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NOMENCLATURE
β   Weight matrix connecting hidden layer and 

output layer
eδ  Elevator deflection (rad)

iII                
Input at ith neuron of input layer

iOI                
Output at ith neuron of input layer

jIH              
Input at jth neuron of hidden layer

jOH              
Output at jth neuron of hidden layer

kIO               
Input at kth neuron of output layer

kOO               
Output at kth neuron of output layer

, ,
ew qM M M δ
First-order dimensional derivatives of pitch 
acceleration per unit moment of inertia

2 2,
w q

M M
   

Second-order dimensional derivatives of pitch 
acceleration per unit moment of inertia

ZN              Normal acceleration (m/s2)
q                 Pitch rate (rad/s).
V            Weight matrix connecting input layer   and 

hidden layer
w                 Normal velocity (m/s)
X                Input vector
Z                Target vector

, ,
ew qZ Z Zδ    

First-order dimensional derivatives of normal 
acceleration per unit mass

2 2,
w q

Z Z
    

Second-order dimensional derivatives of 
normal acceleration per unit mass

1. INTRODUCTION
Parameter estimation is an important phase of system 

identification process which is useful for designing control 
law, flight simulator and expansion of flight envelope. It uses 
the measured flight motion and control variables gathered 
while exciting the mode of the aircraft in finding the input-
output relationship either in the form of parametric approach or 
nonparametric approach1,2. The parametric approach involves 
a prior model, which requires an understanding of physical 
phenomenon occurring between inputs and outputs, either in 
the linear or nonlinear form such as transfer function or state- 
space form whereas the nonparametric approach requires the 
concept of a network to be defined a prior without any physical 
knowledge of the system. The parametric approaches for 
estimating parameters are such as output error method (OEM), 
filter error method (FEM), equation error method (EEM), and 
some Kalman filter based methods1. OEM is mostly used for 
estimating stability and control derivatives of stable aircrafts. 
However, it produces a numerical divergence problem in the 
integration of the unstable aircraft dynamics which occurs 
due to improper and round-off of the initial estimates. Many 
variants of OEM have been presented to overcome the 
numerical divergence problem with some increased complexity 
in the existing method3. FEM has a filtering property which 
takes care of process and measurement noises by estimating 
stabilising parameters of dynamic system’s state equations. 
Therefore, FEM can be applied to estimate the parameters 
of unstable aircraft due to its inherent stability in the state 
propagation3. The methods discussed above use initial guess 

Parameter Estimation of Unstable Aircraft using Extreme Learning Machine

Hari Om Verma* and N.K. Peyada
Department of Aerospace Engineering, Indian Institute of Technology Kharagpur - 721 302, India 

*E-mail: homverma@gmail.com

ABSTRACT

The parameter estimation of unstable aircraft using extreme learning machine method is presented. In the 
past, conventional methods such as output error method, filter error method, equation error method and non-
conventional method such as artificial neural-network based methods have been used for aircraft’s aerodynamic 
parameter estimation. Nowadays, a trend of finding an accurate nonlinear function approximation is required to 
represent the aircraft’s equations-of-motion. Such type of nonlinear function approximation is usually achieved 
using artificial neural-network which is trained with the aircraft input-output flight data using a training algorithm. 
The accuracy of estimated parameters, which is achieved using the trained network, is highly dependent on the 
generalisation capability of the network which can be improved using extreme learning machine based network 
in contrast to artificial neural-network. To estimate the unstable aircraft parameters from the simulated flight data, 
Gauss-Newton based optimisation method has been used with a predefined aerodynamic model using the trained 
network. Further, the confidence of the estimated parameters has been shown in comparison to that of the standard 
parameter estimation methods in terms of the Cramer-Rao bounds.

