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The problem of global output-feedback stabilization for a class of stochastic high-order time-delay feedforward nonlinear systems
with different power orders is investigated. By combining the adding one power integrator technique with the homogeneous
domination approach, an output-feedback controller design is proposed, which ensures the global asymptotical stability in
probability of the closed-loop system.

1. Introduction

In the last decades, stochastic systems have received much
more attention since stochastic modeling has come to play an
important role in many branches of science and engineering
applications. For this type of systems, the authors in [1–10]
presented the basic stability theory of the stochastic control
systems.

Global stabilization of triangular structural stochastic
nonlinear systems has been a major issue in control theory
over the last decades. For lower-triangular systems (namely,
feedback systems), the stochastic asymptotic stabilization has
been studied by using backstepping approach; see [11–13]
and the references therein. Upper-triangular systems, which
are also called feedforward systems, have been fully used to
model many physical devices, such as the ball-beam with
a friction term [14] and the cart-pendulum system [15]. By
using a homogeneous domination approach, the problem of
global output-feedback stabilization was addressed in [16] for
a class of upper-triangular systems with higher-order non-
linearities. Then, the case of lower-order nonlinearities was
considered in [17].With the help of a generalized definition of
homogeneity, the problem of using small controls to globally
stabilize a class of upper-triangular systems was investigated
in [18]. Inspired by the works [19, 20], the problem of using
a sampled data controller to globally stabilize a class of

uncertain upper-triangular systems was considered in [21].
When parameter uncertainties appeared in a system model,
an adaptive stabilizer for feedforward nonlinear systems with
general dynamic order in [22] was extended to [23].

On the other hand, time delaysmay arise naturally, which
are usually the key factors that influence the stability of non-
linear systems. Many researchers have paid more attention
to studying the stochastic nonlinear time-delay systems over
the last decades and various results concerning stochastic
lower-triangular nonlinear systems with time delays have
been reported in [24–27]. For the case where the delays are
of unknown length, an adaptive control design was presented
in [28] for a system in feedforward form. An approach for
compensating input delay of arbitrary length was presented
[29] for forward complete and strict-feedforward nonlinear
systems. When the nonlinear functions were higher order in
states, the problem of global stabilization by state feedback
was addressed in [30, 31]. It should be pointed out that these
results were obtained for the case of state measurement. Nat-
urally, one may ask a challenging and interesting question: if
not all the states aremeasurable, how dowe design an output-
feedback controller for stochastic high-order feedforward
systems with time delay? To the best of our knowledge, no
output-feedback stabilization control scheme has so far been
proposed for stochastic high-order feedforward systems with
time delay.
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Inspired by the aforementioned discussion, we deal with
the problem of global output-feedback stabilization for a class
of stochastic high-order feedforward nonlinear systems with
time-varying delay and different power orders. Firstly, we
design a state-feedback controller for the nominal system
using the adding one power integrator technique. Then, by
designing a homogeneous observer for the nominal system,
we explicitly construct a homogeneous output-feedback sta-
bilizer under the certainty equivalence principle. At last, we
propose a scaled controller which guarantees global asymp-
totic stability in probability of the closed-loop system.

The outline of this paper is as follows. Sections 2 and
3 offer some preliminary results and problem formulation,
respectively. The output-feedback controller is designed and
analyzed in Section 4. This paper is concluded in Section 5.

Notations. The following standard notations are used
throughout this paper. 𝑅𝑛 denotes the real 𝑛-dimensional
space. |𝑥| = (∑

𝑛

𝑖=1
𝑥
2

𝑖
)
1/2 for any 𝑥 ∈ 𝑅

𝑛. For any matrix 𝑄 ∈

𝑅
𝑛

× 𝑅
𝑚, |𝑄| denotes the Frobenius norm |𝑄| = (∑

𝑖,𝑗
𝑞
2

𝑖𝑗
)
1/2

and |𝑄|
∞

= max
1≤𝑖≤𝑛

(∑
𝑚

𝑗=1
𝑞
2

𝑖𝑗
)
1/2. For the sake of simplicity,

sometimes function 𝑥(𝑡) is denoted by 𝑥; 𝑥
𝑖
represents the

ith element of vector 𝑥 and 𝑥
𝑖
= (𝑥

1
, . . . , 𝑥

𝑖
)
𝑇. 𝐶𝑖 denotes

the set of all functions with continuous 𝑖th partial derivative.
K denotes the set of all functions: 𝑅+

→ 𝑅
+ which are

continuous, strictly increasing, and vanishing at zero; K
∞

denotes the set of all functions which are of class K and
unbounded.

2. Preliminary Results

Consider the following stochastic time-delay system

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜎 (𝑡))) 𝑑𝑡

+ 𝑔(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜎 (𝑡)))
𝑇

𝑑𝜔

(1)

with an initial condition {𝑥(𝑠) : −𝜎
0

≤ 𝑠 ≤ 0} = 𝜉 ∈

𝐶
𝑏

𝐹0

× ([−𝜎
0
, 0], 𝑅

𝑛

), where 𝜎(𝑡) : 𝑅
+

→ [0, 𝜎
0
] is a Borel

measurable function; 𝑥(𝑡) ∈ 𝑅
𝑛 denotes the state vector

and 𝑥(𝑡 − 𝜎(𝑡)) is the state vectors with time-delay; 𝜔 is
an 𝑚-dimensional standard Wiener process defined on the
complete probability space (Ω, 𝐹, {𝐹

𝑡
}
𝑡≥0

, 𝑃) with Ω being a
sample space, 𝐹 being a 𝜎-field, {𝐹

𝑡
}
𝑡≥0

being a filtration, and
𝑃 being a probability measure; 𝑓(⋅) ∈ 𝑅

𝑛, 𝑔(⋅) ∈ 𝑅
𝑛×𝑚 are

locally Lipschitz functions and satisfy 𝑓(0, 0) = 0, 𝑔(0, 0) =
0.

In the following, we borrow some definitions and lemmas
which play an important role in stabilizing and analyzing the
stochastic time-delay systems for later development in this
paper.

Definition 1 (see [26]). Define the infinitesimal generator L
of function 𝑉(𝑥) ∈ 𝐶

2 along system (1) as follows:

L𝑉 (𝑥) =
𝜕𝑉

𝜕𝑧
𝑓 (𝑥, 𝑥 (𝑡 − 𝜎 (𝑡)))

+
1

2
Tr{𝑔 (𝑥, 𝑥 (𝑡 − 𝜎 (𝑡)))

𝜕
2

𝑉

𝜕𝑥2
𝑔

× (𝑥, 𝑥 (𝑡 − 𝜎 (𝑡)))
𝑇

} ,

(2)

inwhich (1/2)Tr{𝑔(𝑥, 𝑥(𝑡−𝜎(𝑡)))(𝜕2𝑉/𝜕𝑥2)𝑔(𝑥, 𝑥(𝑡−𝜎(𝑡)))𝑇}
is called the Hessian term ofL.

