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Abstract: The localization of an acoustic source has attracted much attention in the scientific com-
munity, having been applied in several different real-life applications. At the same time, the use of
neural networks in the acoustic source localization problem is not common; hence, this work aims
to show their potential use for this field of application. As such, the present work proposes a deep
feed-forward neural network for solving the acoustic source localization problem based on energy
measurements. Several network typologies are trained with ideal noise-free conditions, which sim-
plifies the usual heavy training process where a low mean squared error is obtained. The networks
are implemented, simulated, and compared with conventional algorithms, namely, deterministic and
metaheuristic methods, and our results indicate improved performance when noise is added to the
measurements. Therefore, the current developed scheme opens up a new horizon for energy-based
acoustic localization, a field where machine learning algorithms have not been applied in the past.

Keywords: acoustic localization; artificial intelligence; artificial neural networks; deep feed-forward
networks; deep learning; embedded computing; energy-based localization; wireless sensor networks

1. Introduction

The localization of an acoustic source in Wireless Sensors Networks has been com-
monly employed in several real-life problems. Examples of its application can be found
for energy control of buildings [1], ambient assisted living [2], underwater acoustic net-
works [3], wildlife monitoring [4], smart surveillance [5], shooter detection [6], or as a
complementary source of information to other locating platforms [7,8]. The solution to the
problem consists of obtaining measurements that represent the distances from an acoustic
source to sensors that acquire the measurement. Contrary to range-free methods, physical
measurements such as time-of-arrival [9], time-difference-of-arrival [10], or direction-of-
arrival [11] have shown promising results for acquiring distance measures; however, they
rely either on high-precision hardware for timing purposes or on microphone sensor
arrays for angle perception. Contrarily, range-free methods rely on information about
connectivity and propagation patterns and are, thus, highly dependent on environmental
conditions [12,13]. The acoustic energy decay model as an indirect measure of distance was
initially proposed by empirically analyzing the sound emitted from an engine [14]. The lo-
calization approach considers averaging the energy of the received acoustic signal data
samples, standing out for lower bandwidth since it is sampled at a much lower rate [15].
Additionally, the required hardware becomes very simple, having as the main part a sin-
gle microphone that converts acoustic pressure into an electrical signal. This model is
considered here, that is, the energy measured at each sensor related to the transmitted
power and an inverse proportionality to the squared distance between the sensor and the
acoustic source.
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With regard to artificial intelligence, Artificial Neural Networks (ANNs) have reached
a point of maturity that allows for wider use. Regarding its employment in location and
positioning, the use of a Multilayer Perceptron (MLP) was firstly evaluated in terms of
accuracy, memory, and computational requirements, showing promising results [16]. It
was shown that the MLP could potentially achieve higher localization accuracy, requiring
less computational effort and lower memory resources when compared with an Extended
Kalman filter, for example. More recently, ANNs have reported promising results in
applications such as simultaneous localization and mapping technique [17] or Wi-Fi Fin-
gerprint [18]. However, its major drawback lies in their training stage, where the physical
presence of training devices is necessary and tedious. Further, Convolutional Neural Net-
work designs were studied with application to localization, by simulating hydrodynamic
flow caused by target objects of location, with meritorious accuracy results [19]. Hence,
although the application of neural networks can be seen as an option for localization
problems, challenges remain to be overcome with regard to their training and structure.

It is worth mentioning that the learning procedure of a neural network can be either
supervised or unsupervised. The related works presented above consider that the desired
output is already known. As such, during the learning process, the units (or weight
values) of such a network are determined given pairs of input/output values. Depending
on the difference between the current iterative output and its target (known desired
output), an error value is computed with the goal of being minimized. This procedure
is called supervised learning, as the current output is being supervised, or monitored,
to match the desired one [20]. On the contrary, unsupervised learning does not consider
the desired output to be known and has the goal of arranging groups of similar inputs close
together. This effect can be used efficiently for pattern classification purposes. Examples of
sound classification events can be found in [21], where different sources are separated and
classified. Considering the present problem of acoustic localization, a supervised approach
is considered, where the network will be trained taking into account observations of an
acoustic model, and the corresponding coordinates in a predefined search-space.

