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1 Introduction

1.1 Overview

This report summarizes the research effort and results related to the Grant No. NAG 9-

462/Basic from the NASA Johnson Space Center (JSC). The overall goal of this research is

to develop a general theory for the control of flexible robots, including flexible joint robots,

flexible link robots, rigid bodies with flexible appendages, etc. As part of the validation,

the theory is applied to the control law development for a test example which_consists oc

three-link arm modeled after the shoulder yaw joint of the space shuttle rem._.9_t_o_ _z_e'e"

system (RMS). The performance of the closed loop control sys_£, t _'j
performance of the existing RMS controller to demon__OL , _,s

. . _ C'"_ _c-"
approach. In this report, we present the th_.g_j"_s_:O. 5 ,_I[_ __ 0 ^_uu,?_'_

• I_ t ' 0 -°0_ S IXu. 1 OUthe control of flexible robots and _q -1 _z ,_ ._ g_ _-,t_ . ,,n the
• _ pl_ • _2)I_ _1L_: - c b:'

three-hnk test arm. ; Ix .,_,L._ 3 ; S_O argot ., 3.5**
• _'- -'t,t ¢ ¢_ _re. SL,_- .

Some lmpor_t !_ ; ? Lt: _.VL_, _''L_o _'i - C _.. m this research are noted

below• D-_'_,x¢ ',_ _ , I_ _ ,;se_ _ _._ and low power consumption, these

proper, _I_" _'-'_ (9"c'"
_? _,_._,_,_9or _ .,1oulators as well.

._ gq 9
1. T} Ixeat ,_ _ _,_ comparison with the motor inertia, even when the joints are

hea _-°s_l_. (so the motor inertia seen from the link is multiplied by the square of

the gear ratio). This implies large inter-link coupling, especially in the mass matrix.

2. The gearbox model includes a nonlinear spring and hysteresis.

3. The payload is massive compared to the arm (two orders of magnitude larger).

4. Amplifier output, motor torque, joint and Cartesian velocities are limited.

Based on the simulation of the three-link test arm using the existing RMS controller, the

following attributes of the current RMS controller performance have been observed:
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_trol!eronly useslocal motor velocity feedback (digital velocity PI loop in
plus analog tachometerfeedback). This choicehas the advantagesthat link
d angular velocitiesneednot be measuredand the control law is very simple.
wbaekis that the inter-link coupling and link angular error are not directly
;ated. Since the links are very massivecompared to the motor inertia (even
tvy gearing), this coupling is quite sizable. As a result, there is a significant
of uncommandedmotion; for example,if a singlejoint is commandedto follow
y profile, thereare largetransientsat other joints, causinglargeposition errors,
the end effectoris commandedto follow a Cartesianvelocity, large deviations
other directions.

trol strategy is to drive the motor velocity (reducedby the gear ratio) to the
ink velocity and then let the link oscillationdampout through the link friction.
ently, the motor velocity may be adequatebut the link velocity performance
sh. This problem exists even in the single flexible joint case, the inter-link
only compoundsthe problem.

;ting RMS controller appearsto be very robust in terms of stability. Load
[oesnot affect stability but the transient performancediffers significantly for
zdand unloadedcases.

he aboveobservations,we haveset out to understand the existing controller
n particular, the apparentstability robustness)and to developanew designto
:esentshortcomings.The followingobjectivesare formulated for the modified
y are alsousedto comparethe closedloop performancebetweencontrollers:

;tieamplitude and duration of oscillationsof the link velocity while increasing
of response,

the effectof inter-link Coupling. :

t stability and performancerobustnesswith respect to the payload and arm
_tion.

t internal stability, i.e., motor torque and velocity should stabilize.

theseobjectives, we have focusedon a recently developedmethod which
tssivity property of flexible robots [1]. Application of this method to flexible
ad, in particular, to our test arm, leadsto a large family of stabilizing control

justifies the existing RMS control law. A subclassof this family, hasproven
_ectivein terms the performancecriteria stated above. The structure of this
Hersbasically consistsof the kernelof the existing RMS controller augmented
riable dependentfeedforward. Results in this report mostly pertain to this
_nalysisand simulation (for performancecomparison)of the new controllers,
the following assumptions:

state measurementiS available,namely, link anglesand angular velocities,
)r anglesand angular velocities. In contrast, the existing RMS controller only
_torangular velocitiesand angles(obtained by integrating angular velocities).
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2. Somecontroller limits, and hysteresis(unit efficiencyfor both forward and back drive)
are ignored in the analysis. Velocity limit logic has beenimplemented in simulation.
In most of the simulation results, torque limit hasalso beenincluded.

3. The arm dynamic model is known exactly.

We are in the processto relax all of these assumptions. A nonlinear observer is under
investigation for the first case,a saturation-driven commandtrajectory modifier isconsidered
for the second,and robustnessanalysisand adaptive control is being studied for the last.
Thesedirections of generalizationwill be discussedmore fully in Section 6.

1.2 Introduction to Passivity Approach

Passivity is an input/output property which roughly means that energy can only flow into

the system (in other words, the system can never generate energy through the input/output

pair). For flexible joint robots, the passive pairs are the motor torque and motor velocity.

The basic structure of our proposed controller is the sum of a model-based feedforward

and a model-independent feedback. The procedure of control design for flexible robots

involves two steps: feedforward design and feedback stabilization. These steps are explain

further below:

Feedforward Design: A feedforward control (possibly dependent on the full state mea-

surements) is chosen to form an error equation so that the system is passive between

a particular input/output pair.

Feedback Stabilization: The stabilization procedure involves first finding a static feed-

back (usually the position proportional feedback) to guarantee observability and main-

tain passivity and then choosing a strictly passive feedback from the passive output.

The passivity approach described above has the following important features:

The feedback portion is independent of the model, so the closed loop stability is ex-

tremely robust. When the feedforward is inexact or absent altogether, the stability

is still maintained, but the steady state error will increase proportional to the model

mismatch.

• Only the output (i.e., motor position and velocity) is needed for the stabilization in

contrast to the full state in the exact linearization.

The controller structure is a simple form of stabilizing feedback summed with a feed-

forward. This clean separation of functionality between the two loops is particularly

amenable to adaptive control. In contrast, the two loops are intertwined in the exact

linearization approach.

For the tracking control, the choice of feedforward greatly impacts performance. Vv'e

have found that it is particularly effective to add a link angle and angular velocity

feedback component in the desired link acceleration.



This approachis applicableto both (position) setpoint stabilization andtracking control.
In the set point control case,the feedforward is particularly simple to solve and is usually
a constant. In the tracking case,essentiallythe plant needsto be stably inverted. We will
later discussvarious approximation that wehave used. The rate control used in RMS can
be cast as a special caseof the tracking problem.

Passivity of mechanicalsystemshaslong beenrecognizedasan important property. This
property hasbeenusedin the feedbackstabilizationfor fully actuated rigid robots [2, 3,4, 5],
satellites [6,7, 8], and flexible joint robots [9, 10]. Passivityproperty for flexible jointed robot
was recognizedin [9] and indeedwasusedin a proportional-derivative (PD) type controller
design. The method requires inherent damping in both joints and motors. Similar results
without requiring the inherent damping haverecently appearedin [10]. The result on PD
stabilization of flexible beamswasfirst shownin [11].

The passivity property of flexible structures with collocatedsensorsand actuators was
noted in [12] when the inherent damping is present. The controller structure, however, is
invariably of the simple PD form. As a result of the low damping, the transient performance
is typically poor. It wasonly recently noted that an undampedbeam can be stabilized by
using PD alone [11, 13]. However,as the open-loop poles and zerosare on the imaginary
axis, transient performanceis poor. In [14], basedon the work in [15] for rigid robots, the
PD structure is generalizedto a generalpassivecontroller for a multiple-flexible-link robot.
However,in contrast to [1], intrinsic structural damping in the flexible links is required.

Another prominent approachto the control of flexible joint robots is exact linearization.
Therehasbeenmany publishedwork on this application, for a summarysee[16]. In general,
this approach requires the exact model information, linear spring assumption, and zero
gyroscopic force coupling. Furthermore, the feedforwardcompensation(for linearization)
and the feedbackstabilization are intertwined and errors in the feedforwardmay affect the
closedloop stability in an adverseway. The feedforwarddesign in our approach is very
similar to the exact linearization approach- both essentiallysolvean inverseplant problem.
But our approachrequiresmuch lessmodel information in the set point control case(only
the spring characteristicsis needed),canbe extendedto the nonlinear spring caseand fully
coupled dynamic model, and the additive separationbetweenthe feedbackand feedforward
implies that error in feedforwarddoesnot lead to instability. The price to pay is that the
closedloop performancecannot be arbitrarily assigned.

1.3 Organization of Report

This report gives a self-contained exposition of the passivity control theory for flexible robots

and also presents simulation results for a three-link arm to demonstrate the effectiveness of

the scheme. In Section 2, the full model for the three-link test example is presented, includ-

ing the gearbox characteristics. This material is largely based on the original SPAR report

[17] and some additional notes from Richard Theobald at Lockheed [18]. The full model is

used in a "truth-model" simulation. We have also used a simplified model (with satura-

tion, hysteresis, and quantization ignored) for controller design and performance comparison

between the RMS controller and the proposed controller. The existing RMS controller is

explained in Section 3. Again, much of the materials are from [17], some of them are in-

terpreted in a passivity perspective. Several different versions of the modified controller are



presentedin Section4. The performanceof the two controllers is comparedin Section5. All
of the simulation results arepresentedhere. Proposedfuture extensionsare summarized in
Section6.

The general theory of passivecontrol designmethodologyfor flexible robots is included
in the Appendix.

2 Modeling

In this section, we present the dynamical equations for the three-link test arm. The general

model is based on the description in [18], [19] and [17]. Additional assumptions are made to

obtain models for a high fidelity simulation based in FORTRAN and for a proof-of-concept

simulation based in MATLAB. These assumptions are based in part on the classification of

critical and non-critical parameters as in [20], and in part on the expected applications.

2.1 General Assumptions

Arm geometry and mass properties parameters are considered as non-critical parameters in

the sense that their variations do not affect the arm performance significantly [20]. Crude

estimates of the related parameters can thus be used for the study. Among the servo parame-

ters, only the gearbox stiffness, gearbox forward/backdrive emciencies, motor drive amplifier

gain, forward/backdrive current limits, joint and motor friction/stiction, and brake torque

are considered as critical parameters [20]. Hence, a precise model of these elements should

be used. However, approximations of some of these elements are used for this study in order

to simplify the controller design. The controllers will be tested with the precise model at a
later date.

2.1.1 Mass and Geometry Properties

The test manipulator is a three-link planar arm (shown in Fig.l). The links are considered

to be rigid (i.e., bending stiffness is neglected) uniform homogeneous cylinders. The link

parameters are enumerated in table 1 where the inertia of each link is referenced to the center

of gravity of the link which is at the geometric center and is expressed in the corresponding

joint reference frame. The joint reference frame is rigidly attached to the link at its inboard

end.

Variable

Table 1: Arm parameters

Name Link 1 Link 2 Link 3 Units

length li 7.315289 7.315289 1.828822 rn

mass rni 175.1825 175.1825 43.79562 Kg

inertia ):i 781.2183 781.2183 12.2065 Kg • rn 2
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Figure 1: Three-link planar arm and payload
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The baselinepayloadis a homogeneouscylinder and is representativeof a typical module
to be handled by the RMS. The characteristicsof the baselinepayload are enumerated in
table 2. It is assumedthat the payloadis graspedby the manipulator by its centersuch that
if the payload is consideredasa point mass,the point masswill be in the axis of link three
at a distanceof half the diameterof the payloadfrom the end effector (seeFig.l).