Definition 2 (see [26]). The equilibrium 𝑥 = 0 of system (1) is
globally asymptotically stable (GAS) in probability if for any
𝜖 > 0, there exists a function 𝛾(⋅, ⋅) ∈ KL such that 𝑃{|𝑥| ≤
𝛾(‖𝜁‖, 𝑡)} ≥ 1 − 𝜖 for any 𝑡 ≥ 0, 𝜁 ∈ 𝐶

𝑏

𝐹0

× ([−𝜏, 0], 𝑅
𝑛

) \ {0},
where ‖𝜁‖ = sup

𝜃∈[−𝜏,0]
|𝜁(𝜃)|.

Definition 3 (see [16]). For fixed coordinates (𝑥
1
, . . . , 𝑥

𝑛
) and

real numbers 𝑟
𝑖
> 0, 𝑖 = 1, . . . , 𝑛, one has the following.

(i) The dilation Δ
𝜀
(𝑥) is defined by Δ

𝜀
(𝑥) =

(𝜀
𝑟1𝑥

1
, . . . , 𝜀

𝑟𝑛𝑥
𝑛
), for all 𝜀 > 0, with 𝑟

𝑖
being called

as the weights of the coordinates. For simplicity of
notation, we define dilation weight Δ = (𝑟

1
, . . . , 𝑟

𝑛
).

(ii) A function 𝑉 ∈ 𝐶(𝑅
𝑛

, 𝑅) is said to be homogeneous
of degree 𝜏 if there is a real number 𝜏 ∈ 𝑅 such that
𝑉(Δ

𝜀
(𝑥)) = 𝜀

𝜏

𝑉(𝑥
1
, . . . , 𝑥

𝑛
), for ∀𝑥 ∈ 𝑅

𝑛

\ {0}, 𝜀 > 0.
(iii) A vector field 𝑓 ∈ 𝐶(𝑅

𝑛

, 𝑅
𝑛

) is said to be homoge-
neous of degree 𝜏 if there is a real number 𝜏 ∈ 𝑅

such that 𝑓
𝑖
(Δ

𝜀
(𝑥)) = 𝜀

𝜏+𝑟𝑖𝑓
𝑖
(𝑥

1
, . . . , 𝑥

𝑛
), for ∀𝑥 ∈

𝑅
𝑛

\ {0}, 𝜀 > 0, 𝑖 = 1, . . . , 𝑛.
(iv) A homogeneous 𝑝-norm is defined as ‖𝑥‖

Δ,𝑝
=

(∑
𝑛

𝑖=1
|𝑥

𝑖
|
𝑝/𝑟𝑖)

1/𝑝, for all 𝑥 ∈ 𝑅
𝑛, for a constant 𝑝 ≥ 1.

For the simplicity, we choose 𝑝 = 2 and write ‖𝑥‖
Δ
for

‖𝑥‖
Δ,2

in this paper.

Lemma 4 (see [26]). Consider the stochastic time-delay sys-
tem (1); if there exist a function𝑉(𝑥) ∈ 𝐶

2

([−𝜎
0
,∞]×𝑅

𝑛

) and
classK

∞
functions 𝛼

1
, 𝛼

2
satisfying the following inequalities:

𝛼
1
(|𝑥 (𝑡)|) ≤ 𝑉 (𝑥) ≤ 𝛼

2
( sup
(−𝜎0≤𝑠≤0)

|𝑥 (𝑡 + 𝑠)|) ,

L𝑉 (𝑥) ≤ −𝑊 (𝑥 (𝑡)) ,

(3)

where𝑊(𝑥(𝑡)) is continuous and positive definite, then
(1) there exists a unique solution on [−𝜎

0
,∞),

(2) the equilibrium 𝑥 = 0 of the system (1) is GAS in
probability and 𝑃{lim

𝑡→∞
|𝑥(𝑡)| = 0} = 1.

Lemma 5 (see [16]). Given a dilation weight Δ = (𝑟
1
, . . . , 𝑟

𝑛
),

suppose 𝑉
1
(𝑥) and 𝑉

2
(𝑥) are homogeneous functions of degree

𝜏
1
and 𝜏

2
, respectively. Then,𝑉

1
(𝑥) ⋅𝑉

2
(𝑥) is also homogeneous

with respect to the same dilation weight Δ. Moreover, the
homogeneous degree of 𝑉

1
(𝑥) ⋅ 𝑉

2
(𝑥) is 𝜏

1
+ 𝜏

2
.

Lemma 6 (see [16]). Suppose 𝑉 : 𝑅
𝑛

→ 𝑅 is a homogeneous
function of degree 𝜏with respect to the dilation weight Δ. Then,
the following holds.
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(i) 𝜕𝑉/𝜕𝑥
𝑖
is homogeneous of degree 𝜏 − 𝑟

𝑖
with 𝑟

𝑖
being

the homogeneous weight of 𝑥
𝑖
.

(ii) There is a constant c such that𝑉(𝑥) ≤ 𝑐‖𝑥‖
𝜏

Δ
. Moreover,

if 𝑉(𝑥) is positive definite, then

𝑐‖𝑥‖
𝜏

Δ
≤ 𝑉 (𝑥) , 𝑓𝑜𝑟 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐 > 0. (4)

Lemma 7 (see [16]). For any 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅, and 𝑝 ≥ 1, the
following inequalities hold:

𝑥 + 𝑦


𝑝

≤ 2
𝑝−1 𝑥

𝑝

+ 𝑦
𝑝 ,

(|𝑥| +
𝑦
)
1/𝑝

≤ |𝑥|
1/𝑝

+
𝑦


1/𝑝

.

(5)

Moreover, when 𝑝 ∈ 𝑅
≥1

𝑜𝑑𝑑
,

𝑥 − 𝑦


𝑝

≤ 2
𝑝−1 𝑥

𝑝

− 𝑦
𝑝 ,

𝑥
𝑝

− 𝑦
𝑝 ≤ 𝑝

𝑥 − 𝑦



𝑥
𝑝−1

+ 𝑦
𝑝−1



≤ 𝑐
𝑥 − 𝑦




(𝑥 − 𝑦)

𝑝−1

+ 𝑦
𝑝−1


,

(6)

where 𝑐 > 0 is a constant.

