1,482 research outputs found

    Vehicle Speed Control Using Neural Network Predictive Controller

    Get PDF
    This thesis focuses on the enhancement of the previous work on path following ability of a linear car model. The path following is the ability of the vehicle to follow the vehicle’s path and keeping the vehicle in its lane as accurately as possible

    UAV Model-based Flight Control with Artificial Neural Networks: A Survey

    Get PDF
    Model-Based Control (MBC) techniques have dominated flight controller designs for Unmanned Aerial Vehicles (UAVs). Despite their success, MBC-based designs rely heavily on the accuracy of the mathematical model of the real plant and they suffer from the explosion of complexity problem. These two challenges may be mitigated by Artificial Neural Networks (ANNs) that have been widely studied due to their unique features and advantages in system identification and controller design. Viewed from this perspective, this survey provides a comprehensive literature review on combined MBC-ANN techniques that are suitable for UAV flight control, i.e., low-level control. The objective is to pave the way and establish a foundation for efficient controller designs with performance guarantees. A reference template is used throughout the survey as a common basis for comparative studies to fairly determine capabilities and limitations of existing research. The end-result offers supported information for advantages, disadvantages and applicability of a family of relevant controllers to UAV prototypes

    Parameter Estimation of Unstable Aircraft using Extreme Learning Machine

    Get PDF
    The parameter estimation of unstable aircraft using extreme learning machine method is presented. In the past, conventional methods such as output error method, filter error method, equation error method and non-conventional method such as artificial neural-network based methods have been used for aircraft’s aerodynamic parameter estimation. Nowadays, a trend of finding an accurate nonlinear function approximation is required to represent the aircraft’s equations-of-motion. Such type of nonlinear function approximation is usually achieved using artificial neural-network which is trained with the aircraft input-output flight data using a training algorithm. The accuracy of estimated parameters, which is achieved using the trained network, is highly dependent on the generalisation capability of the network which can be improved using extreme learning machine based network in contrast to artificial neural-network. To estimate the unstable aircraft parameters from the simulated flight data, Gauss-Newton based optimisation method has been used with a predefined aerodynamic model using the trained network. Further, the confidence of the estimated parameters has been shown in comparison to that of the standard parameter estimation methods in terms of the Cramer-Rao bounds

    Neural networks application to divergence-based passive ranging

    Get PDF
    The purpose of this report is to summarize the state of knowledge and outline the planned work in divergence-based/neural networks approach to the problem of passive ranging derived from optical flow. Work in this and closely related areas is reviewed in order to provide the necessary background for further developments. New ideas about devising a monocular passive-ranging system are then introduced. It is shown that image-plan divergence is independent of image-plan location with respect to the focus of expansion and of camera maneuvers because it directly measures the object's expansion which, in turn, is related to the time-to-collision. Thus, a divergence-based method has the potential of providing a reliable range complementing other monocular passive-ranging methods which encounter difficulties in image areas close to the focus of expansion. Image-plan divergence can be thought of as some spatial/temporal pattern. A neural network realization was chosen for this task because neural networks have generally performed well in various other pattern recognition applications. The main goal of this work is to teach a neural network to derive the divergence from the imagery

    Aerodynamic Parameters Estimation Using Radial Basis Function Neural Partial Differentiation Method

    Get PDF
    Aerodynamic parameter estimation involves modelling of force and moment coefficients and computation of stability and control derivatives from recorded flight data. This problem is extensively studied in the past using classical approaches such as output error, filter error and equation error methods. An alternative approach to these model based methods is the machine learning such as artificial neural network. In this paper, radial basis function neural network (RBF NN) is used to model the lateral-directional force and moment coefficients. The RBF NN is trained using k-means clustering algorithm for finding the centers of radial basis function and extended Kalman filter for obtaining the weights in the output layer. Then, a new method is proposed to obtain the stability and control derivatives. The first order partial differentiation is performed analytically on the radial basis function neural network approximated output. The stability and control derivatives are computed at each training data point, thus reducing the post training time and computational efforts compared to hitherto delta method and its variants. The efficacy of the identified model and proposed neural derivative method is demonstrated using real time flight data of ATTAS aircraft. The results from the proposed approach compare well with those from the other

    Neural network application to aircraft control system design

    Get PDF
    The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design

    End-to-end Driving via Conditional Imitation Learning

    Get PDF
    Deep networks trained on demonstrations of human driving have learned to follow roads and avoid obstacles. However, driving policies trained via imitation learning cannot be controlled at test time. A vehicle trained end-to-end to imitate an expert cannot be guided to take a specific turn at an upcoming intersection. This limits the utility of such systems. We propose to condition imitation learning on high-level command input. At test time, the learned driving policy functions as a chauffeur that handles sensorimotor coordination but continues to respond to navigational commands. We evaluate different architectures for conditional imitation learning in vision-based driving. We conduct experiments in realistic three-dimensional simulations of urban driving and on a 1/5 scale robotic truck that is trained to drive in a residential area. Both systems drive based on visual input yet remain responsive to high-level navigational commands. The supplementary video can be viewed at https://youtu.be/cFtnflNe5fMComment: Published at the International Conference on Robotics and Automation (ICRA), 201

    Intelligent flight control systems

    Get PDF
    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms
    • …
    corecore