
Modelling and Model Predictive Control

of Power-Split Hybrid Powertrains for

Self-Driving Vehicles

by

Bryce Hosking

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Mechanical and Mechatronics Engineering

Waterloo, Ontario, Canada, 2018

©Bryce Hosking 2018

 ii

AUTHOR'S DECLARATION

This thesis consists of material all of which I authored or co-authored: see Statement of Contributions

included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted

by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

Statement of Contributions

All modelling and controller development work contained within this thesis is my own. However, this

thesis contains some material from the following multi-author paper:

• B.A. Hosking and J. McPhee, "Powertrain Modeling and Model Predictive Longitudinal

Dynamics Control for Hybrid Electric Vehicles," in SAE World Congress, Detroit, 2018.

In addition, some simulation results and controller development work utilizes the vehicle dynamics

model described in the following thesis document:

• M. Van Gennip, "Parameter Identification and Vehicle Dynamic Modelling of an Autonomous

Vehicle," University of Waterloo, Waterloo, ON, 2018.

 iv

Abstract

Designing an autonomous vehicle system architecture requires extensive vehicle simulation prior to its

implementation on a vehicle. Simulation provides a controlled environment to test the robustness of an

autonomous architecture in a variety of driving scenarios. In any autonomous vehicle project, high-

fidelity modelling of the vehicle platform is important for accurate simulations. For power-split hybrid

electric vehicles, modelling the powertrain for autonomous applications is particularly difficult. The

mapping from accelerator and brake pedal positions to torque at the wheels can be a function of many

states. Due to this complex powertrain behavior, it is challenging to develop vehicle dynamics control

algorithms for autonomous power-split hybrid vehicles.

The 2015 Lincoln MKZ Hybrid is the selected vehicle platform of Autonomoose, the University of

Waterloo’s autonomous vehicle project. Autonomoose required high-fidelity models of the vehicle’s

power-split powertrain and braking systems, and a new longitudinal dynamics vehicle controller. In

this thesis, a grey-box approach to modelling the Lincoln MKZ’s powertrain and braking systems is

proposed. The modelling approach utilizes a combination of shallow neural networks and analytical

methods to generate a mapping from accelerator and brake pedal positions to the torque at each wheel.

Extensive road testing of the vehicle was performed to identify parameters of the powertrain and

braking models. Experimental data was measured using a vehicle measurement system and CAN bus

diagnostic signals. Model parameters were identified using optimization algorithms. The powertrain

and braking models were combined with a vehicle dynamics model to form a complete high-fidelity

model of the vehicle that was validated by open-loop simulation.

The high-fidelity models of the powertrain and braking were simplified and combined with a

longitudinal vehicle dynamics model to create a control-oriented model of the vehicle. The control-

oriented model was used to design an instantaneously linearizing model predictive controller (MPC).

The advantages of the MPC over a classical proportional-integral (PI) controller were proven in

simulation, and a framework for implementing the MPC on the vehicle was developed. The MPC was

implemented on the vehicle for track testing. Early track testing results of the MPC show superior

performance to the existing PI that could improve with additional controller parameter tuning.

 v

Acknowledgements

I would like to thank…

my supervisor, Professor John McPhee for his guidance and support throughout the course my MASc

degree. He provided me with an excellent opportunity to explore an exciting and innovative field of

engineering, which has been incredible for my professional and personal development.

my thesis readers: Professor Steven Waslander and Professor Baris Fidan, for agreeing to review my

thesis and provide valuable feedback on my work.

all members of the Motion Research Group (MoRG), but particularly Mohit Batra, Matthew Van

Gennip, and Amer Keblawi for their help in my research pursuits.

Maplesoft, the Natural Sciences and Engineering Research Council of Canada, and the Ontario

Government for providing funding for this project.

all the friends I made here at UW that have helped me feel at home in Waterloo.

my parents, Paula and Derek, and sister, Amy, for all their support and encouragement along the

way.

And Brea, who has been supportive of me since day one of my MASc degree.

 vi

Dedication

To my Family

 vii

Table of Contents

AUTHOR'S DECLARATION ... ii

Statement of Contributions .. iii

Abstract ... iv

Acknowledgements .. v

Dedication ... vi

Table of Contents ... vii

List of Figures .. x

List of Tables .. xii

Chapter 1 Introduction .. 1

1.1 Overview of Self-Driving Vehicle Architecture .. 1

1.2 Autonomoose Project ... 2

1.3 Objectives ... 3

1.4 Thesis Organization .. 4

Chapter 2 Background and Literature Review ... 6

2.1 Feedforward Neural Networks ... 6

2.2 Model Predictive Control ... 10

2.3 Power-Split Hybrid Powertrain Modelling... 12

2.4 Longitudinal Vehicle Dynamics Control .. 13

Chapter 3 Power-Split Hybrid Powertrain and Brake Modelling ... 16

3.1 Lincoln MKZ Powertrain Architecture .. 16

3.2 Powertrain Subsystem Modelling ... 17

3.2.1 Supervisory Torque Controller .. 17

3.2.2 TCM and Power Source Dynamics ... 18

3.2.3 Drivetrain Dynamics ... 22

 viii

3.3 Brake Modelling .. 26

3.4 Powertrain and Brake Model Integration ... 28

3.5 Interaction with Vehicle Dynamics Model .. 30

Chapter 4 Experimentation .. 31

4.1 Apparatus ... 31

4.1.1 Vehicle Measurement System ... 31

4.1.2 Vector CANalyzer and Diagnostics .. 33

4.1.3 Brake Pedal Position Data Acquisition ... 34

4.2 Vehicle Testing Procedure ... 35

Chapter 5 Parameter Identification .. 37

5.1 Drivetrain Parameters .. 37

5.2 Neural Network Training ... 40

5.2.1 Supervisory Torque Controller ... 41

5.2.2 TCM Mode Selection Mapping .. 42

5.2.3 Output Torque Model ... 44

5.2.4 Braking Torque Model .. 45

5.3 Full Model Validation .. 49

Chapter 6 MPC for Longitudinal Vehicle Dynamics ... 52

6.1 Control-Oriented Model ... 52

6.2 Linearizing MPC Algorithm .. 60

6.3 Controller Simulation Results .. 64

6.3.1 Ramping Velocity Simulation ... 64

 ix

6.3.2 Multi-Ramp Velocity Simulation .. 67

6.3.3 Sinusoidal Velocity Simulation ... 70

6.3.4 Simulation Discussion ... 73

Chapter 7 Full Vehicle MPC Testing ... 74

7.1 MPC Implementation ... 74

7.2 Vehicle Test Procedure... 75

7.3 Vehicle Testing Results .. 75

7.3.1 Ramping Velocity Vehicle Test .. 75

7.3.2 Sinusoidal Velocity Test ... 78

Chapter 8 Conclusions .. 82

8.1 Summary .. 82

8.2 Future Work ... 82

References .. 86

Appendices ... 89

Appendix A Signals Measured During Vehicle Parameter Identification Testing 90

Appendix B Double Layer Perceptron Regression Plots .. 91

Appendix C Longitudinal Vehicle Dynamics Model Variable and Parameter Definitions 93

 x

List of Figures

Figure 1.1: The Moose, UW's autonomous vehicle platform, depicted during road testing.2

Figure 2.1: A generic double layer perceptron NN with three inputs, four hidden neurons, and two

outputs. ..7

Figure 2.2: A generic softmax output double layer classifier NN with three inputs, four hidden neurons,

and two outputs. ..9

Figure 2.3: MPC control scheme for a SISO system [10]. ..11

Figure 3.1: The Lincoln MKZ Hybrid powertrain control architecture. ...16

Figure 3.2: Snapshot of experimental data showing the power-split powertrain switching between

operating modes. ...20

Figure 3.3: Diagram of the Lincoln MKZ Hybrid's power-split drivetrain configuration.23

Figure 3.4: Diagram of the braking model. ...27

Figure 3.5: Drivetrain diagram for braking maneuvers. ...29

Figure 4.1: The VMS sensor packaging mounted at the front left wheel of the Moose.32

Figure 4.2: Onboard display of the Moose's computer during road testing. ...34

Figure 4.3: Speed profile data for braking maneuvers with various BPP values (top left), laps of the

Waterloo regional test track (top right), Hard accelerations from various starting speeds (bottom left),

and public driving on a road with traffic lights (bottom right). ..36

Figure 5.1: Tornado plot showing correlations between parameters and model performance.39

Figure 5.2: Equilibrium points of the supervisory torque controller NN. ...42

Figure 5.3: TCM engine-start mode selection model confusion matrix. ..43

Figure 5.4: TCM engine-on mode selection model confusion matrix. ...44

Figure 5.5: Rear brake switch model confusion matrix. ...46

Figure 5.6: Braking map of the combined front and rear axle torques. ..47

Figure 5.7: Error Histogram of the total braking torque model. ...48

Figure 5.8: Snapshot 1 of Full Vehicle Model Validation. ...49

Figure 5.9: Snapshot 2 of Full Vehicle Model Validation. ...50

Figure 5.10: Snapshot 3 of Full Vehicle Model Validation. ...50

Figure 6.1: Fit of the control-oriented Braking Torque Map to the experimental data.54

Figure 6.2: Simplified longitudinal dynamics vehicle model [31]. ..56

Figure 6.3: Block diagram of the longitudinal dynamics MPC. ...61

 xi

Figure 6.4: Velocity tracking performance of the ramp simulation. .. 64

Figure 6.5: Velocity tracking error for the ramp test. ... 65

Figure 6.6: APP control input for the ramp simulation. ... 66

Figure 6.7: BPP control input for the ramp simulation. ... 66

Figure 6.8: Velocity tracking performance of the multi-ramp simulation. ... 67

Figure 6.9: Velocity tracking error for the multi-ramp simulation. .. 68

Figure 6.10: APP control input for the multi-ramp simulation. ... 69

Figure 6.11: BPP control input for the multi-ramp simulation. .. 69

Figure 6.12: Velocity tracking performance of the sinusoidal simulation. .. 70

Figure 6.13: Velocity tracking error for the sinusoidal simulation. ... 71

Figure 6.14: APP control input for the sinusoidal simulation. ... 72

Figure 6.15: BPP control input for the sinusoidal simulation. ... 72

Figure 7.1: Velocity tracking performance for the vehicle ramp test. .. 76

Figure 7.2: Velocity tracking error for the vehicle ramp test. .. 76

Figure 7.3: APP control input for the vehicle ramp test. .. 77

Figure 7.4: BPP control input for the vehicle ramp test. .. 78

Figure 7.5: Velocity tracking performance for the sinusoidal test. .. 79

Figure 7.6: Velocity tracking error for the sinusoidal velocity test. ... 79

Figure 7.7: APP control input for the sinusoidal test. .. 80

Figure 7.8: BPP control input for the sinusoidal test. ... 81

Figure A.1: Regression plot of the supervisory torque NN model (R=0.999). 91

Figure A.2: Regression plot of the TCM output torque NN model (R=0.979). 91

Figure A.3: Regression plot for the front brake NN model (R=0.976). ... 92

Figure A.4: Regression plot of the rear brake NN model (R=0.920). .. 92

 xii

 xiii

List of Tables

Table 3.1: Summary of drivetrain lumped efficiency terms. .. 26

Table 5.1: Effective drivetrain gear ratios. ... 37

Table 5.2: Approximated lumped rotational inertia parameters of the drivetrain model. 40

Table 6.1: List of tuned MPC parameter values. .. 63

Table A.1: Table of signals measured during parameter identification testing. 90

Table A.2: List of parameters and variables used in the control-oriented longitudinal dynamics model.

 .. 93

 1

Chapter 1

Introduction

1.1 Overview of Self-Driving Vehicle Architecture

For the purposes of this thesis a self-driving or autonomous car is defined as any car that meets the SAE

standard of level 3 automation, conditional automation, or higher. This is defined as any vehicle where

an autonomous system monitors the driving environment, and in at least some driving modes the system

is capable of controlling all aspects of dynamic driving, subject to fallback on a human driver for certain

interventions [1]. Development of self-driving cars typically involves the design of a complex system

architecture composed of five fundamental subsystems: perception, localization, behavior and path

planning, vehicle control, and system management [2] [3].

The perception subsystem uses available sensors, such as cameras or Light Detection and Ranging

(LIDAR) sensors, to understand and map the vehicle’s surrounding environment. This process includes

object tracking, road mapping, and interpretation of traffic signage. The localization subsystem uses

Global Positioning System (GPS) and Inertial Measurement Unit (IMU) sensors, in addition to the

perception sensors, to estimate the pose of the car within its environment. A common problem in

autonomous vehicle development is the simultaneous localization and mapping of a vehicle within its

environment [4]. To address this problem, perception and localization are frequently combined into a

process that fuses data from both sets of sensors.

The planning subsystem uses the vehicle’s estimated states and information on the car’s environment

to determine a desired path of travel for the vehicle. Planning includes both high-level route planning

from the road map and local behavior planning at the vehicle level. The behavior planner outputs a

local path plan over a known time horizon to the vehicle controller. The vehicle control subsystem

attempts to track the local path plan by actuating vehicle control inputs, which include the acceleration

command, braking command, and a steering command. System management is a supervisory

subsystem that has a variety of functions including subsystem fault detection, sensor monitoring, data

logging, and human machine interface [3].

 2

1.2 Autonomoose Project

Autonomoose is a project within the University of Waterloo (UW) that is focused on the development

of a fully autonomous car for driving on Canadian roads. The vehicle platform selected for the project

is a 2015 Lincoln MKZ Hybrid (referred to as the “Moose”) that has been outfitted for drive-by-wire

control by the company AutonomousStuff [5] in collaboration with Dataspeed Inc [6]. All subsequent

work on hardware selection, software development, integration, and testing has been performed by a

multidisciplinary team of UW faculty and students. In September of 2016 the Moose became the first

vehicle platform to be approved for autonomous driving on Canadian roads. Figure 1 depicts a photo

of the Moose during road testing.

Figure 1.1: The Moose, UW's autonomous vehicle platform, depicted during road testing.

The primary research interest of Autonomoose is solving self-driving vehicle development problems

that are unique to the conditions of Canada. Unlike more common locales for autonomous vehicle road

testing, such as Southern California, Canadian roadways are susceptible to snow, freezing rain, fog,

 3

and other adverse driving conditions. The project also has research interests in autonomous vehicle fuel

economy, robust system architecture design, and other topics.

The vehicle modelling and controls team focuses on development of a high-fidelity model of the

Moose and path-tracking controller development. The fully integrated vehicle model must include

experimentally verified dynamic models of the suspension, steering, tires, and powertrain. The model

will be used by the simulation team to test autonomous system architecture on a variety of autonomous

driving scenarios prior to real vehicle implementation. The high-fidelity vehicle model will also be used

to develop lower fidelity control-oriented models for vehicle path-tracking controller design.

1.3 Objectives

The content of this thesis focuses on modelling and controls applications for the Lincoln MKZ’s hybrid

electric powertrain. The Autonomoose project requires an accurate mapping from the accelerator pedal

position (𝐴𝑃𝑃) and brake pedal position (𝐵𝑃𝑃) to the torque applied at the vehicle’s wheels. 𝐴𝑃𝑃 and

𝐵𝑃𝑃 are two of the control inputs, in addition to steering wheel angle, that are used to control the

Moose’s vehicle dynamics. Due to the complexity of the vehicle’s power-split powertrain system, the

𝐴𝑃𝑃 mapping must include modelling of the powertrain control system as well as the drivetrain

dynamics. The Autonomoose Project has no association with the Ford Motor Company©, so a priori

knowledge of the system is limited. A major contribution of this thesis is the development of a suitable

method of modelling the complete powertrain system. Identification of model parameters requires

extensive experimental vehicle testing and data acquisition.

Based on performance limitations of the current vehicle dynamics control system for the Lincoln MKZ,

the Autonomoose project requires the development of a better longitudinal velocity tracking controller.

The second main objective of this thesis work is to utilize the identified APP and BPP mapping models

and other vehicle dynamics parameters to develop a longitudinal dynamics controller for the Moose.

The controller must initially be tested in simulation on a high-fidelity model of the vehicle before being

implemented on the actual vehicle. Completion of this objective solves an important controls problem

for the Autonomoose project, but in addition it will create a procedural framework for development and

implementation of future model-based vehicle dynamics controllers on the Moose.

 4

1.4 Thesis Organization

Chapter 1 of this thesis begins with a brief description of self-driving vehicle architecture. UW’s

autonomous vehicle project, Autonomoose, is introduced, and the goals of the project are discussed.

The objectives of the work contained within this thesis are then explained.

Chapter 2 discusses some required background information for the reader’s consideration. Shallow

feedforward neural networks are introduced. Two types of neural network that are relevant to this work

are explained in detail. The concept of model predictive control is introduced, and the fundamentals of

linear model predictive control are explained. Two literature reviews are also discussed. The first is a

review of current methods for modelling power-split hybrid powertrains such as the one used in the

Lincoln MKZ. The second review is of applications and methods for longitudinal dynamics control of

vehicles explored in literature.

Chapter 3 presents the proposed method of modelling the powertrain and brakes of the Lincoln MKZ.

A grey-box modelling approach that separates the power-split powertrain into three subsystems is

introduced. The modelling methods used in each powertrain subsystem are explained in detail. The

model of the front and rear brakes is introduced, and a method of integrating it with the powertrain

model is proposed. The interface of the brake and powertrain models with a vehicle dynamics model

to form a complete high-fidelity vehicle model is briefly explained.