Table 2: Baselinepayloadparameters

Variable II Name [Value
mass
inertia
length
diameter

rnpl

l%t

Ipt

20875.9124

Units

351046.558

13.71617 m

4.267252 m

Kg

Kg • m _

The manipulator and load dynamics are described by the following equation:

,joint = M(Oe)Oe + C(Oe,Oe)de + rFL(Oe) + r_,t (i)

where 0e represents the link angular positions, rjoint the torque applied at the base of the links

(i.e., gear torque), rrL the stiction/friction link torque and r, xt the effect of external forces

applied to the arm. The mass matrix and centrifugal/Coriolis torque are of the following
form:

1 1
M(Oe) = 0 1

0 0

C(Oe, de)Oe = 0 1

0 0

1[1 •

1

77/11 Tg/12 _13

/7/21 ?7"/22 m23

m31 77/32 m33

i [ 0 C12 C13 ]
1 • c21 0 c23 •

1 c31 c32 0

1 0 O]
• 1 1 0

1 1 1
(2)

(3)

with :

_7/11 -- I1 -Jr- 12 . (/722 -_- ?T/3 2y mpl ) -J- 12cl .N"t 1

TY/12 = ll" (lc2 "_Y/2 3I- 12" [/7/3 "J1- mpl]). C2

ml3 = 11 " [/_3 "m3 + l_l" r%t] • C23

m21 = rt212

m2a = 12.[tc3.ma+l_pl.mpt]-C3

m31 -- Ty/I 3

Trt32 :- 1/223

_,_ = -I1. (l_ m_ + z_.[_3 + mA). 82

(4)
(5)
(6)
(7)
(8)
(9)

(10)
(li)

(l_)
(13)



c13 = -ll.[/ca'm3+lcpl-rnp,]-S23 (i 4)

c21 = -c,_ (15)

c_3 = -I2. [/c3"m3 + lcpt. rapt]-$3 (16)

c31 = -c13 (17)

c_2 = -c23 (18)

where l_i= li/2, Icpl= 13-4-lpl/2, [i = rni" I_/12, C2 = cos(02), C3 = cos(03), C23 =

cos(0_+ 03), s2 = _i_ (0_),s3 = _i_ (0_),s23 = _i_ (0_+ 0_).
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2.1.2 Joint Servo Model Description

The joint servomodel for eachjoint is shownin Fig. 2 and the existing RMS controller is
shownin Fig. 3. The three joints in the manipulator model for this study are identical and
the parametersare listed in table 3. The motor drive amplifier is modeledasa constantgain
KA. The motor time constant rm is ignored. The motor shaft and the gearbox input shaft

are one and the same so that the moment of inertia for all the component rigidly attached

to that shaft are included in the gearbox input moment of inertia Jm. The motor brake and

stiction/friction functions are modeled by a single nonlinear function as shown in Fig. 4
where

10ml ]
f@,,) = (Tso-Tc)'e t,, +To • sgn @m) (19)

where u represents the rate of transition from stiction to friction. Application of the brake

increases the stiction/friction level to the sum of the motor stiction/friction plus that of the

brake.

Table 3: Joint parameters

Variable

Motor inertia

Motor constant

Back Emf

Motor friction

Motor friction (brake on)

Torque limit (fwd)

Torque limit (bkd)

...._lotor drive gain

Motor drive output limit

Output friction

Gear ratio

Name Value Units

Jm 3.6755E-4 Kg • rn 2

KT/RL 0.081345 N. rn/V

Ks 0.235 V/rad/s

T.q 0.02819957 N. rn

TSR 0.4430586 N- m

TF "0.9057755 N-m

Ts 0.5139642 N. m

KA 1.92 V/V

LA 20.0 V

To,, "-54.9485 ii_ :m

N 1841.95

Gearbox stiffness Ka 0.47153 N • m/rad/s

Backlash angle A 1.6872 tad

Torque at A T_ 0.23 N. m

Efficiency (fwd) rip 0.78

Efficiency (bkd) r/B 0.845

D/A gain KDA 0.161.5 V/cnt

D/A input limit LD 63 cnt

Digital tach. gain 11.378KD cnts/rad/s

The effect of the motor drive amplifier current limit is included as a torque limit in the

motor model. This torque limit depends on the motor mode of operation, i.e. forward

11
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Figure 4: Motor brake and stiction/friction functions

drive or backdrive mode. Motor forward drive mode corresponds to the case when the

gearbox is forward driven by the motor and similarly for the backdrive mode. The motor

forward/backdrive logic is as follows :

Motor forward/backdrive logic

IF sgn(rm) • _Jm > O.17580rad/s THEN torque limit = TF

IF sgn(rm). 0= < O.17580rad/s THEN torque limit = TB

where the motor torque rm is defined as (Fig. 2) :

rm = (Vo- Ks . 0_) . ICr/RL (20)

The servo drive amplifier output is saturated at LA. The link stiction/friction characteristic

is the same as that of the motor-brake stiction/friction.

The gearbox is represented by a single stage model where the backlash of all the gear

meshes is concentrated in a single mesh and is modeled as a nonlinear spring function where

the function represents the gradual increase in stiffness as more and more of the planetary

gears of the gearbox mesh. The nonlinear spring function is shown in Fig. 5 where

{ T,, • (,VA)_•sgn(5) if ISI<Arm= KG. 5+ (TA- Kc. A). sgn(5) if I <_l> iX (2l)

The gearbox efficiency depends on the gearbox mode of operation, i.e. forward drive or

backdrive mode. The gearbox forward/ba&drive logic is as follows :

Gearbox forward/backdrive logic

IF 0m • 5 > 0 THEN Or (forward drive)

12
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IF 0m " 5 _< 0 THEN r/B (backdrive)

Note that r/F, r/B < 1.

Finally, the orbiter dynamics and attitude control system are ignored• Also, we assume

that no external force is exerted on the manipulator.

To summarize, the complete equations of motion (with voltage input V_) are given by:

T m

6 =

[sat(<. I,'A,LA)- I,'B.0m]-K_/RL (22)

= J_l.[sat(rm,(TF, TB))--rB(Om)--ra.(rls, 1/rlF)] (23)

Om-U.O (24)

-(`5/_)_-sgn(`5) IF Ì 5I_<= Ka. ,5 + (T,a - K.a. A). sgn(`5) IF I _ 1> A (25)

: M(Oe)O_ + C(Oe,Oe)O_ (26)

2.2 Baseline Control Mode

2.2.1 Resolved Rate

The resolved rate mode of control is the baseline mode for the system. The joint rate

commands are computed from the inverse Jacobian:

Oea. j-1 V_ (.,)

• T

where Vd_ = [Od¢,,dCd_,,_d¢_] is the command velocity of the point of resolution (POa).
For this study, the end effector is used as the POR. The Jacobian matrix in a coordinate

13



system fixed at the shoulderjoint and aligned with the base(Fig. 1) is given by:

1 1 1 ]
J= (-l,.Sl-l_.S12-1a. S123) (-12.S12-13.S123) (-13-S123) (28)

(ll" C1 + 12. C12 + la. C123) (I2. C12 + 13. C123) (/3" C123)

where C1 = cos(01), C12 = cos(Ox + 02), C123 = cos(Ox + O_ + 03), $1 = sin(01), S12 =

sin(O, + 02), S123 = sin(O, + O_ + 03).

2.2.2 Rate Limits

In addition to using the resolved rate mode of operation, the manipulator is also a velocity

limited device. The RMS is velocity limited at the joints and the end effector. In this study,

a single joint rate limit is considered since all the joints are identical. Also, rotation and

translation velocity limits are assumed decoupled. The end effector limits and joint rate

limits for the unloaded manipulator and the manipulator with the baseline payload attached

are given in table 4 where

/

V1.2 nt_ "2: Xrnax Ymax (29)

Table 4: Rate limits

Variable

Payload

Unloaded Baseline

_max 0.36576 0.03048

Ymax 0.36576 0.03048

Vmax 0.36576 0.03048

Omax 0.04 0.003

O_m,, 0.04 0.003

Units

rn/s

rn/s

rn/s

rad/s.

rad/s

The rate limiting algorithm is such that all the rates are scaled down if a cartesian velocity

limit or a joint rate limit is exceeded. Hence, the same path is followed but at a lower rate.

The logic is the following :

1. IF command given in joint space

2. END

3. Saturate the cartesian velocity

(a) rl = l d.l/ m:x

(b) = I9 o:ll )max
(C) = Iv/ e. 2+

14



(d) r4 = lt_d_l/t_m:x

(e) =
(f) Vd_ = vd,,l;

4. 0/_o,= j-1 . Vd_,

5. Saturate the joint rates

(a) FOR each joint, compute : _j = 10 ,1/0  o,
(b) =  az(1, j)

2.3 Fortran Program Assumptions

This program is used as a high fidelity simulation. It includes the complete model of the sys-

tem as described in section 2.1, except for the electrical time constant, feedback quantization,

and digital tachometer processing.

The logic for the implementation of the motor brake and stiction/friction is described by

the flowchart in figure 6 (see Figures 2 and 4 for the variables definition). The logic in the

flow chart allows the motor to come to a rest even though a discontinuous feedback function
is used.

A similar logic cannot be easily implemented on the link side due to the inter-link coupling

torques. However, since the link inertia is relatively large when the baseline payload is

carried, only insignificant numerical oscillations can occur due to the discontinuous feedback

function. Therefore, the friction function without the logic is used for the links.

The following is a list of features that are supported by the Fortran program:

• All nonlinearities are included, such as

(i) gearbox nonlinearity and hysteresis: nonlinear spring, variable efficiency.

(ii) centrifugal/Coriolis torque.

(iii) limits for torque, voltage command, integrator, measurement, velocities (link and

Cartesian space).

(iv) friction for links and motors.

Sample and hold circuit is included.

• Simulation is performed with an efficient ODE solver which allows control of both

relative and the absolute errors.

• States are scaled in order to take advantage of the ODE solver error controls.

• Parameters for simulations are initialized by data files which allows easy modification

of the operating condition and system parameters.

• Velocity reference signal can be defined in Cartesian space and in link angle space.

15



2.4 Matlab Program Assumptions

To quickly experiment with different structures and parameters for the controller, we have

also developed a simplified simulation program within the interpretive MATLAB environ-

ment. The assumptions posed in addition to those in the FORTRAN program are listed

below:

i. The brake stiction/friction is replaced by the motor friction Tmf, i.e. they are consid-

ered as having the same value. Also, the link stiction/friction is replaced by the joint

friction. The logic for the implementation of the motor brake and stiction/friction is

described by the flowchart in Fig. 7 where e is a small positive number (see figures 2

and 4 for the variables definition).

2. The gearbox is assumed to have unit efficiency.

3. Only the motor torque limit and the velocity limits are considered, i.e., the servo drive

amplifier output voltage limit and the electronic circuit limits are not considered. The

motor torque limit is assumed unique, i.e. does not depend on the motor driving mode

(the forward mode limit level is used).

Except for those assumptions mentioned above, this program shares all other features of the

Fortran program described in section 2.3.

16
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3 RMS controller

In this section, the existing RMS controller is described and briefly analyzed.

3.1 Description of RMS Controller

The main idea behind the RMS controller (shown in Fig. 3 and table 5) is to rotate the

motors at the desired link velocities (scaled by the gear ratio), and because of friction and

joint spring, the links will eventually also stabilize at the desired velocities. Hence, only the

motor velocities are controlled.

The controller is composed of the following elements (some of the terminology is different

than that in [17], for example, proportional and integral feedback in [17] means velocity and

position, since velocity feedback is considered as the primary loop; here we use the convention

based on position feedback, so proportional and derivative feedback means position and

velocity feedback):

1. Proportional-Derivative (PD) controller with low pass filter. The purpose of

the proportional feedback is to provide a high gain at low frequencies to break motor

and drive train stiction and eliminate small errors. The amount of proportional feed-

back is limited at -4-LT. Position error is obtained via integration of the velocity error.

Integration stops when the limit is reached; it resumes when the input of the integrator

changes sign. This controller has the following input/output transfer function :

• Not in limit mode :

• In limit mode:

Vcl = [(KTR+ 1)+_-_ ]
+ 1] (ao)

el

vd = ±Lr + + 1] (al)

2. Analog tachometer and high pass filter. This element is used to improve the

transient performance of the controller (it slows down the motor response, resulting

in smoother transients). The high pass filter is composed of two stages with a limiter

(figure 3) and has the following transfer function when it is not in limit mode :

[T," Kr. s =] 0m (32)
Vc2 = [TIS "4- ]1" [7"2,S + 11

3. Command shaping. This module is used in order to maintain accurate steady-state

response in presence of limiting of the integral term of the velocity error. The command

shaping is described by the following equation (figure 8):

YL
1(1. Om_,-- 1'52 If ]0m_,.. I > L

(aa)
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where

Omdes --" N " Otae_

L = LT" KA/KB

Ks
K, = KD +

KDA " KA

K2
LT

(34)

(35)

(36)

(37)

YL

1/
KD " " K,

- L . [__.f// t__ I( _
I " 7 , " Om ,,

+
/

Figure 8: Command shaping

We note that the scaling depends on whether the velocity integral term (i.e., propor-

tional feedback) is sufficient to compensate for the back emf due to the commanded

joint velocity scaled by the gear ratio. If it is sufficient, the commanded motor velocity

is the commanded joint velocity scaled by the gear ratio and by the tachometer gain.

Otherwise, a term is added to compensate for the back emf and another one to subtract

the velocity integral term. We note that the back emf is compensated in steady state.

However, there is no compensation for stiction/friction and for the loading effect of the

gearbox which will lead to a steady state error.

NOTE : The values listed for L, K1 and 1(2 in table 5 do not correspond to the

values obtained by applying (35), (36) and (37). Values in the table were obtained

from [18] and are also listed in [20] where no explanation is provided to explain the

change of values. These changes may modify the above comments regarding which

effects are or are not compensated if the integrator saturates but does not affect the

results presented in this report since the velocity integral limit is not used.