Based on the previous discussion, the present work proposes a Deep Feed-Forward
Network (DFNN) for solving the energy-based acoustic source localization problem. Sev-
eral hyperparameters, such as the number of hidden layers, perceptrons, and epochs, are
surveyed to build an effective training model. Moreover, the proposed DFNN is trained
with noise-free input data and validated against different measurement noise levels. This
corresponds to a training stage independent of physical devices, requiring only partial
knowledge of the localization layout (dimension of the search space, number of sensors,
and an environmental decay factor). The dataset is applied to the new DFNN, where the
root-mean-squared error (RMSE) is calculated and compared with several state-of-the-art
algorithms. The obtained results indicate that the proposed DFNN is a promising method
for determining the location of an acoustic source through energy-based measurements,
attaining lower RMSE errors for a wide range of the measurement noise, associated with its
low implementation complexity. Besides the simplified methodology for network training,
and as far as the authors’ knowledge, artificial neural networks have not been applied to
the energy-based acoustic source localization problem in the scientific literature. While
the existing works on different localization schemes consider hardware-based method-
ologies for network training, the current work represents the first complete study of the
energy-based localization problem via neural networks.

The main insights and contributions of the present work are summarized as follows:
(1) a DFNN architecture for solving the energy-based acoustic source localization problem
is proposed, where several hyperparameters are tuned; (2) the proposed DFNN is trained
with noise-free input data and, later on, validated against different measurement noise
levels; (3) the proposed training stage allows for offline network training, without any
complementary hardware or previous data acquisition; (4) the proposed architecture
supplants traditional methods for a wide range of noise levels; (5) the present work
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stamps the appliance of artificial neural networks to the energy-based acoustic source
localization problem.

The remaining paper is organized as follows. Section 2 summarizes previous related
work and Section 3 provides the theoretical background on energy-based acoustic localiza-
tion and DFNNs. Section 4 describes the proposed methodology, while Section 5 assesses
its performance. Finally, Section 6 concludes the work.

2. Related Work

Traditionally, the energy-based acoustic source localization problem has been ad-
dressed by the use of deterministic methods [22]. With this proposal, a weighted least-
squares method was applied in [23], which was enhanced with a correction technique
and presented good results for low values of noise, but its performance is degraded in
noisy environments. A closed-form solution was proposed in [24], which exhibits good
performance for low noise power, but also suffers considerable degradation for higher
levels of noise power. The method proposed in [25] stands for its simplicity, consisting
of a bisection approach, where good performance is obtained for low values of the mea-
surement noise. Considering the fact that the problem is highly nonconvex, the use of
convex optimization methods was proposed in [26,27] through semidefinite programming
relaxations. Considering that the problem is not approached directly, but rather through
approximations, its enhancement was proposed in [28–30] by applying second-order cone
programming. The methods based on convex optimization performed well, even in noisy
environments, with their only drawback being their computational complexity, which
increases geometrically with the size of the network. Besides deterministic methods pre-
sented, the use of swarm-based optimization—namely, Elephant Herding Optimization
(EHO) [31,32]—was initially proposed in [33,34]. The methodology was enhanced in [35,36]
by new population initialization strategies, combining computational simplicity with low
positioning error. The improved EHO [35,36] demonstrated a high suitability when consid-
ering embedded implementations for real-time applications, mainly due to its low latency,
although knowledge of the noise statistics is assumed by the estimator.