Chapter 4 discusses the experimentation process used to gather data for model parameter

identification. Details of two vehicle testing apparatus, the A&D Technology Vehicle Measurement

System and the Vector Canalyzer Tool, are provided. An outline of vehicle tests used for parameter

identification was provided.

Chapter 5 discusses the methods and results of parameter identification for the models presented in

chapter 3. Neural network training algorithms were used to identify the weighting and offset parameters

of neural network subsystem models. The physical parameters of the drivetrain were identified by

multiple methods that are described in detail.

 5

Chapter 6 presents the design of an instantaneously linearizing model predictive controller for

longitudinal velocity tracking. The powertrain and braking models were adapted to a control-oriented

model of the longitudinal vehicle dynamics. The velocity tracking controller was tested in multiple

driving simulation scenarios against a benchmark PID controller. Simulation results and the advantages

of the model predictive controller over the classical PID controller are discussed.

Chapter 7 outlines the process of how the model predictive controller was implemented on the Moose

by integrating it with the existing autonomous stack. The process required the controller to be converted

to a Robot Operating System (ROS) node. The procedure for implementing and testing the control is

explained, and test results are discussed in detail.

Chapter 8 presents the conclusions of this thesis, and its major contributions to the Autonomoose

project are summarized. Recommendations for future work are also discussed. These include possible

improvements to the model’s level of fidelity and some proposed methods for improving or extending

the vehicle dynamics controller.

 6

Chapter 2

Background and Literature Review

2.1 Feedforward Neural Networks

Artificial neural networks (NNs) were originally conceived as a means of modelling the input-output

functionality of complex functions and systems. The structure of NNs was inspired by the behavior of

the human brain. Much of the brain is composed of a system of neurons that are connected in a web-

like structure by synapses. Decision-making within the brain is performed by the transference of

electrical signals along these synapses. When a neuron receives a signal from a connected synapse, it

will perform a decision-making process before transmitting an electrical signal along different synapses

to other neurons.

Shallow feedforward NNs were some of the first artificial NNs to be devised. A fixed number of

input signals are used by the network to calculate a fixed number of output signals. The synapses are

modelled as fixed gain terms applied to individual signals, and the neurons are modelled with known

nonlinear functions, which are called activation functions. As opposed to the complex web of neurons

in the brain, shallow feedforward NNs typically include only one hidden layer with a preselected

number of neurons and a unidirectional flow of information. One of the most common forms of NN is

the double layer perceptron. An example layout of a three input, four hidden neuron, two output double

layer perceptron is depicted in Figure 2.1, but the procedure may be generalized to a network of 𝑛𝑥

inputs, 𝑛𝑛 hidden neurons, and 𝑛𝑦 outputs.

 7

Figure 2.1: A generic double layer perceptron NN with three inputs, four hidden neurons, and

two outputs.

As depicted in Figure 2.1, at the input to each hidden neuron, 𝑗, the values of each input signal, 𝑥𝑖,

are each scaled by an input gain term 𝑤𝑗,𝑖
1 . The scaled input terms and a constant offset term 𝑏𝑗

1 are

added together, and a nonlinear function 𝑓𝑗 is applied to calculate the neuron’s output. One of the most

common choices for the nonlinear function is a sigmoid. The hidden neuron passes its output to the

linear layer of the NN. At each linear neuron, 𝑘, the output of each hidden layer neuron, 𝑗, is scaled by

an output gain term 𝑤𝑘,𝑗
2 . The scaled hidden neuron outputs and a constant term 𝑏𝑘

2 are added together

to calculate each NN output 𝑦𝑘. The generalized equation of a double layer perceptron NN is

represented by Equation 1.1:

𝑌 = 𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2 (1.1)

 8

where 𝑋 is a column vector of 𝑛𝑥 inputs, 𝑌 is a column vector 𝑛𝑦 outputs, 𝑊1 is a matrix of 𝑛𝑛 × 𝑛𝑥

parameter terms, 𝑊2 is a matrix of 𝑛𝑦 × 𝑛𝑛 parameter terms, 𝐵1 is a column vector of 𝑛𝑛 parameter

terms, and 𝐵2 is a column vector of 𝑛𝑦 parameter terms. The function 𝑆𝑖𝑔 is defined by Equation 1.2:

𝑆𝑖𝑔(𝑈) =

[

1

1+𝑒𝑢1

1

1+𝑒𝑢2

⋮
1

1+𝑒𝑢𝑛]

 (1.2)

Early research in the field of NNs mathematically proved that double layer feedforward NN, such as

the double layer perceptron, are universal approximators of nonlinear functions [7].

A second type of feedforward NN that is pertinent to the content of this thesis is a double layer

classifier NN. These types of NNs attempt to classify the sets of inputs into target categories. For

example parameters such as weight, number of seats, and engine size could be used to guess the class

of car (sedan, coup, etc.). An example layout of a three input, four hidden neuron, two output double

layer classifier is depicted in Figure 2.2, but the procedure may be generalized to a system of 𝑛𝑥 inputs,

𝑛𝑛 hidden neurons and 𝑛𝑦 outputs.

 9

Figure 2.2: A generic softmax output double layer classifier NN with three inputs, four hidden

neurons, and two outputs.

As depicted in Figure 2.2, The classifier NN has a similar form to the double layer perceptron. The

difference is that the linear layer is replaced with a classifier layer. Each neuron of the classifier layer

uses a softmax function that calculates the probability of a corresponding classification being true. The

output with the highest value corresponds to the classification that the network identifies as most likely

to be the true classification. The number of outputs 𝑛𝑦 must be equal to the number of possible

classifications. The generalized equation of a softmax classification NN is represented by Equation 1.3:

𝑌 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2) (1.3)

where 𝑋 is a column vector of 𝑛𝑥 inputs, 𝑌 is a column vector 𝑛𝑦 outputs, 𝑊1 is a matrix of 𝑛𝑛 × 𝑛𝑥

parameter terms, 𝑊2 is a matrix of 𝑛𝑦 × 𝑛𝑛 parameter terms, 𝐵1 is a column vector of 𝑛𝑛 parameter

 10

terms, and 𝐵2 is a column vector of 𝑛𝑦 parameter terms. the function 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 is defined by Equation

1.4:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑈) =

[

𝑒𝑢1

∑ 𝑒𝑢𝑛
𝑛

𝑖=1

𝑒𝑢2

∑ 𝑒𝑢𝑛
𝑛

𝑖=1

⋮
𝑒𝑢𝑛

∑ 𝑒𝑢𝑛
𝑛

𝑖=1]

 (1.4)

It is clear from Equation 1.4 that the sum of the output terms of a softmax function is equal to 1, which

corresponds to the full range of classification probabilities.

The weighting parameters, 𝑊1 and 𝑊2, and the offset parameters, 𝐵1 and 𝐵2, of shallow

feedforward NNs must be identified from a training data set. Experimental measurements of inputs and

their corresponding outputs must be available, and the accuracy of the training is dependent on the size

of the data set. 𝑛𝑦 must be suitably selected to model the behavior of the subsystem without overfitting

the experimental data. Typically, network training is performed using a backpropagation-based

algorithm. Backpropagation determines the gradient of the tunable parameters with respect to a

predefined error function, and it is combined with a gradient-based optimizer, such as damped least-

squares, to determine a local minima of the error function [8].

2.2 Model Predictive Control

Model predictive control (MPC) is an advanced controls method that is typically used for complex

dynamical systems. MPC uses a discretized control-oriented model of plant dynamics that predicts how

changes to the control input will affect the outputs of the system. The controller calculates the control

action by solving an online optimization problem at each time step [9]. Figure 2.3 depicts a visualization

of an MPC scheme for a single-input single-output (SISO) plant.

 11

Figure 2.3: MPC control scheme for a SISO system [10].

As depicted in Figure 2.3, at each time step, 𝑘, a desired reference trajectory for the plant output is

provided over a finite time horizon of 𝑝 time steps. The optimization algorithm determines an optimal

sequence of control inputs, 𝑢, for the predicted plant output to track the reference trajectory. At each

time step, 𝑘, only the first control input is applied. The optimization routine is repeated at each time

step.

The primary means of tuning an MPC controller is in the selection of function to be optimized,

referred to as the objective function. The objective function may include terms for tracking error of the

plant output, magnitude of control action applied, rate of change of control action, and other terms

related to plant states. Equation 1.5 defines a generic objective function for a multi-input multi-output

system:

𝐽 = ∑
𝑖=𝑘+1

𝑘+𝑝

𝐹(𝑒1(𝑖), 𝑒2(𝑖),… 𝑒𝑛(𝑖)) + ∑
𝑗=𝑘

𝑘+𝑝−1

𝐺(𝑢1(𝑗), Δ𝑢1(𝑗), 𝑢2(𝑗), Δ𝑢2(𝑗),…𝑢𝑚(𝑗), Δ𝑢𝑚(𝑗)) (1.5)

 12

where 𝑒 is the error between reference state, 𝑥𝑟𝑒𝑓, and actual state, 𝑥. Δ𝑢 represents the change in 𝑢

between two time steps. Typically the objective function is defined such that its convexity is guaranteed

over the feasible region of the system. Constraints can also be applied to the controller such that the

boundaries of terms 𝑢, Δ𝑢, or 𝑥 are limited to a given solution space. The ability to handle constraints

is an important advantage of MPCs because real world dynamics often impose soft or hard constraints

on performance. For example, there is a maximum torque that any engine is capable of outputting, and

a controller should not demand a torque that is greater than this value.

The primary problem for implementation of an MPC is ensuring that the algorithm can be computed

at a faster than real-time speed on control hardware. If the computation of the control input is slower

than real-time, then the controller will not be able to keep up with real system dynamics. A common

method of attaining real-time performance is linearization of the control-oriented model. If the control-

oriented model is approximated as a linear system, the objective function is convex, and the constraints

are linear, then the optimization problem may be solved by a quadratic programming (QP) solver

algorithm [9]. The ability to implement the MPC optimization as a QP problem does not guarantee real-

time implementation, but generally reduces computation time significantly compared to nonlinear

optimization problems.

2.3 Power-Split Hybrid Powertrain Modelling

The introduction of hybrid electric vehicles (HEVs) to the automobile industry has been a significant

part of a larger push for ‘green’ transportation options. HEVs combine the advantages of internal

combustion vehicles and electric vehicles by integrating both power sources into a single powertrain

system. One of the most common forms of HEV available for purchase in the modern consumer vehicle

market is the power-split HEV. The Toyota Prius, Ford Focus Hybrid, and Lincoln MKZ Hybrid are

all examples of power-split HEVs. The powertrain of power-split HEVs are designed such that they

can switch powertrain operating modes to behave similarly to a pure electric vehicle, a series hybrid,

or a parallel hybrid.

The versatility of power-split powertrains makes them significantly more complex than the

powertrains of internal combustion vehicles, electric vehicles, or series and parallel HEVs. As a result,

 13

modelling the dynamics of power-split powertrains for the purposes of vehicle dynamics control or

energy management control can be challenging. Previous work in the literature has modelled power-

split powertrains primarily using analytical models of the engine, electric motors, battery, and

drivetrain. Analytical modelling has proved to be a robust method for simulating power-split

powertrains, but such approaches have all required significant a priori knowledge of the powertrain

control architecture of the vehicle [11] [12]. In [13] Syed et al. derives an analytical approach to

modelling the dynamics of a Ford Escape Hybrid that separately models the power sources, driveline,

and braking. Some transient behavior is captured by empirically determined transfer functions. This

method generated good simulation results, but the model treated desired driveline torque from each

power source and braking torque at each disc brake as inputs to the system. Ford provided Syed et al.

with a model of the vehicle’s powertrain control module that computes the required 𝐴𝑃𝑃 and 𝐵𝑃𝑃

commands from desired torques [13]. Liu et al. proposed an analytical modelling approach for a Toyota

Prius in [14], but bypassed the problem of modelling the vehicle’s powertrain control module by

replacing it with a custom rule-based controller. Liu extends this modelling approach for optimal

control applications in [15]. No analytical modelling approach in literature has included the powertrain

control module as a part of its system identification. Other approaches to modelling of power-split

powertrains have relied heavily on experimentally determined maps of individual component

performance. In [16] the authors describe a semi-empirical modelling approach for a Toyota Prius that

utilized efficiency maps of the engine, motors, and the battery. Empirical approaches result in accurate

models of system performance, but they require powertrain disassembly and extensive testing of

individual components.

2.4 Longitudinal Vehicle Dynamics Control

Designing a suitable longitudinal vehicle dynamics control algorithm is a common requirement for both

autonomous and semi-autonomous vehicles. Many modern production vehicles apply a longitudinal

dynamics controller for adaptive cruise control (ACC) systems. ACC systems on production cars

typically utilize radar, LIDAR, or cameras to measure the distance and relative velocity to the vehicle

in front of the car during highway driving. Depending on the measured distance and velocity, an

acceleration or braking command is used to maintain a minimum following distance. Development of

 14

longitudinal vehicle dynamics control for autonomous driving is a more generalized form of the ACC

problem where for any given time a desired velocity trajectory over a future time horizon is prescribed

by the autonomous stack’s local planner. Additional controller design considerations include the effects

of vehicle steer angle on vehicle dynamics and the feasibility of the desired trajectory.

In addition to classical methods, numerous controller designs have been explored in literature for

both ACC and autonomous longitudinal dynamics control. Ganji et al. proposes an ACC algorithm for

a hybrid vehicle based on sliding mode control [17]. Moon et al. proposed a rule-based system that

swaps between cruise control modes depending on driving situations [18]. Depending on whether the

vehicle is in a normal driving or collision avoidance scenario, the controller will switch between linear

quadratic control and a nonlinear method, respectively. Although many successful methods of advanced

controls for both ACC and autonomous vehicle control have been developed, MPC has become the

most frequently investigated method in literature. Both linear and nonlinear MPC has proven to be a

particularly promising method for longitudinal vehicle control for three primary reasons: the desired

trajectory of vehicle speed over a finite time horizon is usually known, the fundamental equations

governing longitudinal vehicle dynamics are well understood, and there is usually an established set of

constraints on control inputs and system states.

Controllers designed for traditional internal combustion (IC) engine vehicles or pure electric vehicles

have typically assumed that a simple mapping from accelerator pedal position to wheel torque exists.

Batra et al. proposed a non-linear MPC for anti-jerk cruise control of a Toyota Rav4 EV [19]. The paper

primarily addresses the issue of half-shaft oscillations in electric vehicles while assuming a linear

mapping from an input desired torque to torque at the wheels. In [20] Corona and Schumer propose a

piecewise affine system MPC approach for ACC in an IC engine Smart car. The relationship between

engine throttle and engine torque is modelled by a simple mapping for each gear. Li et al. presented an

ACC design for a heavy-duty truck that highlighted the benefits of MPC by managing multiple

objectives: ensuring that tracking error of a reference vehicle following distance converges to zero,

ensuring ride comfort by limiting vehicle acceleration and jerk, and preservation of vehicle fuel

economy [21]. In [22] the controller was implemented and experimentally validated on a test vehicle.

The design employs an approach that separates the controller into two subsystems. A high-level linear

 15

MPC prescribes a desired vehicle acceleration while a low-level controller handles the powertrain

nonlinearities to select suitable values for throttle and brake inputs. It is straightforward to implement

this approach on ICE or electric powertrain configurations, but handling of the powertrain dynamics is

a more complex problem for power-split hybrid vehicles.

Most publications on designing longitudinal dynamics controllers for power-split hybrid vehicles

have focused on optimizing fuel efficiency by designing custom powertrain control modules. Vajedi

and Azad proposed a nonlinear MPC approach to design an ecological ACC (eco-ACC) for a Toyota

Prius [23]. The eco-ACC utilizes an onboard map of upcoming road path and slope information to

optimize demanded wheel torque over the prediction horizon, and the demanded torque is inputted

directly to a custom-designed energy management system. Borhan et al. proposes a linearizing MPC

strategy for tracking reference velocity and minimizing fuel consumption by controlling the speed and

output torque of the engine [24]. In all previous literature, an accurate model of the hybrid powertrain

control module is either provided by the OEM or is designed by the authors specifically for the relevant

application. No methods for retrofitting a longitudinal dynamics controller to a power-split hybrid

vehicle’s existing powertrain control system have been explored.

 16

Chapter 3

Power-Split Hybrid Powertrain and Brake Modelling

3.1 Lincoln MKZ Powertrain Architecture

The Lincoln MKZ is equipped with the Ford Motor Company© HF-35 power-split powertrain system

that is controlled by a complex and proprietary hybrid energy management system. Like other power-

split hybrids, the system includes an IC engine and two sources of electric power conversion, the

traction motor and the generator. For modelling purposes, the powertrain system is divided into three

primary subsystems. Certain elements of the drivetrain were identified using MATLAB/Simulink

toolboxes, but the complete powertrain model was assembled in the acausal modelling environment,

MapleSim. Figure 3.1 depicts a diagram of the powertrain control architecture.

Figure 3.1: The Lincoln MKZ Hybrid powertrain control architecture.