Keywords: Unstable aircraft; Extreme learning machine; Gauss-Newton method; Parameter estimation



604

DEF. SCI. J., VOl. 67, NO. 6, NOVEMbER 2017

values of the parameters for integration of states which are 
obtained either analytically or computed from wind tunnel or 
fluid dynamics software results. EEM overcomes the above 
issues and employs a single-shot solution based on least-square 
principle which reduces the computational burden. Therefore, 
it is used as a standard method for estimating parameters of 
stable and unstable aircrafts4.

To overcome the shortcomings of the above-mentioned 
methods, artificial neural-network (ANN) was used to estimate 
the aircraft parameters. The trained network can generate a 
nonlinear function approximation based on the input-output 
data set5,6. It is a multi-layer network which comprises a 
number of neurons with their activation functions and biases 
in each intermediate layer, and these layers are interconnected 
in forward direction with some weights. Generally, the 
weights and biases are updated in an iterative way using the 
steepest-descent algorithm, namely the back-propagation (BP) 
error algorithm, until the mean-square-error (MSE) between 
the measured and predicted outputs reduces to a predefined 
lower value. Thus, many researchers around the world have 
used ANN to have a nonlinear input-output relationship and 
shown its capability in the system identification and estimation 
of aerodynamic parameters. For estimation of parameters, 
forces and moments have been mapped with respect to the 
corresponding variations in the motion and control variables 
using the ANN7-11.

Except the earlier methods of estimating stability and 
control derivatives using ANN, the two methods namely, delta 
and zero have been reported in the literature using the concept of 
numerical finite difference approach12-14. An extension of these 
methods, the modified delta and Neural Gauss Newton (NGN) 
method have also been reported which yield the estimates with 
lesser standard deviations15-18. A radial basis function neural 
network can also be used for estimation of parameters as 
discussed in earlier methods19. The only difference is the use 
of radial basis function instead of the sigmoid function at the 
hidden neurons. However, this method requires a large number 
of hidden neurons and is slower than the earlier methods. A 
similar approach has been reported where a physical insight 
in the form of partial differentiation approach has been used 
for estimating the parameters, and has shown satisfactory 
results20,21. 

However, ANN based methods are dependent on the 
architecture and training algorithm. There is a high chance of 
BP error algorithm to trap in a local minima which causes a 
poor generalisation of the network. As, the training method 
is slower, hence it consumes a lot of time in terms of more 
no of iterations to conclude the relationship which may be a 
case of over-fitting. Therefore, an extreme learning machine 
(ELM) has been suggested which overcomes the limitations 
of the conventional ANN22. ELM is a three-layer network 
in which the weights and biases of the first two layers are 
randomly chosen, while the weights between the last two 
layers are computed analytically using the Moore-Penrose 
method. by choosing an optimum number of hidden neurons 
on trial and error basis, ElM can produce a nonlinear input-
output relationship from the given measured data set of the 
dynamic system in a non-iterative way. The generalisation 

ability of the trained ELM network is more accurate and robust 
in comparison to ANN. Some of its applications is found in the 
field of forecasting23,24. 

To estimate the stability and control derivatives, the 
first step is to train the ELM network using flight measured 
motion and control variables. In the next step, the trained 
network is used for parameter estimation. An aerodynamic 
model, whose unknown parameters have to be estimated, is 
computed analytically and propagated through the trained 
network. Further, this process is followed by Gauss-Newton 
based optimisation method in an iterative way to update the 
parameters which converges in a few iterations. The statistical 
analysis of the estimated parameters is given in terms of 
Cramer-Rao bound. The simulated flight data of unstable 
aircraft in the linear and nonlinear forms has been dealt. 
The proposed approach has been applied to both cases and 
has shown satisfactory results in comparison to the standard 
methods of estimation.

2. EXTREME LEARNING MACHINE
Extreme learning machine is a single hidden layer feed 

forward neural network with a least-square based learning 
approach. It has been developed by Huang22, et. al.