Lemma 8 (see [27]). Let 𝑥 and 𝑦 be any real numbers and
𝑝 ∈ 𝑅

≥1

𝑜𝑑𝑑
; then

− (𝑥 − 𝑦) (𝑥
𝑝

− 𝑦
𝑝

) ≤ −
1

2𝑝−1
(𝑥 − 𝑦)

𝑝+1

. (7)

Lemma 9 (see [27]). Let 𝑐 and 𝑑 be two positive real numbers.
For any positive number 𝛾 > 0, the following inequality holds

|𝑥|
𝑐𝑦



𝑑

≤
𝑐

𝑐 + 𝑑
𝛾|𝑥|

𝑐+𝑑

+
𝑑

𝑐 + 𝑑
𝛾
−𝑐/𝑑𝑦



𝑐+𝑑

. (8)

3. Problem Formulation

In this paper, we will consider the following stochastic high-
order feedforward nonlinear system with time-varying delay
in the form

𝑑𝑧
1
= 𝑧

𝑝1

2
𝑑𝑡 + 𝑓

1
(𝑧, 𝑧 (𝑡 − 𝜎 (𝑡)))

+ 𝑔
𝑇

1
(𝑧, 𝑧 (𝑡 − 𝜎 (𝑡))) 𝑑𝜔,

𝑑𝑧
2
= 𝑧

𝑝2

3
𝑑𝑡 + 𝑓

2
(𝑧, 𝑧 (𝑡 − 𝜎 (𝑡)))

+ 𝑔
𝑇

2
(𝑧, 𝑧 (𝑡 − 𝜎 (𝑡))) 𝑑𝜔,

...

𝑑𝑧
𝑛
= 𝜐

𝑝𝑛 + 𝑓
𝑛
(𝑧, 𝑧 (𝑡 − 𝜎 (𝑡)))

+ 𝑔
𝑇

𝑛
(𝑧, 𝑧 (𝑡 − 𝜎 (𝑡))) 𝑑𝜔,

𝑦 = 𝑧
1
,

(9)

where 𝑧 = [𝑧
1
, . . . , 𝑧

𝑛
]
𝑇

∈ 𝑅
𝑛, 𝑦 ∈ 𝑅, 𝜐 ∈ 𝑅 denote the system

state, output, and input, respectively; 𝑧(𝑡 − 𝜎(𝑡)) = [𝑧
1
(𝑡 −

𝜎(𝑡)), . . . , 𝑧
𝑛
(𝑡−𝜎(𝑡))] is the state vectorwith time-delay;𝜎(𝑡) :

𝑅
+

→ [0, 𝜎
0
] is a time-varying delay. 𝜔 is an𝑚-dimensional

standard Wiener process. For 𝑖 = 1, . . . , 𝑛, 𝑝
𝑖
∈ 𝑅

≥3

odd ≜ {𝑝 ∈

𝑅 : 𝑝 ≥ 3 and 𝑝 is a ratio of odd integers}. The drift functions
𝑓
𝑖
: 𝑅

𝑛

×𝑅
𝑛

→ 𝑅 and the diffusion functions 𝑔
𝑖
: 𝑅

𝑛

×𝑅
𝑛

→

𝑅
𝑚 are locally Lipschitz in (𝑧, 𝑧(𝑡 − 𝜎(𝑡))) and vanish at the

origin.
In order to obtain the main results of this paper, the

following assumptions are needed.

Assumption 10. For 𝑖 = 1, . . . , 𝑛 − 1, there are constants 𝑎
𝑖
>

0, 𝑏
𝑖
> 0, such that

𝑓𝑖 (𝑧, 𝑧 (𝑡 − 𝜎 (𝑡)))


≤ 𝑎
𝑖

𝑛+1

∑

𝑗=𝑖+2

(

𝑧
𝑗
(𝑡)



(𝑟𝑖+𝜏)/𝑟𝑗

+

𝑧
𝑗
(𝑡 − 𝜎 (𝑡))



(𝑟𝑖+𝜏)/𝑟𝑗

) ,

𝑔𝑖 (𝑧, 𝑧 (𝑡 − 𝜎 (𝑡)))


≤ 𝑏
𝑖

𝑛+1

∑

𝑗=𝑖+2

(

𝑧
𝑗
(𝑡)



(2𝑟𝑖+𝜏)/2𝑟𝑗

+

𝑧
𝑗
(𝑡 − 𝜎 (𝑡))



(2𝑟𝑖+𝜏)/2𝑟𝑗

) ,

(10)

where 𝑝
𝑖
∈ 𝑅

≥3

odd, 𝜏 ∈ [𝑑
0
,∞), 𝑟

1
= 1, 𝑟

𝑖+1
= (𝑟

𝑖
+ 𝜏)/𝑝

𝑖
, 𝑑

1
=

(2 − 1/(𝑝
1
⋅ ⋅ ⋅ 𝑝

𝑛−1
))/(1 + ∑

𝑛−1

𝑠=1
(1/(𝑝

𝑠
⋅ ⋅ ⋅ 𝑝

𝑛−1
))), 𝑑

𝑖+1
= (2/

(𝑝
1
⋅ ⋅ ⋅ 𝑝

𝑖
) − 1/(𝑝

1
⋅ ⋅ ⋅ 𝑝

𝑛−1
))/(1 + ∑

𝑛−1

𝑠=1
(1/(𝑝

𝑠
⋅ ⋅ ⋅ 𝑝

𝑛−1
)) −

∑
𝑖

𝑠=1
(2/(𝑝

𝑠
⋅ ⋅ ⋅ 𝑝

𝑖
))), and 𝑑

0
= max

𝑗=1,...,𝑛
{𝑑

𝑗
}.

Assumption 11. The time-varying delay 𝜎(𝑡) satisfies �̇�(𝑡) ≤

𝜎 < 1 for a constant 𝜎.

In this paper, we aim to constructively design a homoge-
neous output-feedback controller

̇𝜒 (𝑡) = ] (𝜒 (𝑡) , 𝑦 (𝑡)) ,

𝑢 (𝑡) = 𝜔 (𝜒 (𝑡) , 𝑦 (𝑡)) ,

(11)

for system (9) under Assumptions 10-11, such that the closed-
loop system is GAS in probability.

4. Controller Design and Stability Analysis

In this section, an output-feedback controller will be explic-
itly constructed for the nonlinear system (9). We will
combine the adding one power integrator technique with
the homogeneous domination approach for output-feedback
stabilization. The design procedure can be divided into three
steps: (i) we first design a state-feedback controller for the
nominal system without the drift and diffusion functions
using the adding one power integrator technique; (ii) then, by
designing a homogeneous observer for the nominal system,
we explicitly construct a homogeneous output-feedback sta-
bilizer under the certainty equivalence principle; (iii) in the
end, we propose a scaled controller which guarantees global
asymptotic stability in probability of the closed-loop system.
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For simplicity, we assume 𝜏 = 𝑚/𝑛 in this paper with 𝑚

being an even integer and 𝑛 being an odd integer. Based on
this assumption, it is obvious that 𝑟

𝑖
is a ratio of odd integers.

4.1. Homogeneous State-Feedback Control of Nominal Non-
linear System. In this subsection, we firstly introduce a key
lemma, which avoids the zero-division problem and serves as
a basis in the following design procedure.The proof is similar
to that in [32].

Lemma 12. If 𝑝
𝑖
∈ 𝑅

≥3

𝑜𝑑𝑑
, 𝜏 ∈ [𝑑

0
, +∞) are guaranteed, then

we can find 𝑙
0
, 𝜇

0
∈ 𝑅

+

𝑜𝑑𝑑
, such that

max
1≤𝑖≤𝑛

{2𝑟
𝑖
,
𝑟
𝑖
+ 𝜏

𝑙
0

} ≤ 𝜇
0
≤ 𝑟

𝑛
+ 𝜏 (12)

holds.