The diagram in Figure 3.1 accounts for the effects of only one input to the system, 𝐴𝑃𝑃, on powertrain

dynamics. As an aside, the powertrain system also responds to the gear selection (Park, Reverse,

Neutral, Drive, or Low) and the brake pedal position (𝐵𝑃𝑃) input. For the application discussed in this

thesis, the only relevant selection of gear is Drive. For reasons that are discussed later in this chapter,

the effects of 𝐵𝑃𝑃 on powertrain dynamics could not be modelled. A separate braking model that is

decoupled from the powertrain dynamics is discussed in Section 3.3.

 17

The supervisory torque controller maps 𝐴𝑃𝑃, expressed as a range of 0 to 100%, to a desired total

output torque at the wheels, 𝑇𝑑𝑠𝑑. Since total available torque typically depends on the speed of the

vehicle, 𝑣𝑥, it is also an input to the subsystem. Ford did not provide a model of the 𝑇𝑑𝑠𝑑 mapping.

The torque control module (TCM) and power source dynamics compose the second subsystem. The

TCM receives 𝑇𝑑𝑠𝑑 from the supervisory torque controller and takes measurements of battery state of

charge (SOC), and rotational speeds of the traction motor, 𝜔𝑚𝑜𝑡, and engine, 𝜔𝑒𝑛𝑔. The TCM then uses

a proprietary Ford decision-making algorithm to determine desired torques for each of the three power

sources. The desired torques, 𝜏𝑒𝑛𝑔𝑑𝑠𝑑
, 𝜏𝑚𝑜𝑡𝑑𝑠𝑑

, and 𝜏𝑔𝑒𝑛𝑑𝑠𝑑
, are inputted to their local control modules,

and unknown internal dynamics determine the actual torques, 𝜏𝑒𝑛𝑔, 𝜏𝑚𝑜𝑡, and 𝜏𝑔𝑒𝑛.

The final subsystem is composed of the drivetrain and its interface with vehicle dynamics model.

The output shafts of the engine, motor, and generator transfer torques to the drivetrain. Torque flows

through the drivetrain and is outputted as torques at the front right wheel, 𝜏𝐹𝑅𝑤ℎ, and front left wheel,

𝜏𝐹𝐿𝑤ℎ. At the start of this project the layout of the drivetrain was known, but none of the kinematic or

dynamic parameters were provided by Ford.

3.2 Powertrain Subsystem Modelling

As discussed in Section 3.1, at the beginning of this project there was limited a priori knowledge of the

Lincoln MKZ’s powertrain system. Many of the components, such as the supervisory controller and

the TCM, contained a completely opaque control logic. To address these components of the powertrain,

a grey-box modelling approach was proposed. Portions of the system where only inputs and outputs

can be measured were modelled using NNs, while portions of the system with well-understood

components were modelled using analytical approaches.

3.2.1 Supervisory Torque Controller

The Supervisory Torque Controller determines 𝑇𝑑𝑠𝑑 as a function of 𝐴𝑃𝑃 and 𝑣𝑥. Observation of

experimental data for 𝑇𝑑𝑠𝑑 also indicated that the supervisory controller implemented some form of

transfer function to smooth the controller’s performance. This observation is supported by a 2009 patent

 18

owned by Ford outlining a proposed supervisory controller for implementation on future vehicles [25].

The selected approach for modelling this controller is a double layer perceptron NN with time-delayed

feedback of the output parameter, 𝑇𝑑𝑠𝑑, at a time step of 0.05 seconds. The time step was selected based

on the available sample rate of experimental data. At any given time step, 𝑘, 𝑇𝑑𝑠𝑑𝑘
 is defined as a

function of 𝐴𝑃𝑃, 𝑣𝑥, and 𝑇𝑑𝑠𝑑𝑘−1
. A modified form of Equation 1.1, written as Equation 3.1, defines

the supervisory controller model:

𝑇𝑑𝑠𝑑𝑘
= 𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2 (3.1)

where 𝑋 is a 3 × 1 column vector of the inputs 𝐴𝑃𝑃, 𝑣𝑥, and 𝑇𝑑𝑠𝑑𝑘−1
. Saturation limits on the range of

possible 𝑇𝑑𝑠𝑑 were applied to the output of the NN to ensure its behavior is always within the physical

limits of the real supervisory controller. Section 5.2.1 describes details of parameter identification for

the supervisor controller.

3.2.2 TCM and Power Source Dynamics

For the purposes of the model, the TCM, traction motor dynamics, generator dynamics, and engine

dynamics were lumped into a single subsystem. This choice is due to the interdependent behavior of

each of these portions of the control system. The high voltage battery distributes power to the generator

and traction motor; however, the high voltage battery also regulates charge of the vehicle’s low voltage

battery, which in turn powers onboard electronics, air conditioning, and other vehicle systems. Because

of these factors, SOC of the high voltage battery depends on several factors that are outside the scope

of this work. Battery SOC is hence treated as a random and measurable disturbance variable for the

TCM and power source dynamics subsystem.

The TCM of the power-split hybrid powertrain is more complex than traditional internal combustion

or fully electric vehicles because there are multiple modes of operation to consider. Each operating

mode adjusts how desired torque distributes to the power sources and alters the kinematic constraints

of the drivetrain. In the case of the Lincoln MKZ’s power-split powertrain, discrete modes of operation

were identified by observation of experimental data, referencing the model of a previous generation of

 19

the powertrain described in [13], and referencing Ford’s hybrid electric control software

documentation. The following modes were identified for forward driving:

1. EV mode: This mode engages when torque demand is sufficiently low and battery SOC is

sufficiently high for the engine to remain off. In this mode, the engine shaft is locked in place.

2. Engine cranking: The TCM has determined that power output from the engine is required, and

the engine shaft is unlocked. Positive torque is produced by the generator to accelerate the

engine up to its ignition speed.

3. Power-split mode: At high speeds or high torque demands, the engine is running and being

used to provide torque to the driveshaft. Depending on overall desired torque, the generator

and traction motor may be used to either charge the high voltage battery or transmit additional

torque to the driveshaft. Two sub-modes of power-split mode exist.

a. Positive-split: If the high voltage battery is below a threshold SOC, then torque from

the engine splits between the path to the driveshaft and the path through the generator

to charge the high voltage battery.

b. Negative-split: This mode is not preferred but is necessary when the high voltage

battery is fully charged and the vehicle speed is high. The generator transmits torque

through the planetary gear train to drive the vehicle. Due to the kinematics of the

planetary gear set, torque from the generator also regulates the engine speed to keep it

in the high efficiency operating range. Negative-split mode establishes a power

circulation path where some of the power produced by the generator returns to the

high-voltage battery through the traction motor (negative motor torque value). Power

circulation results in negative-split mode being a less efficient mode of operation than

positive-split.

Additional modes of operation exist for when the vehicle is parked or driving in reverse, but

modelling them is outside the scope of this thesis. Figure 3.2 depicts a sample window of experimental

data where each operating mode is observed.

 20

Figure 3.2: Snapshot of experimental data showing the power-split powertrain switching

between operating modes.

EV, engine cranking, and power-split modes were each denoted by indices 1, 2, and 3, respectively

(positive and negative-split were not differentiated by mode). Each experimental data sample was

categorized into one of the operating modes based on measured engine speed, generator torque, and

operating mode of the previous time step.

The modelled switching behavior of the TCM uses a system of two double layer classifier networks.

Both classifiers are feed-forward networks with a hidden sigmoid layer and a softmax output layer, as

described in Section 3.1. The first classifier network predicts the conditions for the TCM to begin

starting the engine (switch from EV mode to engine cranking mode). The network predicts if the mode

 21

will switch to engine cranking mode based on the following inputs: 𝑣𝑥, 𝑆𝑂𝐶, and 𝑇𝑑𝑠𝑑. A modified

form of Equation 1.3, written as Equation 3.2, defines the engine-start mode selection model:

𝑌𝑒𝑛𝑔𝑜𝑓𝑓 = 𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2 (3.2)

where 𝑋 is a 3 × 1 column vector of the inputs 𝑣𝑥, 𝑆𝑂𝐶 and 𝑇𝑑𝑠𝑑𝑘
, and 𝑌𝑒𝑛𝑔𝑜𝑓𝑓 is a 2 × 1 column

vector of the probabilities that it is currently EV mode, 𝑦1, or engine cranking mode, 𝑦2. If 𝑦2 > 𝑦1 the

TCM commands that the operating mode switches to engine cranking.

The second classifier network determines the current TCM mode if the engine shaft is currently

rotating. The network predicts if the TCM would select engine cranking mode, power-split mode, or

EV mode (meaning the engine shaft begins braking) based on the following inputs: 𝑣𝑥, 𝑆𝑂𝐶, 𝑇𝑑𝑠𝑑,

𝜔𝑒𝑛𝑔, and the operating mode of the TCM at the previous sample time, 𝑘 − 1. A modified form of

Equation 1.3, written as Equation 3.3, defines the engine-on mode selection model:

𝑌𝑒𝑛𝑔𝑜𝑛 = 𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2 (3.3)

where 𝑋 is a 5 × 1 column vector of the inputs 𝑣𝑥, 𝑆𝑂𝐶, 𝑇𝑑𝑠𝑑𝑘
, 𝜔𝑒𝑛𝑔, and 𝑚𝑜𝑑𝑒𝑘−1, and 𝑌𝑒𝑛𝑔𝑜𝑛 is a

3 × 1 column vector of the probabilities that it is currently EV mode, 𝑦1, engine cranking mode, 𝑦2, or

power-split mode, 𝑦3. The largest index value of 𝑌 is the predicted operating mode. In addition to the

two mode selection NNs, constraints on mode switching behavior as a function of current states were

applied. The constraints were based on observations of experimental powertrain performance and

available Ford documentation, and are used to prevent the model from erroneously entering an

impossible set of system states. The additional mode switching constraints are listed below:

1. If 𝑇𝑑𝑠𝑑 < 0 the powertrain will never switch from EV mode to engine cranking mode.

2. If the powertrain is in power-split mode and the engine speed drops below a threshold of

operating efficiency, 𝜔𝑏𝑟𝑎𝑘𝑒, the powertrain switches to EV mode to conserve fuel.

3. If the powertrain is in engine cranking mode and the engine speed rises above the threshold

ignition speed, 𝜔𝑖𝑔𝑛𝑖𝑡𝑒, then the powertrain switches to power-split mode.

 22

4. Once engine cranking mode has initiated, the powertrain cannot switch directly back into

EV mode without reaching engine ignition.

Once the TCM has selected the powertrain operating mode, desired torques 𝜏𝑒𝑛𝑔𝑑𝑠𝑑
, 𝜏𝑚𝑜𝑡𝑑𝑠𝑑

, and

𝜏𝑔𝑒𝑛𝑑𝑠𝑑
 are selected. The low-level dynamics of each power source determines their actual torque

outputs 𝜏𝑒𝑛𝑔, 𝜏𝑔𝑒𝑛, and 𝜏𝑚𝑜𝑡, respectively; however, limitations of the data acquisition sample rate

prevented desired and actual torque signals from being measured at a sample rate greater than 10Hz.

The sample rate was insufficient to determine a transient response between desired torque and actual

torques, so the low-level dynamics of each power source were neglected. Instead the mapping from

𝑇𝑑𝑠𝑑 to 𝜏𝑒𝑛𝑔, 𝜏𝑔𝑒𝑛, and 𝜏𝑚𝑜𝑡 was modeled using an individual double layer perceptron NN. Determining

a method of modelling power source transients will be a part of future work. The inputs to the NN are:

𝑇𝑑𝑠𝑑, 𝜔𝑒𝑛𝑔, 𝜔𝑚𝑜𝑡, 𝑚𝑜𝑑𝑒, and 𝑆𝑂𝐶. Based on these inputs, the network assumes quasi-static behavior

of each power source, so the model does not include transient behavior. A modified form of Equation

1.1, written as Equation 3.4, defines the torque selection model:

{𝜏𝑒𝑛𝑔; 𝜏𝑚𝑜𝑡; 𝜏𝑔𝑒𝑛} = 𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2 (3.4)

where 𝑋 is a 5 × 1 column vector of the inputs 𝑇𝑑𝑠𝑑𝑘
, 𝜔𝑒𝑛𝑔, 𝜔𝑚𝑜𝑡, 𝑚𝑜𝑑𝑒, and 𝑆𝑂𝐶. Saturation limits

on the ranges of 𝜏𝑒𝑛𝑔, 𝜏𝑔𝑒𝑛, and 𝜏𝑚𝑜𝑡 were applied to the output of the NN to ensure its behavior is

always within the physical limits of the real powertrain system. Section 5.2.1 describes details of

parameter identification for the TCM.

3.2.3 Drivetrain Dynamics

Unlike the other two subsystems, sufficient measurable signals were available to identify a physics-

based model of the drivetrain. The drivetrain configuration of the Lincoln MKZ is depicted in Figure

3.3.

 23

Figure 3.3: Diagram of the Lincoln MKZ Hybrid's power-split drivetrain configuration.

Arrows indicate how positive directions of rotation, ω, and torque, τ, are defined. As depicted in Figure

3.3, the system includes a planetary gear set that connects the output shafts of all three power sources.

The generator drives the sun gear of the planetary while the engine drives the planet carrier. The

planetary gear ratio is defined by Equation 3.5:

𝜌 =
𝑑𝑠𝑢𝑛

𝑑𝑟𝑖𝑛𝑔
 (3.5)

where 𝑑𝑠𝑢𝑛 and 𝑑𝑟𝑖𝑛𝑔 are the pitch diameters of the sun and ring gears, respectively. The ring gear

connects to the output shaft of the traction motor through fixed gear ratios 𝑅1 and 𝑅2. Similarly, both

the ring gear and traction motor shaft connect through the intermediary shaft and final reduction ratio

to the driveshaft. The driveshaft connects to the right and left halfshafts through an open differential.

For the purposes of longitudinal dynamics modelling and control, it is useful to replace individual wheel

speeds and torques with a virtual speed and torque at the driveshaft. In this model the drivetrain

reduction that exists in the differential has been lumped with the final drivetrain reduction to form a

 24

single ratio, 𝑅𝑓, and the wheel torques are assumed to always be equal. On the real drivetrain system

compliance of the halfshafts and high frequency tire dynamics will create small differences in wheel

torques, but for simplicity these effects are neglected. The simplified kinematic and dynamic equations

relating the halfshafts to the driveshaft are shown in Equations 3.6, 3.7, and 3.8:

𝜏𝑑𝑠 = 𝜏𝐹𝑅𝑤ℎ + 𝜏𝐹𝐿𝑤ℎ (3.6)

𝜏𝐹𝑅𝑤ℎ = 𝜏𝐹𝐿𝑤ℎ (3.7)

𝜔𝑑𝑠 =
𝜔𝐹𝑅𝑤ℎ+𝜔𝐹𝐿𝑤ℎ

2
 (3.8)

where 𝜏𝑑𝑠 and 𝜔𝑑𝑠 are the torque and speed of the driveshaft, respectively.

After lumping the components of the right and left wheels into a single driveshaft component, the

layout of Figure 3.3 shows that the model has only two degrees of freedom (DOF), which are defined

as 𝜔𝑒𝑛𝑔 and 𝜔𝑚𝑜𝑡. The kinematics and dynamics of the drivetrain are dependent on the powertrain

operating mode. When operating in EV mode the engine shaft locks, forcing 𝜔𝑒𝑛𝑔 to zero, and the

system reduces to have one DOF. The kinematics of the drivetrain in EV mode are defined by Equations

3.9 and 3.10a:

𝜔𝑑𝑠 =
𝜔𝑚𝑜𝑡

𝑅2𝑅𝑓
 (3.9)

𝜔𝑔𝑒𝑛 = −
𝑅1

𝑅2𝜌
𝜔𝑚𝑜𝑡 (3.10a)

The engine shaft is unlocked when operating in engine cranking or power-split modes. The additional

DOF added by the engine shaft changes the kinematics and dynamics of the drivetrain system. For these

operating modes Equation 3.10a is replaced by 3.10b:

𝜔𝑔𝑒𝑛 =
1+𝜌

𝜌
𝜔𝑒𝑛𝑔 −

𝑅1

𝑅2𝜌
𝜔𝑚𝑜𝑡 (3.10b)

 25

The gear train efficiency losses are dependent upon direction of torque transmission at each gear

meshing, but efficiencies were assumed constant and equal in each direction of torque transmission.

This model behavior is well suited for the acausal modelling environment of MapleSim. For forward

velocity and acceleration in EV mode, the dynamics are defined by Equations 3.11, 3.12, and 3.13a:

𝐼𝑔𝑒𝑛�̇�𝑔𝑒𝑛 = 𝜏𝑔𝑒𝑛 − 𝜏𝑠 (3.11)

𝐼𝑚𝑜𝑡�̇�𝑚𝑜𝑡 = 𝜏𝑚𝑜𝑡 −
1

𝑅𝑓𝑅2𝜂𝑓𝜂2
𝜏𝑑𝑠 −

𝑅1𝜂𝑟1

𝑅2𝜂𝑓𝜂𝑠𝜌
𝜏𝑠 (3.12)

0 = 𝜏𝑒𝑛𝑔 +
1

𝜂𝑠
(1 +

1

𝜌
) 𝜏𝑠 (3.13a)

where 𝜏𝑠 is the torque applied to the sun gear by the planet gears, and 𝐼𝑔𝑒𝑛 and 𝐼𝑚𝑜𝑡 are the lumped

rotational inertias of the generator and the motor respectively. 𝐼𝑔𝑒𝑛 is the inertia of the generator and

sun gear. 𝐼𝑚𝑜𝑡 combines the inertias of the motor, ring gear, intermediary shaft, gear meshings 𝑅1, 𝑅2,

and 𝑅𝑓, the driveshaft, and the halfshafts. The components of 𝐼𝑚𝑜𝑡 are lumped at the motor. For engine

cranking and power-split operating modes, Equation 3.13a is replaced by Equation 3.13b:

𝐼𝑒𝑛𝑔�̇�𝑒𝑛𝑔 = 𝜏𝑒𝑛𝑔 +
1

𝜂𝑠
(1 +

1

𝜌
) 𝜏𝑠 (3.13b)

where 𝐼𝑒𝑛𝑔 is the lumped rotational inertia of the engine, which includes the inertia of the engine, the

carrier, and the planets about the axis of the engine shaft. The inertia contributions of rotation of the

planet gears about their own axes are typically considered very small in power-split powertrain

configurations [13], so they are neglected. The efficiency terms are summarized in table 3.1.