Its network architecture is as shown in Fig. 1 which is 
like a conventional ANN architecture. It has three layers: input, 
hidden, and output. In the input layer, there are m number of 
neurons which have a linear transfer function. The mathematical 
expression to represent the input layer is as follows:

i iO II I=
 
               (1) 

                                                 
where 1,2,...,i m=

The weights and biases to connect n number of hidden 
neurons with m number of input neurons can be represented in 
the matrix form as follows: 
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1
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Figure 1. Structure of ELM network.
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It is noted that V is a ( 1)m n+ × matrix where the last row 
corresponds to the biases of the hidden neurons. The input at 
the jth hidden neuron can be given as follows:

( 1)
1

j i

m

I O ij m j
i

H I v v +
=

= +∑
                                                  

(3)

where 1,2,...,j n=
The output of the hidden neuron using sigmoid activation 

function is as follows:
1

1j I j
O HH

e−=
+

                                                    (4)                                                   

Let’s assume that β is the weight matrix connecting 
the hidden layer neurons to the output layer neurons. Thus, 
the estimated input to the kth output neuron can be given as 
follows: 

1
k j

n

I O jk
j

O H
=

= β∑                                                      (5)
                                      

where 1,2,...,k p=
As the output layer neurons use the linear activation 

functions therefore, their outputs are same as the inputs as 
follows:

k kO IO O=                                                                    (6) 
For multi-input multi-output case, the output can be 

represented in the matrix form as follows:
O OO H= β                                                                    (7)                    

where 
1 1j nO O O O X n

H H H H =    , 

11 12 1

1 2

1 2

p

j j jp

n n np n X p

β β β 
 
 
 β β ββ =
 
 
 β β β 

 

  

 

  

 and OO  is a 1 p×  row     
              vector.

Here the objective is to find the matrix β with the following 
condition:

ˆ - min -O OH Z H Z
β

β = β
                                       (8)          

This a norm based entity. The above equation can be 
solved using least square method. Therefore, 

*ˆ
O ZHβ =                                                                    (9)                 

where ( ) 1* T T
O O O OH H H H

−
=  is a Moore-Penrose inverse 

generalised matrix. Thus, 

( ) 1ˆ T T
O O OH H ZH

−
β =

                                                    
(10)

For N number of input-output data samples, the above 
procedure can be applied, and similar expressions are 
obtained.

The performance of the network is given in terms of root-
mean-square error (RMSE) as follows:

( )2

1
i

N

i O
i

Z O
E

N
=

−
=

∑
                                                   (11)

where, E is the error of the model, iZ  is ith target output, 
iOO  is 

ith estimated output of the model, and N is the total number of 
data samples.

3. NONLINEAR SYSTEM MODELLING AND 
PARAMETER ESTIMATION 

3.1 Nonlinear System Modelling
For modelling of the nonlinear system, a network is chosen 

a prior based on the input and output variables. The network 
seems to be same as shown in Fig. 1. As it is a supervised 
learning so, the input and output dataset are defined to have 
a nonlinear relationship between them. To fulfil our purpose, 
the input variables are considered at the ith instant which are 
written in the vector form as follows:   

[ ]1 2( ) ( ), ( ), ... ( )mX i x i x i x i=                              (12)
And the target is chosen at (i+1)th instant which is 

represented using the output variables in the vector form as 
follows:

1 2( 1) [ ( 1), ( 1),..., ( 1)]pZ i z z zi i i+ = + + +                        (13)
To have a dynamic model, either some or all of the output 

variables are feedback to the input side with some time delay, 
thus applying a feedback dependency in the network. Further, 
an optimal number of hidden neurons are determined on the 
basis of low value of RMSE using trial and error method. After 
choosing the optimal values of random weights and biases, the 
analytical approach of determining the weights between the 
hidden and the output layer is used as per Eqn. (10). Thus, the 
process of training is completed in a single shot by following 
the above procedure.