Now, we design a homogeneous state-feedback controller
for the nominal system

𝑑𝑥
1
= 𝑥

𝑝1

2
𝑑𝑡,

𝑑𝑥
2
= 𝑥

𝑝2

3
𝑑𝑡,

...

𝑑𝑥
𝑛
= 𝑢

𝑝𝑛𝑑𝑡.

(13)

Lemma 13. For system (13), there are positive definite, proper,
and 𝐶

2 Lyapunov function 𝑉
𝑛
, a state-feedback controller 𝑢∗,

and two positive constants, such that

L𝑉
𝑛
≤ −

𝑛

∑

𝑗=1

𝜋
𝑛,𝑗
𝜂
4𝑙0

𝑗
+ 𝜂

𝑞𝑛/𝜇0

𝑛
(𝑢

𝑝𝑛 − 𝑢
∗𝑝𝑛) , (14)

where 𝑉
𝑛
, 𝑢∗ are defined in the following form:

𝑉
𝑛
(𝑥

𝑛
) =

𝑛

∑

𝑖=1

∫

𝑥𝑖

𝑥
∗

𝑖

(𝑠
𝜇0/𝑟𝑖 − 𝑥

∗𝜇0/𝑟𝑖

𝑖
)
𝑞𝑖/𝜇0

𝑑𝑠,

𝑥
∗

1
= 0, 𝜂

1
= 𝑥

𝜇0/𝑟1

1
,

𝑥
∗

2
= −𝛽

𝑟2/𝜇0

1
𝜂
𝑟2/𝜇0

1
, 𝜂

2
= 𝑥

𝜇0/𝑟2

2
− 𝑥

∗𝜇0/𝑟2

2
,

...
...

𝑥
∗

𝑛
= −𝛽

𝑟𝑛/𝜇0

𝑛−1
𝜂
𝑟𝑛/𝜇0

𝑛−1
, 𝜂

𝑛
= 𝑥

𝜇0/𝑟𝑛

𝑛
− 𝑥

∗𝜇0/𝑟𝑛

𝑛
,

𝑢
∗

= −(𝜋
𝑛𝑛
+ 𝑏

𝑛1
+ 𝑏

𝑛2
)
1/𝑝𝑛

𝜂
𝑟𝑛+1/𝜇0

𝑛

≜ −𝛽
𝑟𝑛+1/𝜇0

𝑛
𝜂
𝑟𝑛+1/𝜇0

𝑛

= −(𝛽
𝑛
𝑥
𝜇0/𝑟𝑛

𝑛
+ 𝛽

𝑛−1
𝑥
𝜇0/𝑟𝑛−1

𝑛−1
+ ⋅ ⋅ ⋅ + 𝛽

1
𝑥
𝜇0/𝑟1

1
)
𝑟𝑛+1/𝜇0

,

𝛽
𝑗
= 𝛽

𝑛
⋅ ⋅ ⋅ 𝛽

𝑗
, 𝑗 = 1, . . . , 𝑛.

(15)

Remark 14. For the deterministic work, it is well known that
there only needs a positive definite, proper, and 𝐶1 Lyapunov

function for the controller design and analysis. However, for
the stochastic system, the Lyapunov functionmust be positive
definite, proper, and at least 𝐶2 because of the appearance of
the Hessian term.

4.2. Construction of a Homogeneous Observer. Since 𝑥
2
, . . . ,

𝑥
𝑛
are unmeasurable, we design a reduced-order homoge-

neous observer

̇̂𝜂
2
= −𝑘

2
𝑥
𝑝1

2
, 𝑥

2
= [𝜂

2
+ 𝑘

2
𝑥
1
]
𝑟2/𝑟1

,

̇̂𝜂
3
= −𝑘

3
𝑥
𝑝2

3
, 𝑥

3
= [𝜂

3
+ 𝑘

3
𝑥
2
]
𝑟3/𝑟2

,

...
...

̇̂𝜂
∗

𝑛
= −𝑘

𝑛
𝑥
𝑝𝑛−1

𝑛
, 𝑥

𝑛
= [𝜂

𝑛
+ 𝑘

𝑛
𝑥
𝑛−1

]
𝑟𝑛/𝑟𝑛−1

,

(16)

where 𝑘
2
> 0, . . . , 𝑘

𝑛
> 0 are constant gains to be determined

later and 𝑥
1
= 𝑥

1
.

According to the certainty equivalence principle, we use
the estimated states𝑥

2
, . . . , 𝑥

𝑛
to construct the implementable

controller

𝑢 (𝑥) = −(𝛽
𝑛
𝑥
𝜇0/𝑟𝑛

𝑛
+ 𝛽

𝑛−1
𝑥
𝜇0/𝑟𝑛−1

𝑛−1
+ ⋅ ⋅ ⋅ + 𝛽

1
𝑥
𝜇0/𝑟1

1
)
𝑟𝑛+1/𝜇0

,

(17)

where 𝑥 = (𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑛
).

In order to prove the global stability for the closed-loop
system (13)–(16)-(17), we define

𝑈
𝑗
= ∫

𝑥

𝑞𝑗−1/𝑟𝑗

𝑗

𝜆

𝑞𝑗−1/𝑟𝑗−1

𝑗

(𝑠
𝑟𝑗−1/𝑞𝑗−1 − 𝜆

𝑗
) 𝑑𝑠, 𝜆

𝑗
= 𝜂

𝑗
+ 𝑘

𝑗
𝑥
𝑗−1

, (18)

and let

𝑒
𝑗
= (𝑥

𝑝𝑗−1

𝑗
− 𝑥

𝑝𝑗−1

𝑗
)
𝜇0/𝑟𝑗𝑝𝑗−1

, (19)

for 𝑗 = 2, . . . , 𝑛.
Therefore, the differential operatorL of 𝑈

𝑗
is

L (𝑈
𝑗
) =

𝑞
𝑗−1

𝑟
𝑗

𝑥
𝑞𝑗−1/𝑟𝑗−1

𝑗
(𝑥

𝑟𝑗−1/𝑟𝑗

𝑗
− 𝜆

𝑗
) 𝑥

𝑝𝑗

𝑗+1

− 𝑘
𝑗
(𝑥

𝑞𝑗−1/𝑟𝑗

𝑗
− 𝜆

𝑞𝑗−1/𝑟𝑗−1

𝑗
) 𝑥

𝑝𝑗−1

𝑗

+ 𝑘
𝑗
(𝑥

𝑞𝑗−1/𝑟𝑗

𝑗
− 𝜆

𝑞𝑗−1/𝑟𝑗−1

𝑗
) 𝑥

𝑝𝑗−1

𝑗

=

𝑞
𝑗−1

𝑟
𝑗

𝑥
𝑞𝑗−1/𝑟𝑗−1

𝑗
(𝑥

𝑟𝑗−1/𝑟𝑗

𝑗
− 𝜆

𝑗
) 𝑥

𝑝𝑗

𝑗+1

− 𝑘
𝑗
[(𝑥

𝑞𝑗−1/𝑟𝑗

𝑗
− 𝑥

𝑞𝑗−1/𝑟𝑗

𝑗
)