 26

Table 3.1: Summary of drivetrain lumped efficiency terms.

𝜂𝑟1
Lumped efficiency between the ring gear and the planet

gears, through gear ratio 𝑅1, and through the differential

𝜂2 Efficiency through ratio 𝑅2

𝜂𝑓 Efficiency through ratio 𝑅𝑓

𝜂𝑠 Efficiency between the sun gear and the planet gears

When switching from engine unlocked to engine locked operating modes, a braking torque is applied

to the engine shaft. The applied braking torque is a proportional feedback of the current engine shaft

speed, 𝜔𝑒𝑛𝑔, that is multiplied by the gain term 𝐾𝑒𝑛𝑔𝑜𝑓𝑓. 𝐾𝑒𝑛𝑔𝑜𝑓𝑓 was tuned manually to ensure engine

braking behavior matched experimental data.

The complete drivetrain subsystem was modelled using the 1-D mechanical library of MapleSim.

3.3 Brake Modelling

Braking behavior of the Lincoln MKZ is more complex than traditional IC engine vehicles. Like many

other hybrid vehicles, it increases fuel efficiency by implementing regenerative braking behavior in

addition to mechanical braking. During regenerative braking, power flows from the wheels through the

drivetrain to apply negative torques to the motor and generator. The motor and generator both absorb

the torque and use it to charge the high voltage battery. Similar to APP in the powertrain model, the

supervisory controller uses 𝐵𝑃𝑃 to determine a desired braking torque applied at the wheels. 𝐵𝑃𝑃 is

represented as a unitless range from 0.1385 to 0.5. For any given set of vehicle states, the TCM selects

the proportion of desired braking torque that will come from regenerative braking, and a separate

braking control module (BCM) allocates how the remaining desired torque will be generated by

mechanical braking at each wheel.

 27

Due to limitations of measurable signals during experimentation, it was not possible to separately

measure the effects of regenerative braking and mechanical braking in the front wheels; only total

braking torque was measurable at each wheel. This introduced a problem for integrating a braking

model with the powertrain model used for APP mapping since regenerative and mechanical braking are

applied to different parts of the drivetrain subsystem. The proposed solution is a black-box approach

that utilizes a cascading system of NNs. The model calculates a front axle torque 𝜏𝐹𝐵 and a rear axle

torque 𝜏𝑅𝐵. For the purposes of the model only the longitudinal dynamics of braking were considered,

so distribution of braking torque to the right and left wheels was assumed to be equal. Figure 3.4 depicts

a diagram of the braking model.

Figure 3.4: Diagram of the braking model.

As depicted in Figure 3.4, the braking model is dependent on only two inputs, 𝐵𝑃𝑃 and 𝑣𝑥. 𝜏𝐹𝐵 is

calculated directly by a front brake mapping that is modelled with a double layer perceptron NN. A

modified form of Equation 1.1, written as Equation 3.14, defines the front brake map model:

𝜏𝐹𝐵 = 𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2 (3.14)

where 𝑋 is a 2 × 1 column vector of the inputs 𝐵𝑃𝑃 and 𝑣𝑥.

Calculation of 𝜏𝑅𝐵 required a more complex mapping. Observation of experimental data showed that

for a subset of the input space, {𝐵𝑃𝑃, 𝑣𝑥}, no rear braking torque is applied. A classifier NN was

 28

implemented to predict if, for any given combination of 𝐵𝑃𝑃 and 𝑣𝑥, the rear brakes will be engaged.

A modified form of Equation 1.3, written as Equation 3.15, defines the front rear braking engagement

model:

𝑌𝐵𝑟 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2) (3.15)

where 𝑋 is a 2 × 1 column vector of the inputs 𝐵𝑃𝑃 and 𝑣𝑥, and 𝑌𝐵𝑟 is a 2 × 1 column vector of the

probabilities that the rear brakes are not engaged, 𝑦1, and that the rear brakes are engaged, 𝑦2. If 𝑦2 >

𝑦1, then the rear brakes are engaged. 𝜏𝑅𝐵 is set to zero if the brakes are disengaged.

If the rear brakes are engaged, then 𝜏𝑅𝐵 is calculated by the rear braking map. The rear braking map

was modelled with another double layer perceptron NN. A modified form of Equation 1.1, written as

Equation 3.16, defines the rear brake map model:

𝜏𝑅𝐵𝑚𝑎𝑝
= 𝑊2 𝑆𝑖𝑔(𝑊1 𝑋 + 𝐵1) + 𝐵2 (3.16)

where 𝑋 is a 2 × 1 column vector of the inputs 𝐵𝑃𝑃 and 𝑣𝑥.

For the purposes of reducing oscillations during simulation, first-order transfer functions with very

low time constants are applied to the outputs of the brake model, 𝜏𝐹𝐵 and 𝜏𝑅𝐵. These transfer functions

increase the brake model from an index-0 to an index-1 system to increase model stability during

simulation.

3.4 Powertrain and Brake Model Integration

The limitations of the available braking torque signals, and the subsequently chosen method of

modelling the brakes, created a problem for integration of the two models. The output torques of the

braking model, 𝜏𝐹𝐵 and 𝜏𝑅𝐵, are applied directly at the wheels of the vehicle model. The model was

identified based on the torques measured at each wheel during experiments. The left and right wheel

components of 𝜏𝐹𝐵 cannot be applied directly to the halfshafts of the drivetrain model, as it is

formulated, because the map of 𝜏𝐹𝐵 implicitly includes the inertial effects of the drivetrain. It is not

 29

sufficient to subtract an inertial torque proportional to 𝐼𝑚𝑜𝑡 from 𝜏𝐹𝐵 because, based on the drivetrain

dynamics, there is coupling between 𝜔𝑒𝑛𝑔 and 𝜔𝑚𝑜𝑡.

The proposed solution to this problem is to introduce a virtual switching clutch component at the

drivetrain model’s driveshaft that engages and disengages as a function of BPP. The clutch engages

when there is a negligible brake pedal input applied to the system. During this mode of operation, the

drivetrain model behaves exactly as described in Section 3.2.3. Application of the brake pedal input,

defined as a BPP value greater than 0.14, disengages the clutch at the driveshaft to decouple torque at

the front wheels from the inertia of the drivetrain. A virtual powertrain braking torque, 𝜏𝑃𝐵𝑟, is then

applied on the inboard side of the driveshaft clutch to maintain a very small relative speed, 𝜔𝑟𝑒𝑙,

between the inboard and outboard sides of the clutch. This limits torque oscillations during clutch

reengagement. Future work will re-examine this ad hoc solution. Figure 3.5 depicts a diagram of how

the drivetrain behaves during braking maneuvers.

Figure 3.5: Drivetrain diagram for braking maneuvers.

 30

𝜏𝑃𝐵𝑟 is calculated as a function of 𝜔𝑟𝑒𝑙 by Equation 3.17:

𝜏𝑃𝐵𝑟 = 𝐾𝑃𝐵𝑟𝜔𝑟𝑒𝑙 (3.17)

where 𝐾𝑃𝐵𝑟 is a high gain proportional term that was tuned manually. The clutch is a component of the

drivetrain MapleSim model. Parameters of the clutch component were manually tuned to ensure smooth

simulation performance and minimal oscillations during engagement and disengagement.

3.5 Interaction with Vehicle Dynamics Model

The combined powertrain and braking model is modular such that it can be integrated with any type of

vehicle dynamics model in MapleSim. The two drivetrain halfshaft flanges connect with two front

wheel components while the braking torques are applied at each wheel using a MapleSim brake

component. The details of the vehicle dynamics model, including tire dynamics, suspension

configuration, and chassis inertial terms, are independent of the powertrain and braking models. Van

Gennip developed a high-fidelity model of the Lincoln MKZ’s vehicle dynamics [26] to integrate with

the powertrain and braking models. This vehicle dynamics model was integrated with the powertrain

and braking models for all simulations discussed in later chapters.

 31

Chapter 4

Experimentation

4.1 Apparatus

Multiple apparatus were used during vehicle road testing to gather data for model parameter

identification. The full suite of data acquisition systems included the A&D Vehicle Measurement

System, the CAN bus data acquisition system, and signals read from the Moose’s onboard computer.

In this chapter each system is described in detail. A summary of measured signals and sampling rates

used for powertrain and braking parameter identification is in Appendix A.

4.1.1 Vehicle Measurement System

The Vehicle Measurement System (VMS), by A&D Technology, is a complex system of sensors

designed for vehicle road testing. The VMS consists of three subsystems of sensors packaged at each

wheel. Due to some component failures, the VMS system was not available for the rear right wheel of

the vehicle. Figure 4.1 depicts the VMS mounted at the Moose’s front left wheel.

 32

Figure 4.1: The VMS sensor packaging mounted at the front left wheel of the Moose.

Wheels with custom VMS compatible hubs replaced the stock vehicle wheels for road testing. The

custom hubs were designed such that the first sensor subsystem, the wheel force sensor (WFS), mounts

at the center of the hub. The WFS consists of an array of strain gauges that measure force and moment

through each principal axis of the hub. The measured moment about the

 rotation axis of each wheel corresponds to wheel torques in the powertrain and braking models. In

addition, the WFS includes a digital encoder that measures the speed of rotation, 𝜔𝑤ℎ, at each wheel.

The second VMS subsystem is the wheel position sensor (WPS). The WPS connects at the center of

the wheel hub, and is mounted to the chassis through a set of rigid linkages with 5 DOF. Each DOF

results from a revolute joint with a built-in digital encoder. The VMS monitors the angle of rotation of

all five digital encoders to determine the translational and rotational position of the wheel relative to

 33

the chassis. These measurements are not required for powertrain parameter identification, but they can

be useful for modelling suspension kinematics and dynamics.

The third VMS subsystem is the laser ground sensor/laser doppler velocimeter (LGS). This

subsystem uses an array of laser sensors to detect the ground speed at each wheel, the effective radius

of the tire, and other signals. The LGS was not used for any part of the powertrain or braking model

parameter identification, but it was important for suspension and tire dynamics parameter identification

[27].

4.1.2 Vector CANalyzer and Diagnostics

In addition to the signals measured at the wheel by the VMS, parameter identification required

measurement of several internal powertrain system states. These states could only be measured through

the vehicle’s control area network (CAN) bus. The CAN bus signals were measured with a Vector CAN

bus measurement Tool and the Vector CANalyzer software. The generic OBD II list of signals were

automatically measurable through the CAN bus, and 𝐴𝑃𝑃, 𝜔𝑒𝑛𝑔, 𝑣𝑥, and 𝑆𝑂𝐶 could be measured

through this protocol. The CANalyzer simultaneously records signals from the VMS, so no CAN bus

data synchronization was required during parameter identification pre-processing; however, parameter

identification also required measurements of 𝜔𝑚𝑜𝑡, 𝜔𝑔𝑒𝑛 and all internal powertrain torques.

The Ford VCM II is a diagnostics tool that is capable of sampling all required powertrain signals

through a proprietary set of CAN bus commands, but it cannot log the diagnostic signals in a usable

format. By using a CAN bus cable splitter, both the VCM II and the Vector tool were simultaneously

connected to the Moose’s CAN bus. The VCM II sent command messages requesting packets of

diagnostics powertrain data, and the return messages that contained the data were recorded by the

CANalyzer. The limitation of this approach is that all diagnostic signals were restricted to a sample rate

of approximately 10 Hz while all other signals were available at either 100Hz or 50Hz.

 34

4.1.3 Brake Pedal Position Data Acquisition

According to Ford diagnostic signal documentation, 𝐵𝑃𝑃 was not available for measurement through

the VCM II. 𝐵𝑃𝑃 had to be measured and recorded using the Moose’s onboard Linux computer system.

The Moose’s computer is capable of reading 𝐵𝑃𝑃 using a Dataspeed hardware component, the Throttle-

Brake Combination By-Wire Interface. The Moose also uses this hardware to send 𝐴𝑃𝑃 and 𝐵𝑃𝑃

commands to the vehicle when it is operating in autonomous driving mode. The module communicates

with the vehicle using a custom CAN bus command protocol summarized in Dataspeed Incorporated’s

documentation [28]. Figure 4.2 depicts the computer’s data acquisition user interface during road

testing.

Figure 4.2: Onboard display of the Moose's computer during road testing.

𝐵𝑃𝑃 data was recorded at a rate of 50Hz. During parameter identification, pre-processing the 𝐵𝑃𝑃

data’s timestamp was synchronized with CANalyzer data using the MATLAB signal processing

toolbox.

 35

4.2 Vehicle Testing Procedure

Selecting an appropriate test procedure for vehicle dynamics and powertrain parameter identification

usually depends on the unknown parameters. For any parameters that need to be identified, it is a

necessary but not sufficient condition that the inputs to the system, such as acceleration command or

steering angle, create a system behavior that is persistently exciting. For linear system models, the

required conditions for persistence of excitation are well established [29], but high-fidelity models of

vehicle systems are highly nonlinear. In addition, identification of NN-based models require more than

a persistently exciting input. Shallow NN training requires large data sets that cover the full input space.

To meet this requirement, a large set of vehicle tests were performed, but specific drive cycle test plans

were not generally followed. Unlike some types of vehicle testing, such as vehicle fuel-economy

benchmark tests, neural network modelling benefits from randomness in driver behavior. Most vehicle

testing occurred at the Region of Waterloo’s Emergency Services Training Centre, which has a vehicle

maneuvering test track. However, some public road testing data was used to augment the data sets for

supervisory controller and TCM neural network training. The speed profiles of some sample test

maneuvers are depicted in Figure 4.3.

 36

Figure 4.3: Speed profile data for braking maneuvers with various BPP values (top left), laps of

the Waterloo regional test track (top right), Hard accelerations from various starting speeds

(bottom left), and public driving on a road with traffic lights (bottom right).

 37

Chapter 5

Parameter Identification

5.1 Drivetrain Parameters

Due to limited a priori knowledge of the drivetrain, all gear ratios, gear train efficiencies, and lumped

inertia parameters needed to be identified from experimental data. Gear train ratios were identified from

experimental measurements of 𝜔𝑒𝑛𝑔, 𝜔𝑔𝑒𝑛, 𝜔𝑚𝑜𝑡, 𝜔𝐹𝑅𝑤ℎ, 𝜔𝐹𝐿𝑤ℎ and Equations 3.8, 3.9, 3.10a, and

3.10b. However, without a measurement of speed for the intermediary shaft, not all gear ratios could

be identified individually. Instead of identifying 𝑅1, 𝑅2, and 𝑅𝑓 directly, lumped gear ratios 𝑅𝑓𝑅1 and

𝑅𝑓𝑅2 were identified in addition to the planetary ratio 𝜌. Identification of gear ratios was performed by

determining the mean ratios between measurements of 𝜔𝑒𝑛𝑔, 𝜔𝑔𝑒𝑛, 𝜔𝑚𝑜𝑡, and 𝜔𝑑𝑠 from multiple

driving test runs. Each ratio was determined with a standard deviation of less than 1%. Table 5.1

summarizes the mean and standard deviation of each effective gear ratio.

Table 5.1: Effective drivetrain gear ratios.

Symbol Mean Value Standard Deviation

𝜌 0.395 0.001

𝑅𝑓𝑅1 4.08 0.03

𝑅𝑓𝑅2 10.4 0.05

For identification of drivetrain dynamics parameters, the MapleSim drivetrain model was converted

to an S-function. Parameter identification was performed using the Simulink Parameter Identification

toolbox. For each iteration of parameter identification, a test’s experimental measurements of 𝜏𝑒𝑛𝑔,

𝜏𝑚𝑜𝑡, 𝜏𝑔𝑒𝑛, 𝜏𝐹𝐿𝑤ℎ, 𝜏𝐹𝑅𝑤ℎ, and powertrain mode were applied to the drivetrain model, and experimental

measurements of 𝜔𝑒𝑛𝑔 and 𝜔𝑚𝑜𝑡 were set as references for the drivetrain model to track. Using a

 38

nonlinear least squares trust-region reflective algorithm, the parameter estimator attempted to identify

the inertial and efficiency parameters that resulted in the minimum mean-squared error between

experimental and simulated measurements of 𝜔𝑒𝑛𝑔 and 𝜔𝑚𝑜𝑡. Identification of all dynamic parameters,

which includes the three lumped inertias and four gear meshing efficiencies, was challenging because

all seven parameters needed to be identified for a system of only two DOFs. It was not possible to

identify a unique set of parameters from experimental data.