The complete controller has been implemented in the Fortran program while not all the

limits are used in the Matlab version. In particular, the limit on the velocity integral LT, the

limit on the high pass filter LI, the limit on the D/A converter input Lz) and the voltage limit

at the output of the motor drive amplifier LA are not implemented in the Matlab program.
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Table 5: RMS controller parameters

Variable

Integral trim limit
Integral trim gain
PD contr, filter time constant
Analog tach processinggain
Analog tach pro. time constant
Analog tach pro. time constant
Analog tach pro. output limit
Commandshaping
Commandshaping
Commandshaping

]] Name ]Value

1,5
I(tr 0.0.5

r I 0.1

IQ 01i-2 '

rl 0.1

r2 O. 1

Lf 13.0

K1 11.378

K2 6.757

L 8.8,6

Units

V

8-1

8

V/rad/s

8

V

cnts/rad/s

cnts

rad/s

3.2 Analysis of RMS Controller

The main characteristics of the controller are •

• Controller uses only motor velocities (motor PD control + analog tachometer feedback).

• Motor velocity is brought to the desired link velocity and link oscillation damp out due
to link friction.

No corrective action is taken by the RMS controller if the motor torque saturates or if

any other limit is exceeded except for the velocity integral limit (by the use of command

shaping). Also, steady state correction for the velocity integral limit is not exact in the

sense that it does not consider the loading effect of the gearbox and the motor friction.

This may lead to a steady state error.

• Joints are assumed decoupled.

• Stability is maintained in presence of load changes.

Some problems were observed •

. Coupling between the joints causes uncontrolled motions. For example, given a velocity

command in the x-direction, the orientation and the y-position both vary during the

motion and deviations are not corrected by the controller.

2. Link velocity' oscillations damp out slowly.

3. Link errors are corrected slowly; the controller must wait for the motors to be affected

before any corrective action is initiated.

4. Small proportional feedback gain (i.e., the velocity integral gain) leads to large link

position error.
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5. Larger errors areobservedwhen limits are reached.

Theseproblems are causedmainly by the lack of link angle feedback,the large coupling
between the links, the nonlinear spring characteristicof the gearbox, the small inertia of
link 3 (higher frequencynatural mode) and the inexact or nonexistent compensationfor the
limiters.
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4 Modified Controller

As described in section 3, the RMS controller consists of two loops. There is a digital joint

feedback loop that is closed at 8.75ms:

= --Kpm(Om-- -- I¢omZ

where z is the low pass filtered version of the motor velocity error 0,_ -

high pass motor feedback is added to the output of the digital loop:

urn2= H(s)&.

(38)

_}me,,. An analog

(39)

For the RMS controller, H(s) is given by

T_KIs 2

H(s)- (rzs q- 1) 2 (40)

where r1 = rl = r2 in Table 5. The overall motor voltage control signal is given by

Itrn _--- ttrn2 Jr- ttrn2.

The proposed controller builds on top of the RMS controller. The following modifications

have been tried, to varying degrees of effectiveness:

1. A feedforward term is added, so the motor voltage is now:

Urn = Urn1 q- Urea -1- Umll.

The structure of the many possible feedforward signals will be discussed below.

2. Several different alternate filters are tried in place of the high pass filter.

3. Smoothed desired rate trajectories are tried in place of the step.

The rest of this section describes these modifications in detail.

Feedforward Design

As described in Section A.6 of the Appendix, the basic idea behind the feedforward design

is that given the desired output trajectory, Oed_,(t), t >_ O, in the flexible joint robot case,

find the desired state (i.e., 0md,,(t), since Oee,,(t) is given) and the feedforward control which

can produce this output. The intuitive idea for the feedforward control in flexible joint robot

control is that the joint spring is wound up in anticipation to the desired link motion rather
than the desired motor motion.

The feedforward design essentially involves an inverse plant problem. Consider the fol-

lowing simplified model for a flexible joint robot:

M(Oe)Oe+ C(Oe, Oe)Ot+ Nk(NOe -0_) + Tt(Oe) = 0 (41)

JrnOm 71- DmO m - t_(NO£ - Ore) Ac Tin(Ore) -- T. (42)
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Figure 9: Inverse Joint Spring Function

Given the desired Oed,(t ) (which means all of its higher derivatives can be calculated), the

desired Omd., can be solved from (41)

1 -1

Om,,, = --_k (M(Oe)Oe,¢, + C(Oe, O¢)Oe,o, + Te(Oe)) + NOedo, (43)

where k-' is the inverse function of the nonlinear joint spring (see Fig. 9):

(zi - (Ta - I(aA)sgn(zi))I(a -' Izi] >_ Tak_-I (zi)
A_sgn(xi) Ix, I < T,a

Higher derivatives of the desired motor angle, Om_o,, can be obtained by directly differenti-

ating (43). The feedforward control is then

rlf = JmOrna., -b DmOma.. - ]c(XOea,_ - Oma.,) -[- Tin(Ore). (44)

The calculation of 0m_,, and t)me., requires higher derivatives of 0e and 0,e, which in turn

depend on higher derivatives of Coulomb friction and k -1 which are unbounded functions.

Since the arm is anticipated to move very slowly, a reasonable approximation can be made

by dropping higher order terms in 0e and 0ed_, (and higher derivatives). This then leads to

a simplified expression for the desired motor angle:

Ore,o, = Nk-'(M(Oe)Oe_. + Te(Oe)) + NOe,., (45)

This still leads to complicated expressions for higher derivatives of 0_,o, which are required

in the feedforward control. We make a further approximation for Omen, by dropping the gear

contribution in the derivative of 0m,.. This approximation is plausible since the second term
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in (45) usually dominatesthe first term, but it doesnot havea firm theoretical justification
at the present (it is a major part of the future work):

t_md_, = Nt_ed,,. (46)

The feedforward control then becomes

rIl = JmNOed., + DmNOed_, - k(NOe,_. - Omd.,) + Tm(Om). (47)

where 0md_, is given by (45). This feedforward is reasonable to implement in real time since

no higher derivatives of 0me,, is used.

So far, direct link coordinate measurements have not been used. To further enhance

the performance of link responses, an additional modification of the feedforward control,

motivated by [21], is made. The open loop desired link angular response/Je,,, is replaced by

a desired feedback control for the robot links, i.e., define the desired closed loop link angular

acceleration by

ata,, = gear, -- ICp,(Oe - Oga.,) - I(_e(Oe - Oeao,). (48)

Then the expression for 0rod, becomes

1 1

Om_o, = -_k- (M(O_)%_. + Te(Oe)) + NOed,, (49)

The same approximation of the higher derivatives of 0_e,, is used as in (46), so the feedfor-

ward torque is still given by (47) (using 0rod,, from (49). In all the simulation results in the

next section, M(Oe) in (45) is further approximated by M(Oed, ) which is easier to implement

in real time (perhaps by table lookup and interpolation). The PD type of feedback for the

link in (48) can be replaced by higher order positive real filters. This possibility has not

been explored yet.

The above scheme for computing the feedforward also affects the feedback servo loop since

0redo, and Or_.., are used in the feedback control law. In contrast, in the RMS controller, 0rod,,

is given by 0_d," = NOed,... Consequently, the motor response may be satisfactory but the

link response is not. In effect, the modified scheme we have presented allows the joint spring

to be wound up just right so spring torque emulates a link feedback control law (i.e., as if

the link is feedback controlled by the spring torque). Furthermore, since the mass matrix is

incorporated in the link feedback control law in (49), the interlink coupling is compensated,

and the gains I(_e and K_ can be tuned for each individual link.

High Frequency filter

Several high frequency filters have been tried beside the RMS high pass filter in (40).

The first is also a high pass filter (the one used in the original SPAR report [17]) and it is

positive real (i.e., passive):
I(is

Hi(s) -
r_a+ 1"

The second is a bandpass filter which is also positive real:
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where k = 10E5 is the high frequency gain, b and a are both monic polynomials with roots

of b at (0.5, 70,125) and roots of a at (50,100,200,300). Simulation results of using different

filters are not included in this report. However, we have observed that different filters lead

to very different transient responses, especially in terms of the amplitude of oscillations. A

systematic tuning procedure, perhaps based on some performance optimization criterion,

will be investigated as part of the future work.

Command Trajectory Smoothing

Beside the step rate command, several other smoothed rate command trajectories have

been used, including ramped velocity, exponential, and ramped acceleration. The conclu-

sions drawn about the performance is similar for these three cases, and only the ramped

velocity result is included in this report. The desired link angle, angular velocity, and an-

gular acceleration for the ramped link velocity case are given below (the Cartesian case is

identical):

,

= .r _-+ 0d0)
• T

0el(t - T) + 0e(0) + 0_j7

{,0ej _ t < T

ge_o,(t) = 0 t _> T.

t < T (5o)
t>_T

(51)

(52)

We shall see in the next section that, not surprisingly, the ramped velocity profile produces

much less uncommanded motion and oscillation, and improves the settling time at the same

time. This is true for both the existing controller and the modified controller, but the

modified controller tracks much mor_/closely. The contrast between the performances of

the two controllers is most evident during the initial stage where the motor torque needs to

overcome stiction to cause llnk motion. If only motor feedback is used, there is an initial

delay where enough motor error needs to accumulate before the control torque becomes

greater than the stiction. With the feedforward, link error causes the joint spring to wind

up faster, leading to a much reduced delay.

5 Comparison of Controllers

In this section, we will compare the performance of the RMS controller versus our proposed

controller for the following cases:

1. End effector step response for the unloaded and loaded cases. The command is a rate

step along one of the coordinate directions (x, y, and 0) at the following rate limits:

Variable Unloaded Baseline payload

:i: rate (m/sec) 0.36576 0.03048

!) rate (m/sec) 0.36576 0.03048

(rad/sec) 0.040 0.003
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Due to the velocity limiting logic, the rate commandmay be modified.

2. End effector responsein loadedand unloadedcasesfor a ramp rate command.

We will comparethe responsein terms of the following measures:

1. Uncommandedmotion. This is measuredin termsof the peak and steadystate position
and velocity deviation in the uncommandedvariables,which in the joint caseare the
uncommandedjoints and in the end effectorresponsecase,they are the uncommanded
coordinate directions.

2. Transient response. This is measuredin terms of the settling time and overshootof
the commandedvariable.

3. Steady state response. This is measuredin terms of the steady state velocity and
position tracking error for the commandedvariables.

Additional considerationsthat shouldbe taken into accountin the performancecompar-
ison include:

.

.

.

.

The torque limit is removed in some runs to indicate the effect of saturation. In most

cases, the performance degrades only slightly. However, a systematic method to avoid

saturation is an important topic that will be investigated in the future.

The closed loop performance depends heavily on the choice of gains. At the present,

no extensive tuning has been performed.

In simulating the proposed controller, the feedforward is approximated to somewhat

address the robustness and implementation issues. A rigorous investigation of the

robustness issue needs to performed in the future.

In the simulations for comparing the two controllers, we have removed the hysteresis

effect (i.e., dependence of torque limits and motor efficiencies on velocity) to obtain a

baseline comparison (so there will not be too many variables to cloud the interpretation

of results). Simulation using the full nonlinear model is currently underway.

Loaded Case

We first compare the step end effector velocity responses.

following configuration:

The arm is initially in the

0e(0) = [-0.6242, 1.3002, --0.6260]Trad (53)

with 0m(0) = 0e(0), N (N is the gear ratio). This configuration corresponds to the end
effector location

x(0) = 13.469m, y(0) = 0.39m, 0(0) = 0.05rad. (54)

The configuration is shown in Fig.10. The nominal command is a step of 3E-3rad/sec in 0

for 10sec and drops to zero after i0sec. Due to joint velocity saturation and velocity limiting

logic, the actual commanded rate is slower. Fig.ll shows the arm response with the RMS
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Figure 10: Initial Configuration

controller and Fig.12 and Fig.13 show the responses under the modified controller with two

different sets of gains. The first set uses the existing RMS motor feedback gains and low link

feedback gains (for all joints):

Gain 1: Kpt=l Kv_=2 kp=.1764 k,,=3.53, (55)

The second set uses higher motor proportional gain and lower derivative gain, and higher

link feedback gains:

Gain 2: Kp_=5 Kv_=4.5 kv=4 kv=.l. (56)

As seen clearly from these plots, the modified controllers exhibit all around superior per-

formance (in terms of the stated measures) over the RMS controller. Within the modified

controller, the higher gain case performs much better. It should be emphasized that high

gain is not the reason that the modified controller outperforms the RMS controller, the key

is in its ability to wind up the joint spring based on the link angular error. In fact, when

gains in the RMS controller are increased, the performance actually degrades. It is perhaps

not surprising that modified controller demands much more command torque than the RMS

controller. The large torque, however, only last over a small period of time since the error

is reduced very quickly. When torque saturation is imposed, the response (shown in Fig.