3.2 Parameter Estimation
The training procedure discussed in last subsection is 

followed for optimising an aerodynamic model. As we know 
that the motion of the aircraft is influenced by the generated 
forces and moments on the body hence, their coefficient 
forms are chosen as some of the input variables for training 
of the network which can be further represented as a linear or 
nonlinear function of motion and control variables of aircraft. 
This function also consists of some unknown constants 
represented in vector form as Θ which is determined through 
some optimisation method. The popularly known Gauss-
Newton method has been selected for the said purpose. With 
some initial guess values of Θ, the analytically determined 
inputs are applied to the trained network and the predicted 
output Y  is computed. Further, the residual error E is defined 
as the difference between the target output Z  and the predicted 
output, Y  which is given at the ith instant as follows1:

( ) [ ( ) ( )]E i Z i Y i= −                                                         (14)
And the covariance matrix, R  is defined as follows:  

1
( ) ( ) ( ) ( )

1 [ ][ ]
N

T

k
R Z i Y i Z i Y i

N =

= − −∑                              (15)

The cost function, J has to be minimised and given as 
follows:

1

1
( ) ( ) ( ) ( )

1( ) [ ] [ ]
2

N
T

k
Z i Y i Z i Y iJ R R−

=

− −= ∑                       (16)
 
The updating of the parameter vector, Θ using gN method 
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is as follows: 

1i i+Θ = Θ + ∆Θ                              (17)

F G∆Θ = −                              (18)
where the Hessian Matrix, F is computed as follows:

1

1

( ) ( ) ,
TN

i

Y i Y iF R−

=

∂ ∂   =    ∂Θ ∂Θ   
∑

                                    
(19)

And the gradient vector, G is computed as follows: 

[ ]1

1

( ) ( ) ( )
TN

i

Y iG R Z i Y i−

=

∂ = − − ∂Θ 
∑

                             
(20)

As we know that Gauss-Newton method is an iterative 
way of optimisation so, the Eqns. (14) - (20) are repeated until 
the cost function reaches to the desired convergence value to 
find the optimal value of unknown vector Θ . 

4. RESULTS AND DISCUSSION
The extreme learning machine based estimation method 

has been applied to estimate the parameters of de Havilland 
DHC-2 beaver aircraft’s linear and non-linear models.

4.1 Linear Unstable Aircraft
The short-period motion of de Havilland DHC-2 beaver 

aircraft has been considered as a first case whose data is 
generated through simulation of a simplified linear model1. 

The state equations of the linear model are:

0( )
e

e

w q e

w q e

q M w M q M

w Z w u Z q Z
δ

δ

= + + δ

= + + + δ





              
                        (21)

And the observation variables are ,w ,q ,w ,q and zN . The 
normal acceleration zN is defined as 

ez w q eN Z w Z q Zδ= + + δ                                                (22)
The nominal values of the aerodynamic derivatives and 

an optimised Mehra-Input signal eδ  are considered from 
Jategaonkar1,3, et. al. The state equations are integrated using 
fourth-order Runge-Kutta method to generate the response for 
a time span of 12.5 s with a sampling time of 0.05 s by adjusting 

the static stability parameter wM at a nominal speed of 44.57 
m/s. The simulated data is as shown in Fig. 2 which has been 
used to estimate parameters , ,w qM M , , ,

e w qM Z Zδ and
e

Zδ

(considered as Θ ) by the methods namely: least-squares (LS), 
stabilised output error method (SOEM), and ELM.

The classical methods such as OEM, FEM require initial 
guess values to estimate the parameters which may not be 
accurate while LS method does not require any guess values. 
SOEM was unable to estimate parameters with stabilisation 
matrix due to intermediate divergence of the algorithm. 
Therefore, qZ  has been fixed to estimate the parameters and 
have shown satisfactory results. 