The current state-of-the-art about the acoustic source localization problem is mostly
based on triangulation methods that rely on Euclidean geometry. To this end, some measure
of distance is acquired by a sensors network with the purpose of inferring geometric
properties on the source location, namely, energy, angle, or time [37]. The correlation
between the measured quantity and the coordinates of the physical location in space is
generally non-linear, non-convex, and subject to different sources of noise. Under near-ideal
conditions, these models can very accurately estimate the acoustic physical location without
error bounds and among different environments. Nevertheless, sources of measurement
noise, simplifications in the ranging models, or complex environment conditions, have
great impact on the accuracy and reliability on the system performance. Basically, model-
based methods become less reliable when more effects are present that were not considered
in its physical mode foundations, i.e., when one has less confidence in the model itself.
Theoretically, the Cramer–Rao lower bound is usually applied to demonstrate and state the
estimation bounds; its dependencies with the physical model; and, of major importance,
the geometry of the problem [15,24,38–41]. Unlike model-based methodologies, data-
driven (or learning-based) methods are an alternative to solve constrains that construct a
mapping function by acquired knowledge. More specifically, ANNs can behave as universal
approximators, and almost automatically discover features relevant to the localization
problem by exploiting the increased amount of sensor data and computational power on
an offline stage. The localization problem is treated as a regression one, where distances
are learned, mapping coordinates in a search-space, having modest or nonexistent physical
knowledge intrinsic to the problem under scrutiny [42–45].
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3. Theoretical Background

The current section aims to provide the theoretical foundations of both the energy-
based acoustic localization problem and the deployment of DFF Networks.

3.1. Energy-Based Acoustic Localization

Location of an acoustic source, by exploiting energy measurements acquired by sen-
sors, was firstly addressed in [14]. The proposed model considers M noisy measurements
within a time window T = M/ fs, where fs is the acoustic sampling frequency and averages
energy signatures over the time window [t− T/2, t + T/2]. The obtained measure at the
ith sensor is then modeled as follows [14,15]:

yi =
giP

||x− si||β
+ νi, i = 1, . . . , N, (1)

where gi is the gain of sensor i, P is the transmitted power, x = (xx, xy)T is the unknown
location, si = (Six, Siy) denotes the known location of sensor i, νi represents the mea-
surement noise modeled as Gaussian, N is the total number of sensors, and β is a decay
factor dependent on environmental conditions. For the sake of simplicity, the decay factor
is considered β = 2 [14,15], which corresponds to an outdoor setting. In Expression (1),
the observed measurements represent the power received per unit surface area where
that emitted energy falls, and thus, its unit is W/m2. With the purpose of generalizing
the physical conditions of the problem, the observations will be numerically treated as
dimensionless in the present work. When performing several measurements (minimum
of 3 for a bidimensional space), the unknown position would be determined as the inter-
section point of circumferences, centered on the sensor coordinates, with radii obtained
from Expression (1). Due to noise corruption of the measurements, the intersection of the
circumferences will likely form an area, rather than a single point (Figure 1). Hence, this
work will train the proposed DFNN with noise-free data only, avoiding in this way the
need for characterizing the statistical behavior of νi. This will imply a simple procedure,
independent on real terrain acquisition.

Figure 1. Sensors’ distance estimate representation when measurement noise is considered.
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Regarding both deterministic and metaheuristic algorithms, all observations from the
multiple sensors are aggregated as an estimator of x, where the solution of the localization
problem is the argument (pair of coordinates) that minimizes the expression [14,15]:

x̂ = arg min
x

N

∑
i=1

1
σ2

νi

(
yi −

giP
||x− si||2

)2

. (2)

The estimator in Expression (2) is highly nonconvex, with singularities in each sensor’s
coordinates, several suboptimal solutions, and saddle regions. All the enumerated features
makes the problem very challenging in the field of numerical optimization, making it a
good candidate in the context of regression and ANNs.