14) is still quite good. There is slightly more rotational velocity oscillation during the initial

step command, but the uncommanded motion and steady state error are much improved

over the RMS controller case. Simply clamping the input at the saturation level clearly is

not the best solution; for example, it may be advisable to reduce the commanded velocity

when input saturation occurs. When saturation level is exceeded by a large amount or for

an extended period of time, then direct clamping may lead to instability, for example, see

the commanded _) case in Fig.23. A systematic solution to the saturation issue is a key item

for our future research.
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Figure 15: Initial Configuration

Comparison between the performances of the RMS controller and the modified controller

is even more striking with another initial condition:

0d0) = [0, 0.05, 0]rrad (57)

This configuration is shown in Fig.15. The response of the RMS controller is shown in

Fig.16, and the response of the modified controller is shown in Fig.17. The gains used in the

modified controller is relatively low:

Gain 3: Kp_=.25 K_t = 1 kp= 1 ko=.l. (58)

Figures 18, 19, 20 show responses of the arm with an x direction rate command, under

the RMS controller and the modified controller with gains as in (56), with and without

saturation. Figures 21, 22, 23 show responses of the arm with an y direction rate command.

The initial condition for all cases is (53). With the modified controller, the uncommanded

motion and steady state error are virtually eliminated, and the transient response (in the

unsaturated case) is also better. Even with saturation, the commanded rate overshoot is

slightly larger than the RMS case, but the position error is much smaller. The only exception

is for the step commanded in _). In Fig.22, the saturation level is exceeded by a large amount,

and direct saturation of the control signal leads to major degradation of performance in

Fig.23.

To demonstrate the impact of trajectory shaping, we consider a ramp velocity profile

instead of a step. The ramp up takes the first 10sec, beyond which the velocity stays at a

steady state value (at the same level as the step cases). The responses for the RMS arm

versus the modified arm (with gains (56)) for 0, x, and y rate commands are shown in Figures

24-29. As expected, for both controllers, the responses improve over the step command cases.
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The modified controller again outperforms the RMS controller by all measures. Furthermore,

the input is no longer saturated. This demonstrates a promising direction to pursue for the

saturation problem: filter the input command (i.e., slow down the commanded trajectory)

until the input is out of saturation. This will be described further in the next section.

Unloaded Case

When the arm is unloaded, the inertia of the last link is two orders of magnitude smaller

than the first two links. As a result, the response tends to be more oscillatory (especially in

end effector orientation). The oscillation is usually very noticeable in _), but because of the

link inertia, the effect is small on the orientation 0 (especially for high frequency oscillations).

We wilt first show the arm responses with the RMS controller and the modified controller

with step _), 2, Y, responses, respectively. The plots are shown in Figures 30-35. The initial

condition is chosen to be (53) and the gain for the modified controller is given by (56),

which is the same as the loaded case (gain adaptation based on payload is not considered

here). Input saturation is imposed in all cases. By all performance measures, the modified

controller clearly outperforms the RMS controller.

Arm response for a ramp command velocity input is shown in figures 36-41. The contrast

between the two controllers is even more pronounced. The modified controller exhibits a

high frequency oscillation in 0 which is almost undetectable in 0 due to the link inertia.

This oscillation is likely caused by the feedback gains which are tuned for the loaded case.

A systematic method for selecting the gains, kp, kv, I(p,, and Kv,, will be developed in the

future.

General Observations

Based on voluminous simulation data (only a small portion of which is shown here), we

can make the following general observations on the comparison between the RMS controller

and the modified controller:

, The RMS controller is simpler in structure. The modified controller requires more

model information (mass matrix, friction, and joint spring characteristics) and more

on-line measurement information (link angle and angular velocity).

, For the RMS controller, commanded velocity tends to undershoot its set point due to

its relatively low gain. As a result, the link position almost always lag way behind the

commanded trajectory. For the modified controller, since the proportional gain (for

both link and motor) is higher, there tends to be more velocity overshoot. However,

the positional response is in general much better than the RMS controller case.

. Almost in all cases involving the modified controller, link velocities overshoot their set

points. This is due to the fact that in order for the link angle to catch up with the

desired trajectory, link velocity has to exceed its set point to compensate for the initial

lag (due to friction). An important consideration in choosing the feedback gains is in

deciding which one of the responses, link angular velocity or angular position, is more

important to the operator. The gains should then be selected accordingly to emphasize

that variable.
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If the input torque is not explicitly clamped at the saturation level, the modified

controller tends to require very large input over a short period of time during the

step response (when the error is large). With saturation, the performance degrades

somewhat, but is usually still quite satisfactory. Even though the saturation does not

seriously affect performance in most cases, it is desirable to have a safety mechanism

to guard against saturation. We are developing a command trajectory modification

algorithm to explicitly address this issue. As a preliminary check of this idea, when

the commanded velocity step is slowed to a ramp, saturation no longer occurs.

The same set of gains (56) has been shown effective for both loaded and unloaded case.

A systematic tuning of gain should be developed in the future.

We have noted that to improve the performance for the modified controller, motor

feedback gains have to be increased together with the link feedback gains. This is due

to the fact that a tight motor loop is required so that the spring torque can closely

emulate the desired link feedback control law.
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6 Future Work

The research results presented in this report shows the efficacy of the passivity approach

in the control of flexible joint robots with massive links, such as the shuttle RMS arm and

the anticipated space station arm. As stated in the introduction section, several assump-

tions have been made in the model to simplify the analysis. These assumptions need to

be placed on a rigorous theoretical footing. In addition, performance optimization criteria

should be included in the feedback gain selection, and the improved performance should be

demonstrated experimentally in some form. Based on these considerations, we propose the

following agenda for the future tasks:

1. Observer for link variables: Existing RMS controller only uses motor angular velocity

feedback (motor angles are derived from motor velocities). The most effective form of

the modified controllers requires link angle and angular velocity feedback. We will de-

rive nonlinear observers (most likely only including nonlinearities such as mass matrix

and Coulomb fl'ictions, while ignoring Coriolis and centrifugal terms) to estimate the

link variables based on the motor variable measurements.

,

.

.

,

Saturation Avoidance: When the velocity or the command torque are too high, they

become saturated. In the existing RMS controller, there is already a commanded

Cartesian velocity modification algorithm if the joint velocity becomes saturated. We

will also apply the trajectory modification technique for the torque saturation, such as

the method proposed in [22] (slowing down the commanded trajectory until the arm

is out of the saturation condition).

Robustness Analysis: The feedforward that has been proposed involves some assump-

tions to simplify its expression (c.f. section 4). A rigorous stability analysis (most

likely a local analysis) needs to be performed to justify this simplification. Even after

simplification, the feedforward still requires considerable amount of model information,

including mass matrix, link and motor frictions, and joint spring characteristics. Errors

in this information needs to be evaluated in terms of stability and performance.

Optimal Feedback Tuning: \¥e have seen that there is considerable leeway in choosing

the motor rate feedback and this choice can significantly affect the transient perfor-

mance. A systematic method of designing this feedback based on performance con-

siderations need to be developed. A possibility is to apply a parameter optimization

approach based on, for example, settling time, overshoot, etc.

7 " "Experimental _ ahdatlon: To truly' validate the effectiveness of the proposed approach,

implementation and demonstration on a physical arm should be performed. As a first

step in that direction, we propose to implement the proposed control algorithms on

the simulated RMS arm at JSC.

7 Conclusion

In this report, we have presented a general theory for the stabilization (vibration suppres-

sion and disturbance rejection) and output tracking of flexible robots. This theory includes

54



0.06

0.055

g
•,, 0.05

•g 0.045

0.04
0

5

4

3

2

_3 1

0
0

EE Orientation

i

10 20

time (sec)

EE Y-Displacement

S
1_0 20

time (sec)

13.5 EE X-Displacement

£13._

_ 13.46
1.)

.---_13.44

13.42
0

file: nlfile5

0.1

._ 0.05

.__

>

-0.05
O

_ 43.1
0

1 ,

I0 20

time (sec)

:,E Rotational Velocit'

1

10 20

time (see)

.N

0

0.4 EE X-Velocity

0.2

0

-0.2

-0.4
0

i

10 20

time (sec)

-2' ! ' _' _'

0 10 20

time (sec)

Figure 34:

v

.-_ 0.5 t

>

,, 0
0

_ -0.5
0

4

3

0
13.4

file: nlfile5

EEY-Velocity

1'0

time (sec)

EE locus

,,J..

13.45

X-displacement (m)

Step y Velocity with RMS Controller

20

13.5

55



0.06

0.055
O

•._ 0.05

"_ 0.045

0.04
0

5

"-" 4

3

o 2

0
0

EE Orientation

I

10 20

time (sec)

EE Y-Dislglacement

/
J

10

time (sec)

20

13.48

g 13.47

_ 13.46

. 13.45

13.44
0

0.04

0.02

.._ 0

-o.o2

-o.04

-o.o6
0

file: nlfile23

EE X-Displacement

_. _ ._.._...___-

10 20

time (sec)

EE Rotational Velocity

I

10 20

time (sec)

Figure 35:

0.1
,-, 0.05

8 o
?.

-0.05

_ -o.1
r_

-o.15
0

2O

10
>
v

0

-10

EE X-Velocity

I

10 20

time (sec)

Motor Command Voltag i

"_ 0.6 EE Y-Velocity,

._ 0.4

"_ 0.2 i

•_ 0 ' •

_ -0.2
0 10 20

time (sec)

5 EE locus,

° 3

2
"_ I

__

-200 1'0 20 13.44 13.46 13.48

time (sec) file: nlfile23 X-displacement (m)

Step y Velocity with Modified Controller (Gain 2) and with Input Saturation

56



0.6

0.4

_ o.2
O

0
0

0.43

g 0.42

_ 0.41

_ o.4

0.39
0

EE Orientation

//
I

10 20

time (sec)

EE Y-Displacement

1_3 20

time (see)

13.47

3.468

3.466

hl 3.464

:_ 3.462

13.46
0

, 0.04

0.03

__ 0.02

0.01
O

_ o
0

file:n lille2

EE X-Displacement

• I

10 20

time (see)

EE Rotational Velocir

[

10 20

time (see)

v

"d
O

>
v

_D

-1

-2

1 x10-3 EE X-Velocity

| __

-30 10 20

time (sec)

Motor Command Voltage2
/

!
0

-2
0 10 20

time (sec)

•_ 5
8

0

-5
0

0.43

_" 0.42

file: nlfile2

10 x10"3 EE Y-Velocit3,

1'0 " 20

time (see)

EE locus

0.41

0.4

0.39
13.46

i

13.465 13.47

X-displacement (m)

Figure 36: Ramp 0 Velocity with RMS Controller

57



_r

0.6

0.4

0.2
_,

0
0

0.395

0.394

'--_0.393
.4

EE Orientation

 3.469t\t
01'0 20

time (sec)

EE Y-Displacement

10 20

time (sec)

i

I0

time (sec)

EE Rotational Velocit _
"-" 0.04

"O

0.03

8 0.02

>

0.01
C

.,_

_ o
0

20

..... r Ii.._

0.392
0 20

/
1'o

time (sec)file: nlfilel4

Figure 37:

"_ 10 x10"3 EE X-Velocity__ _0.005 EE Y-Velocit'.Z__

5 ._ 0

o ......... '-:::'.: _o.oo5

, _ -.0.01_= -50 10 20 0 10 20

time (sec) time (sec)

1 Motor Cornnaand Vottage 0.395 EE locus

_" 0 _ 0.394

"_ _'0.393

2 0.392
0 10 20 13.467 13.468 13.469 13.47

time (sec) file: nlfilel4 X-displacement (m)

Ramp 0 Velocity with Modified Controller (Gain 2) and with Input Saturation

58



EEOrientation
0.052[

'o_0.051

0.05
0 10 20

time (sec)

,-. 0.41 EE Y-Displacement

0.405tA__--
0.4

._._0.395 _

"o 0"391 .......... i ............

0 10 20

time (sec)

g

>

"N
0

2

file: nlfile4

14

13

12

11

10

EE X-Displacement

i

90 10

time (sec)

x tiE'Rotational Velocit,
4

2

0

-2

-4
0

20

t

10 20

time (sec)

0 EE X-Velocity

-0.05

-0.1

> -0.15

"= -0.2
t_

-0.25
0

v

"g
>

2

1

0

-1

-2
0

Figure 38:

I

10 20

time (sec)

Motor Corr., and Voltage

i!, , 2+i ilk _,
n, "+b" I+P

_I,iiSOl _+ II II_+I ,I'I¢ _ i, 1,1"7r, ' I

i

10 20

time (sec)

"-'_d0.03
_ 0.02'

0.01

0

O

7 -o.ol

-0.02
0

0.41

_0.405

0.4

0.395

0.39
8

file: nlfile4

EE Y-Velocity

I

10 20

time (sec)

EE locus

'o 'I 12 14

X-displacement (m)

Ramp z Velocity with RMS Controller

59



0.05
EE Orientation

,-, 0.05

o= 0.05

0.05
o

'[:::
o 0.05

0'050 1'0 20

time(_c)

0.395 EE Y-Displacement

_'_'0.394
0

0

-_=0.393
h3

O.392
0

I

10 20

time (sec)

14 EE X-Displacement

13

O

11

I0

¢-
O

file: nlfilel9

i

90 10

time (sec)

5 xl_otational Velocit

20

-5

-10

-15
0 1; 20

time (sec)

_D

'...a

O
_O

;>

0

-0.05

-0.1

-0.15

-0.2

-0.25
0

2

1

0

-1

-2

-3
0

EE X-Velocity

10 20

time (sec)

Motor Comrnand Voltage

J

0.01

_0.005

o

,-_-0.005
O

_ -0,ol
"N

_0.015
0

EE Y-Velocity

........ i

10 20

time (sec) file: nlfile19 X-displacement (m)

I

10 20

time (sec)

0.395 EE locus

io..,Ite-0.393

0.392 _ ' '
8 10 12 14

Figure 39: Ramp z Velocity with Modified Controller (Gain 2) and with Input Saturation

6O



0.052

0.051

" o.o5 
0

.,.,_

0.05

o 0.05

0.04
0

,_ 4
_3

2

0
0

EE Orientation

i

10 20

time (sec)

EE Y-Displacement

s, I'

1'0 20

time (sec)

13.472 EE X-Displacement

13.47
_4

_3.468

.-_3.466

13.464

8
1>

0

file: nlfile6

0 10 20

time (sec)

2 xl_3R°tati°nal Velocit'

1

0

-1

-2
0

I

10 20

time (sec)

"_0.005

.b o
8

_-0.005
.o
e_

_ -0.01
0

>.