+ (𝑥
𝑞𝑗−1/𝑟𝑗

𝑗
− 𝜆

𝑞𝑗−1/𝑟𝑗−1

𝑗
)] 𝑒

𝑟𝑗𝑝𝑗−1/𝜇0

𝑗
,

(20)

where 𝑥
𝑛+1

= 𝑢(𝑥).
Just as in [16], each term of the right-hand side of (20) can

be estimated by the following propositions, whose proofs are
omitted here.
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Proposition 15. For 𝑗 = 2, . . . , 𝑛 − 1,

𝑞
𝑗−1

𝑟
𝑗

𝑥
𝑞𝑗−1/𝑟𝑗−1

𝑗
(𝑥

𝑟𝑗−1/𝑟𝑗

𝑗
− 𝜆

𝑗
) 𝑥

𝑝𝑗

𝑗+1

≤

𝑗+1

∑

𝑘=𝑗−1

𝛿
𝑗,𝑘,3

𝜂
4𝑙0

𝑘
+ 𝑔

𝑗1
(𝑘

𝑗
) 𝑒

4𝑙0

𝑗−1
+ 𝑏

𝑗3
𝑒
4𝑙0

𝑗
,

(21)

where 𝛿
𝑗,𝑘,3

> 0, 𝑏
𝑗3
> 0, 𝑔

𝑗1
(𝑘

𝑗
) is a continuous function with

𝑔
21
(𝑘

2
) = 0.

Proposition 16. For the implementable controller 𝑢(𝑥) in (17),
one obtains

𝑞
𝑗−1

𝑟
𝑗

𝑥
𝑞𝑗−1/𝑟𝑗−1

𝑗
(𝑥

𝑟𝑗−1/𝑟𝑗

𝑗
− 𝜆

𝑗
) 𝑢(𝑥)

𝑝𝑛

≤

𝑛

∑

𝑗=1

𝛿
𝑛,𝑗,4

𝜂
4𝑙0

𝑗
+ 𝑔

𝑛1
(𝑘

𝑛
) 𝑒

4𝑙0

𝑛−1
+

𝑛

∑

𝑗=2

𝑏
𝑗4
𝑒
4𝑙0

𝑗

(22)

with positive constants 𝛿
𝑛,𝑗,4

, 𝑏
𝑗4

and with 𝑔
𝑛1
(𝑘

𝑛
) being a

continuous function.

Proposition 17. For 𝑗 = 2, . . . , 𝑛, there exists a constant 𝜛
𝑗
=

2
1−𝑞𝑗−1/𝑟𝑗𝑝𝑗−1 > 0 such that

−𝑘
𝑗
(𝑥

𝑞𝑗−1/𝑟𝑗

𝑗
− 𝑥

𝑞𝑗−1/𝑟𝑗

𝑗
) 𝑒

𝑟𝑗𝑝𝑗−1/𝜇0

𝑗
≤ −𝑘

𝑗
𝜛
𝑗
𝑒
4𝑙0

𝑗
. (23)

Proposition 18. For 𝑗 = 3, . . . , 𝑛,

− 𝑘
𝑗
(𝑥

𝑞𝑗−1/𝑟𝑗

𝑗
− 𝜆

𝑞𝑗−1/𝑟𝑗−1

𝑗
) 𝑒

𝑟𝑗𝑝𝑗−1/𝜇0

𝑗

≤

𝑗

∑

𝑘=𝑗−1

𝛿
𝑗,𝑘,5

𝜂
4𝑙0

𝑘
+ 𝑔

𝑗2
(𝑘

𝑗
) 𝑒

4𝑙0

𝑗−1
+ 𝑏

𝑗5
𝑒
4𝑙0

𝑗

(24)

with positive constants 𝛿
𝑗,𝑘,5

, 𝑏
𝑗5

and with 𝑔
𝑗2
(𝑘

𝑗
) being a

continuous function.

Considering the Lyapunov function 𝑈 = ∑
𝑛

𝑗=2
𝑈
𝑗
and

substituting (21)–(24) into (20), one concludes

L𝑈 ≤

𝑛

∑

𝑗=1

𝜖
𝑗1
𝜂
4𝑙0

𝑗
+ 𝑒

4𝑙0

2

× [−𝑘
2
𝜛
2
+ 𝑏

23
+ 𝑏

24
+ 𝑔

31
(𝑘

3
) + 𝑔

32
(𝑘

3
)]

+

𝑛−1

∑

𝑗=3

𝑒
4𝑙0

𝑗
[−𝑘

𝑗
𝜛
𝑗
+ 𝑏

𝑗3
+ 𝑏

𝑗4
+ 𝑏

𝑗5

+𝑔
𝑗+1,1

(𝑘
𝑗+1

) + 𝑔
𝑗+1,2

(𝑘
𝑗+1

)]

+ 𝑒
4𝑙0

𝑛
[−𝑘

𝑛
𝜛
𝑛
+ 𝑏

𝑛4
+ 𝑏

𝑛5
] .

(25)

To determinate the observer gain 𝑘
𝑗
in (16), we have

the following proposition to deal with the redundant term
𝜂
𝑞𝑛/𝜇0

𝑛
(𝑢

𝑝𝑛(𝑥) − 𝑢
∗𝑝𝑛) in (14).

Proposition 19. There are constants 𝜖
𝑗2
> 0, 𝑏

𝑗6
> 0 such that

𝜂
𝑞𝑛/𝜇0

𝑛
(𝑢

𝑝𝑛
(𝑥) − 𝑢

∗𝑝𝑛) ≤

𝑛

∑

𝑗=1

𝜖
𝑗2
𝜂
4𝑙0

𝑗
+

𝑛

∑

𝑗=2

𝑏
𝑗6
𝑒
4𝑙0

𝑗
. (26)

Defining the Lyapunov function 𝑉 = 𝑉
𝑛
+ 𝑈 and

combining (14), (25), and (26) together yield

L𝑉 ≤ −

𝑛

∑

𝑗=1

𝜋
𝑛,𝑗
𝜂
4𝑙0

𝑗
+

𝑛

∑

𝑗=1

𝜖
𝑗2
𝜂
4𝑙0

𝑗
+

𝑛

∑

𝑗=1

𝜖
𝑗1
𝜂
4𝑙0

𝑗

+

𝑛

∑

𝑗=2

𝑏
𝑗6
𝑒
4𝑙0

𝑗
+ 𝑒

4𝑙0

2

× [−𝑘
2
𝜛
2
+ 𝑏

23
+ 𝑏

24
+ 𝑔

31
(𝑘

3
) + 𝑔

32
(𝑘

3
)]

+

𝑛−1

∑

𝑗=3

𝑒
4𝑙0

𝑗
[−𝑘

𝑗
𝜛
𝑗
+ 𝑏

𝑗3
+ 𝑏

𝑗4
+ 𝑏

𝑗5

+𝑔
𝑗+1,1

(𝑘
𝑗+1

) + 𝑔
𝑗+1,2

(𝑘
𝑗+1

)]

+ 𝑒
4𝑙0

𝑛
[−𝑘

𝑛
𝜛
𝑛
+ 𝑏

𝑛4
+ 𝑏

𝑛5
] .