The considered energy model (Expression (1)) relies on the fact that the acoustic source
is stationary. Targeting moving sound sources is mostly considered with direction or angle
measurements [46,47], combined with microphone arrays [48], or mostly relying on the
measurement of propagation time [49], given the achievement of very satisfactory accuracy,
despite the complexity of the physical devices employed. While in the space-state domain
Kalman filters and maximum a posteriori estimation are commonly used [50], ANNs have
also been considered [51,52]. In this case, time series prediction is performed with the
resource of recurrent neural networks composed of long short-term memory cells [53].
Although network structures are currently well defined in the literature, problems with the
need to find the appropriate sample rate, the need to identify an appropriately sized input
window, or to archive stability are still challenging.

3.2. Deep Feed-Forward Neural Network

Theoretical results on ANNs, known as the Universal Approximation Theorem, assert
that a single hidden layer on a sigmoidal feed-forward ANN with a sufficient numbers of
nodes is capable of approximating any continuous function with admissible accuracy [54].
The theorem was generalized to feed-forward multilayer architectures in 1991 by Kurt
Hornik [55] and, more recently, it was shown that universal approximation also holds for
unbounded activation functions such as the rectified linear unit (ReLU) [56]. The mentioned
theorem allows the following hypothesis: if energy values are measured at at least three sensor
positions, at a specified point in 2-dimensional space, then a sigmoidal feed-forward artificial
neural network may be established, which takes as input the energy values measured at the sensors
and predicts the coordinates of the source propagating the acoustic signal. According to this
hypothesis, the key task of this work is to correctly set the network topology and its training.
Fundamentals of ANNs rely on modeling the biological neuron and its intercommunication
cells called synapses, where an artificial neuron (or perceptron) is obtained. A deep neural
network will have an input layer, two or more hidden layers, and one output layer. Each
layer is connected to the next one through some synaptic weights, forming a flow of
information in one direction, from the inputs to the outputs.

The Sigmoid (or Fermi) activation function was one of the first to be applied in ANNs.
The function maps the input to a value between 0 and 1, having a simple derivative that
efficiently performs the network training through gradient-based algorithms [54]. Since a
continuous signal is faked as output (coordinate values with regard to the search space), the
hyperbolic tangent function is considered. The function is similar to the previous sigmoid
and shares much of its properties. However, this function allows us to map the input to any
value between−1 and 1 [57]. Putting a network to work consists of determining the weight
that best fits the training data, that is, the set of pairs of inputs and outputs. Essentially, it
consists of a regression problem, where the extent of the network can reach a large number
of dimensions and, therefore, ANNs will imply good performance [58]. The learning
problem is formulated in terms of minimization of an objective function, which measures
the performance of a neural network on a predefined data set. Concerning the network
training, the backpropagation algorithm is one of the most popular methods to train neural
networks [59]. Nonetheless, original backpropagation suffers from slow convergence,
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and thus, several variants have been proposed in the literature. The Levenberg–Marquardt
(LM) algorithm is an alternative for training ANNs based on a nonlinear optimization [60].
The method employs an approximation of second-order derivatives of the objective function
so that better convergence behavior can be obtained [61]. Based on the above discussion,
our artificial neuron model will rely on the hyperbolic tangent activation function and the
network will be trained by the LM algorithm.

4. Proposed Method

The proposed approach for solving the energy-based acoustic source localization
problem relies on a DFNN (Figure 2), where the inputs consist of the measures taken from
microphones in the sensors’ network. The structure of the network is therefore dependent
on the problem layout. For a layout composed of N acoustic sensors, N inputs will be
present on the DFNN. Regarding the outputs, independent of the number of network
entries, these will always be two, corresponding to the estimates of the source coordinates
(xx, xy).

Figure 2. Proposed Deep Feed-Forward Neural Network.

Identifying network topology—namely, the number of hidden layers and the num-
ber of perceptrons in each layer—has been traditionally based on trial and error [62].
Although it was proven that one single hidden layer can approximate any continuous
function [54], the number of required perceptrons in each layer can be as high as the
number of training samples [63]. In fact, when considering m output neurons, the number
of perceptrons to train N samples with some reduced error is given by 2

√
(m + 2)N [63].