EE X-Velocity

I ,

10 20

time (sec)

3 Motor Corr., and Voltage

2

1

0

-1

-2
0

,>.

C

time (sec)

Figure 40:

>.

0.4

0.3

0.2

0.1

0

-0.1

EE Y-Veloci ,ty

0
I

10

time (sec)

EE locus

20

' 0 t

10 20 13.46 13.465 13.47 13.475

file: nlfile6 X-displacement (m)

Ramp g Velocity with RMS Controller

61



EE Orientation

...,0.051 _

o.o5t-. /

0 10 20

time (sec)

6 EE Y-Displacement

"_ 4 _2

00 1_0 20

time (sec)

13.47

3.469

3.468

gl3.467

_3.466

13.465
0

v

8
,-g
>

"d
O

file: nlfile24

EE X-Displacement

2

0

-2

t

10 20

time (sec)

xRESRotational

lO 2o

time (sec)

"d
>

O

>
,.._,,,

ed)

"6
>

2 xl0S EE X-Velocity

0

-1

-2
0 1'0 20

time (sec)

Motor Command Voltage

1

0

-1

-2
0 i'o 20

_" 0.4 EE Y-Velocity,

._, 0.3

"g 0.2
>

o 0.1

b 0
0 10 20

time (sec)

EE locus
6

_ 0
13.465 13.47

time (sec) file: nlfile24 X-displacement (m)

Figure 41: Ramp y Velocity with Modified Controller (Gain 2) and with Input Saturation

62



flexible joint robots as a special case. The structure of this family of controllers consists

of a passivity based feedback and an inverted plant based feedforward. Through extensive

simulation on a three-link test arm modeled after RMS shoulder yaw joint, we have demon-

strated the efficacy of this approach as compared to the existing RMS controller. Future

task includes observer design, saturation avoidance, robustness analysis, optimal feedback

tuning, and experimental validation.
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APPENDIX

A General Theory

A.1 Mathematical Background

The time evolution of 'energy' is an important and useful characterization of stability for

physical systems, linear and nonlinear alike. Energy based stability analysis has been widely

applied to the study of systems such as electrical networks, mechanical structures, thermal

systems, etc [23]. The concept of passivity is traditionally defined as an input/output (I/O)

condition [24] describing a common class of physical systems which do not generate energy.

Relationship between I/O passivity and state space parameters was extensively explored in

the 60's [25] in part by using the Lyapunov's method. In this section, we will summarize

some basic definition and results that will be useful for the rest of the paper.

Define the input and output signal spaces, U_, Y_, respectively, as extended spaces

L2_(R+,Rm). Let PT denote the operator which truncates a signal at time T. Define

the truncated inner product by

/j(u(.),v('))T _= (PTu(.),PTv(.))2 = (Pru(t))TpTv(t)dt.

By a dynamical system, we mean an I/O mapping H :/.A_ _ y_. The input-output stability

considered here is the finite-gain I/O stability. A system H is said to be finite-gain I/O

stable if there exists a constant k such that

ilPTYll k IIPT II for all T > O.

H is passive if

(Y, tt) T k 0 for all T _> O.
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The concept of passivity can be generalizedto dissipativity [26]. A system H is dissipative

with respect to the triple (Q, S, R) if

<y,Q >v + 2 <u, T + >_0

for all T _> 0 and u E U_, where Q, S and R are memoryless bounded operators with Q and

R self-adjoint. Clearly, a finite-gain stable system is dissipative with respect to (-I, O, k2I),

while a passive system is dissipative with respect to (0, 7I,' 0).

An important theorem which can be used to determine the I/O stability of the intercon-

nection of passive systems is the Passivity Theorem. In its simplest form, it states that if the

open-loop system is passive and the feedback system is strictly passive, then the closed-loop

system is L2-stable i.e. finite-gain I/O stable.

I/O stability infers internal state space asymptotic stability if the closed-loop system is

stabilizable and zero-state detectable (if these properties hold globally, the internal stability

is also global). A system H is said to be zero-state detectable if u(t) = 0 and y(t) - 0

imply that the state x(t) - O. For linear systems, this corresponds to observability. Under

the stabilizability and detectability conditions, a dissipative system with Q < 0, i.e. a finite

gain I/O stable system, has an asymptotically stable equilibrium at zero. Sometimes, it is

possible to show via a Lyapunov type argument y(t) _ 0 if u(t) = O. Then the zero-state

detectability alone guarantees internal asymptotic stability.

A.2 Main procedure

The general class of systems considered in this report is described by the following dynamical

equation of motion:

M(0)_J + D(t)) + C(O,O)O + f(O) = Bu (59)

where 0 C R '_ is the displacement vector, u E R m is the input force vector, M is the mass-

inertia matrix, D is the damping, C corresponds to the centrifugal and coriolis forces, and

f contains the gravity force, spring coupling force, friction, etc.

Most mechanical systems belong to this class; additional assumptions will be imposed

later as required. Particular systems of interest that can be considered include fully ac-

tuated robots, flexibly jointed robot, robots with flexible links, and satellites with flexible

appendages. For the general discussion, we assume zero damping, i.e., D(t)) = 0. All the

results are of course valid for the damped case also.

We will first consider the output set point control problem.

Assume the measured outputs are BTo and Brt), i.e., the generalized coordinate and velocity

that are directly actuated. Suppose the output of interest is

Y = CO. (60)

Choose a feedback control law u based on the measured output, so that y(t) asymp-

totically converges to the desired output set point y_es.

Based on the inherent passivity property of this class of systems, the general procedure

described below can be used to construct a solution to the output set point control problem.

Extension to output tracking will be addressed in Section A.6.
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1. Steady State Analysis. The first step is to find a desiredstate Od_ and a feedforward

u ff such that

.

COde, = Yale, (61)

BUff = f(Oa¢_). (62)

If these equations are solvable, then the feedforward control can be used to form the

error system:

M(O)O + D(O) + C(O,D)O + f(O) - f(Od_,) = BUo

where u = Uo + u ff.

Error system Stabilization. Assume that with a static feedback uo = g(BTO),

the map from uo to BTo is passive (this assumption will be justified for a number of

applications). Then any strictly passive map from BTO to uo can be used to feedback

I/O stabilize the error system. If the closed loop system is further stabilizable and

zero-state detectable with respect to Uo and BTo, respectively, then the zero error

state is asymptotically stable.

We will focus on three examples, flexibly jointed robots, flexible beams, and fully actuated

robots, to demonstrate the application of the above simple approach.

Remarks:

. If the system is linear, then the passivity of the original system (between u and BTo)

implies the passivity of the error system (between Uo and BTo). For nonlinear systems,

additional assumption on f needs to be placed, for example, the joint flexibility is

sufficiently strong relative to the gravity load for flexibly jointed robots.

. It is well known that passive linear systems are necessarily minimum phase and, con-

versely, a minimum phase plant can be rendered passive through a static state feedback.

A similar relationship for nonlinear systems has also been recently published [27]. It

is shown that a nonlinear system can be rendered passive by static feedback (i.e., it is

feedback equivalent to a passive system) if and only if the zero-dynamics are weakly-

minimum phase and the relative degree is one. It is known that flexibly jointed robots

and flexible beams have stable zero-dynamics with respect to the motor velocity and

hub velocity, respectively. We will show that the static position feedback renders these

systems passive.

. The classical proportional-derivative (PD) control law (for the actuated variable) is

a special case of the family of control laws developed here. However, the velocity

feedback can be augmented by any passive system in parallel. Through an example,

we will see that the dynamic nature of the passive system can be exploited to enhance

the closed-loop performance.

. As it will be shown in the application examples in sections to follow, the above analysis

does not require any structural damping in the model. Damping, however, will be useful

in the output tracking problem.
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A.3 Application to Flexibly Jointed Robots

Consider the general model for an n-link flexibly jointed robot (2n degrees of freedom) [28].

This model contains the gyroscopic forces that are commonly assumed approximately zero

[29, 30, 31]. Denote the link angle vector by 8e and motor angle vector by 8r.. Define

8 = [ 8e T 8rT ] T. The dynamic equation of motion is given by

M(8)O + C(8,0)0 + g(8) + k(8) = Bu (63)

where B is of the form [ 0 I ] T due to the assumption that only motor shafts are actuated,

g(8) denotes the gravity load, and k(8) denotes the spring coupling between motor shafts

and the link shafts.

A.3.1 Feedforward Compensation based on Steady State Analysis

The control objective is to steer 8e to some desired constant 0_,_ (i.e., in (60), y = St). The

first step is to form an error system:

(64)

In order to cancel the additional terms on the right hand side, we need to find a feedforward

torque uff and _ desired set of angles 0d_ (as in (61)-(62)) that satisfies

u = Uo+Uff (65)

Buff = g(Sdes) + k(Sdes). (66)

Equation (66) can be restated as follows: for a given 0ea.., find 0m_., and uff such that

0 = B(9(8d..) + k(8d**)) (67)

uff = (BrB)-aBr(g(8e_,) + k(Od_,)) = Br(g(8_,,) + k(8d_,)) (68)

where/_ is the annihilator matrix for B, i.e., B/? = 0 or/3 = [ I 0 ]. The terms g(8d_,)

and k(8d¢_) are usually in the form

g(Sd_,) = [gl(8e_)]O (69)

k(8d_.) = [ k'(8ed_''8r""_') ] (70)-k_(0,,o., 8m..) "

This implies that uff and 0r"e_' should satisfy

uff = g,(8e.¢,) (71)

8m,.) = (72)

To solve (72), we assume that for a given 0e..., VOmkx(Oe.., Or") is invertible in some open set

in 0r". Then by the Implicit Function Theorem [32], there exists a locally unique solution

0r.,_. to the equation (72). A common form of kl is
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where Ni is the gear ratio of the ith joint and f is monotonically increasing, continuously

differentiable, and the range of f is R. In that case, since f is globally invertible, a unique

solution, Om_o_, to (72) can be found for any 0e_..

A.3.2 Passivity

With the desired motor angle and feedforward torque chosen as in (71) and (72), the equation
of motion becomes

M(O)O + C(O,O)O + g(O) -g(Ode,) + k(O)- k(Ode,) = Buo. (73)

If the sum of the gravitational potential energy and spring potential energy, is positive

semidefinite in A0, A0 = 0 - Odes, then one can show that the map from uo to 0 is passive.

This is not true in general since 0ee... can be arbitrarily chosen. Therefore, we introduce an

artificial potential energy by using a proportional feedback in Uo; more specifically, choose

Uo to be

Uo = ul - KvBTAO.

Assume that it is possible to choose I(p so that for some 5 > 0

Vog(Odes) + Vok(0d_s) + BKpB r >_ 5I > O.

(74)

(75)

Consider g(O) and k(O) as modeled by (69) and (70), respectively, where kl is

k,(Oe, Om) = f(NOe - 0m) (76)

f is a monotonically increasing function and N is a diagonal matrix containing the gear

ratios. Then condition (75) becomes

0 0 + -NVf(NOea_ , - Oma,,) Vf(NOeao, - Oread,)

If the spring at the joint is sufficiently stiff in the sense that

[00]+ 0 K v >0

(77)

NV f(NOla_, - Omao,) > -Votgl(Oeao.) (7s)

then condition (77) is satisfied for a sufficiently large I(p.

Now consider the following scalar function

1
V(A0, _J) = _OrM(O)O + U(AO)

where the first term on the right hand side is the kinetic energy and the second term is the

sum of the potential energies:

u(zxo) G(AO + Od_s) - G(Oa_s) - g(Od_) T AO + I((AO + 0d_,) - I,[(Od_)

--k(Od_s)T AO + 1AOT BKvBT AO (79)
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where G and K are the gravitational and spring potential energies, respectively. Under the

assumption that (75) is satisfied, U(/.SO) is positive definite. The derivative of V along the

solution of the equation of motion, denoted by I), is

v=orBul (80)

where we have used the fact that C(O,O) can be chosen (only C(O,O)O is unique, but C(0, t))

1_;I C(O, O) is skew symmetric (a fact that was used in [2, 33, 4, 5, 21] andis not) so that 7 -

many others). Integrating both sides of (80) and using the fact that V is positive definite,

it follows that the map from ul to BrO = tim is passive.