ELM based network has inputs ,w , , , eq w q δ  at the ith 
instant and , , , , zw q w q N  at (i+1)th instant for its training. by 
following the procedure discussed in section 3, a non-linear 
input-output relationship is generated with 100 numbers of 
hidden neurons, and the unknown parameters of equation  are 
optimised by propagating the states through the network. It is 
seen that in a few iterations, the algorithm converges closer to 
the actual/nominal values. A comparative analysis is presented 
amongst the values from ElM, conventional methods and 
nominal as shown in Table 1.  The parameters are estimated 
satisfactorily while their standard deviations are a little higher 
in contrast to SOEM. It is observed that the parameters 
converge from different initial guess values. A closer guess 
value causes the optimisation method to converge early while 
it takes more number of iterations in case of others. Thus, it 
can be concluded that ELM based network neither depends 
on the initial guess values nor fixing of the parameters like 
SOEM method. The validation of estimated parameters has 
been carried out with the values of the other methods as shown 
in Fig. 3. The estimated parameters from the conventional 
methods have shown a fairly well matching with the nominal 
values. In case of ELM, a satisfactory matching is found with 
the simulated data up to 8s whereas a deviation may have 
occurred due to the sensitive qZ  value.   

4.2 Nonlinear Unstable Aircraft 
The short-period motion of the same aircraft as described 

Figure 2. Simulated data of linear model of beaver aircraft.
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in the last subsection has been generated through simulation 
of a nonlinear model as presented21. The state equation of the 
nonlinear model is: 

2 2

2 2

2 2

2 2
0( )

e

e

w q e w q

w q e w q

q M w M q M M w M q

w Z w u Z q Z Z w Z q
δ

δ

= + + δ + +

= + + + δ + +





  

          (23)

The equations of the nonlinear model simply add two 
higher order terms of states which make it different from the 
linear model. A similar approach is applied for observation 
variable zN . The normal acceleration, zN  is defined as 

2 2
2 2

ez w q e w q
N Z w Z q Z Z w Z qδ= + + δ + +                      (24)

Four more observations ,w ,q ,w and q are considered 
along with zN .The aerodynamic coefficients are same as the 
linear case except the second degree coefficients which are 
taken 10 per cent of the values of the corresponding linear 
coefficients to avoid the divergence in short duration of the 
simulation. Further, the integration is done using fourth-order 
Runge-Kutta method to generate the response with the same 
Mehra-Input eδ for a time span of 5 s with a sampling time of 
0.05 s. The simulated flight data is shown in Fig. 4.

A similar approach as discussed earlier, has been carried 
out in the present subsection. Due to the divergence of classical 
parameter estimation methods, SOEM has been used to estimate 
the parameters with a proper stabilisation matrix by fixing qZ . 
For the training of ElM network, the inputs , , ,w q w , ,z eq N δ  
at the ith instant and the outputs , , , , zw q w q N   at the (i+1)th 
instant are considered.

By following the procedure discussed in section 3, a non-
linear input-output relationship is produced and the unknown 
parameters of the Eqn. (23) are optimised by propagating the 
states through the network. It is seen that the parameters are 
estimated in a few iterations after converging from their initial 
random chosen guess values as shown in Fig. 5 which has 
similar remarks on the convergence of the parameter from two 
different initial guess values as the linear case. The estimated 
parameters using ELM are compared with nominal, LS, and 
SOEM values as shown in Table 2. It is found that the values 
are satisfactorily matching with the other methods whereas 
standard deviations of the parameters are a little higher than 
that of the SOEM. The validation of estimated parameters has 
been presented with the other methods in Fig. 6 which has 
shown a perfect matching.

Parameter Nominal 
value1

LS1 SOEM1 ELM

Zw -1.4249 -1.4249 
(0.0)#

-1.4274 
(0.0001)

-1.4206   
(0.0009)

Zq -1.4768 -1.4768 
(0.0) -1.4768* -1.7959 

(0.0110)

e
Zδ -6.2632 -6.2632 

(0.0)
-6.1619 
(0.0009)

-6.4738 
(0.0237)

Mw 0.2163 0.2161 
(0.0003)

0.2172 
(0.0)

0.2132  
(0.0002)

Mq -3.7067 -3.7042 
(0.0033)

-3.7238 
(0.0002)

-3.6649 
(0.0019)

e
M δ -12.784 -12.7653 

(0.0071)
-12.8205 
(0.0011)

-12.6175 
(0.0043)

Note: (i) *Zq is kept fixed at the nominal value for estimating parameters.  
(ii)# Values in parentheses indicate standard deviations.