A sensitivity analysis was performed on the drivetrain model to observe how model performance was

affected by a random variance in each parameter within their range of possible values. The influence

of each parameter was measured by observing how the simulated outputs for 𝜔𝑒𝑛𝑔 and 𝜔𝑚𝑜𝑡 were

affected by parameter variance. Figure 5.1 is a tornado plot summarizing the parameter influence results

of the sensitivity analysis.

 39

Figure 5.1: Tornado plot showing correlations between parameters and model performance.

It is clear from Figure 5.1 that the Kendal, Spearman (rank), and linear correlations for the three lumped

inertial parameters is much greater than the four efficiency terms. Based on the results of sensitivity

analysis, each efficiency term was set to a generic reference value of 0.98. This simplification of the

model made identifying unique values for 𝐼𝑒𝑛𝑔, 𝐼𝑚𝑜𝑡, and 𝐼𝑔𝑒𝑛 possible. Depending on the road test

used, each iteration of parameter identification converged to marginally different values for the

parameters. The final combination of selected parameters is an approximated mean of several parameter

identification results. Approximated inertial parameter values are depicted in table 5.2.

 40

Table 5.2: Approximated lumped rotational inertia parameters of the drivetrain model.

Symbol Approximated Rotational Inertia (𝒌𝒈𝒎𝟐)

𝐼𝑚𝑜𝑡 0.15

𝐼𝑔𝑒𝑛 0.015

𝐼𝑒𝑛𝑔 0.14

5.2 Neural Network Training

NN training required data to be pre-processed and compiled into a specific format. For each NN,

experimental measurements were organized into a matrix of experimental inputs with a width equal to

the number of inputs, 𝑛𝑥, and a length equal to the number of data samples, 𝑛𝑠. A corresponding matrix

of experimental outputs was organized to have a width equal to the number of outputs, 𝑛𝑦, and a length

equal to 𝑛𝑠.

NN training was performed using the MATLAB Neural Net Fitting and Neural Net Pattern Recognition

toolboxes. At the start of NN training, these toolboxes randomly divide the experimental samples into

three sets: training data, validation data, and testing data. Training data is used by the NN training

algorithm to iteratively optimize weight and offset terms 𝑊1, 𝑊2, 𝐵1, and 𝐵2 such that the error

between the mapping of NN outputs and training data outputs is minimized. At the end of each iteration

of optimization the NN performance is checked against the validation data outputs. When the validation

error stops improving, the optimization procedure halts. Once optimization is completed, the NN

performance is checked against the testing data outputs. The testing data is not used at any point in the

optimization procedure, so it is a fully independent measure of the network’s fit. The default ratios of

70% training data, 15% validation data, and 15% testing data were used for all NNs.

The overall quality of fit for each double layer perceptron NN was assessed by observing the trained

network’s linear regression for each combined data set. The fit of each regression is represented by the

correlation coefficient R, which will always have a value between 0 and 1. A perfect NN fit is

 41

represented by an R-value of 1 for the combined data set. Similarly, the quality of fit of each classifier

NN was assessed by observing the network’s confusion matrix compared to experimental data. The

confusion matrix indicates how frequently a classifier NN makes a misclassification, and expresses

performance as a percent accuracy (or percent confusion). A confusion matrix that depicts 100%

accuracy (0% confusion) means that the network correctly classified all experimental data samples. In

general, as the selected number of hidden neurons, 𝑛𝑛, increases, the training algorithm will identify

NNs with higher R-value or percent accuracy on the combined data set. This is because increasing 𝑛𝑛

increases the DOFs in the model by increasing the total number of terms in 𝑊1, 𝑊2, and 𝐵1. However,

increasing 𝑛𝑛 also increases the likelihood that the NN will overfit the data. An overfitted NN is a poor

generalization of the actual function it is trying to model, and will likely perform poorly for a set of

inputs that are not contained in the training dataset. Overfitting was identified by comparing the NN’s

training and validation performance with its testing performance. When the testing performance is

significantly worse, then the NN is likely overfitted to the training data. An accepted rule-of-thumb is

that the number of neurons in the hidden layer should be between the number of network inputs and

the number of network outputs [30]. Details of training and results for each NN are provided below.

5.2.1 Supervisory Torque Controller

For identification of the supervisory torque controller NN model, represented by Equation 3.1, the

supervisory controller NN model was trained using the Levenberg-Marquardt algorithm. The best

training performance without overfitting the data was observed for a network with two hidden neurons.

For the case where the transient behavior has decayed (𝑇𝑑𝑠𝑑𝑘
= 𝑇𝑑𝑠𝑑𝑘−1

) the supervisory torque

controller NN model is depicted in Figure 5.2.

 42

Figure 5.2: Equilibrium points of the supervisory torque controller NN.

The combined data R-value of the supervisory controller model is 0.999, which indicates an excellent

fit to the data. Refer to Appendix B for the full regression plot.

5.2.2 TCM Mode Selection Mapping

The two classifier NNs used for the TCM mode selection map were trained using the scaled conjugate

gradient backpropagation algorithm. The engine-start mode selection model, represented by Equation

3.2, showed the best performance without overfitting the data when three hidden neurons were used.

The combined data confusion plot for the engine-start mode selection model is depicted in Figure 5.3,

where class 1 is EV mode and class 2 is engine cranking mode. Boxes along the diagonal, which are

 43

colored green, indicate instances where classification is correct, while red boxes indicate instances

where classification is incorrect. Each light grey box summarize the percent accuracy and percent

confusion of all data points in its respective row or column. Green text indicates percent accuracy, and

red text indicates percent confusion. The percentages in the dark grey box in the bottom right-hand

corner of the matrix give the accuracy and confusion for the entire dataset.

Figure 5.3: TCM engine-start mode selection model confusion matrix.

As depicted in Figure 5.3, the model correctly predicted whether or not the engine will start at the next

time step 98.6% of the time. The largest source of error in the model is that in 4% of samples, it falsely

predicts EV mode when experimental data indicates engine cranking mode.

The engine-on mode selection model, represented by Equation 3.3, showed best performance without

overfitting the data when five hidden neurons were used. The combined data confusion plot for the

engine-on mode selection model is depicted in Figure 5.4, where class 1 is EV mode, class 2 is engine

cranking mode, and class 3 is power-split mode.

 44

Figure 5.4: TCM engine-on mode selection model confusion matrix.

As depicted in Figure 5.4, when the engine shaft is unlocked, the model correctly identified the

operating mode at the next time step in 99.6% of samples. This indicates an excellent fit to the data.

The only significant source of error in the map is that the model falsely classified 9.7% of experimental

engine cranking mode classifications as EV mode. Most of these errors occurred when the powertrain

was in engine cranking mode at the previous time step. This error does not factor into model

performance because this switching behavior would violate powertrain mode constraint 4 (see Section

3.2.2).

5.2.3 Output Torque Model

The double layer perceptron NN used for the output torque model, represented by Equation 3.4, was

identified using the Levenberg-Marquardt algorithm. The best neural network performance without

 45

overfitting the data occurred when five hidden neurons were used. The identified NN has an R-value

of 0.979 compared to the combined experimental data. Refer to Appendix B for the full regression plot.

Since the NN does not model transient behavior in the power sources, the accuracy of this model was

limited.

5.2.4 Braking Torque Model

The double layer perceptron NN used for the front axle braking model, represented by Equation 3.14,

was identified using the Levenberg-Marquardt algorithm. The best neural network performance without

overfitting the data occurred when two hidden neurons were used. The identified NN has an R-value of

0.976 compared to the combined experimental data. Refer to Appendix B for the full regression plot.

The front axle braking model does not consider transient behavior, which may have affected the

accuracy of the model.

 Braking torque was not available for measurement at the rear right wheel, so the rear axle braking

torque used for model identification was assumed as double the torque measured at the rear left wheel.

The classifier NN used to model the rear brake engagement, represented by Equation 3.15, was

identified using the scaled conjugate gradient backpropagation method. The combined data confusion

plot for the rear brake engagement model is represented by Figure 5.5.

 46

Figure 5.5: Rear brake switch model confusion matrix.

As depicted in Figure 5.5, the rear brake switch model correctly guesses whether or not the rear brakes

will engage in 95.2% of the experimental data. Since experimental torque was only available at one

rear wheel, it is possible that the rear brake switching behavior responds to unmodeled vehicle lateral

dynamics effects. The rear brake switch model also does not consider transient brake behavior. Both of

these factors may have influenced the accuracy of the model.

The double layer perceptron NN used for the rear axle braking model, represented by Equation 3.16,

was identified using the Levenberg-Marquardt algorithm. The best neural network performance without

overfitting the data occurred when two hidden neurons were used. The identified NN has an R-value of

0.920 compared to the combined experimental data. Refer to Appendix B for the full regression plot.

The same factors that affected the rear brake switching model likely influenced the accuracy of the rear

axle braking model.

 47

The combined braking torque map, which combines the front and rear axle braking torque models,

is depicted in Figure 5.6.

Figure 5.6: Braking map of the combined front and rear axle torques.

The discontinuity of the surface, indicated by the white line depicted in Figure 5.6, shows the boundary

of rear braking torque engagement. The accuracy of the complete braking model was tested by

comparing the output of the combined map, 𝜏𝐹𝐵𝑟 + 𝜏𝑇𝐵𝑟, to the combined experimentally measured

torques, 𝜏𝐹𝑅𝑤ℎ + 𝜏𝐹𝐿𝑤ℎ + 2𝜏𝑅𝐿𝑤ℎ. Figure 5.7 depicts the error histogram of total brake torque map.

 48

Figure 5.7: Error Histogram of the total braking torque model.

The mean error of the total torque model is 𝜇 = 35.7𝑁𝑚, and the standard deviation is 𝜎 = 309𝑁𝑚.

The boundaries for one standard deviation and three standard deviations are depicted in Figure 5.7 as

the green and red bars, respectively. Relative to the total available braking torque, which exceeds

6000𝑁𝑚, this error in the model is approximately 5%.

Some restrictions of the braking torque model are worth noting. Due to the small size of the test track,

limited braking maneuver data was available at speeds greater than 90 km/h. In addition, values of 𝐵𝑃𝑃

greater than 0.37 generally resulted in the vehicle’s tire entering the nonlinear region of high

longitudinal slip, causing considerable torque oscillations in the experimental data. For both of these

regions, the accuracy of the braking model is uncertain.

 49

5.3 Full Model Validation

The full high-fidelity vehicle model, which includes the powertrain, braking, and vehicle dynamics

models, was validated using an experimental driving dataset. The selected dataset was used as training

data for the braking model map, but otherwise it was unused during parameter identification.

Experimental measurements of vehicle inputs 𝐴𝑃𝑃, 𝐵𝑃𝑃, and steer angle were inputted to the high-

fidelity model, and open-loop simulation output states 𝑣𝑥 and 𝜔𝑒𝑛𝑔 were compared to experimental

measurements. Figures 5.8, 5.9, and 5.10 depict some snapshots of full model validation.

Figure 5.8: Snapshot 1 of Full Vehicle Model Validation.

 50

Figure 5.9: Snapshot 2 of Full Vehicle Model Validation.

Figure 5.10: Snapshot 3 of Full Vehicle Model Validation.

 51

Observation of the engine speed plots in Figures 5.8 to 5.10 show that the model’s powertrain

operating mode tracks the general trend of experimental data well. The model tends to initiate engine

cranking at the same times as the actual vehicle, but during braking maneuvers the model will switch

back to EV mode (engine speed returns to zero) more slowly than the actual vehicle. This effect is due

to the virtual drivetrain clutch component described in Section 3.4. However, the average engine speeds

predicted by the model are higher than the speeds observed in experimental data. It is possible that

some unobserved powertrain controller dynamics serve to regulate engine speed. Despite these engine

speed tracking errors in the powertrain model, the output vehicle speed tracking is not affected.

Qualitative assessment of Figures 5.8 to 5.10 indicates that the full vehicle model tracks experimental

data well. The model’s vehicle speed tracks the experimental data within 3km/h for the majority of

simulation time. The high-fidelity model’s speed tracking performance has also proven to be robust.

Even after the model’s speed diverges from experimental data, such as at 10 seconds for Figure 5.8 or

at 262 seconds for Figure 5.10, the model tends to converge again with experimental data over time.

This indicates that at some operating points there is mismatch between the high-fidelity model and the

actual vehicle performance, but the average speed tracking performance over the vehicle’s entire

operating range is accurate. Over the entire open-loop simulation, which ran continuously for 580

seconds, The root-mean-square (RMS) error of the simulated vehicle velocity was 7.2 km/h.

There were several unmeasured disturbances acting on the actual car that were not used in the high-

fidelity vehicle model simulation. Time-dependent factors such as road slope, road surface, and wind

could have caused the model to diverge from experimental data. In addition, some lateral dynamics

effects on the powertrain and braking dynamics have yet to be modelled, so divergence of the model

from experimental data occurred at high speeds and high steer angles.

 52

Chapter 6

MPC for Longitudinal Vehicle Dynamics

6.1 Control-Oriented Model

To design an MPC for longitudinal dynamics of the Moose, a control-oriented model of combined

powertrain, braking, and vehicle dynamics was required. Using the high-fidelity model described in

Chapter 3 as a baseline, the control-oriented model needed to be simplified to allow real-time controller

implementation. The control-oriented model equations needed to be smooth and differentiable in their

entire operating space, so that linearization and linear MPC techniques could be applied.

Converting the supervisory controller and TCM models to a control-oriented form was a challenge

during controller development. Using Maple, the supervisory controller model was converted to an

optimized symbolic function that estimates the desired torque 𝑇𝑑𝑠𝑑𝑘

∗ , represented by Equation 6.1:

𝑇𝑑𝑠𝑑𝑘

∗ = 𝑓𝑇𝑑𝑠𝑑
∗ (𝐴𝑃𝑃, 𝑣𝑥, 𝑇𝑑𝑠𝑑𝑘−1

∗) (6.1)

where * is used to denote any variables that are predicted by the model instead of measured. By

definition, the NN function is guaranteed to be smooth and differentiable. The time-delayed estimated

desired torque term 𝑇𝑑𝑠𝑑𝑘

∗ was introduced to the state space equations as an augmented vehicle state.

Attempting to predict the switching of powertrain mode over the MPC prediction horizon is

logistically challenging since the drivetrain equations of motion (EOMs) change with operating mode.

As such, the control-oriented model was designed to make a rule-based estimate of powertrain mode

based only on the previous time step’s powertrain mode, previous estimated desired torque 𝑇𝑑𝑠𝑑𝑘

∗ ,

current speed 𝑣𝑥𝑘
, and current and previous engine speeds 𝜔𝑒𝑛𝑔𝑘

 and 𝜔𝑒𝑛𝑔𝑘−1
. The rule-based behavior

was modelled from experimental powertrain performance. The ruled-based system has a slower mode

switching response than the high-fidelity NN models, but it will be more robust to any unmodelled

behavior of the powertrain system. The torque selection model, and its interaction with the drivetrain

dynamics, was too complex for direct implementation into the control-oriented model. Adding the NN

 53

directly into the control-oriented model caused the resulting symbolic linearization to be too large for

MATLAB implementation. Instead the torque selection NN model is numerically linearized at each

time step to calculate the partial derivatives
𝜕𝜏𝑒𝑛𝑔

∗

𝜕𝑇𝑑𝑠𝑑
∗ ,

𝜕𝜏𝑔𝑒𝑛
∗

𝜕𝑇𝑑𝑠𝑑
∗ , and

𝜕𝜏𝑚𝑜𝑡
∗

𝜕𝑇𝑑𝑠𝑑
∗ . The partial derivatives are

determined by the finite difference method. At each time step the approximated linearized equations

for torque at each power source are represented by Equations 6.2, 6.3, and 6.4:

 𝜏𝑒𝑛𝑔
∗ ≅ 𝜏𝑒𝑛𝑔 𝑘−1

∗ +
𝜕𝜏𝑒𝑛𝑔

∗

𝜕𝑇𝑑𝑠𝑑
(𝑇𝑑𝑠𝑑𝑘

∗ − 𝑇𝑑𝑠𝑑 𝑘−1
∗) (6.2)

𝜏𝑔𝑒𝑛
∗ ≅ 𝜏𝑔𝑒𝑛 𝑘−1

∗ +
𝜕𝜏𝑔𝑒𝑛

∗

𝜕𝑇𝑑𝑠𝑑
(𝑇𝑑𝑠𝑑𝑘

∗ − 𝑇𝑑𝑠𝑑 𝑘−1
∗) (6.3)

𝜏𝑚𝑜𝑡
∗ ≅ 𝜏𝑚𝑜𝑡 𝑘−1

∗ +
𝜕𝜏𝑚𝑜𝑡

∗

𝜕𝑇𝑑𝑠𝑑
(𝑇𝑑𝑠𝑑𝑘

∗ − 𝑇𝑑𝑠𝑑 𝑘−1
∗) (6.4)

where 𝑇𝑑𝑠𝑑𝑘

∗ is calculated by Equation 6.1. At each time step 𝜏𝑒𝑛𝑔 𝑘−1
∗ , 𝜏𝑔𝑒𝑛 𝑘−1

∗ , and 𝜏𝑚𝑜𝑡 𝑘−1
∗ are all

calculated directly by the torque selection NN using states from the previous time step.