In addition, it can be seen that a three-layer feed-forward neural network with k hidden
perceptrons can assign arbitrary analogue values to j arbitrary inputs [64]. To overcome the
physical dimension of the search space and the properties of the model (Expression (1)),
a high number of samples must be used to train the proposed network. This situation
would lead to a high complexity of the network structure, according to [63]. As such,
a two-phase method is considered to determine the optimal number of perceptrons in the
hidden layers of a 5-layer network [65].

The overall proposed network consists of one input layer, one output layer, and three
hidden layers. The number of layers and the number of perceptrons in each layer are
hyperparameters that must be initially specified [66]. Three hidden layers are empirically
stated, considering one first layer, a nonlinear separation, one processing layer, and one
aggregation layer to provide the outputs. The number of perceptrons in each layer will
be under scrutiny and further analyzed and discussed. As mentioned earlier, one of the
outcomes of the methodology is its training stage, where random samples are generated
over the search space and the observations (or inputs) are calculated under ideal conditions,
i.e., when no noise is present. This is because we propose generating the training data
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numerically, which will help us by removing the need to make data acquisition in the
environment where the network will be implemented. The training stage is summarized in
Algorithm 1.

Algorithm 1 Training Procedure

1: for i = 1:1:NS do . NS—Number of samples

2: (xxi , xyi )← Random ∈ [lb, ub] . lb—Lower Bound; ub—Upper bound

3: for j = 1:1:N do . N—Number of sensors

4: yij ← gjP/||xi − sj||2 . Apply Expression (1) [noise-free (σ2
νi
= 0, ∀i)]

5: end for

6: end for

7: yTrain ← 70% · y . Training set (inputs)

8: yValid ← 30% · y . Validation set (inputs)

9: net← train(yTrain, yValid) . Levenberg–Marquardt Algorithm

Since it is the topology of the network and its training strategy that is under scrutiny,
the remaining parameters and tools are considered as well-established methods in the
literature. The LM optimization method is applied, using the mean squared error (MSE) as
a performance metric.

Looking at the inference stage of a feed-forward neural network, the computational
complexity is related to the number of inputs, the number of layers, and the number of
perceptrons in each layer. Let Wij be the matrix of weights connecting layer i to layer
j. Obtaining the outputs of layer i implies computing some Sj = Wij · Zi. From this
point, the activation function f (x) is applied as Zj = f (Sj), where Zj is the output of
layer j obtained from the previous outputs of layer i, Zi. Thus, if the network has L layers
(including an input and an output layer), the expression is evaluated (L− 1) times, where,
for each layer, a matrix multiplication and an activation function is computed. Considering
the MLP case, the weight matrix W12 ∈ RN×p, where p is the number of perceptrons in
the hidden layer, while W23 ∈ Rp×2, since there are only two outputs. When considering
the DFNN case, the matrices linking hidden layers belong to vector space Rp×p. Taking
the complexity with regard to the network dimension, one can see that only W12 will
increase accordingly. This situation is valid for both the MLP and DFNN cases. As such,
the complexity will then be of order O(n), regardless of the network structure.

In summary, Figure 3 shows the two stages that establish the proposed method.
Initially, a set of data is generated, where pairs of observations with the corresponding
coordinates (lines 2 and 4 of Algorithm 1) are obtained. This data construction depends only
on the model (gain, transmitting power, and sensors’ positions) and the layout (upper and
lower bound) features, and thus, do not need an environment-dependent data acquisition.
In this offline stage, the weights of the network are obtained. The second stage matches
the online processing phase. Here, noisy measurements are acquired through the sensors
and inference in the network, obtaining the coordinates of the acoustic source. It should
be noted that, firstly, no assumption regarding statistical features of the noise was made,
contrarily to the methods presented in Section 2. Secondly, the inference of the network
was performed with noisy measurements, while it was trained with a noise-free collection
of pairs of simulated coordinates and observations.
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Figure 3. Overall strategy of the network.