(27)

It is clear that by choosing

𝑙
𝑗
≜ 𝜋

𝑛,𝑗
− 𝜖

𝑗1
− 𝜖

𝑗2
> 0, (𝑗 = 1, . . . , 𝑛)

𝑘
𝑛
≥

1

𝜛
𝑛

(𝜑
𝑛
+ 𝑏

𝑛4
+ 𝑏

𝑛5
+ 𝑏

𝑛6
) ,

𝑘
𝑛−1

≥
1

𝜛
𝑛−1

(𝜑
𝑛−1

+ 𝑏
𝑛−1,3

+ 𝑏
𝑛−1,4

+ 𝑏
𝑛−1,5

+𝑏
𝑛−1,6

+ 𝑔
𝑛,1

(𝑘
𝑛
) + 𝑔

𝑛,2
(𝑘

𝑛
)) ,

...

𝑘
2
≥

1

𝜛
2

(𝜑
2
+ 𝑏

2,3
+ 𝑏

2,4
+ 𝑏

2,6
+ 𝑔

3,1
(𝑘

3
) + 𝑔

3,2
(𝑘

3
)) ,

(28)

one leads to

L𝑉 ≤ −

𝑛

∑

𝑗=1

𝑙
𝑗
𝜂
4𝑙0

𝑗
−

𝑛

∑

𝑗=2

𝜑
𝑗
𝑒
4𝑙0

𝑗
(29)

with positive constants 𝜑
2
, . . . , 𝜑

𝑛
.

By denotingΦ = (𝑥
1
, . . . , 𝑥

𝑛
, 𝜂

2
, . . . , 𝜂

𝑛
)
𝑇, the closed-loop

system (13), (16), and (17) can be rewritten as

𝑑Φ = 𝐸 (Φ) 𝑑𝑡 = [𝑥
𝑝1

2
, . . . , 𝑥

𝑝𝑛−2

𝑛−1
, 𝑢

𝑝𝑛
(𝑥) , ̇̂𝜂

2
, . . . , ̇̂𝜂

𝑛
] 𝑑𝑡,

(30)
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which is homogeneous of degree 𝜏 with respect to Δ =

(𝑟
1
, . . . , 𝑟

𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

for 𝑥1 ,...,𝑥𝑛

, 𝑟
1
, . . . , 𝑟

𝑛−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

for 𝜂2,...,𝜂𝑛

). Following a similar way in [16], it can

be shown that

𝑉 (Φ) =

𝑛

∑

𝑗=1

∫

𝑥𝑗

𝑥
∗

𝑗

(𝑠
𝜇0/𝑟𝑗 − 𝑥

∗𝜇0/𝑟𝑗

𝑖
)

𝑞𝑗/𝜇0

𝑑𝑠

+

𝑛

∑

𝑗=2

∫

𝑥

𝑞𝑗−1/𝑟𝑗

𝑗

𝜆

𝑞𝑗−1/𝑟𝑗−1

𝑗

(𝑠
𝑟𝑗−1/𝑞𝑗−1 − 𝜆

𝑗
) 𝑑𝑠

(31)

is homogeneous of degree 4𝑙
0
𝜇
0
− 𝜏 about Δ.

4.3. Stability Analysis. To state the main result in this paper,
we first introduce the following coordinate transformation:

𝑥
1
= 𝑧

1
, 𝑥

𝑖
=

𝑧
𝑖

𝐿𝑠𝑖
, 𝑢

𝑝𝑛 =
V𝑝𝑛

𝐿𝑠𝑛+1
, (32)

where 𝑠
1
= 0, 𝑠

𝑖
= (𝑠

𝑖−1
+ 1)/𝑝

𝑖−1
, 𝑖 = 2, . . . , 𝑛, 0 < 𝐿 < 1 is a

constant to be determined later.
It follows from (32) that the system (9) can be rewritten

as

𝑑𝑥
1
= 𝐿𝑥

𝑝1

2
𝑑𝑡 + 𝑓

1
(𝑥, 𝑥 (𝑡 − 𝜎 (𝑡)))

+ 𝑔
𝑇

1
(𝑥, 𝑥 (𝑡 − 𝜎 (𝑡))) 𝑑𝜔,

𝑑𝑥
2
= 𝐿𝑥

𝑝2

3
𝑑𝑡 +

𝑓
2
(𝑥, 𝑥 (𝑡 − 𝜎 (𝑡)))

𝐿𝑠2

+
𝑔
𝑇

2
(𝑥, 𝑥 (𝑡 − 𝜎 (𝑡)))

𝐿𝑠2
𝑑𝜔,

...

𝑑𝑥
𝑛
= 𝐿𝑢

𝑝𝑛 +
𝑓
𝑛
(𝑥, 𝑥 (𝑡 − 𝜎 (𝑡)))

𝐿𝑠𝑛

+
𝑔
𝑇

𝑛
(𝑥, 𝑥 (𝑡 − 𝜎 (𝑡)))

𝐿𝑠𝑛
𝑑𝜔,

𝑦 = 𝑧
1
.

(33)

Next, we construct a scaled homogeneous observer

̇̂𝜂
2
= −𝐿𝑘

2
𝑥
𝑝1

2
, 𝑥

2
= [𝜂

2
+ 𝑘

2
𝑥
1
]
𝑟2/𝑟1

,

̇̂𝜂
3
= −𝐿𝑘

3
𝑥
𝑝2

3
, 𝑥

3
= [𝜂

3
+ 𝑘

3
𝑥
2
]
𝑟3/𝑟2

,

...
...

̇̂𝜂
∗

𝑛
= −𝐿𝑘

𝑛
𝑥
𝑝𝑛−1

𝑛
, 𝑥

𝑛
= [𝜂

𝑛
+ 𝑘

𝑛
𝑥
𝑛−1

]
𝑟𝑛/𝑟𝑛−1

,

(34)

where 𝑘
2
> 0, . . . , 𝑘

𝑛
> 0 are the gains selected in (28) and the

controller 𝑢 is designed with the same construction of (17).
The closed-loop system (33), (34), and (17) can be expressed
as

𝑑Φ = 𝐿𝐸 (Φ) 𝑑𝑡 + 𝐹𝑑𝑡 + 𝐺
𝑇

𝑑𝜔, (35)

where 𝐹 = (𝑓
1
, 𝑓

2
/𝐿

𝑠2 , . . . , 𝑓
𝑛
/𝐿

𝑠𝑛 , 0, . . . , 0), 𝐺 = (𝑔
1
, 𝑔

2
/𝐿

𝑠2 ,

. . . , 𝑔
𝑛
/𝐿

𝑠𝑛 , 0, . . . , 0). Based on the above discussion, we are
ready to prove the main result of this paper.

