CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
An EEG-based perceptual function integration network for application to drowsy driving
Authors
CH Chuang
CS Huang
LW Ko
CT Lin
Publication date
1 January 2015
Publisher
'Elsevier BV'
Doi
Abstract
© 2015 Elsevier B.V. All rights reserved. Drowsy driving is among the most critical causes of fatal crashes. Thus, the development of an effective algorithm for detecting a driver's cognitive state demands immediate attention. For decades, studies have observed clear evidence using electroencephalography that the brain's rhythmic activities fluctuate from alertness to drowsiness. Recognition of this physiological signal is the major consideration of neural engineering for designing a feasible countermeasure. This study proposed a perceptual function integration system which used spectral features from multiple independent brain sources for application to recognize the driver's vigilance state. The analysis of brain spectral dynamics demonstrated physiological evidenced that the activities of the multiple cortical sources were highly related to the changes of the vigilance state. The system performances showed a robust and improved accuracy as much as 88% higher than any of results performed by a single-source approach
Similar works
Full text
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1016%2Fj.knosys.20...
Last time updated on 11/11/2020
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017