800 research outputs found

    Epileptic seizure detection from EEG signals using logistic model trees

    Get PDF
    Reliable analysis of electroencephalogram (EEG) signals is crucial that could lead the way to correct diagnostic and therapeutic methods for the treatment of patients with neurological abnormalities, especially epilepsy. This paper presents a novel analysis system for detecting epileptic seizure from EEG signals, which uses statistical features based on optimum allocation technique (OAT) with logistic model trees (LMT). The analysis involves applying the OAT to select representative EEG signals that reflect the entire database. Then, some statistical features are extracted from these EEG signals and the obtained feature set is fed into the LMT classification model to detect epileptic seizure. To test the consistency of the proposed method, all experiments are carried out on a benchmark EEG dataset and repeated twenty times with the same parameters in the detection process, and the average values of the performance parameters are reported. The results show very high detection performances for each class, and also confirm the consistency of the proposed method in the repeating process. The proposed method outperforms some state-of-the-art methods of epileptic EEG signal detection using the same EEG dataset

    A LightGBM-Based EEG Analysis Method for Driver Mental States Classification

    Get PDF
    Fatigue driving can easily lead to road traffic accidents and bring great harm to individuals and families. Recently, electroencephalography- (EEG-) based physiological and brain activities for fatigue detection have been increasingly investigated. However, how to find an effective method or model to timely and efficiently detect the mental states of drivers still remains a challenge. In this paper, we combine common spatial pattern (CSP) and propose a light-weighted classifier, LightFD, which is based on gradient boosting framework for EEG mental states identification. ,e comparable results with traditional classifiers, such as support vector machine (SVM), convolutional neural network (CNN), gated recurrent unit (GRU), and large margin nearest neighbor (LMNN), show that the proposed model could achieve better classification performance, as well as the decision efficiency. Furthermore, we also test and validate that LightFD has better transfer learning performance in EEG classification of driver mental states. In summary, our proposed LightFD classifier has better performance in real-time EEG mental state prediction, and it is expected to have broad application prospects in practical brain-computer interaction (BCI)

    Graph analysis of functional brain networks: practical issues in translational neuroscience

    Full text link
    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires a know-how of all the methodological steps of the processing pipeline that manipulates the input brain signals and extract the functional network properties. On the other hand, a knowledge of the neural phenomenon under study is required to perform physiological-relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes

    Principal component analysis implementation for brainwave signal reduction based on cognitive activity

    Get PDF
    Human has the ability to think that comes from the brain. Electrical signals generated by brain and represented in wave form.  To record and measure the activity of brainwaves in the form of electrical potential required electroencephalogram (EEG). In this study a cognitive task is applied to trigger a specific human brain response arising from the cognitive aspect.  Stimulation is given by using nine types of cognitive tasks including breath, color, face, finger, math, object, password thinking, singing, and sports. Principal component analysis (PCA) is implemented as a first step to reduce data and to get the main component of feature extraction results obtained from EEG acquisition. The results show that PCA succeeded reducing 108 existing datasets to 2 prominent factors with a cumulative rate of 65.7%. Factor 1 (F1) includes mean, standard deviation, and entropy, while factor 2 (F2) includes skewness and kurtosis

    Network-based brain computer interfaces: principles and applications

    Full text link
    Brain-computer interfaces (BCIs) make possible to interact with the external environment by decoding the mental intention of individuals. BCIs can therefore be used to address basic neuroscience questions but also to unlock a variety of applications from exoskeleton control to neurofeedback (NFB) rehabilitation. In general, BCI usability critically depends on the ability to comprehensively characterize brain functioning and correctly identify the user s mental state. To this end, much of the efforts have focused on improving the classification algorithms taking into account localized brain activities as input features. Despite considerable improvement BCI performance is still unstable and, as a matter of fact, current features represent oversimplified descriptors of brain functioning. In the last decade, growing evidence has shown that the brain works as a networked system composed of multiple specialized and spatially distributed areas that dynamically integrate information. While more complex, looking at how remote brain regions functionally interact represents a grounded alternative to better describe brain functioning. Thanks to recent advances in network science, i.e. a modern field that draws on graph theory, statistical mechanics, data mining and inferential modelling, scientists have now powerful means to characterize complex brain networks derived from neuroimaging data. Notably, summary features can be extracted from these networks to quantitatively measure specific organizational properties across a variety of topological scales. In this topical review, we aim to provide the state-of-the-art supporting the development of a network theoretic approach as a promising tool for understanding BCIs and improve usability

    An EEG-based perceptual function integration network for application to drowsy driving

    Full text link
    © 2015 Elsevier B.V. All rights reserved. Drowsy driving is among the most critical causes of fatal crashes. Thus, the development of an effective algorithm for detecting a driver's cognitive state demands immediate attention. For decades, studies have observed clear evidence using electroencephalography that the brain's rhythmic activities fluctuate from alertness to drowsiness. Recognition of this physiological signal is the major consideration of neural engineering for designing a feasible countermeasure. This study proposed a perceptual function integration system which used spectral features from multiple independent brain sources for application to recognize the driver's vigilance state. The analysis of brain spectral dynamics demonstrated physiological evidenced that the activities of the multiple cortical sources were highly related to the changes of the vigilance state. The system performances showed a robust and improved accuracy as much as 88% higher than any of results performed by a single-source approach

    Eigenvector Methods for Analysis of Human PPG, ECG and EEG Signals

    Full text link

    Single-Trial Extraction of Pure Somatosensory Evoked Potential Based on Expectation Maximization Approach

    Get PDF
    published_or_final_versio
    corecore