research

Global Stabilization of Triangular Systems with Time-Delayed Dynamic Input Perturbations

Abstract

A control design approach is developed for a general class of uncertain strict-feedback-like nonlinear systems with dynamic uncertain input nonlinearities with time delays. The system structure considered in this paper includes a nominal uncertain strict-feedback-like subsystem, the input signal to which is generated by an uncertain nonlinear input unmodeled dynamics that is driven by the entire system state (including unmeasured state variables) and is also allowed to depend on time delayed versions of the system state variable and control input signals. The system also includes additive uncertain nonlinear functions, coupled nonlinear appended dynamics, and uncertain dynamic input nonlinearities with time-varying uncertain time delays. The proposed control design approach provides a globally stabilizing delay-independent robust adaptive output-feedback dynamic controller based on a dual dynamic high-gain scaling based structure.Comment: 2017 IEEE International Carpathian Control Conference (ICCC

    Similar works

    Full text

    thumbnail-image

    Available Versions