5. Results and Discussion

The first hyperparameter to be addressed concerns the number of layers and the
number of perceptrons in each layer. In order to study this hyperparameter, several
scenarios were created that include arranging N (N = 3, 6, 9, 12, and 15) acoustic sensors
on a circle centered at the middle of the search space, with radius equal to 50 m. The training
data are randomly generated over the search space and made up of 10,000 coordinates
(Xxi , Xyi ), where 70% of the samples form the training set, and the remaining 30% form
the validation set. Firstly, all of the samples are generated using MATLAB® R2020b on
an AMD Ryzen™ R7-4700U Octa-Core processor, featuring 2 GHz and 16 GB of RAM,
running on a Windows™ 10 operating system. The generated coordinates and the sensors’
distribution over the search space are represented in Figure 4 when considering N = 6,
where a distance of 5 m is considered to avoid singularities that would arise when the
source matches the coordinates of the sensors (Expression (1)).

Figure 4. Random source distribution over the search space for N = 6.

Secondly, the corresponding observations are calculated under ideal noise-free con-
ditions, by applying Expression (1) with νi = 0. This strategy implies that the network is
trained offline, with “measurements” obtained numerically, and as such is not dependent
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on field acquisitions. Thirdly, the input data are scaled and normalized athwart Batch
Normalization [67]. With this procedure over the input values, the fastest and more stable
network is obtained, by recentering and rescaling the observation values [68]. Basically,
the Batch process performs a rescaling of the input data over the domain of the activation
function. As it is a linear mathematical operation, the neighboring information is preserved,
and a centralizing and stretching effect is observed. The histogram of Figure 5 shows the
distribution of the data obtained with the model (Expression (1)) in red and the result of ap-
plying the Batch Normalization algorithm in blue, corresponding to the total dataset when
N = 3. It should be noticed that without this rescaling, the hyperbolic tangent activation
function would behave as a linear one, since all values would tend to zero from positive
values. The rescaling also highlights the fact that the input data approaches a Rayleigh
distribution. This behavior is expected since the three sensor readings are independent and
identically distributed Gaussian with equal variance and zero mean [69].

Regarding the training parameters, the LM optimization method is applied, using
the mean squared error (MSE) as a performance metric, over 1000 epochs, a minimum
performance gradient of 10−7, and a learning rate of 0.001. We consider that the training is
finished when the total number of epochs is reached, the performance gradient falls below
10−7, or the performance is minimized to its goal, which that would be hypothetically
null (MSE→ 0). The transmitted power is set to P = 5 and the sensors gain to gi = 1 for
i = 1, . . . , N.

Figure 5. Histogram of the input data before and after normalization and rescaling.

To assert the performance of the proposed DFNN, all scenarios (N = 3 to N = 15 with
increments of 3) are trained with network structures of 3, 9, and 27 perceptrons per layer
(Figure 6). To demonstrate the effectiveness of the Deep Learning methodology, the same
procedure is done on an MLP, consisting of only one input layer, one hidden layer, and one
output layer (Figure 7). This comparison, the DFNN with the MLP, indirectly asserts the
number of layers in the network, since networks with one and three hidden layers are being
balanced out. The case of using only one hidden layer is identified as MLP1 throughout the
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results discussion, and the DFNN with 3 hidden layers is identified as DFNN3. It should
be noted that the acronym DFNN is used here to distinguish the two networks in terms of
the number of layers and that a DFNN is also an MLP network, only with a higher number
of hidden layers.

Figure 6. Training Performance considering 3, 9, and 27 perceptrons per layer, for N = 3, 6, 9, 12, and
15 Sensors (DFNN Network).