A.3.3 Stabilization

Once the passivity from ul to BTo is established, a large family of feedback control law can

be used to achieve I/0 stability:

Ul : t/2 - Cv(BT0) (81)

where C_ is any strictly passive system. Since the closed-loop system is the feedback connec-

tion of a passive system and a strictly passive system, by the Passivity Theorem, the map

from us to BTO is L2-stable. Furthermore, if us = 0, we can conclude from (80) and the

Invariance Principle that (0,0) converges to the largest invariant set in {(0,{J) : BTO = 0}.

To see this, recall that the strict passivity of C. means

/0 /oTwTC.(w) dt 2 +,7 Ilwll dr. (82)

for any w E L2,. Substituting BTO into w, and noting that the left hand side of (82) asymp-

totically vanishes due to (80), it follows that Br0 E L2. Now by applying the standard

argument that _J are uniformly bounded, we can conclude BTo _ 0 asymptotically. Fur-

thermore, since all higher derivatives of _J are uniformly bounded, all higher derivatives of

BTo also tend to zero asymptotically. If the closed loop system is zero state detectable from

BTo, then the zero error state is asymptotically stable. If the detectability is global, then so

is the asymptotic stability.

Under the following assumptions (slight generalization of the conditions in [10] and in-

cluding the approximate model in [29] as a special case), the zero state detectability can be

shown:

1. The mass matrix M is of tile special form

[ ]M(O)= M12r(Oe) "

This assumption is valid when the motor is symmetric about its axis of rotation;

otherwise, all four blocks would depend on both 0e and 0m [34].

2. The gravity load g and elastic coupling k are given by (69) and (70).

3. k is diagonal (i.e., ki only depends on Oei and 0mi).
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4. Vo,k(Oe, 0,_) is positive semi-definite for all 0e and Ore, and (0e, 0,,) for which Ve, k(Oe, Ore)
loses rank are discrete.

To see how this set of assumptions lead to detectability, substitute _Jm = 0 into the dynamical

equation (59), then we have

M,I(0_)/_ = -C1(0_,0_)0_- g_(0_)+ g,(0_,.) - k,(0,,0_) + <(%.,,0m_o.) (8a)
_I12T(oe)og = l_,l(Og,Orn)- l_l(Ogde.,Om,tea) -- [(p[--._Orn. (84)

Differentiate (84) once more, we have

Ml_r(O,)a',= v0,k_(0_,0m)0,.

It has been independently pointed out in [34] and [10] (the former is for the exact case) that

/1'I_2 is strictly upper triangular. By assumptions 3 and 4, t)e = 0. Substituting back into

(73), we obtain

g(0) - g(od_,)+ k(o) - k(0d,) - I,',B _zx0= 0 (85)

From the assumption that I(p has been chosen sumciently large as in (75), (85) implies local

asymptotic stability. If (75) holds uniformly for all 0e_, then the asymptotic stability is in

fact global.

For the general model, the observability condition can be checked for the linearized

system. First set u2(t) = 0 and BrO(t) = BTo(t) = 0. From linearized closed-loop equation

of motion, we have

BrM(Od_,)-_(Vog(Od_,) + Vok(Od_,) + BKpBT)AO = BTM(Od_,)-'RAO = O.

Differentiating this equation twice more and use the equation of motion again, we have

BrM(O_o,)-_RO = 0
BTM(Od**)-_[_M(Od,,)-'RAO = O.

These equations together imply the full state is identically zero if and only if M(Oa_,) - Jh"

is nonsingular, where/_" a___Vog(Od_,) + Vok(Od_,) + BKpB T.

From the above analysis, it is clear that under fairly mild conditions, the zero error state

of the closed-loop system is globally asymptotic stable. But which (?_ should one choose

among the many possibilities in order to enhance a specified performance measure? This

appears to be a hard question in generall We shall again encounter the same question in the

next section. At the present, we do have some intuitive rules of thumb for the selection of

C,,. The simplest choice of C_ would be just a constant gain. Then the closed-loop control

law is of the PD type (but only the motor variables are fed back). As demonstrated in

simulation in [1], in contrast to the fully actuated robots, large PD gains degrade the closed-

loop performance in terms of the settling time and amplitude of oscillation. This is due to

the fact that the zeros in the ul to t)m system are on the jw-axis, high gains would then drive

some of the poles toward these zeros and the response would become increasingly oscillatory.

It is intuitively plausible to choose C_ to be an SPR (i.e., linear time invariant and strictly

passive) compensator where the gain is concentrated at the open-loop resonant frequencies
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(so that a small oscillation in 0,_ will cause large a corrective action) and at the disturbance

frequencies (as in notch filters). In simulation [1], much improvement is obtained by using

this approach. This idea is similar to a common practice in servo control where a band

pass or high pass filter is used in the motor velocity loop (usually analog), in addition to

the usual PID loop, to improve performance in the higher frequency range (for example, see

the servo controller for space shuttle remote manipulator system in [17]). For the type of

systems considered here, we can be more specific about the class of filters that can be tuned

for increased performance with affecting the stability.

In the feedforward, the only model-dependent information that is required is the grav-

ity load and spring coupling. If this information is inexact, then u2 in (81) is a nonzero

constant. Since local internal asymptotic stability implies bounded-input/bounded-output

(BIBO) stability for sufficiently small initial error, the output error 0e - 0_d, , is also propor-

tionally bounded, and the internal states would remain bounded. In Section A.7, we will

adaptively update this constant; not surprisingly, the resulting control law is of the standard

proportional-integral-derivative (PID) structure.

In the case that the full state is available, an interesting question arises: How can 0e and

0e be included in this passive control framework? A reasonable approach would be to find

another output which is independent from 0m and passive with respect to us (i.e., after the

A0,_ and 0m loops have been closed as described above). Then an additional strictly passive

feedback can be applied to enhance transient performance. Finding an additional passive

output for a linear system of the form _ = Ax + Bu is straightforward: solve the Lyapunov

Equation ATp + PA + Q for some Q > o, then choose the output map to be C = BTp. A

general procedure for nonlinear systems such as the flexible joint robots is unknown at the

present.

A.3.4 A Simplified Dynamical Model

The exact model for flexibly jointed robots is not exact linearizable [35]. In [29], a simplified

model for flexibly jointed robots was proposed. This model ignores the gyroscopic forces due

the motion of rotating motors in the inertial space. Based on this model, an exact linearizing

control law was obtained. The simplified and full models have been compared in [28] based

on the parameters of a PUMA 560 robot and it is concluded that the approximate model is

a very good one for earth bound applications (when the arm is mounted on a mobile base,

the effect is far more drastic). The space shuttle remote manipulator system is also modeled

under this assumption [17]. In this subsection, we consider the stability analysis and control

design discussed above as applied to this simplified model.

The simplified model is of the form

2_[,(Og)O, + C,(Og, Og)Oi --_gl(0g) --1-]gl(/V0e - 0rn) --_- 0 (86)

[rn[grn -- kx(NOe - Ore) = U. (87)

Given the desired link angle vector 0ed,,, the steps in section A.3.1 can be followed to obtain

the feedforward control uff and desired motor angle vector 0m_,, for the error system:

Om,_o, = NOe,_,., - k_(-gx(Oe,_,,)) (89)
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where kl is assumed to be globally invertible. The spring model for kl is usually assumed

to be diagonal (i.e., the ith component of kt(x) only depends on xi) and each component

is monotonically increasing. Hence, the invertibility assumption on kl is a very reasonable
one.

The error system is described by

MI(O_)O_ + CI(O_,O_)O_ + g,(0e)- gl(0edo,) + k,(NOe- Ore)- k,(_VOed_, -Om_,) =f_O)

Imam -- _t(XO_ -- Ore) + k,(XO_o, -- Om_,_) = Uo (91)

where u = uo+uffhas been used. As in section A.3.2, in order to show passivity, we introduce

a proportional feedback to create a positive definite potential energy at the desired set point:

Uo = ul - IgpAOm.

Now, assume

[ VOffl(O'ae') "1- SV°i_I(NOgd""- Omde') _.-vO_I(gOgae" -- Omae') ] > O. (92)
-NVokl(NOe_,, - O_e,,) I'_v + Vok_(NOe_,, - Omae, )

This condition is satisfied if the spring is sufficiently stiff compared to the gravity load

(typically a reasonable assumption especially for geared robots) and h'p is sufficiently large

in the following sense:

_VVokl(XOedo, - 0_,,) > -Yogi(Oct,,) (93)

IIV°kt(NO*_"-O_")ll2 -- O'min(VO/_l (moea,,--Oma,,)). (94)_rman(I(p) >
- +

With the storage function

"_- _ofT J_/[I(Og)O_ "1- _OmT [mOm "+ U(AO_., AOm) (95)V

where

u(zxo,,zom) = + - al(O,,..) -
+IQ(NAOe - AOm + NOed, , -- 0rod,,) -- IQ(NOe,,,, - Om,,o,)

-kx(NOe,_,, --Omn,,)T(N/kOe - A0m) + 2mOmTl(pmOra. (96)

The scalar functions Kx and G1 are the spring potential energy and gravity potential energy,

respectively. Again use the skew symmetric property of 7M_ - C1; it follows that the

derivative of V along the solution trajectory of (86)-(87) is

which implies that the map from ut to 0m is passive.

The final step is to choose a motor velocity feedback for stabilization. Again by the

Passivity Theorem, ut can be chosen as

ul = u2 - C_(AOm)

where C_ is strictly passive, the closed-loop system is L2 I/O stable from u2 to AOm.

Since the simplified model in this section satisfies all the assumptions stated in the last

section, global asymptotic stability of the zero error equilibrium follows from the I/O stabil-

ity.
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A.4 Application to a Single Flexible Link

Consider the linearized model for a single link flexible link [36, 13] discretized in terms of

the natural modes:

_1+ gt2q = bu (97)

where q is the modal amplitude, u is the hub torque, and

f12 [Ol×_ 01×_ ]= LO_×_ diag_×_{_y} '
br=![¢_(o) ¢((0) ... _:(0)]

p

where p is the link density (over unit length), wi's are the natural modal frequencies and

¢i's are the corresponding mode shapes. Spatial derivatives are denoted by '. Here we

consider only an (n + 1)-mode approximation to avoid the technicality associated with

infinite dimensional systems. For a discussion in the infinite dimensional context, see [13].

Note also that the nonlinear model in [13] is of the same form as (64) in the flexibly jointed

robot case. The same analysis as in the previous section can be applied. Here we will

concentrate on the linearized model.

Let x = [q, q]T. The state space equation is

[0,] [01 ,98,a:= -gt 2 0 x+ b u.

Assume that the hub angle and angular velocity can be measured. The corresponding output

equations are

yp = [bT 0]x (99)

Yt, = [0 bT]x (100)

where y_ and y_ are proportional to the hub angular position and velocity, respectively.

A.4.1 Feedforward Compensation based on Steady State Analysis

Suppose the output of interest is the scalar variable

y=Cq.

Consider the set point control problem of steering an arbitrary initial state (q(0), 0(0)) to a

steady state which corresponds to a specified desired output Yd**- As in (61)-(62), we are

interested in finding a full state set point qde_ which maps to the desired output Yee_, and a

feedforward uffthat cancels the extra terms in the error dynamical equation for Aq = q-qde,.

This means qde, and uff must satisfy the following equations:

fl_qd_-- buff = 0 (101)

Cqd_ = Y_. (102)
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Assumethe leading componentsin b and c, b0 and co, respectively, are nonzero. Then the

model matching equations (101)-(102) imply

uz = 0 (103)
Ydes

qd_o -- (104)
Co

qde_i = 0 for i >_ 1. (105)

The error equation is then governed by

i_+ Ft2Aq = bu (106)

Ayp = bT Aq (107)

where Aq = q -- qdes.

A.4.2 Passivity

In the error dynamical equation, ft 2 is only positive semidefinite. For internal stability, cf.

section A.4.3 below, it is important that the stiffness matrix is positive definite. To achieve

this, a proportional feedback loop is first closed:

u = u 1 -- kpbTq. (108)

The effective closed-loop stiffness matrix is then

_2 = f_2 + kpbb T.

Since it is assumed that b0 _ 0, _2 is positive definite for any kp > 0.

To show the mapping ul to bTO is passive, consider the storage function

v(x) =  llOit + qTfi2q.

It is easily verified that the derivative of V along the solution is "(/= (bTq)Tul . The passivity

from ul to bTq follows from the fact that V is a positive function.

A.4.3 Stabilization

For the open-loop error system (106), the controllability matrix, after reordering the columns,
is

with

Co=[ a4b ...