The drivetrain dynamic equations introduced in Section 3.2.3 were simplified to ignore gear meshing

efficiency losses, and the difference in speed between the front left and front right wheels resulting

from the drivetrain differential is disregarded. The drivetrain output speed and torque used in the

control-oriented model are 𝜔𝑑𝑠 and 𝜏𝑑𝑠, respectively. The driveshaft is assumed to pass torque from

the front axle, through the two front wheels, and onto the road.

The NN front and rear braking torque models were replaced by a simpler nonlinear map of total

braking torque that is a function of only 𝐵𝑃𝑃. Based on observation of experimental braking torque

data, a generic asymmetrical sigmoid function was selected to map braking in the control-oriented

model. The parameters of the function were identified in the MATLAB Curve Fitting Tool using the

trust-region algorithm. Equation 6.5 represents the simplified braking map used in the control-oriented

model:

𝜏𝐵𝑟
∗ = 𝑓𝐵𝑟(𝐵𝑃𝑃) =

𝑎

(𝑏(1+𝑒𝐵𝑃𝑃−𝑑))

1
𝑣

 𝑁𝑚 (6.5)

 54

where 𝑎 = 6261, 𝑏 = 25.07, 𝑑 = 0.2522, and 𝑣 = 0.4388 are all unitless constants, which were

determined from parameter identification. The equation fit has an 𝑅2 value of 0.9478, which indicates

a good fit for the simplified model. Figure 6.1 depicts the fit of curve to experimental data.

Figure 6.1: Fit of the control-oriented Braking Torque Map to the experimental data.

Rather than handle the dynamic changes in torque distribution between the front and rear axle, the

control-oriented model assumes a static front-rear braking bias of 3:1, which is the approximate bias

ratio when the rear brakes are engaged; therefore, 𝜏𝐹𝐵𝑟
∗ = 0.75𝜏𝐵𝑟

∗ and 𝜏𝑅𝐵𝑟
∗ = 0.25𝜏𝐵𝑟

∗ . The

assumptions of the simplified braking torque model limit its accuracy in certain ranges of operating

conditions. Notably, as depicted in Figure 6.1, high frequency tire slip oscillations occurring when 𝐵𝑃𝑃

is greater than 0.35 cause the output wheel torque to be unpredictable. In addition, assuming a static

 55

front-rear braking bias may result in degraded model performance for conditions where front and rear

wheel slip are significantly different, such as when individual wheels hit ice.

The discontinuity between the powertrain and braking models, which was handled in the high-fidelity

model using a clutch component, cannot be added to the control-oriented model. The discontinuity

between acceleration and braking was handled by introducing an analytic approximation of the

Heaviside switching function. First, since 𝐴𝑃𝑃 and 𝐵𝑃𝑃 are never applied simultaneously, the control-

oriented model was simplified to include only one control input, the generalized pedal position (𝐺𝑃𝑃).

The 𝐺𝑃𝑃 input has a range of -100 to 100, and it maps to 𝐴𝑃𝑃 and 𝐵𝑃𝑃 by Equations 6.6 and 6.7,

respectively:

𝐴𝑃𝑃 = 𝐺𝑃𝑃 (6.6)

𝐵𝑃𝑃 = −0.004615𝐺𝑃𝑃 + 0.1385 (6.7)

The approximated Heaviside function is represented by Equation 6.8:

𝐻 =
1

1+𝑒−5𝐺𝑃𝑃 (6.8)

𝐻 is applied to individual terms of the drivetrain dynamics equations such that during braking, the

drivetrain inertias are fully decoupled from the motor speed in the control-oriented model.

Based on the control-oriented model simplifications described above, and rearranging the drivetrain

dynamic equations described in Sections 3.2.3 and 3.4, the drivetrain dynamic equations of the control-

oriented model were formulated. Equation 6.9 represents the control-oriented model’s simplified

nonlinear dynamics of the drivetrain during EV mode (engine shaft is locked):

[
(𝐼𝑚𝑜𝑡 + (

𝑅1

𝑅2𝜌
)
2
𝐼𝑔𝑒𝑛) �̇�𝑚𝑜𝑡

𝐼𝑒𝑛𝑔�̇�𝑒𝑛𝑔

] = [
(𝜏𝑚𝑜𝑡

∗ −
𝑅1

𝑅2𝜌
𝜏𝑔𝑒𝑛

∗)𝐻 −
1

𝑅𝑓𝑅2
𝜏𝑑𝑠 − 𝜏𝐹𝐵

∗

0
] (6.9)

Similarly the control-oriented model’s simplified nonlinear dynamics of the drivetrain during engine-

cranking or power-split mode (engine shaft unlocked) is represented by Equation 6.10:

 56

[
(𝐼𝑚𝑜𝑡 + (

𝑅1

𝑅2𝜌
)
2
𝐼𝑔𝑒𝑛) �̇�𝑚𝑜𝑡 − (

𝑅𝑓𝑅1(1+𝜌)

𝑅𝑓𝑅2𝜌2) �̇�𝑒𝑛𝑔

(𝐼𝑒𝑛𝑔 + (
1+𝜌

𝜌
)
2
𝐼𝑔𝑒𝑛) �̇�𝑒𝑛𝑔 − (

𝑅𝑓𝑅1(1+𝜌)

𝑅𝑓𝑅2𝜌2) �̇�𝑒𝑛𝑔

] =

[

 (𝜏𝑚𝑜𝑡

∗ −
𝑅1

𝑅2𝜌
𝜏𝑔𝑒𝑛

∗)𝐻 −
1

𝑅𝑓𝑅2
𝜏𝑑𝑠 − 𝜏𝐹𝐵

∗

𝜏𝑒𝑛𝑔
∗ + ((

1+𝜌

𝜌
) 𝜏𝑔𝑒𝑛

∗)𝐻
]

 (6.10)

Note that when the engine is unlocked, the dynamics of the motor and engine are coupled. Equations

6.9 and 6.10 were both obtained by replacing 𝜏𝑠 in Equations 3.12 and 3.13b with a rearranged form of

equation 3.11, and combining terms.

A simple longitudinal dynamics vehicle model integrates with the drivetrain in the control-oriented

model. Figure 6.2 depicts a diagram of the vehicle model.

Figure 6.2: Simplified longitudinal dynamics vehicle model [31].

The acceleration of the vehicle is determined by the longitudinal tire forces, 𝐹𝐹𝑥 and 𝐹𝑅𝑥, road slope

force, 𝑚𝑔𝑠𝑖𝑛𝜃, force of drag, 𝐹𝐷, and tire rolling resistance forces, 𝐹𝐹𝑟 and 𝐹𝑅𝑟. The small angle

approximations, 𝑠𝑖𝑛𝜃 ≈ 𝜃 and 𝑐𝑜𝑠𝜃 ≈ 1, were applied to the road slope force and rolling resistance

terms. The model assumes that on each axle the left and right wheels rotate at the same velocity. The

EOM for longitudinal motion of the vehicle is represented by Equation 6.11:

𝑚�̇�𝑥 = 𝐹𝐹𝑥 + 𝐹𝑅𝑥 − 𝐹𝐷 − 𝐹𝐹𝑟 − 𝐹𝑅𝑟 − 𝑚𝑔𝜃 (6.11)

 57

where forces of drag and rolling resistance are represented by Equations 6.11 and 6.12, respectively:

𝐹𝐷 =
1

2
𝐶𝑑𝜌𝑎𝑖𝑟𝐴𝑓𝑣𝑥

2 (6.11)

𝐹𝐹𝑟 + 𝐹𝑅𝑟 = 𝐹𝑟 = 𝑚𝑔𝐶𝑟 (6.12)

Refer to Appendix C for a complete table defining longitudinal vehicle dynamics variables and

parameters. The longitudinal tire forces were modelled as functions of longitudinal slip, 𝜎, and normal

force. For simplicity, linear tire models were used. Equations 6.13 and 6.14 depict the equations for

linear longitudinal tire forces acting on the front wheels and rear wheels, respectively:

𝐹𝐹𝑥 = 𝐶𝑙𝐹𝐹𝑧𝜎𝐹 (6.13)

𝐹𝑅𝑥 = 𝐶𝑙𝐹𝑅𝑧𝜎𝑅 (6.14)

where the normal forces on the tires are determined by Equations 6.15 and 6.16:

𝐹𝐹𝑧 = 𝑚𝑔(
𝑙−𝑙𝐹

𝑙
) −

ℎ

𝑙
(𝑚�̇�𝑥 + 𝐹𝐷 + 𝑚𝑔𝜃) (6.15)

𝐹𝑅𝑧 = 𝑚𝑔 (
𝑙𝐹

𝑙
) +

ℎ

𝑙
(𝑚�̇�𝑥 + 𝐹𝐷 + 𝑚𝑔𝜃) (6.16)

The longitudinal slip ratios of the front and rear axles are represented as functions of a linear relaxation

length equation, defined in Equations 6.17 and 6.18:

�̇�𝐹 =

𝜔𝑚𝑜𝑡𝑟

𝑅𝑓𝑅2
−𝑣𝑥−𝑣𝑜𝑝𝜎𝐹

𝑙𝑟𝑙𝑥
 (6.17)

�̇�𝑅 =
𝜔𝑅𝑟−𝑣𝑥−𝑣𝑜𝑝𝜎𝑅

𝑙𝑟𝑙𝑥
 (6.18)

where 𝜎𝐹 and 𝜎𝑅 are the longitudinal slips of the front and rear wheels, respectively. The velocity

operating point, 𝑣𝑜𝑝, is usually the vehicle velocity at the point of linearization, but the value must

never be small enough to create instability in the control-oriented model. For this system, a minimum

 58

operating speed, 𝑣𝑜𝑝𝑚𝑖𝑛
= 1 𝑚/𝑠, was found to be sufficient to ensure stability. The relaxation length

term, 𝑙𝑟𝑙𝑥, was not selected based on any known tire parameters. Instead 𝑙𝑟𝑙𝑥 was used as a means of

combating stiffness in the set of equations and stabilizing the response of the control-oriented model.

The parameter was tuned manually to maximize controller stability and minimize MPC turnaround

time. A non-physical value of 𝑙𝑟𝑙𝑥 = 100 𝑚 was selected despite the fact that typical tire relaxation

lengths are three orders of magnitude smaller. Future work will explore the unusual response of the

control-oriented model that makes controller stability highly dependent on the value of 𝑙𝑟𝑙𝑥.

The time step of the supervisory controller model, 𝑇𝑠𝑁𝑁 = 0.05𝑠, will not necessarily be the same

as the time step of the MPC, 𝑇𝑠. Therefore, the augmented vehicle state 𝑇𝑑𝑠𝑑
∗

𝑘−1
 was converted to

continuous form before discretizing the entire system of equations. Equation 6.19 represents the desired

torque dynamics in continuous form:

�̇�𝑑𝑠𝑑𝑘−1

∗ ≈
𝑇𝑑𝑠𝑑𝑘

∗ −𝑇𝑑𝑠𝑑𝑘−1
∗

𝑇𝑠𝑁𝑁
 (6.19)

Performing this approximation allows the supervisory torque map to be interpolated at any MPC time

step size.

The dynamic equations of the control-oriented model, in continuous form, were rearranged into a

nonlinear state space representation. Equation 6.20 depicts the nonlinear state space for EV mode:

 59

[

 (𝑚 +

𝜎𝐹𝑚ℎ

𝑙
−

𝐶𝑙𝜎𝑅𝑚ℎ

𝑙
) �̇�𝑥

−𝐶𝑙𝜎𝐹𝑚ℎ
𝑟

𝑅2𝑅𝑓𝑙
�̇�𝑥 + (𝐻 (𝐼𝑚𝑜𝑡 + (

𝑅1

𝑅2𝜌
)
2
𝐼𝑔𝑒𝑛) +

2𝐼𝑤ℎ

(𝑅2𝑅𝑓)
2) �̇�𝑚𝑜𝑡

𝐼𝑒𝑛𝑔�̇�𝑒𝑛𝑔

𝐶𝑙𝜎𝑅𝑚ℎ
𝑟

𝑙
�̇�𝑥 + 2𝐼𝑤ℎ�̇�𝑅

�̇�𝐹

�̇�𝑅

�̇�𝑑𝑠𝑑
∗

𝑘−1]

=

[

 𝐶𝑙𝜎𝐹 (

𝑚𝑔𝑙𝐹

𝑙
−

ℎ

𝑙
(𝐹𝐷 + 𝑚𝑔𝜃)) + 𝐶𝑙𝜎𝑅 (

𝑚𝑔𝑙𝐹

𝑙
+

ℎ

𝑙
(𝐹𝐷 + 𝑚𝑔𝜃)) − 𝐹𝐷 − 𝐹𝑟 − 𝑚𝑔𝜃

(𝜏𝑚𝑜𝑡
∗ −

𝑅1

𝑅2𝜌
𝜏𝑔𝑒𝑛

∗)𝐻 −
0.75

𝑅𝑓𝑅2
𝜏𝐵𝑟

∗ −
𝐶𝑙𝜎𝐹𝑟

𝑅𝑓𝑅2
(
𝑚𝑔(𝑙−𝑙𝐹)

𝑙
−

ℎ

𝑙
(𝐹𝐷 + 𝑚𝑔𝜃))

0

−𝐶𝑙𝜎𝑅𝑟(
𝑚𝑔𝑙𝐹

𝑙
+

ℎ

𝑙
(𝐹𝐷 + 𝑚𝑔𝜃)) − 0.25𝜏𝐵𝑟

∗

𝜔𝑚𝑜𝑡𝑟

𝑅𝑓𝑅2
−𝑣𝑥−𝑣𝑜𝑝𝜎𝐹

𝑙𝑟𝑙𝑥
𝜔𝑅𝑟−𝑣𝑥−𝑣𝑜𝑝𝜎𝑅

𝑙𝑟𝑙𝑥

𝑇𝑑𝑠𝑑𝑘
∗ −𝑇𝑑𝑠𝑑𝑘−1

∗

𝑇𝑠𝑁𝑁]

 (6.20)

Equation 6.21 represents the nonlinear state space for engine cranking and power-split modes:

 60

[

 (𝑚 +

𝜎𝐹𝑚ℎ

𝑙
−

𝐶𝑙𝜎𝑅𝑚ℎ

𝑙
) �̇�𝑥

−𝐶𝑙𝜎𝐹𝑚ℎ
𝑟

𝑅2𝑅𝑓𝑙
�̇�𝑥 + (𝐻 (𝐼𝑚𝑜𝑡 + (

𝑅1

𝑅2𝜌
)
2
𝐼𝑔𝑒𝑛) +

2𝐼𝑤ℎ

(𝑅2𝑅𝑓)
2) �̇�𝑚𝑜𝑡 − 𝐻 (

𝑅1(1+𝜌)

𝑅2𝜌2 𝐼𝑔𝑒𝑛) �̇�𝑒𝑛𝑔

−𝐻 (
𝑅1(1+𝜌)

𝑅2𝜌2 ∗ 𝐼𝑔𝑒𝑛) �̇�𝑚𝑜𝑡 + (𝐼𝑒𝑛𝑔 + (
1+𝜌

𝜌
)
2
𝐼𝑔𝑒𝑛) �̇�𝑒𝑛𝑔

𝐶𝑙𝜎𝑅𝑚ℎ
𝑟

𝑙
�̇�𝑥 + 2𝐼𝑤ℎ�̇�𝑅

𝜎�̇�

�̇�𝑅

�̇�𝑑𝑠𝑑𝑘−1

∗
]

=

[

 𝐶𝑙𝜎𝐹 (

𝑚𝑔(𝑙−𝑙𝐹)

𝑙
−

ℎ

𝑙
(𝐹𝐷 + 𝑚𝑔𝜃)) + 𝐶𝑙𝜎𝑅 (

𝑚𝑔𝑙𝐹

𝑙
+

ℎ

𝑙
(𝐹𝐷 + 𝑚𝑔𝜃)) − 𝐹𝐷 − 𝐹𝑟 − 𝑚𝑔𝜃

𝐻 (𝜏𝑚𝑜𝑡
∗ −

𝑅1

𝑅2𝜌
𝜏𝑔𝑒𝑛

∗) −
0.75

𝑅𝑓𝑅2
𝜏𝐵𝑟

∗ −
𝐶𝑙𝜎𝐹𝑟

𝑅𝑓𝑅2
(
𝑚𝑔(𝑙−𝑙𝐹)

𝑙
−

ℎ

𝑙
(𝐹𝐷 + 𝑚𝑔𝜃))

𝜏𝑒𝑛𝑔
∗ + 𝐻 (

1+𝜌

𝜌
𝜏𝑔𝑒𝑛

∗)

−𝐶𝑙𝜎𝑅𝑟(
𝑚𝑔𝑙𝐹

𝑙
+

ℎ

𝑙
(𝐹𝐷 + 𝑚𝑔𝜃)) − 0.25𝜏𝐵𝑟

∗

𝜔𝑚𝑜𝑡𝑟

𝑅𝑓𝑅2
−𝑣𝑥−𝑣𝑜𝑝𝜎𝐹

𝑙𝑟𝑙𝑥
𝜔𝑅𝑟−𝑣𝑥−𝑣𝑜𝑝𝜎𝑅

𝑙𝑟𝑙𝑥

𝑇𝑑𝑠𝑑𝑘
∗ −𝑇𝑑𝑠𝑑𝑘−1

∗

𝑇𝑠𝑁𝑁]

 (6.21)

6.2 Linearizing MPC Algorithm

To address the nonlinear dynamics of the control-oriented model, a continuously linearizing MPC

algorithm was designed. The proposed method provides the computational speed of linear MPC while

allowing the controller to respond to large changes in plant dynamics at different operating points.

