3,499 research outputs found

    Output-Feedback Control for a Class of Stochastic High-Order Feedforward Nonlinear Systems with Delay

    Get PDF
    The problem of global output-feedback stabilization for a class of stochastic high-order time-delay feedforward nonlinear systems with different power orders is investigated. By combining the adding one power integrator technique with the homogeneous domination approach, an output-feedback controller design is proposed, which ensures the global asymptotical stability in probability of the closed-loop system

    Global Stabilization of Triangular Systems with Time-Delayed Dynamic Input Perturbations

    Full text link
    A control design approach is developed for a general class of uncertain strict-feedback-like nonlinear systems with dynamic uncertain input nonlinearities with time delays. The system structure considered in this paper includes a nominal uncertain strict-feedback-like subsystem, the input signal to which is generated by an uncertain nonlinear input unmodeled dynamics that is driven by the entire system state (including unmeasured state variables) and is also allowed to depend on time delayed versions of the system state variable and control input signals. The system also includes additive uncertain nonlinear functions, coupled nonlinear appended dynamics, and uncertain dynamic input nonlinearities with time-varying uncertain time delays. The proposed control design approach provides a globally stabilizing delay-independent robust adaptive output-feedback dynamic controller based on a dual dynamic high-gain scaling based structure.Comment: 2017 IEEE International Carpathian Control Conference (ICCC

    Nonlinear discrete-time systems with delayed control: a reduction

    Get PDF
    In this work, the notion of reduction is introduced for discrete-time nonlinear input-delayed systems. The retarded dynamics is reduced to a new system which is free of delays and equivalent (in terms of stabilizability) to the original one. Different stabilizing strategies are proposed over the reduced model. Connections with existing predictor-based methods are discussed. The methodology is also worked out over particular classes of time-delay systems as sampled-data dynamics affected by an entire input delay

    Time-Varying Input and State Delay Compensation for Uncertain Nonlinear Systems

    Full text link
    A robust controller is developed for uncertain, second-order nonlinear systems subject to simultaneous unknown, time-varying state delays and known, time-varying input delays in addition to additive, sufficiently smooth disturbances. An integral term composed of previous control values facilitates a delay-free open-loop error system and the development of the feedback control structure. A stability analysis based on Lyapunov-Krasovskii (LK) functionals guarantees uniformly ultimately bounded tracking under the assumption that the delays are bounded and slowly varying

    Global stabilization of feedforward systems under perturbations in sampling schedule

    Full text link
    For nonlinear systems that are known to be globally asymptotically stabilizable, control over networks introduces a major challenge because of the asynchrony in the transmission schedule. Maintaining global asymptotic stabilization in sampled-data implementations with zero-order hold and with perturbations in the sampling schedule is not achievable in general but we show in this paper that it is achievable for the class of feedforward systems. We develop sampled-data feedback stabilizers which are not approximations of continuous-time designs but are discontinuous feedback laws that are specifically developed for maintaining global asymptotic stabilizability under any sequence of sampling periods that is uniformly bounded by a certain "maximum allowable sampling period".Comment: 27 pages, 5 figures, submitted for possible publication to SIAM Journal Control and Optimization. Second version with added remark

    A passivity based control methodology for flexible joint robots with application to a simplified shuttle RMS arm

    Get PDF
    The main goal is to develop a general theory for the control of flexible robots, including flexible joint robots, flexible link robots, rigid bodies with flexible appendages, etc. As part of the validation, the theory is applied to the control law development for a test example which consists of a three-link arm modeled after the shoulder yaw joint of the space shuttle remote manipulator system (RMS). The performance of the closed loop control system is then compared with the performance of the existing RMS controller to demonstrate the effectiveness of the proposed approach. The theoretical foundation of this new approach to the control of flexible robots is presented and its efficacy is demonstrated through simulation results on the three-link test arm
    corecore