Theorem20. Under Assumptions 10 and 11, there is an output-
feedback controller V𝑝𝑛 = 𝑢

𝑝𝑛𝐿
𝑠𝑛+1 such that the closed-loop

system consisting of (9), (16), and (17) has a global unique
solution and the equilibrium 𝑥 = 0 is GAS in probability.

Proof. We proveTheorem 20 as follows.

Step 1. From (17), for 𝑗 = 1, . . . , 𝑛, one obtains

𝜕𝑢
𝑝𝑛 (𝑥)

𝜕𝑥
𝑗

= −
𝑟
𝑛
+ 𝜏

𝑟
𝑗

𝛽
𝑗
𝑥
𝜇0/𝑟𝑗−1

𝑗

× (𝛽
𝑛
𝑥
𝜇0/𝑟𝑛

𝑛
+ 𝛽

𝑛−1
𝑥
𝜇0/𝑟𝑛−1

𝑛−1
+ ⋅ ⋅ ⋅ + 𝛽

1
𝑥
𝜇0/𝑟1

1
)
(𝑟𝑛+𝜏)/𝜇0−1

.

(36)

By Lemma 12, we know 𝜇
0
/𝑟

𝑗
− 1 ≥ 0, (𝑟

𝑛
+ 𝜏)/𝜇

0
− 1 ≥ 0,

which implies that 𝑢𝑝𝑛(𝑥) is 𝐶1. Therefore, the closed-loop
system satisfies the locally Lipschitz condition.

Step 2. Construct a Lyapunov-Krasovskii functional

𝑊(Φ) = 𝑉 (Φ) +
𝐿
1+𝜀0 (𝑎

0
+ 𝑏

0
)

1 − 𝜎
∫

𝑡

𝑡−𝜎(𝑡)

‖Φ (𝑠)‖
4𝑙0𝜇0

Δ
𝑑𝑠, (37)

which is positive definite, proper, and 𝐶
2 on Φ, where

𝜀
0
, 𝑎

0
, 𝑏

0
are positive parameters to be determined later.

According to Lemma 4.3 in [33], there are twoK
∞
functions

𝛼
1
and 𝛼

21
such that

𝛼
1
(|Φ (𝑡)|) ≤ 𝑉 (Φ) ≤ 𝛼

21
(|Φ (𝑡)|) . (38)

Then, with the notation in [26], it is easy to verify that

𝐿
1+𝜀0 (𝑎

0
+ 𝑏

0
)

1 − 𝜎
∫

𝑡

𝑡−𝜎(𝑡)

‖Φ (𝑠)‖
4𝑙0𝜇0

Δ
𝑑𝑠

≤ 𝛼
22
( sup
−𝜎0≤𝑠≤0

|Φ (𝑡 + 𝑠)|) ,

(39)

where 𝛼
22

is a K
∞

function. Because 𝛼
21
(|Φ(𝑡)|) ≤ 𝛼

21

(sup
−𝜎0≤𝑠≤0

|Φ(𝑡 + 𝑠)|), then

𝛼
1
(|Φ (𝑡)|) ≤ 𝑊 (Φ) ≤ 𝛼

2
( sup
−𝜎0≤𝑠≤0

|Φ (𝑡 + 𝑠)|) (40)

with 𝛼
2
= 𝛼

21
+ 𝛼

22
.

Step 3. Since 𝑉(Φ) and 𝐸(Φ) are homogenous of degree
4𝑙

0
𝜇
0
− 𝜏 and 𝜏, respectively, by Lemmas 5 and 6, one has

𝜕𝑊 (Φ)

𝜕𝑋
𝐿𝐸 (Φ) =

𝜕𝑉 (Φ)

𝜕𝑋
𝐿𝐸 (𝑋) ≤ −𝐿𝛾

1
‖Φ (𝑠)‖

4𝑙0𝜇0

Δ
, (41)

where 𝛾
1
> 0 is a constant.
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Using Assumption 10 and the new coordinates in (32), we
have


𝑓
𝑖

𝐿𝑠𝑖



≤ 𝑎
𝑖

𝑛+1

∑

𝑗=𝑖+2

(


𝐿
𝑠𝑗𝑥

𝑗
(𝑡)



(𝑟𝑖+𝜏)/𝑟𝑗

+

𝐿
𝑠𝑗𝑥

𝑗
(𝑡 − 𝜎 (𝑡))



(𝑟𝑖+𝜏)/𝑟𝑗

𝐿𝑠𝑖
)

(42)

and the power of 𝐿 in (42) is

𝑠
𝑗

𝑟
𝑖
+ 𝜏

𝑟
𝑗

− 𝑠
𝑖
= 1 +

𝑠
𝑗
(𝑟

𝑖
+ 𝜏) − (𝑠

𝑖
+ 1) 𝑟

𝑗

𝑟
𝑗

= 1 +
𝑝
𝑖

𝑟
𝑗

(𝑠
𝑗
𝑟
𝑖+1

− 𝑠
𝑖+1

𝑟
𝑗
) .

(43)

Owing to 𝑠
1
= 0, 𝑠

𝑖
= (𝑠

𝑖−1
+ 1)/𝑝

𝑖−1
, one has

𝑠
𝑖
=

𝑖−1

∑

𝑠=1

1

𝑝
𝑠
⋅ ⋅ ⋅ 𝑝

𝑖−1

, 𝑖 = 2, . . . , 𝑛. (44)

For 𝑗 ≥ 𝑖 + 2, (44) gives

𝑠
𝑗
𝑟
𝑖+1

− 𝑠
𝑖+1

𝑟
𝑗

= 𝑠
𝑗
(

1

𝑝
1
⋅ ⋅ ⋅ 𝑝

𝑖

+ 𝑠
𝑖+1

𝜏) − 𝑠
𝑖+1

(
1

𝑝
1
⋅ ⋅ ⋅ 𝑝

𝑗−1

+ 𝑠
𝑗
𝜏)

=

𝑠
𝑗

𝑝
1
⋅ ⋅ ⋅ 𝑝

𝑖

−
𝑠
𝑖+1

𝑝
1
⋅ ⋅ ⋅ 𝑝

𝑗−1

> 0.