Assume the modal frequencies are all distinct and every component of b is nonzero, then Co

is invertible which means that the system is controllable.
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The observability matrix with respectto yv for the open-loop error system is

0 -_2C0]O= Co 0 "

Since f_2 is singular, (.9 is singular which means that the system is not observable from

yr. However, with the proportional feedback of the motor position as in (108), f_2 in the

observability matrix is replaced

fi2 = fl2 + kpbb T

Since fi2 is nonsingular, the observability matrix is also nonsingular and the system is ob-

servable.

By the Passivity Theorem, the hub velocity loop can be closed with any strictly passive

feedback Cv, i.e.,

ul = u2 -- Cv(bTq),

and the resulting closed-loop system is L2-stable from u2 to bTit . For the internal asymptotic

stability, we need detectability. From the analysis above, it is evident that if the poles of

C,, do not cancel with the zeros of the system with proportional feedback, then the overall

closed-loop system is controllable and observable, and, therefore, internally asymptotically
stable.

It is tempting to choose C,, to be an SPR filter which, over certain bandwidth, approxi-

mates the plant inverse (this is possible since the plant is passive, therefore, minimum phase).

Then the I/O map from u_ to bTit is approximately constant in that frequency range. This

would result in an excellent I/O response; however, the internal state becomes almost un-

observable which means a very poor internal state response. This has indeed been observed

experimentally, where excellent step response is obtained at the hub but the beam oscillates

at a fl'equency corresponding to the pair of zeros with the lowest frequency.

A.5 Application to Fully Actuated Robots

The passivity property of fully actuated robots has been much exploited in recent years,

starting from the path breaking work in [2] to many later extensions in, for example, [33,4,

5, 37] and many others. This section briefly reviews some of these results and shows how

they fit into the framework outlined in Section A.2.

The equation of motion for a fully actuated arm is the same as that for the flexibly jointed

robot (63) except for B = I and k = 0:

M(O) + C(O,O)O+ g(O)= u. (lo9)

Consider the set point control problem, i.e., the control objective is to steer an arbitrary

initial condition (0(0), 0(0)) to a specified set point (0des, 0).

The first step is to choose a feedforward control to form the error system

u = Uo + uff
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where uff may either be the gravity load cancellation or the gravity load at the desired set

point:

uff = g(O&s) or (ii0)

uff = g(O). (IIi)

In both cases, a position feedback loop needs to be closed to ensure a positive definite
stiffness:

11o --" tl 1 -- I(pAO

where I(p is positive definite. In the first case, I(p should be chosen large enough so that

the combination with the gravity potential energy is positive definite. To show the passivity

from Ul to _), the following storage function can be used:

= IOTM(O)O + U(A0) (112)V(O,O)

where U is the total potential energy (including the position feedback loop)

U(A0) = 1AoTI'(pAO+G(AO+Od_,)--G(Ode_)--g(Od_)TAo for (110)

U(AO) = 2AoTI'(pAO. for (111)

Now, any strictly passive feedback from _) to ul can be used:

By the Passivity Theorem, the closed-loop is L2-stable from u2 to _). Since the stiffness term

is globally positive definite, 0 is globally zero state detectable. Hence, the zero equilibrium

of the error system is globally asymptotically stable.

A.6 Tracking Control Problem

So far we have considered only the set point control problem. A good set point controller is

an important facet of the control design as it implies good transient behavior in disturbance

rejection (the initial error state can be considered as the result of the past disturbance).

Another important aspect of the control design is the trajectory tracking problem. An

intuitive approach is to simply replace 0 by A0 in the set point controller with the hope that

a well tuned set point controller would also imply good tracking. In this section, we will

both justify and modify this intuitive approach.

Given the general dynamical equation (59), consider the problem of finding a feedback

control u so that the output y = CO tracks an arbitrary trajectory Yd_ asymptotically. A

natural extension of the set point control approach presented before is to express the system

dynamics in the error coordinate and choose a feedforward control uff to cancel the extra

terms in the dynamics, assuming that this is possible:

M(O)AO + C(O,O)AO + f(O) - f(Od,_) = Buo (113)
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where u = Uo + uff has been used and

Buff= M(O)Oa_s + C(O,O)Od_s + f(Od_,) (114)

is assumed to have a solution, given yd_,(t) = COd_s(t), t >_ 0 (this issue is discussed in greater

detail in Section A.6.4). Note that in contrast to the set point control case, not only is the

model information required in the feedforward but, in general, the full state measurements

as well.

An important extension of (114) is to add to 0d_ with an error feedback, g(AO,AO)

(assume the equation is solvable). Then the feedforward to be solved is

Buff= M(O)(#d,s -- e(AO, AO)) + C(O,O)Od** + f(Oe,_). (11,5)

The solvability of this equation in the flexible joint robot case is discussed in section A.6.4.

The error equation with this feedforward becomes

M(O)AO + M(O)g(AO, AO) + C(O,O)AO + f(O) - f(Od,_) = Buo. (116)

The additional term g can now be chosen to augment performance (this is especially effective

if M strongly couples different degrees of freedom).

Next close a position loop:

Uo = ul -- I(pBT AO

where it is assumed that I(p can be chosen sufficiently large so that BIfpB T + Vof(Od_,) > 0

(same as the set point case). The problem !s that f(Od_s) is now time varying and, conse-

quently, the passivity property from ul to A0 cannot be easily shown as before (an exception

is when f is linear, a fact we shall use in section A.6.2). There are three approaches to ap-

proach this issue:

1. The only time varying term in the error system is due to Odes. For each fixed time, the

same passivity analysis as before can be applied to show local asymptotic stability. By

applying a well known theorem for time varying systems [38], closed loop asymptotic

stability is preserved if 0d_ is sufficiently slow time varying.

2. If the feedforward torque, uff, is chosen to compensate for g(O) rather than for 9(Od_),

provided that it is solvable, then the passivity analysis can again be applied.

3. Define a new output z = BTo -+- I.tBrO where # is a small positive parameter. If B = I

(full actuation case) or there is inherent structural damping D such that D + BK,,B T is

positive definite for some K_ > 0, then the map from ul to z is passive for # sufficiently

small, and the same passivity analysis can be applied.

In the remainder of this section, we will elaborate on each of these approaches, and also

discuss in detail the solution of the feedforward torque.
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A.6.1 Tracking for Slowly Varying Trajectories

To apply the stability result for slowly time varying systems,the feedforward in (114) needs
to be slightly modified to

Buff= M(O)[gdes + C(O,O)Odes + C(O, Od_,)&O + f(Ode_). (117)

Then the error equation becomes

M(O)AO + C(O, AO)AO + f(O) - f(Odes) = Buo. (118)

In (118), the only time varying quantities are Od_ and _)d,s. If they are "frozen" at a particular

constant value (0d**,t_d,_) = (Od,s(T),Od**(T))where T _> 0 is a constant, then the derivative

of the following scalar function

v(_xo,AO): _:,0_M(_xO+O_o_)_xi)+U(_XO+O_)-/,OTf(o_)-U(o_e')+ 2_XO_B_C;B__xo

is 1)" = AOTBux, where U is the potential energy corresponding to f and BKpB T + Vef(Od,s)

is assumed to be positive definite uniformly in 0d,,. Hence, the stabilizing control law design
based on the passivity approach as described in the previous sections (with 0 replaced by A0)

stabilizes all frozen systems. Under the additional assumption that the frozen systems are

locally uniformly (with respect to T) exponentially stable, the slowly time varying theorem

as stated in [38, Theorem 5.6.6] can be applied to show local exponential stability of the

closed loop system provided suptmax {t)d_,(t),t_de,(t)} is sufficiently small. Simulations in

[1] confirm this result, where a slowly time varying sinusoid can be closely tracked, but not

a fast time varying sinusoid.

A.6.2 Tracking by Direct Compensation

Another possibility is to directly compensate for part of f(O) in (113).

torque that needs to be solved is now

The feedforward

B_,ff= M(O)&_,+ C(O,O)Odo_+ f,(O) + FOdo_ (119)

where we have decomposed f(O) according to f(O) = f_(O) + FO where F is a square matrix.

The reason that we decompose f in this fashion is related to the solvability of (119) (see

section A.6.4 for detail).

Assume that a solution exists, then the error equation is of the form

M(O)AO + C(O,O)&O + FAO = Buo. (12o)

Now the same passivity analysis as before can be applied for the control law

_o= -IGB r_so - c_(,x0) (121)

for any strictly passive C_.
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A.6.3 Tracking by Output Modification

Evenin the local versionof (113),with f(O)--f(Ode,) replaced by _70f(Odes)AO, V/of(Odes) > O,

the map from uo to BTAt) is still not passive in general. This can be seen by evaluating the

L2 innerproduct between this input/output pair:

joT( Br at))r uo Tdt = fo At)T(M(0)A0 + C(0, t))At) + Vo f ( Od_s)AO) dt

1 T T
= 1At)rM(0)At)2 0T+ _A0 Vof(Od_s)AO °

-'2 fo1rAoTd (Vof(Oa_))AOdt. (122)

d
Since -_(Vof(Od_) may be sign indefinite, the integral cannot be bounded below by a con-

stant. To counter the effect of this last term, we consider adding a proportional feedback,

BTAO. The contribution to the input/output innerproduct due to this addition is

/o /oT(BTAO)Tuodt = AOT(M(O)AO +C(0, t))At)+ Vof(Oe_)AO)dt

= zxt) M(0)A0° - fT(p,t) M(0) Xt)+ A0 (¢S(0,t))- C( O, t)) )At)) dt

+ _0T AOTVof(Od_)AO dt. (123)

For the local analysis, we shall ignore the higher order term (Nl(O,t)) - C(O,t))). Now,

consider adding a static PD loop:

uo = -KvBT AO - K_BT At) + ul. (124)

Then the innerproduct between u_ and BTAt) is the same as (122) except Vof(Oees) is

replaced by Vof(Od_,) + BKvB T and there is an additional term:

j[oT At)T BK_BT At) dr.

The innerproduct between Ul and BTAO are the same as (123) except Vof(Od_,) is replaced

by Vof(Od_s) + BI(pB T and there is an additional term:

I AOT BI(_BT AO :.

Now form the augmented output

z = BrAt) -t- cBTAO.

For c sufficiently small and Oa_, sufficiently slowly time varying, all terms in f[ zT(t)u_(t)dt

can be bounded below by a constant except for the integral involving the quadratic term in

At) which is f[ At)T(--cM(O) + BIQ.BT)At) dr. There are two situations in which this term

is also bounded below by a constant"
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1. The arm is fully actuated, i.e., B = I. This approach is the same as in [39].

2. There is an inherent damping, Dr), which gives rise to the term DAd in the error equa-

tion (the feedforward uff needs to be modified accordingly). If D + BKvB T is positive

definite, then for c sufficiently small, the integral is bounded below by a constant.

If either of the above situation holds, then the map from ul to z is passive and the same

analysis can be carried as before to generate stabilizing control laws based on passive map

from z to ul. In the example in [1], it has been shown that link damping in the flexibly

jointed robot allows tracking of a fast trajectory that could not be tracked when the damping
is absent.

A.6.4 Derivation of the Feedforward Compensation

Flexible Joint Robot Case

To form the tracking error dynamic equation, we need to solve for uff in either (114) or

(119). In this section, we will consider this problem for the special cases of flexible jointed

robot and a single flexible link.

We will consider only the simplified flexible joint model given in (86)-(87); the general

case is considerably more complicated. Suppose y = 0t. Then (114) involves solving for

(Ufflt),Omd_.(t),Omd_(t)), given Ot_.(t) and its higher time derivatives (as many as required)

and (O._(t),Om(t),Oe(t),Oe(t)), from the following set of equations:

MI(Oe)OQ,,nt-C,(Og,Og)OQ_,-4-gi(OQ¢,)4-k,(NO,,,, - Omd.,) = 0 (125)

Imt_m,o,- k_(NO,,,, - 0m,,,) = uff. (126)

Assuming kx is monotonically increasing so an inverse function k -I exists. Assume kl is

twice differentiable. Then 0,d, , can be solved from (125):

0redo.= N0,d.- k,-' (-[MI(0_)0_,..+ C,(O_,O,)O,,o.+ g,(0_o.)]). (127)

To solve uff from (126), 0_d,, must first be computed. This can be done by differentiating

(127) twice:

d_ [k,-'(-[M,(Oe)[9_,_.., + Cl(Oe Oe)Oedo, + g,(0ed,,)])]. (128)Orne,, = N[ged¢. - dt----7

Note that the second term involves 0e and t)'e, which can in turn be resolved using the

dynamic equation (86) and its derivative. Finally, uff can be computed from (126).