Table 1. Parameter estimates of linear model using  LS, SOEM, 
and ELM methods

Figure 3. Data validation of estimated parameters with the simulated data of linear model.
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Figure 4. Simulated data of non-linear model of Beaver Aircraft.

Figure 5. Parameter vs iteration.



VERMA & PEyADA : PARAMETER ESTIMATION OF UNSTAblE AIRCRAFT USINg ExTREME lEARNINg MACHINE

609

5. CONCLUSIONS
Extreme learning machine in combination with Gauss-

Newton method has been proposed for estimating the 
aerodynamic parameters of an unstable aircraft. linear and 
non-linear cases of the unstable aircraft’s longitudinal dynamics 
have been discussed with their corresponding simulated flight 
data, and their estimated parameter results are compared with 
the classical methods such as lS and SOEM. It is proved that 
lS based parameters are same as the nominal values chosen for 
generating the flight data to ensure the data consistency in both 
the cases whereas SOEM results are seen with dependency 
on stabilising and fixing of the parameters. In case of ELM, 
the estimation process is fully dependent on the chosen 
network. Therefore, a careful attention is made on the network 
parameters such as number of hidden neurons, weights, and 
biases. It is seen that a large number of hidden neurons in the 
network corresponds to a lower value of root-mean-square 
error (RMSE) which may be over-fitting the network, and 
further it makes difficult to apply any iterative optimisation 
method for estimating the aerodynamic parameters. Here, the 
input-output states of the dynamic systems are chosen such 
that ELM network can be constituted with moderate value 
of RMSE in both cases, and gN method can be applied for 
estimating parameters from random initial guess values. 
Further, the validation of the estimated parameters has been 
presented for both the cases. In a short duration of simulation, 
responses are found fairly well whereas deviations are seen 
in a longer duration of time. Thus, the results obtained using 

Parameter Nominal 
value21

LS21 SOEM ELM

Zw -1.4249 -1.4249  
(0.0)#

-1.4302 
(0.0001)

-1.4097 
(0.0023)

Zq -1.4768 -1.4768 
(0.0) -1.4768* -1.8429 

(0.0288)

e
Zδ -6.2632 -6.2632  

(0.0)
-6.1279 
(0.0037)

-6.5219 
(0.0618)

 Zw2 -0.1425 -0.1425 
(0.0)

-0.1427  
(0.0)

-0.14 
(0.0003)

Zq2 -0.1477 -0.1477 
(0.0)

-0.1795 
(0.0079)

-0.1469  
(0.0193)

Mw 0.2163 0.2163   
(0.0)

0.2177    
(0.0)

0.2137 
(0.0003)

Mq -3.7067 -3.7067 
(0.0)

-3.7271  
(0.0003)

-3.6777 
(0.0038)

e
M δ -12.784 -12.784 

(0.0)
-12.8220 
(0.0009)

-12.6203 
(0.0083)

Mw2 0.0216 0.0216  
(0.0)

0.0217  
(0.0)

0.0213 
(0.0)

Mq2 -0.3707 -0.3707 
(0.0)

-0.3646 
(0.0020)

-0.3205 
(0.0073)

Note: (i) *Zq is kept fixed at the nominal value for estimating parameters.  
   (ii)# Values in parentheses indicate standard deviations.

Table 2. Parameter estimates of non-linear model using  LS, 
SOEM, and ELM methods

Figure 6. Data validation of estimated parameters with the simulated data of non-linear model.
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the ELM network suggests its applicability in the estimation 
of aerodynamic parameters provided a sufficient number of 
variables in the dataset. 
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