Figure 6.3 depicts the block diagram of the linearizing MPC.

 61

Figure 6.3: Block diagram of the longitudinal dynamics MPC.

As depicted in Figure 6.3, at each time step, 𝑘, the controller receives a reference speed vector, 𝑣𝑟𝑒𝑓,

that represents the desired speed of the Moose between time step 𝑘 + 1 and time step at the end of the

prediction horizon, 𝑘 + 𝑛. Current measurements of 𝑣𝑥, 𝜔𝑒𝑛𝑔, 𝜔𝑤ℎ (of each wheel), and 𝑆𝑂𝐶 are used

to calculate the states of the vehicle. 𝜔𝑚𝑜𝑡 is calculated as the average of the two front wheel speeds,

divided by the ratio 𝑅𝑓𝑅2, and 𝜔𝑅 is calculated as the average of the two rear wheels speeds. As

described in Section 6.1, at each time step the simplified TCM model predicts the powertrain operating

mode and calculates the numerically linearized terms of Equations 6.2 to 6.4. Road slope, 𝜃, is treated

as a measurable disturbance. Future work will investigate integrating a road slope estimator with the

controller.

Using Maple offline, Equations 6.20 and 6.21 were symbolically linearized and discretized by the

Forward Euler method to determine two forms of the Jacobian matrices, 𝐴 and 𝐵, and the state

increment, Δ𝑋. By computing these matrices symbolically offline, linearization about a given operating

point can be computed online without performing numerical differentiation. At each time step the

controller uses the predicted operating mode to select which linearized state space equations to use. The

 62

model is linearized about the previous time step, 𝑘 − 1. Equation 6.22 represents the linearized state

space equation at controller time step 𝑘:

𝑋𝑘+𝑖+1 ≅ 𝑋𝑘−1 + 𝐴𝑘−1(𝑋𝑘+𝑖 − 𝑋𝑘−1) + 𝐵𝑘−1(𝐺𝑃𝑃𝑘+𝑖 − 𝐺𝑃𝑃𝑘−1) + Δ𝑋𝑘−1 (6.22)

where 𝐴𝑘−1, 𝐵𝑘−1, and Δ𝑋𝑘−1 are computed algebraically from the terms of state vector 𝑋𝑘−1, which

is represented by Equation 6.23:

𝑋𝑘−1 = {𝑣𝑥𝑘−1
, 𝜔𝑚𝑜𝑡𝑘−1

, 𝜔𝑒𝑛𝑔𝑘−1
, 𝜔𝑅𝑘−1, 𝜎𝐹𝑘−1, 𝜎𝑅𝑘−1, 𝑇𝑑𝑠𝑑

∗
𝑘−2

}
𝑇
 (6.23)

The longitudinal slip operating point terms are calculated by Equations 6.24 and 6.25:

𝜎𝐹𝑘−1 =
𝜔𝑚𝑜𝑡𝑘−1𝑟−𝑅𝑓𝑅2𝑣𝑥𝑘−1

𝜔𝑚𝑜𝑡𝑘−1𝑟
 (6.24)

𝜎𝑅𝑘−1 =
𝜔𝑅𝑘−1𝑟−𝑣𝑥

𝜔𝑅𝑘−1𝑟
 (6.25)

A quadratic objective function was selected for the MPC to ensure convexity of the optimization

problem. The cost function includes the speed tracking error over the prediction horizon. A weighting

was assigned to the rate of change of control input, Δ𝐺𝑃𝑃, over the control horizon. The weighting

assigned to Δ𝐺𝑃𝑃 was tuned to limit the jerk of the vehicle’s response. Equation 6.26 depicts the

objective function used for the MPC:

𝐽 = ∑ ‖𝑣𝑥𝑖
− 𝑣𝑟𝑒𝑓 𝑖‖

2𝑘+𝑛
𝑖=𝑘+1 + ∑ 𝑅Δ𝑢Δ𝐺𝑃𝑃𝑗

2𝑘+𝑐
𝑗=𝑘 (6.26)

subject to the constraints:

−100 ≤ 𝐺𝑃𝑃 ≤ 100

−50/𝑠 ≤ Δ𝐺𝑃𝑃 ≤ 50/𝑠

where 𝑛 is the prediction horizon, 𝑐 is the control horizon, and 𝑅Δ𝑢 is the relative weighting of Δ𝐺𝑃𝑃.

The horizon lengths are constrained such that 𝑐 ≤ 𝑛. For any prediction step after the end of the control

 63

horizon, 𝑖 > 𝑘 + 𝑐, the control input is set to the control input at the final control horizon step, 𝐺𝑃𝑃𝑘+𝑐.

The MPC was implemented for model in the loop (MIL) simulation of the high-fidelity vehicle model

described in Chapter 3. The parameters 𝑛, 𝑐, 𝑅Δ𝑢, and the controller time step, 𝑇𝑠, were tuned using

multiple 𝑣𝑟𝑒𝑓 tracking scenarios. The tuned MPC parameters are summarized in Table 6.1.

Table 6.1: List of tuned MPC parameter values.

Symbol Value Units

𝑛 50 N/A

𝑐 25 N/A

𝑅Δ𝑢 0.15 N/A

𝑇𝑠 0.02 s

An additional modification was made to the controller to ensure its stability at low speeds. The

definition of longitudinal slip used in the control-oriented model creates an instability at low speeds.

At low speeds the denominator terms of Equations 6.24 and 6.25 will approach zero, which will cause

the magnitudes of longitudinal slip to grow very large. MPC performance will become unpredictable

as it attempts to prevent excessive wheel slip. To prevent instability, at velocities below 14km/h the

controller switches from an MPC to a low gain PI algorithm for low velocity tracking. A ±4 km/h

switching dead band was implemented to prevent chatter between the control modes. The PI algorithm

was tuned specifically for smooth velocity tracking at low speeds with low gain control action.

As depicted in Figure 6.3, at the output of the controller, 𝐺𝑃𝑃 is converted to the real controller

commands 𝐴𝑃𝑃 and 𝐵𝑃𝑃 by Equations 6.6 and 6.7, respectively. The two outputs are subjected to

saturation limits such that 0% ≤ 𝐴𝑃𝑃 ≤ 100% and 0.1385 ≤ 𝐵𝑃𝑃 ≤ 0.5 based on the input range of

the Dataspeed drive-by-wire system.

 64

6.3 Controller Simulation Results

For the purposes of performance comparison, a PI controller was used as a benchmark for testing the

MPC because a similarly designed controller is currently implemented on the Moose. Like the MPC,

the PI controller outputs a value for 𝐺𝑃𝑃 that are converted to 𝐴𝑃𝑃 and 𝐵𝑃𝑃 values at its output. The

PI controller was tuned manually to minimize rise time, maximum overshoot, and settling time, but

high-fidelity model nonlinearities affect its performance at different operating points. To track 𝑣𝑟𝑒𝑓 at

high speeds, the PI must have high values of proportional and integral gain, which makes the controller

sensitive to unmeasured disturbances. In each of the following simulated tests, an unmeasured

disturbance was added to the loop as white noise in the measured states. The noise is intended to test

the controller’s disturbance rejection characteristics.

6.3.1 Ramping Velocity Simulation

The first simulated benchmark test is the ramping velocity test. After an initial model settling time of 2

seconds, 𝑣𝑟𝑒𝑓 is set to 0 and ramped up with a constant acceleration of 1m/s2 (3.6km/h/s). Figures 6.4

and 6.5 depict the velocity tracking and velocity error, respectively, of the ramp simulation.

Figure 6.4: Velocity tracking performance of the ramp simulation.

 65

Figure 6.5: Velocity tracking error for the ramp test.

Both the MPC and PI controllers track 𝑣𝑟𝑒𝑓 within 2.5 km/h during the entire simulation. At speeds

below 18km/h, which is the upper threshold of the switching deadband, the MPC defaults to using its

low gain PI controller, and tracking performance is marginally worse than the higher gain benchmark

PI controller. This was an intentional design choice to prevent high frequency pedal actuation at low

speeds, but the controller may be tuned for other preferred performance characteristics. After 8 seconds,

the MPC switches to MPC control mode and smoothly tracks the 𝑣𝑟𝑒𝑓 profile; however the MPC has a

small tracking offset error (less than 0.5km/h) at velocities greater than 80km/h. This is likely the result

of model mismatch between the control-oriented model and high-fidelity model in the high speed

operating range.

 By comparison, the high gain PI controller fails to handle the white noise disturbance, so it oscillates

with high frequency about 𝑣𝑟𝑒𝑓. The comparatively jerky behavior of the high gain PI controller is

clearly displayed in the plots of 𝐴𝑃𝑃 and 𝐵𝑃𝑃 that are depicted in Figures 6.6 and 6.7, respectively.

 66

Figure 6.6: APP control input for the ramp simulation.

Figure 6.7: BPP control input for the ramp simulation.

The MPC controller rejects disturbances well, and shows minimal oscillation of the 𝐴𝑃𝑃 control input.

It also does not chatter between 𝐴𝑃𝑃 and 𝐵𝑃𝑃 control action. The only notable spike In the MPC

controller’s performance is at 8 seconds, when the controller switches from PI to MPC mode. Future

 67

controller modifications could be used to ensure bumpless transfer during switching from PI to MPC

mode. Comparatively, due to its poor disturbance rejection characteristics, the high gain PI controller

performance shows large oscillations in the 𝐴𝑃𝑃 control input. At low speeds it occasionally chatters

between 𝐴𝑃𝑃 and 𝐵𝑃𝑃 control action.

6.3.2 Multi-Ramp Velocity Simulation

The second simulated benchmark test is the multi-ramp velocity test. In this test 𝑣𝑟𝑒𝑓 is ramped at

different rates to several velocity set points. The intention of the simulation is to test the controller’s

ability to track various accelerations and hold different velocity set points. Figures 6.8 and 6.9 depict

the velocity tracking performance and velocity error for the multi-ramp test.

Figure 6.8: Velocity tracking performance of the multi-ramp simulation.

 68

Figure 6.9: Velocity tracking error for the multi-ramp simulation.

Between 5 seconds and 75 seconds the MPC controller operates entirely in MPC mode. The tracking

performance is smooth, and the predictive nature of the controller allows it to ramp into the hard

acceleration and hard braking maneuvers beginning at 32 seconds and 62 seconds, respectively. Like

the previous test, the MPC has a small offset tracking error at high speeds due to model mismatch. The

MPC only switches back to PI mode for the low speed tracking between 75 and 93 seconds.

Like the previous simulation the benchmark high gain PI controller displays unacceptable levels of

oscillation in reference tracking, particularly at high speeds. Due to integral windup, the PI controller

is slow to respond to changes in the slope of 𝑣𝑟𝑒𝑓, which results in large tracking errors at 12 seconds,

32 seconds, and 42 seconds. Both the high gain PI and the MPC fail to track the steep negative ramp of

𝑣𝑟𝑒𝑓 since the demanded acceleration is outside the limits of the high-fidelity vehicle model’s braking

ability.

The 𝐴𝑃𝑃 and 𝐵𝑃𝑃 control inputs for the multi-ramp simulation are depicted in Figures 6.10 and

6.11.

 69

Figure 6.10: APP control input for the multi-ramp simulation.

Figure 6.11: BPP control input for the multi-ramp simulation.

The MPC control action is much smoother than the high gain PI controller. The high gain PI displays

highly jerky behavior and frequently chatters between 𝐴𝑃𝑃 and 𝐵𝑃𝑃 control action.

 70

6.3.3 Sinusoidal Velocity Simulation

The third simulated benchmark test is the sinusoidal velocity test. In this simulation, 𝑣𝑟𝑒𝑓 follows a

sinusoidal path through a range of speeds that are typical on city roads with light traffic. Figures 6.12

and 6.13 depict the velocity tracking performance and velocity error for the sinusoidal test.

Figure 6.12: Velocity tracking performance of the sinusoidal simulation.

 71

Figure 6.13: Velocity tracking error for the sinusoidal simulation.

After the initial 6 seconds required to reach the reference speed, the MPC tracks 𝑣𝑟𝑒𝑓 smoothly for

the remainder of the simulation. The MPC’s tracking error never exceeds 0.5km/h, and the predictive

quality of the controller helps it to follow changes to the slope of 𝑣𝑟𝑒𝑓. Comparatively, the high gain PI

controller displays much larger tracking error, and high frequency oscillations persist throughout the

simulation. Like the multi-ramp test, integral windup causes the high gain PI controller to diverge from

the reference path at the peaks and troughs of the 𝑣𝑟𝑒𝑓 sinusoid.

Figures 6.14 and 6.15 depict the 𝐴𝑃𝑃 and 𝐵𝑃𝑃 control inputs for the sinusoidal simulation.

 72

Figure 6.14: APP control input for the sinusoidal simulation.

Figure 6.15: BPP control input for the sinusoidal simulation.

Like the previous simulations, the MPC control input is smooth and does not chatter between 𝐴𝑃𝑃 and

𝐵𝑃𝑃. The high gain PI applies more aggressive 𝐴𝑃𝑃 and 𝐵𝑃𝑃 inputs that oscillate with high

frequencies.

 73

6.3.4 Simulation Discussion

Comparison of the MPC and the high gain PI controller in all three benchmark simulation scenarios

indicates that the MPC has several advantages over classical control. The only way to obtain adequate

PI tracking performance at high speeds was to tune the controller to respond aggressively to 𝑣𝑟𝑒𝑓

tracking error. The MPC can achieve similar or superior tracking performance over a broad range of

velocities while also applying smoother control inputs.

The high gain PI’s oscillating behavior and chatter between 𝐴𝑃𝑃 and 𝐵𝑃𝑃 implies that classical

control is poorly suited to the highly nonlinear behavior of the vehicle, particularly at high speeds. The

more conservative PI controller that is currently used by the Moose will only perform satisfactorily for

low speed driving, and it is untested at velocities greater than 50km/h. Simulation results indicate that

implementation of an MPC will allow the Moose to smoothly track reference velocities up to 100 km/h.

 74

Chapter 7

Full Vehicle MPC Testing

7.1 MPC Implementation

The Moose’s software stack communicates between modules using the Robot Operating System (ROS).

ROS is an open-source communication structure that allows various modules and processes in a robotic

system to send and receive messages. The modules and processes are each implemented as ROS nodes,

and they communicate messages, such as measurements and commands, over ROS topics. ROS

provides an excellent environment for integration, logging, and testing distributed computing systems.

These functions make it a powerful tool for implementation of complex autonomous systems, such as

self-driving cars. To implement the MPC into the Moose’s stack, it must be converted to a form that is

implementable as a ROS node.

Using the Simulink embedded Coder tool, the full MPC controller block was exported as an

embedded real-time target (ERT) model. The model consists of a C code header and source file, as well

as several supporting files. For integration into the Moose’s software stack, the controller code was

restructured as a C++ class. Carlos Wang, a research engineer with the Autonomoose team, added a

ROS node wrapper to the MPC controller and integrated it into a custom build of the Moose’s stack.

The MPC controller node receives messages containing measurements of wheel speeds, 𝑣𝑥 , 𝜔𝑒𝑛𝑔 ,

𝑆𝑂𝐶, and the vector 𝑣𝑟𝑒𝑓 over the prediction horizon. The road slope, 𝜃, is assumed to be zero. At the

time of testing, the Moose’s stack was not capable of extracting the 𝜔𝑒𝑛𝑔 or 𝑆𝑂𝐶 signals from the

vehicle’s CAN bus. For initial controller testing, 𝑆𝑂𝐶 was set to a constant value of 70%, and 𝜔𝑒𝑛𝑔

was set to 0. The implication of this is that the MPC will always assume the Moose is operating in EV

mode. It is likely that this will affect controller performance, particularly at higher speeds. The MPC

controller outputs signals for 𝐴𝑃𝑃 and 𝐵𝑃𝑃.

 75

7.2 Vehicle Test Procedure

For controlled proof of concept testing of the MPC, it was implemented in a controlled test scenario at

the Region of Waterloo’s Emergency Services Training Centre test track. For all MPC tests, the

Moose’s steering wheel was locked in neutral position, and the vehicle was driven down a straight

section of track. Due to the size of the test track, tests were limited to approximately 250m of vehicle

travel.

Two of the three benchmark tests, the ramped velocity test and the sinusoidal velocity test, were

repeated for vehicle testing. Before the start of each test run, the Moose was driven to the start of the

straight length of track. When the supervising test engineer, Carlos Wang, provided the command for

autonomous control to begin, the MPC controller began reading the vector 𝑣𝑟𝑒𝑓 from a time-stamped

CSV file. Due to the limited length of track, all tests ended after 15 to 25 seconds.

7.3 Vehicle Testing Results

7.3.1 Ramping Velocity Vehicle Test

The first benchmark vehicle test was the ramping velocity test. Figures 7.1 and 7.2 depict the velocity

tracking performance and the velocity error, respectively, for the vehicle ramp test.

 76

Figure 7.1: Velocity tracking performance for the vehicle ramp test.

Figure 7.2: Velocity tracking error for the vehicle ramp test.