Figure 7. Training Performance considering 3, 9, and 27 perceptrons per layer, for N = 3, 6, 9, 12, and
15 Sensors (MLP Network).

When analyzing the obtained MSE over the 1000 epochs of the MLP1 (Figure 7),
one can see that the training stopped prematurely (due to gradient performance) for
all scenarios considered, with different values for the number of sensors N for 3 and
9 perceptrons. The networks consisting of 27 perceptrons per layer reached 1000 epochs
with an MSE of approximately 6.5× 10−3 and 3× 10−7 for N = 3 and N = 15, respectively.
Concerning the DFNN3, only the case of N = 3, N = 6, and N = 9 with 3 perceptrons
per layer stopped prematurely, but the DFNN3 with 27 perceptrons per layer reached
much lower MSE values (6× 10−7 for N = 3 and 9× 10−12 for N = 15). This situation
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demonstrates the superiority of the proposed DFNN over a standard MLP, justifying
its implementation, although with higher complexity in training or network structure.
Since the training is performed in an offline stage, and online processing involves mostly
matrix summation and multiplication, this complexity increase does not directly affect
the network behavior, increasing linearly with the number of sensors, as demonstrated.
The performance of the newly presented localization method will be compared in terms of
root-mean-squared error (RMSE) defined as

RMSE =

√√√√ M

∑
i=1

‖xi − x̂i‖2

M
, (3)

where xi is the true (unknown) source location of the ith sample, x̂i is the estimated
coordinate through the DFNN, and M is the size of the data set. Since the RMSE mea-
sures the standard deviation of the residuals, the error maintains the dimension of the
variables, allowing cross-checking of the error with the search space in meters. For that
purpose, the MLP1 is considered for comparison as a simpler neural network structure
(composed of one hidden layer). Based on the previous analysis (Figure 7), 27 percep-
trons are considered for the hidden layer. Additionally, two more methods are selected
from state-of-the-art deterministic and metaheuristic algorithms. With regard to the deter-
ministic one, although second-order cone programming can be considered as the current
state-of-the-art [28,29], providing good results even for noisy environments, the bisection
method proposed in [25] is considered due to its simplicity and reliability, denoted here
by “EXACT”. With regard to metaheuristic algorithms, the most recent version of EHO
for acoustic localization is considered [32], and named “EEHO”. Both methods that are
compared with the present work have complexity in the order of O(n) [33]. The employed
strategy to validate the four algorithms consists of generating 10,000 samples randomly
distributed over the search space (Figure 4). Secondly, seven new sample sets are created
by adding different noise levels, generated from a Normal distribution. More specifically,
the noise term νi in Expression (1) follows a normal distribution with zero mean and vari-
ance σ2

νi
, that is, νi ∼ N (0, σ2

νi
). The variance is considered in a logarithmic scale (σ2

νi
(dB)

= 10× log10(σ
2
νi
)) on the interval [−80,−50] dB, with increments of 5 dB. The performance

comparison methods is evaluated in terms of RMSE. The noise variance interval intends to
cover a wide range of the signal-noise-ratio (SNR). When considering a source at 1 m of
the sensor, the SNR varies from 74 dB to 104 dB (dB ref. 1 W/m2), but when considering a
distance of 50 m—which would correspond to a source located at the edge of the search
space—the SNR varies from approximately −5 dB to 30 dB (dB ref. 1 W/m2).

The obtained results for both layouts (N = 3 and N = 12 sensors) are represented in
Figure 8, with regard to the newly proposed DFNN3 and the three algorithms chosen for
comparison (MLP1, EEHO, and EXACT). Concerning lower values of the measurement
noise, the performance of the considered methods is quite diverse. In this situation, the
EXACT method has the highest error (8.45 m for σ2

νi
= −80 dB and N = 3); followed by

MLP1 (3.41 m for σ2
νi
= −80 dB and N = 3); EEHO (1.57 for σ2

νi
= −80 dB and N = 3);

and finally, with the lowest error, the proposed DFNN3 (0.53 for σ2
νi
= −80 dB and N = 3).

