

Table A.1: Table of signals measured during parameter identification testing. 

Signal(s) Symbol(s) Signal Source Signal 

Measurement 

Apparatus 

Sample 

Rate (Hz) 

Wheel Speeds 𝜔𝐹𝑅 , 𝜔𝐹𝐿, 𝜔𝑅𝑅 , 𝜔𝑅𝐿 VMS WFS Vector VN1640A 

CAN Interface 
100 

Wheel Torques 𝜏𝐹𝑅 , 𝜏𝐹𝐿, 𝜏𝑅𝑅 , 𝜏𝑅𝐿 VMS WFS Vector VN1640A 

CAN Interface 
100 

Electric Motor 

Speeds 
𝜔𝑚𝑜𝑡, 𝜔𝑔𝑒𝑛 VCM II Diagnostics Vector VN1640A 

CAN Interface 
~4 

Power Source 

Torques 
𝜏𝑚𝑜𝑡, 𝜏𝑒𝑛𝑔, 𝜏𝑔𝑒𝑛 VCM II Diagnostics Vector VN1640A 

CAN Interface 
~4 

Total Desired 

Torque 
𝑇𝑑𝑠𝑑 VCM II Diagnostics Vector VN1640A 

CAN Interface 
~4 

Vehicle Speed 𝑣𝑥 OBD II Vector VN1640A 

CAN Interface 
10 

Engine Speed 𝜔𝑒𝑛𝑔 OBD II Vector VN1640A 

CAN Interface 
10 

Battery State of 

Charge 
𝑆𝑂𝐶 OBD II Vector VN1640A 

CAN Interface 
10 

Accelerator 

Pedal Position 
𝐴𝑃𝑃 OBD II Vector VN1640A 

CAN Interface 
10 

Brake Pedal 

Position 
𝐵𝑃𝑃 

Throttle-Brake 

Combination By-Wire 

Interface 

Moose’s Onboard 

Linux Computer 
50 
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Appendix B 

Double Layer Perceptron Regression Plots 

 

Figure A.1: Regression plot of the supervisory torque NN model (R=0.999). 

 

Figure A.2: Regression plot of the TCM output torque NN model (R=0.979). 
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Figure A.3: Regression plot for the front brake NN model (R=0.976). 

 

Figure A.4: Regression plot of the rear brake NN model (R=0.920). 
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Appendix C 

Longitudinal Vehicle Dynamics Model Variable and Parameter 

Definitions 

Symbol Description Value (if a parameter) Units 

𝐴𝑓 Frontal vehicle area 2.08 𝑚2 

𝐶𝑑 Coefficient of drag 0.8156 Unitless 

𝐶𝑙 Longitudinal tire stiffness 11.0 Unitless 

𝐶𝑟 Rolling resistance 

coefficient 

0.01 Unitless 

𝐹𝐷 Force of drag N/A 𝑁 

𝐹𝑟 Rolling resistance force N/A 𝑁 

𝐹𝑥 Longitudinal tire force N/A 𝑁 

𝐹𝑧 Vertical tire force N/A 𝑁 

𝑎𝑥 Longitudinal vehicle 

acceleration 

N/A 𝑚/𝑠2 

𝑙 Vehicle wheelbase 2.85 𝑚 

𝑙𝐹 Distance from front axle to 

COM 

1.32 𝑚 

𝑣𝑜𝑝 Vehicle velocity of the 

longitudinal slip operating 

point 

N/A 𝑚/𝑠 

𝜌𝑎𝑖𝑟 Air density 1.225 𝑘𝑔/𝑚3 

𝜔𝑅 Rear axle rotational 

velocity 

N/A 𝑟𝑎𝑑/𝑠 

ℎ COM height 0.531 𝑚 

𝑔 Acceleration due to 

gravity 

9.81 𝑚/𝑠2 

𝑚 Vehicle mass 2274 𝑘𝑔 

𝑟 Tire effective radius 0.347 𝑚 

𝜃 Road slope angle N/A 𝑟𝑎𝑑 

𝜎 Longitudinal wheel slip N/A Unitless 

Table A.2: List of parameters and variables used in the control-oriented longitudinal dynamics 

model, simplified from the high-fidelity vehicle dynamics model [26]. 