(45)

In summary, it can be concluded that there exists a
positive constant

𝜀
1
= min{

𝑝
𝑖

𝑟
𝑗

(𝑠
𝑗
𝑟
𝑖+1

− 𝑠
𝑖+1

𝑟
𝑗
) : 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑖 + 2 ≤ 𝑗 ≤ 𝑛}

(46)

such that


𝑓
𝑖

𝐿𝑠𝑖



≤ 𝑎
𝑖
𝐿
1+𝜀1

𝑛+1

∑

𝑗=𝑖+2

(

𝑥
𝑗
(𝑡)



(𝑟𝑖+𝜏)/𝑟𝑗

+

𝑥
𝑗
(𝑡 − 𝜎 (𝑡))



(𝑟𝑖+𝜏)/𝑟𝑗

)

≤ 𝑎
𝑖
𝐿
1+𝜀1 (‖Φ (𝑡)‖

𝑟𝑖+𝜏

Δ
+ ‖Φ (𝑡 − 𝜎 (𝑡))‖

𝑟𝑖+𝜏

Δ
)

(47)

with 𝑎
𝑖
> 0. According to Lemma 6, we deduce that



𝜕𝑉 (Φ)

𝜕Φ
𝐹



≤

𝑛−1

∑

𝑖=1



𝜕𝑉 (Φ)

𝜕Φ
𝑖





𝑓
𝑖

𝐿𝑠𝑖



≤

𝑛−1

∑

𝑖=1

𝑎
𝑖
𝐿
1+𝜀1

‖Φ (𝑡)‖
4𝑙0𝜇0−𝑟𝑖−𝜏

Δ

× (‖Φ (𝑡)‖
𝑟𝑖+𝜏

Δ
+ ‖Φ (𝑡 − 𝜎 (𝑡))‖

𝑟𝑖+𝜏

Δ
)

≤ 𝑎
0
𝐿
1+𝜀1 (‖Φ (𝑡)‖

4𝑙0𝜇0

Δ
+ ‖Φ (𝑡 − 𝜎 (𝑡))‖

4𝑙0𝜇0

Δ
) ,

(48)

where 𝑎
0
is a positive constant.

Similarly, there is a positive constant

𝜀
2
= min{

𝑠
𝑗
(2𝑟

𝑖
+ 𝜏) − (2𝑠

𝑖
+ 1) 𝑟

𝑗

2𝑟
𝑗

: 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑖 + 2 ≤ 𝑗 ≤ 𝑛} ,

(49)

such that


𝑔
𝑖

𝐿𝑠𝑖


≤ 𝑏

𝑖
𝐿
1/2+𝜀2

×

𝑛+1

∑

𝑗=𝑖+2

(

Φ

𝑗
(𝑡)



(2𝑟𝑖+𝜏)/2𝑟𝑗

+

Φ

𝑗
(𝑡 − 𝜎 (𝑡))



(2𝑟𝑖+𝜏)/2𝑟𝑗

)

≤ �̂�
𝑖
𝐿
1/2+𝜀2 (‖Φ (𝑡)‖

𝑟𝑖+𝜏/2

Δ
+ ‖Φ (𝑡 − 𝜎 (𝑡))‖

𝑟𝑖+𝜏/2

Δ
)

(50)

with �̂�
𝑖
> 0. Then,

1

2
Tr{𝐺𝜕

2

𝑉 (Φ)

𝜕Φ2
𝐺
𝑇

}

≤
1

2
𝑚√𝑚

𝑛−1

∑

𝑘,𝑙=1



𝜕
2

𝑉 (Φ)

𝜕Φ
𝑘
𝜕Φ

𝑙





𝑔
𝑘

𝐿𝑠𝑘





𝑔
𝑙

𝐿𝑠𝑙



≤ �̃�𝐿
1+2𝜀2

×

𝑛−1

∑

𝑘,𝑙=1

‖Φ (𝑡)‖
4𝑙0𝜇0−𝜏−𝑟𝑘−𝑟𝑙

× (‖Φ (𝑡)‖
𝑟𝑘+𝜏/2

Δ
+ ‖Φ (𝑡 − 𝜎 (𝑡))‖

𝑟𝑘+𝜏/2

Δ
)

× (‖Φ (𝑡)‖
𝑟𝑙+𝜏/2

Δ
+ ‖Φ (𝑡 − 𝜎 (𝑡))‖

𝑟𝑙+𝜏/2

Δ
)

≤ 𝑏
0
𝐿
1+2𝜀2 (‖Φ (𝑡)‖

4𝑙0𝜇0

Δ
+ ‖Φ (𝑡 − 𝜎 (𝑡))‖

4𝑙0𝜇0

Δ
) ,

(51)

where �̃�, 𝑏
0
are positive constants.

By choosing 𝜀
0

= min{𝜀
1
, 2𝜀

2
} and Definition 1,

Assumption 11, (41), (48), and (51), one can obtain

L𝑊(Φ) ≤
𝜕𝑊 (Φ)

𝜕𝑋
𝐿𝐸 (Φ) +

𝜕𝑉 (Φ)

𝜕𝑋
𝐹

+
1

2
Tr{𝐺𝜕

2

𝑉 (Φ)

𝜕Φ2
𝐺
𝑇

} + 𝐿
1+𝜀0 (𝑎

0
+ 𝑏

0
)

× (
1

1 − 𝜎
‖Φ (𝑡)‖

4𝑙0𝜇0

Δ
− ‖Φ (𝑡 − 𝜎 (𝑡))‖

4𝑙0𝜇0

Δ
)

≤ −𝐿(𝛾
1
− 𝐿

𝜀0 (𝑎
0
+ 𝑏

0
+
𝑎
0
+ 𝑏

0

1 − 𝜎
)) ‖Φ (𝑡)‖

4𝑙0𝜇0

Δ
,

(52)

where 0 < 𝐿 < 1. Apparently, by choosing 0 < 𝐿 < min{(𝛾
1
/

(𝑎
0
+ 𝑏

0
+ (𝑎

0
+ 𝑏

0
)/(1 − 𝜎)))

1/𝜀0 , 1}, there is a constant 𝛿, such
thatL𝑊(Φ) ≤ −𝛿‖Φ(𝑡)‖

4𝑙0𝜇0

Δ
.
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From Steps 1 to 3 and Lemma 4, it is obtained that the
closed-loop system (33), (34), and (17) has a global unique
solution and the equilibriumΦ = 0 is GAS in probability.

Step 4. Because of the equivalence in (32), then there is a
global unique solution for the closed-loop system consisting
of (9), (16), and (17) and V𝑝𝑛 = 𝑢

𝑝𝑛𝐿
𝑠𝑛+1 and the equilibrium

𝑧 = 0 is GAS in probability.

Remark 21. Using the adding one power integrator method
and the homogeneous domination technique, [34] has
designed a state-feedback stabilizer for a class of stochastic
high-order feedforward nonlinear systems. However, to deal
with the unmeasurable states and time-delay terms in this
paper, we choose a reduced-order homogeneous observer
and an appropriate Lyapunov-Krasovskii functional, which is
not an easy work.

5. Conclusions

For a class of stochastic high-order feedforward nonlinear
systems with different power orders and time-varying delay,
an output-feedback stabilizer has been designed by virtue of
the adding one power integrator technique andhomogeneous
domination approach. It globally stabilizes the origin of the
closed-loop system. The proof of stability we have adopted
depends on the construction of a Lyapunov-Krasovskii func-
tional.
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