 77

It is evident that during the ramp test the MPC performs satisfactorily. For the first 9.5 seconds, the

controller operates in low gain PI mode. In PI mode the controller is tuned for smooth control

application, so it is tolerant of some tracking error. The tracking error could be eliminated by selecting

different gains for the PI controllers. After 9.5 seconds the controller switches to MPC mode, and the

tracking error smoothly converges to zero.

Figures 7.3 and 7.4 depict the 𝐴𝑃𝑃 and 𝐵𝑃𝑃 control inputs for the vehicle ramp test.

Figure 7.3: APP control input for the vehicle ramp test.

 78

Figure 7.4: BPP control input for the vehicle ramp test.

The application of 𝐴𝑃𝑃 is smooth throughout the test; only one small discontinuity occurs at 9.5

seconds where the controller switches to MPC mode.

7.3.2 Sinusoidal Velocity Test

The second benchmark vehicle test was the sinusoidal velocity test. Figures 7.5 and 7.6 depict the

velocity tracking performance and velocity error for the sinusoidal test.

 79

Figure 7.5: Velocity tracking performance for the sinusoidal test.

Figure 7.6: Velocity tracking error for the sinusoidal velocity test.

 80

The MPC rapidly accelerates the vehicle up to 𝑣𝑟𝑒𝑓 and begins tracking the sinusoidal reference. The

controller tracks well during the braking maneuver between 6 and 12 seconds, but during acceleration

some tracking error occurs. The MPC successfully reduces tracking error back to zero by the end of the

test. A possible cause of the tracking error can be inferred by referring to the plots of 𝐴𝑃𝑃 and 𝐵𝑃𝑃,

depicted in Figures 7.7 and 7.8 respectively.

Figure 7.7: APP control input for the sinusoidal test.

 81

Figure 7.8: BPP control input for the sinusoidal test.

During the initial acceleration up to 𝑣𝑟𝑒𝑓 and the subsequent braking maneuver, the MPC applies a

suitable control input for velocity reference tracking. At the start of the first few seconds of the

acceleration maneuver, from 11.5 to 15 seconds, the MPC produces an 𝐴𝑃𝑃 input that oscillates with

low frequency; later in the acceleration maneuver this behavior is damped out. It is likely that the cost

function weighting on Δ𝐺𝑃𝑃, which was tuned in simulation, is too large. Further tuning of this

weighing parameter, as well as the predication and control horizons, could be used to improve the

performance of the MPC on the Moose. It is also likely that acquiring live measurements of 𝜔𝑒𝑛𝑔 and

𝑆𝑂𝐶 would improve the predictive qualities of the MPC, and, as a result, the tracking performance

would improve.

 82

Chapter 8

Conclusions

8.1 Summary

The three primary objectives of this thesis have been successfully completed. Chapters 3, 4, and 5

described the process of modelling and identifying parameters of high-fidelity models of the Lincoln

MKZ hybrid powertrain and braking systems. A grey-box modelling approach utilizing a combination

of shallow neural networks and analytical modelling was used to emulate the system behavior. The

models were identified from empirical vehicle performance data and fully integrated with a high-

fidelity model of the vehicle dynamics. The complete model was validated by open-loop simulation.

In Chapter 6 the high-fidelity model of the powertrain and braking was used to inform the design of

an instantaneously linearizing MPC for longitudinal vehicle dynamics control. The viability of the MPC

and its advantages over classical control were proven by MIL simulation of multiple velocity tracking

scenarios. Compared to a benchmark PI controller, the MPC showed superior reference tracking

performance and better disturbance rejection. In addition, the MPC control action was smoother than

the PI, and it did not chatter between 𝐴𝑃𝑃 and 𝐵𝑃𝑃 control application.

Finally, in chapter 7 a process was developed for integration of the MPC into the Moose’s

autonomous stack. The extent of vehicle testing was limited by the length of available straight road at

the test track. Early vehicle testing of the MPC has shown promising results, but some tracking error

was observed. Acquisition of live measurements of 𝜔𝑒𝑛𝑔 and 𝑆𝑂𝐶 and tuning of MPC parameters will

likely improve performance.

8.2 Future Work

Multiple improvements can be made to the powertrain and braking models that will improve their

accuracy. A limitation of the models described in this thesis is that they are both modelled for

longitudinal applications only. Neither model considers the effects of lateral dynamics on torque

transmission, but some experimental data has shown asymmetrical distribution of torque at the front

 83

wheels during lateral maneuvers. It is possible that the Lincoln MKZ has an unmodeled torque

vectoring controller that applies asymmetrical mechanical braking to aid in lateral maneuvers. These

effects should be considered if the lateral dynamics of the Moose are to be modelled accurately.

The braking model of the Moose may be improved considerably if a means of isolating the

measurements of mechanical and regenerative braking is determined. Modelling the regenerative

behavior of the braking would eliminate the need for the virtual drivetrain clutch component, so the

powertrain and braking models could fully integrate with one another. Modelling regenerative braking

would also be necessary for any future modelling of the Moose’s high voltage battery. An accurate

battery model will allow the Autonomoose team to consider fuel efficiency in the design of future local

planners and vehicle controllers.

The longitudinal dynamics MPC described in this thesis must undergo rigorous track testing before

it can confidently be implemented for driving on public roads. The controller parameters should be

tuned using a larger set of 𝑣𝑟𝑒𝑓 profiles. In addition, live measurements of 𝑆𝑂𝐶 and 𝜔𝑒𝑛𝑔 should be

added to the controller to improve its predictive capabilities. The MPC should also be tested

simultaneously with the Moose’s existing lateral dynamics controller to confirm that its performance is

satisfactory through lateral maneuvers. Additional modifications to account for lateral effects may be

required.

A major contribution of this thesis work to the Autonomoose team was identifying a method for

transferring controllers designed in Maple and MATLAB/Simulink to the Moose’s autonomous stack.

Using this method it is now straightforward to prototype new vehicle controllers and transfer them over

to the Moose’s stack for vehicle testing. There are several improvements that can be made to the

existing MPC controller and implemented for future vehicle tests. One advantage of the existing MPC

design is that it is possible to account for effects of measured or estimated disturbances. A state

estimator for road slope, road conditions, drag, and other time-varying effects should be implemented

alongside the controller, which will improve the predictions of the control-oriented model.

Future controller design work will explore the viability of nonlinear methods for the longitudinal

dynamics MPC. Recent development of advanced strategies for model-order reduction by other

 84

members of the Motion-Research Group may facilitate the real-time implementability of nonlinear

MPC. A more advanced MPC for control of both lateral and longitudinal dynamics should also be

designed and implemented to eliminate the need for two independent vehicle dynamics controllers. The

combined controller should account for the interdependence of longitudinal and lateral dynamics on

vehicle behavior, particularly with the tire forces. By simultaneously controlling the actuation of 𝐴𝑃𝑃,

𝐵𝑃𝑃, and steering wheel angle, the combined MPC would control all aspects of local path tracking.

 85

 86

References

[1] SAE International, "Taxonomy and Definitions for Terms Related to Driving Automation

Systems for On-Road Motor Vehicles.," SAE International, Warrendale, 2018.

[2] Ö. S. Tas, F. Kuhnt, J. M. Zöllner and C. Stiller, "Functional System Architectures towards Fully

Automated Driving," in 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, 2016.

[3] K. Jo, J. Kim, D. Kim, C. Jang and M. Sunwoo, "Development of Autonomous Car—Part I:

Distributed System Architecture and Development Process," IEEE Transactions on Industrial

Electronics, vol. 61, no. 12, pp. 7131-7140, 2014.

[4] S. Thrun, "Simultaneous Localization and Mapping," in Robotics and Cognitive Approaches to

Spatial Mapping, Berlin, Springer, 2008, pp. 13-41.

[5] AutonomouStuff, "AutonomousStuff," AutonomouStuff, 2018. [Online]. Available:

https://autonomoustuff.com/. [Accessed 5 September 2018].

[6] Dataspeed Inc., "Dataspeed," Element5 Digital, 2018. [Online]. Available:

http://dataspeedinc.com/. [Accessed 5 September 2018].

[7] K. Hornik, M. Stinchcombe and H. White, "Multilayer Feedforward Networks are Universal

Approximators," Neural Networks, vol. 2, no. 5, pp. 359-366, 1989.

[8] R. Hecht-Nielsen, "Theory of the Backpropagation Neural Network," in Neural Networks for

Perception, Academic Press, 1992, pp. 65-93.

[9] D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert, "Constrained Model Predictive

Control: Stability and Optimality," Automatica, vol. 36, no. 6, pp. 789-814, 2000.

[10] M. Behrendt, "MPC Scheme Basic," 2 October 2009. [Online]. Available:

https://commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg. [Accessed 13 August 2018].

[11] S. Buggaveeti, M. Batra, J. McPhee and N. Azad, "Longitudinal Vehicle Dynamics Modeling

and Parameter Estimation for Plug-in Hybrid Electric Vehicle," in SAE World Congress, Detroit,

2017.

[12] A. Taghavipour, R. Masoudi, N. Azad and J. McPhee, "High-Fidelity Modeling of a Power-Split

Plug-In Hybrid Electric Powertrain for Control Performance Evaluation," in 15th International

Conference on Advanced Vehicle Technologies, Portland, 2013.

 87

[13] F. U. Syed, M. L. Kuang, J. Czubay and H. Ying, "Derivation and Experimental Validation of a

Power-Split Hybrid Electric Vehicle Model," IEEE Transactions on Vehicular Technology, vol.

55, no. 6, pp. 1731-1747, 2006.

[14] J. Liu, H. Peng and Z. Filipi, "Modeling and Analysis of the Toyota Hybrid System," in

International Conference on Advanced Intelligent Mechatronics, Monteray, 2005.

[15] J. Liu and H. Peng, "Modeling and Control of a Power-Split Hybrid Vehicle," IEEE Transactions

on Controls and Technology, vol. 16, no. 6, pp. 1242-1251, 2008.

[16] T. Hofman, M. Steinbuch and R. M. Druten, "Modeling for Simulation of Hybrid Drivetrain

Components," in Vehicle Power and Propulsion Conference, Windsor, UK, 2006.

[17] B. Ganji, A. Z. Kouzani, S. Y. Khoo and M. Shams-Zahraei, "Adaptive Cruise Control of a HEV

Using Sliding Mode Control," Expert Systems with Applications, vol. 41, pp. 607-615, 2014.

[18] S. Moon, I. Moon and K. Yi, "Desgn, Tuning, and Evaluation of a Full-Range Adaptive Cruise

Control System with Collision Avoidance," Control Engineering Practice, vol. 17, no. 4, pp. 442-

455, 2009.

[19] M. Batra, A. Maitland, J. McPhee and N. Azad, "Non-Linear Model Predictive Anti-Jerk Cruise

Control for Electric Vehicles with Slip-Based Constraints," in American Control Conference,

Milwaukee, 2018.

[20] D. Corona and B. De Schutter, "Adaptive Cruise Control for a SMART Car: A Comparison

Benchmark for MPC-PWA Control Methods," IEEE Transactions on Control Systems

Technology, vol. 16, no. 2, pp. 365-372, 2008.

[21] S. Li, K. Li, R. Rajamani and J. Wang, "Model Predictive Multi-Objective Vehicular Adaptive

Cruise Control," IEEE Transactions on Control Systems Technology, vol. 19, no. 3, pp. 556-566,

2011.

[22] S. E. Li, K. Li and J. Wang, "Economy-oriented vehicle adaptive cruise control with coordinating

multiple objectives function," Vehicle System Dynamics International Journal of Vehicle

Mechanics and Mobility, vol. 51, no. 1, pp. 1-17, 2012.

 88

[23] M. Vajedi and N. L. Azad, "Ecological Adaptive Cruise Controller for Plug-In Hybrid Electric

Vehicles Using Nonlinear Model Predictive Control," IEEE Transactions on Intelligent

transportation Systems, vol. 17, no. 1, pp. 113-122, 2016.

[24] A. H. Borhan, A. Vahidi, A. M. Phillips, M. L. Kuang and I. V. Kolmanovsky, "Predictive Energy

Management of a Power-Split Hybrid Electric Vehicle," in American Controls Conference, St.

Louis, 2009.

[25] M. L. Kuang, F. U. Syed, A. M. Phillips, D. Ramaswamy and B. R. Masterson, "System and

Method for Obtaining an Adjustable Acceleration Pedal Response in a Vehicle Powertrain".

United States of America Patent 0112439 A1, 30 April 2009.

[26] M. Van Gennip, "Parameter Identification and Vehicle Dynamic Modelling of an Autonomous

Vehicle," University of Waterloo, Waterloo, ON, 2018.

[27] M. Van Gennip and J. McPhee, "Parameter Identification for Combined Slip Tire Models using

Vehicle Measurement System," in SAE World Congress, Detroit, 2018, Paper No. 2018-01-1339.

[28] Dataspeed Incorporated, "Throttle-Brake Combination By-Wire," Dataspeed Incorporated,

Rochester Hills, MI, 2016.

[29] M. Green and J. B. Moore, "Persistence of Excitation in Linear Systems," Systems & Control

Letters, vol. 7, no. 5, pp. 351-360, 1986.

[30] J. T. Heaton, Introduction to Neural Networks for Java, 2nd Edition, St. Louis: Heaton Research,

Inc., 2008.

[31] Bundesamt für Strassen, "Leichte Motorwagen," 18 March 2009. [Online]. Available:

https://commons.wikimedia.org/wiki/File:CH-Zusatztafel-Leichte_Motorwagen.svg. [Accessed

6 December 2017].

 89

Appendices

 90

Appendix A

Signals Measured During Vehicle Parameter Identification Testing

Table A.1: Table of signals measured during parameter identification testing.

Signal(s) Symbol(s) Signal Source Signal

Measurement

Apparatus

Sample

Rate (Hz)

Wheel Speeds 𝜔𝐹𝑅 , 𝜔𝐹𝐿, 𝜔𝑅𝑅 , 𝜔𝑅𝐿 VMS WFS Vector VN1640A

CAN Interface
100

Wheel Torques 𝜏𝐹𝑅 , 𝜏𝐹𝐿, 𝜏𝑅𝑅 , 𝜏𝑅𝐿 VMS WFS Vector VN1640A

CAN Interface
100

Electric Motor

Speeds
𝜔𝑚𝑜𝑡, 𝜔𝑔𝑒𝑛 VCM II Diagnostics Vector VN1640A

CAN Interface
~4

Power Source

Torques
𝜏𝑚𝑜𝑡, 𝜏𝑒𝑛𝑔, 𝜏𝑔𝑒𝑛 VCM II Diagnostics Vector VN1640A

CAN Interface
~4

Total Desired

Torque
𝑇𝑑𝑠𝑑 VCM II Diagnostics Vector VN1640A

CAN Interface
~4

Vehicle Speed 𝑣𝑥 OBD II Vector VN1640A

CAN Interface
10

Engine Speed 𝜔𝑒𝑛𝑔 OBD II Vector VN1640A

CAN Interface
10

Battery State of

Charge
𝑆𝑂𝐶 OBD II Vector VN1640A

CAN Interface
10

Accelerator

Pedal Position
𝐴𝑃𝑃 OBD II Vector VN1640A

CAN Interface
10

Brake Pedal

Position
𝐵𝑃𝑃

Throttle-Brake

Combination By-Wire

Interface

Moose’s Onboard

Linux Computer
50

 91

Appendix B

Double Layer Perceptron Regression Plots

Figure A.1: Regression plot of the supervisory torque NN model (R=0.999).

Figure A.2: Regression plot of the TCM output torque NN model (R=0.979).

 92

Figure A.3: Regression plot for the front brake NN model (R=0.976).

Figure A.4: Regression plot of the rear brake NN model (R=0.920).

 93

Appendix C

Longitudinal Vehicle Dynamics Model Variable and Parameter

Definitions

Symbol Description Value (if a parameter) Units

𝐴𝑓 Frontal vehicle area 2.08 𝑚2

𝐶𝑑 Coefficient of drag 0.8156 Unitless

𝐶𝑙 Longitudinal tire stiffness 11.0 Unitless

𝐶𝑟 Rolling resistance

coefficient

0.01 Unitless

𝐹𝐷 Force of drag N/A 𝑁

𝐹𝑟 Rolling resistance force N/A 𝑁

𝐹𝑥 Longitudinal tire force N/A 𝑁

𝐹𝑧 Vertical tire force N/A 𝑁

𝑎𝑥 Longitudinal vehicle

acceleration

N/A 𝑚/𝑠2

𝑙 Vehicle wheelbase 2.85 𝑚

𝑙𝐹 Distance from front axle to

COM

1.32 𝑚

𝑣𝑜𝑝 Vehicle velocity of the

longitudinal slip operating

point

N/A 𝑚/𝑠

𝜌𝑎𝑖𝑟 Air density 1.225 𝑘𝑔/𝑚3

𝜔𝑅 Rear axle rotational

velocity

N/A 𝑟𝑎𝑑/𝑠

ℎ COM height 0.531 𝑚

𝑔 Acceleration due to

gravity

9.81 𝑚/𝑠2

𝑚 Vehicle mass 2274 𝑘𝑔

𝑟 Tire effective radius 0.347 𝑚

𝜃 Road slope angle N/A 𝑟𝑎𝑑

𝜎 Longitudinal wheel slip N/A Unitless

Table A.2: List of parameters and variables used in the control-oriented longitudinal dynamics

model, simplified from the high-fidelity vehicle dynamics model [26].