When considering N = 12, the proposed DFNN3 reaches values of error as low as 0.096 m
for σ2

νi
= −80 dB.

When analyzing the methods’ behavior for higher values of measurement noise,
the results obtained tend to overlap and the differences of the errors are not as pronounced.
Considering N = 12 and σ2

νi
= −50 dB, while the EXACT method shows an error of

17.53 m, MLP1, DFNN3, and EEHO show 9.80 m, 8.77 m, and 8.50 m, respectively. This
means that, although the EXACT method stands out in a negative sense, the remaining
methods show an equivalent behavior. Even so, the proposed DFNN3 assumes greater
simplicity in terms of its implementation when compared to EEHO. As a last remark, it
is worth mentioning that DFNN3 for N = 3 performs concurrently with its counterparts
when considering N = 12. This situation implies that the proposed method needs less
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sensors to achieve the performance of others. This DFNN3 network behavior is not
surprising since the network has been trained with synthetic or ideal observations. Even
so, it works relatively well in scenarios where the noise is not small (or at least not worse
than the other methods).

Figure 8. RMSE Comparison of EXACT, EEHO, MLP1, and DFNN3 for N = 3 and N = 12.

As can be seen from Figure 8, when noise power is low to medium, there is quite a
performance margin between the proposed method and the remaining ones (e.g., for N = 3,
noise variance = −80 dB, the proposed method outperforms EEHO, MLP1, and EXACT
for around 1, 3, and 8 m, respectively). This behavior can be explained by the fact that
the proposed method is trained with noise-free data, which allows for better accuracy
for low-to-medium noise power. As the noise power gets higher, one can see that the
performance of all methods deteriorates significantly, and that all of them have roughly the
same location accuracy.

With the goal of getting an even better insight on the performance of the proposed
DFNN3, we employ another performance metric in Figures 9 and 10. The figures illustrates
the Cumulative Distribution Function (CDF) of the localization error (LE), LE = ‖ xi − x̂i ‖2,
over the M samples, when σ2

νi
= −80 dB for N = 3 and N = 12. From Figure 9, for N = 3,

one can see that the proposed solution achieves LE < 1 m in 90% of the cases, while
LE < 2.5 m and LE < 5 m achieved for EEHO and MLP1 in the same percentage, respec-
tively, whereas EXACT achieves LE ≤ 10 m in around 75% of the cases. When N = 12
(Figure 10), one can observe LE < 0.15 m for DFNN3, while the EEHO, MLP1, and EXACT
methods achieve only LE < 0.32 m, LE < 0.45 m, and LE < 0.5 m in the same percentage
of cases, respectively. The obtained results are in line with the previous analysis regarding
RMSE performance, confirming the effectiveness of the proposed solution.
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Figure 9. Cumulative Distribution Function of LE for σ2
νi
= −80 dB and N = 3.

Figure 10. Cumulative Distribution Function of LE for σ2
νi
= −80 dB and N = 12.

6. Conclusions

A new method based on DFNNs for solving the energy-based acoustic localization
problem is proposed in the present work. Its particularity consists of a reliable and straight-
forward training stage, where the dataset is generated under ideal environmental condi-
tions and noise-free measurements. The simulation results demonstrate that the methodol-
ogy exceeds the performance of the state-of-the-art for lower values of measurement noise,
while it matches its performance in noisy environments. Concerning environments with
a higher noise level, the proposed method matches the performance of its counterparts.
The new methodology paves the way to machine learning, more specifically, the use of
Neural Networks, for the acoustic localization problem.

This work considered the localization of a single stationary source. Generalizing the
presented algorithm for the localization of nonstationary sources through extending the
feed-forward network to process time serialized data, is to be considered as future work.
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