For the direct compensation case, cf. (119), the feedforward compensation equation based

on the simplified flexible joint model is

t]"/1 (O_)Ogae, -t" Cl(Og, Ot)_)gaes -Jv gl(Og)

Imgmd.. -- k2(NOe - 0._) - K(XOe... - Om_.) = uy

(129)
(130)
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whereK is any square invertible matrix and k2 is chosen from k2(x) = kl (x)- Kz. Following

similar steps as before, (129) can be used to solve for Omd,,:

0md¢, = I'2-1(-'141(Oe)gen¢,-C,(O,,de)Oee,,-gl(Oe)-ka(NOe-Om))+ NOee,,. (131)

To solve for ufffrom (130), again _Jme,, needs to be computed by directly twice differentiating

both sides of (131). However, g=_,, now not only contains Oe and t)'e which can be resolved

using the dynamical equation and its derivative as before, but also gm (through the derivative

of k2) which in turn depends on uff. Therefore, to solve uff, we need the invertibility of

I- Iml£-l_Txk2(X)lNOt_omZm-1. for all 0e and 0m, which does not appear to be a severe

limitation. Note that if the spring is assumed to be linear as common practiced in the

literature, this additional assumption would not be needed.

For flexible joint robots, Eq. (115) can be solved in exactly the same fashion as above.

A simple but useful choice of the function g is simply

e(AO, AO) = I(vtAO + I(_,AO. (132)

The closed loop equation is now of the following form

Ml(0l)-/-&gl -t- CI(Og, Og)_O¢. + 91(0_) - gl(Oe.a,,)

+k_(NOe - 0m) -- k_(NOe_,, - Omdo,) + I'(,,AOe + Iiv, AOe = o (133)

I_Agm - k_(NOe - Ore) + k_(NOe... - Om._.) + kvAOm = u_ (134)

The system linearized about (A0, Ate) = (0,0) is passive between u_ and A0m since the

stiffness matrix

[ X2V]c(NOgdes - Orndes) "t- i]'_(O,des)f(p, -UV]c(i'gOgde , - 0redes) ]

[ -NW(X0,.o. - Vk(NO,...- Om .)+ J

is positive definite. Hence, any strictly passive loop between A0_ and ul can be closed to

ensure closed loop asymptotic stability of the error system.

The purpose of the feedforward control can be thought of as winding up the spring torque

so that the link dynamics is governed by

Age + K_tAOe + IV,,AOe = O.

The role of the feedback control is to produce the motor trajectory that is required for this

feed forward.

Flexible Link Case

For the flexible link case, the situation is quite different since the acceleration of the

actuated degrees of freedom are not decoupled fi'om the acceleration of the unactuated

degrees of freedom as in the simplified model of a flexibly jointed robot.

solve for (uff, qa,_) given a desired output trajectory yd_,:

5.d_ + ft2qd_, = Buff

Cqdes = gdes

We nov,, need to

(135)

(136)
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with the additional constraint that uff needs to be uniformly bounded for implementability.

This problem is almost identical to the inverse plant problem considered by [40], but here we

solve for the desired plant trajectory rather than the actual plant trajectory. Consequently,

while the control law obtained in [40] is entirely open-loop, here we have a feedback control

structure.

To analyze the solution of (135)-(136), first express qa_s is of the following form:

qd_s = C+yd_ + C_ (137)

where C + = cT(ccT) -1 is the pseudo-inverse of C and C is the n x (n - m) full rank matrix

that is annihilated by C (CC = 0). Note that C can be formed by the linearly independent

columns of (I-C+C), but C _ (I-C+C) since C is full rank.

Differentiating the equation twice, we have

= c +

Substitute back into (135) and assume B is full rank, we can solve for uff

uff= (BTB)-'(BTC+_Id_, + BTc_ "+ BTfi2(C+yd_, + (_')). (138)

Now, uff can be eliminated from (135), and after rearranging terms, we obtain

2 +
(I- B(BTB)-'BT)(c_ " + a20{) = -(I- B(BTB)-IBT)(c+f/d_s + f_ C Yd_,). (139)

Since 7"£(C) C R" and R" = Ti(B) G H(BT), C can be decomposed as

-C=BKI+BTK2 i.e. I(2 =[B B-_]

where B-'_ E R n×('`-') is full rank and annihilated by B, i.e., BrB -'-_ = O, and I_2 C

N (_-m)x('-_)_ is square invertible. Then (139) becomes

2 +

After multiplying through K_TB T7, and noting B TT is the annihilator of B, we obtain

= --(I(2r'ffir-B-CK2)-_Ii2r-ffir(c+_e_, + fl'C+ya_,). (140)

Writing the above equation in a more compact form, we have

_"+ Ag = Lp (141)

where p = [ Yd,, /)d_, ]T. For implementability, the initial condition, (s¢(0),_(0)), needs to

be chosen so that so(t) is uniformly bounded for all t. There are two equivalent approaches

to find the initial condition. A Laplace transform approach was stated in [40] and a time

domain approach in [41]. We will discuss both approaches here.
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In the first approach,the Laplacetransform of (141) is taken:

_(s) = (s_I + A)-X(L_(s) + s¢(0) + 4(0)).

Suppose fi(s) is analytic in the open right half plane and has only simple poles on the

imaginary axis (i.e., rides(t) is uniformly bounded), then the terms in _(s) that can lead to

unbounded time response are only those associated with the unstable roots of det(s2I + A).

Since A is n - m x n - m, there can be at most n - m unstable roots. Correspondingly, there

are n - m R m residue vectors which, when the contributions in uff are all set to zero, lead to

re(n-m) equations. There are 2(n-m) constants that wecan choose in (((0),_(0)). Hence,

if m = 2, an initial condition can be chosen in general to nullify the residues associated with

the unstable poles. If m = 1, all residues can be nullified, implying the time response of ((t)

is zero after some finite t. The requirement that m _< 2 appears to be unnecessarily strong

as will be evident from the time domain analysis below.

An equivalent time domain approach can also be taken. First write (141) in the first

order form:

After transforming the coordinate according to the stable (including eigenvalues on the

imaginary axis) and unstable eigenspace, the system is partitioned as

+ 0-A_ L_ p-__ 3'_

where A+ and A_ are both strictly unstable. The unstable response is given by

3'÷(0 = ea+'3'+(O) + eh+(t-')L+p(r)dr

= ea+t(%(0) + e-A+'L+p(r)dv) (142)

Choose

/73'+(0) = - e-A+"L+p(r)dr (143)

assuming the integral exists (which is true if #des is uniformly bounded). If

/o'(3'+(0) + e-A+'L+p(r)dr) <_ Me -°+t

where o'+ is the eigenvalue of A+ with the largest real part, then 3'+(t) would be uniformly

bounded as required. Again, a sufficient condition for this is that /)de, is uniformly bounded.

Note that the condition on the number of input/output pairs is no longer required in this

analysis. This discrepancy appears to be due to some relationship in the residues that we

are not taking advantage of.

As in the Laplace transform approach, 3'-(0) can be chosen to achieve the zero steady

state for 3'+ and 3'_ if f_ eA-_L_p(r) dr < oo.

In [40], it was pointed out that the procedure of choosing the initial condition to guarantee

the boundedness of uff is highly sensitive numerically since any slight numerical error could
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lead to divergence. To show that 7+(t) in (143) can be computed in a numerically stable
way,we substitute (143) into (142). Then

oo
"/+(t) = -e A+t (e-S+rL+p(r))dr

= _ foo ea+(t-_)L+P(r) dr

-_o °°-e-S+rL+p(t + r) dr (144)

where the last expression can be stably calculated since -A+ is stable.

To illustrate the procedure described above, consider a simple example presented in [40]:

[ ]1 -I gl
/I+ -1 I q = u

-g

y--[0 1 ]q.

After some algebra, we obtain

where

_"- _ = gd_s - 2/_.s

1 0<t<l
yde_= -1 1 <t <2

0 t_>2.

and yde8(O) = /)d_(0) = 0. For simplicity, make a change of variable r/= _ - y, then

(145)

(146)

The Laplace transform of/)4_, is

_)"_(s) = (1 - e-_) 2
...q

Therefore,

q(s)(s) = (-3s-z(1- e-s)2 + sr;(0)+ _(0))
s 2 - i

If only the unstable residue is to be canceled as suggested in [40], one choice for the initial
condition is

3 e_Z)2.
r/(O) = 7)(0) = 5(1 - (14T)

In this case, since m -- 1, residues associated with both poles can in fact be canceled by

choosing

[7(0) 3- - e)_)
]

- e-Z) 2 + (i - e) 2) j " (148)

An equivalent time domain approach can also be taken. The solution of (145) is

[co h,s,nh,] 3/o[ <q(t)= sinht cosht (/_(0) -sinhr coshr i /)e_(r) .
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After using (146), the integral, for t >__2, is a constant:

,- sinh r cosh r 1
dT

1-2coshl+cosh2 ]2sinh 1 - sinh2 J

Since the stable eigenspace is spanned by [ i1] and the unstable eigenspace is spanned by
v 1

[1[ choosing the initial condition according to (147)leads to
L Jl '

r/(t) = e-t(1 + e _ - 2e)

for t >_ 2 and choosing the initial condition according to (148) leads to r/(t) = 0 for t _> 2.

When the desired output is assumed generated from a reference model and the model and

plant parameters satisfy a model matching condition, a solution of (135)-(136) can be more

easily solved. This is called the regulator approach, a version of which, called the command

generator tracker theory, was proposed in [12]. The nonlinear version can be found in [42].

Application to the flexible arm control can be found in [43]. We present this approach for a

general linear time invariant system. Consider

ice, s = Azd_s + Buff

Ydes = CXdes"

The desired output Yd,_ is generated from a linear time invariant reference model:

where w C R k. _Ve seek a solution of the form

uff= Fw (149)

where F and a matrix P together should satisfy,

PS- AP = BF (150)

CP-- Q (151)

which are called the model matching conditions. The initial condition zd,s(0) should be

chosen as

xae_(0) = Pw(O). (152)

Clearly, if the exosystem is stable, the feedforward signal will be uniformly bounded.

The model matching condition (150) can be written as a generalized Lyapunov equation:

[A [0]C-S f + f S= Q (153)
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where the unknown matrix

product, this linear matrix equation canbe written asa vector equation:

F is of dimension (n + m) x k. By using the Kronecker

where

(,4 c3 Ik + I.+m ® S)X = 7 (154)

[0and X and 3' are the columnwise stacked vector from F and Q , respectively. For a

given plant and exosystem, the solvability of (154) can be readily checked, and if solvable, X

can also be easily found. A sufficient condition (for the invertibility of the matrix in (154))
is that the spectrum of -A" and S do not intersect.

The feedforward uffgiven by the linear regulator approach is a particular solution of (138)

from the plant inversion. It would be interesting to query if the initial condition chosen as in

(152) is related to the initial condition chosen based on the plant inversion approach described

earlier (either through the Laplace (ransformation or time domain solution). In Appendix

A, it was shown for a single flexible link tracking a sinusoid, that the initial condition from

the regulator approach is the same as the one chosen to cancel all of the residues. We are

currently seeking the generalization of this result.

A.7 Adaptive Control

The feedforward control in either set point or tracking case requires a great deal of model

information. It is highly desirable to adaptively update this signal without requiring explicit

knowledge of the plant parameters. To this end, consider the closed loop system as an

internally asymptotically stable system driven by the input uff. Based on our passivity

approach, the closed loop system is passive but in general not strictly passive. Our basic

idea is to choose a new output such that the I/O pair with respect to this output is strictly

passive. Then any passive adaptation for uff can be used to preserve the state asymptotic
stability.

We will only consider the linearized closed loop plant here, the full nonlinear version is

under development. Suppose that the linearized closed loop plant is of the form

= Ax + B(u - _,#)

where A is exponentially stable, uffis tile unknown desired feedforward, and u is the adaptive

feedforward. By the Lyapunov's theorem [44], for any Q > 0, there exists P > 0 such that

ArP + PA = -Q.

Now define C = BTp as the new output map. Then the triplet (A, B, C) is strictly positive

real [45]. The adaptation for uff is now straightforward. Using the standard linear-in-

parameter formulation [46], suppose uff can be parameterized as

uff = HA
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where H in the known regressor matrix and )_ is the unknown parameters. For the set point

control case, H = [ and A is a constant vector. For the regulator approach, H contains

w (state of the exosystem) and A consists of columns of F (cf. (149)). For the tracking of

a general desired output, H depends on O, O, y_¢, and its higher derivatives. In this case,

finding the structure of H itself may be difficult. A viable approach may be to approximate

H by some expansion and slowly adapt the approximation. The neural net approach in [47]

is a possibility that we shall explore.

To derive the adaptation rule, consider the Lyapunov function candidate

V = xTpx -t-/xATF-1AA (15.5)

where AA = A - ),, _ is the estimate of the unknown vector _. Since the output is chosen so

the system is strictly positive real, the derivative along the solution becomes

';"= -xrQx +  ff)Ty + 2A; Tr-1 ai.

Choose the adaptive feedforward based on the estimated parameter:

Then

tiff= Hi. (156)

_" = -xTQz + 2AAT(HTy + F-1A_).

Hence, with the following gradient update rule for A:

t = -rgry (157)

I? is negative semidefinite. This implies that all states and parameter estimate error are

bounded, and furthermore, by Barbalat's Lemma [48], x converges to zero asymptotically.

For the set point control case, the adaptive parameter update simply reduces to the integral

control law.

We are currently extending this argument to the nonlinear systems by using the nonlinear

Lyapunov equation.
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