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Abstract Reliable analysis of electroencephalogram

(EEG) signals is crucial that could lead the way to correct

diagnostic and therapeutic methods for the treatment of

patients with neurological abnormalities, especially epi-

lepsy. This paper presents a novel analysis system for

detecting epileptic seizure from EEG signals, which uses

statistical features based on optimum allocation technique

(OAT) with logistic model trees (LMT). The analysis

involves applying the OAT to select representative EEG

signals that reflect the entire database. Then, some statis-

tical features are extracted from these EEG signals and the

obtained feature set is fed into the LMT classification

model to detect epileptic seizure. To test the consistency of

the proposed method, all experiments are carried out on a

benchmark EEG dataset and repeated twenty times with the

same parameters in the detection process, and the average

values of the performance parameters are reported. The

results show very high detection performances for each

class, and also confirm the consistency of the proposed

method in the repeating process. The proposed method

outperforms some state-of-the-art methods of epileptic

EEG signal detection using the same EEG dataset.

Keywords Electroencephalogram (EEG) � Epileptic
seizure � Optimum allocation technique (OAT) � Logistic
model trees (LMT) � Classification � Feature extraction

1 Introduction

Nowadays, the detection of EEG signals is an important

key issue in biomedical research for diagnosis and evalu-

ation. The design of multiclass electroencephalogram

(EEG) signal detection is a very challenging task because

of the need to extract representative patterns from multi-

dimensional time series generated from EEG measure-

ments [1]. Efficiently detecting epileptic seizure EEG

signals is beneficial for handling neurological abnormali-

ties and also for evaluating the physiological state of the

brain for a broad range of applications in biomedical

community. EEG signals indicate the electrical activity of

the brain and contain useful information about the brain

state to study brain function [2]. The identification of dif-

ferent category EEG signals is traditionally performed by

experts based on the visual interpretation. The manual

scoring is subject to human errors and it is time consuming,

costly process, and not sufficient enough for reliable

information [3, 4]. Thus, there is an ever-increasing need

for developing automatic systems to evaluate and diagnose

of epileptic seizure EEG signals to prevent the possibility

of the analyst missing information.

In order to perform the detection of signal’s category,

first the most important task is to extract distinguishing

features or characteristics from EEG data that can describe

the morphologies or the key properties of the signals [5].

The features significantly affect the accuracy of detecting

EEG signals [6]. The features characterizing the original
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EEG are used as the input of a classifier to differentiate

different categories of EEGs.

Observing these challenges, this paper looks at the idea

of the sampling for getting representative information from

raw EEG data for the detection of epileptic seizure EEG

signals. A structure is developed for the detection of

epileptic seizure EEG signals based on sampling for the

feature extraction stage by proposing optimum allocation

sampling technique (OAT). A detailed descriptions of the

OAT are discussed in Sect. 3.1. The proposed approach

consists of the following steps:

(1) the whole EEG signals of a class (a category) are

divided into several groups according to a particular

time period;

(2) a representative sample from each group of a class is

drawn using the OAT. The ‘OAT’ set is then

developed by combining all of the samples from

each group of that class;

(3) a set of descriptive features are extracted from the

OAT set of that class;

(4) the same procedure is applied for all of the classes of

EEG data. The accumulation of all features from all

of the classes constitutes a feature vector for the

OAT scheme. The collection of all features from all

class of EEG signals for the OAT scheme is

employed as an input set in the classifier.

In order to find out an effective model with the highest

accuracy for detection of multi-category EEG signals, in

this paper, we test an effective machine learning tech-

niques, namely, logistic models trees (LMT) on the com-

posite features. To evaluate the performance of the

classifiers, we apply cross-validation procedure to create

training and testing sets. The proposed approach is also

used to other two well-known classifiers, namely multi-

nomial logistic regression with ridge estimator (MLR) and

support vector machine (SVM) on the same competitive

features. The experimental results show that the proposed

algorithms can detect reasonably for each class of EEG

signals by using the LRT classifier.

The rest of the paper is organized as follows. We present

a brief overview of multiclass EEG classification tech-

niques in Sect. 2. Section 3 presents a description of the

proposed methodology in details. In this section, we also

briefly describe the three classifiers and the features

extraction methods used in this paper. The description of

benchmark EEG data and experimental design is provided

in Sect. 4. In Section 5, we present the experimental results

of the three classifiers with a detailed discussion. Finally,

concluding remarks are included in Sect. 6.

2 Related work

This work is related to several multiclass EEG signal

classifications techniques in the literature. Siuly and Li [1]

proposed a statistical framework for multiclass EEG sig-

nal classifications. They developed an optimum allocation

scheme based on the variability of observation within a

group (based on specific time) of the EEG data and

selected a representative sample. The representatives were

fed to the least square SVM (LS-SVM) classifier instead

of taking representative features that may be a limit for

further consideration of a detection technique. Later, Siuly

et al. [5] proposed a sampling-based approach for the

classification of multi-category EEG signals. The work

presented in this paper is similar to them but we use a

logistic model trees (LMT) instead of k-nearest neighbour

(k-NN). An approach based on a cascade of wavelet-ap-

proximate entropy was introduced by Shen et al. [7] for

the feature extraction in the EEG signal classification.

They tested three existing methods, SVM, k-nearest

neighbour (k-NN), and radial basis function neural net-

work (RBFNN), and determined the classifier of best

performance. Acharjee and Shahnaz [8] had a study on

twelve Cohen class kernel functions to transform EEG

data in order to facilitate the time frequency analysis. The

transformed data formulated a feature vector consisting of

modular energy and modular entropy, and the feature

vector was fed to an artificial neural network (ANN)

classifier. Murugavel et al. [9] had conducted a study

based on Lyapunov feature and a multiclass SVM for the

detection of EEG signals. Ubeyli [10] presented an

approach that integrated automatic diagnOATic systems

with spectral analysis techniques for EEG signal classifi-

cation. The wavelet coefficients and power spectral den-

sity (PSD) values obtained by eigenvector methods were

used as features, and these features were fed to each of

the seven classification algorithms (SVM, recurrent neural

networks (RNN), PNN, mixture of experts (ME), modi-

fied mixture of experts (MME), combined neural net-

works (CNN), and multilayer perceptron neural network

(MLPNN)). Ubeyli [11] provided another algorithm based

on eigenvector methods and multiclass SVMs with the

ECOC for the classification of EEG signals. In the feature

extraction stage, three eigenvector methods such as the

Pisarenko, music, and minimum norm were used to obtain

the PSD values of the EEG signals that were employed as

the input of the multiclass SVMs. For the detection of

multiclass EEG signals, Guler and Ubeyli [12] had

examined again SVM, PNN, and MLPNN on wavelet

coefficients and Lyapunov exponents features.
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3 Methodology

The proposed technique presented in this paper is depicted

in Fig. 1 and is composed of the following three steps:

(1) First, divide the whole EEG signal of a class (e.g.

healthy, seizure-free, and seizure) into several seg-

ments based on specific time interval and then select

representative samples by using OAT from each and

every segment of the entire signal data of that

category. The reason of segmentation is to properly

account for possible stationeries as signal processing

methods require stationary of signals, while EEG

signals are non-stationary, aperiodic, and the mag-

nitudes of the signals are changed over time. The

time period is determined viewing the signals

periodic patterns in each class within a time

casement. As can be seen in Fig. 1, in this study,

the EEG signals of each class is divided into k non-

overlapping segments denoted as Seg1, Seg2,…,Segk
considering a particular time period. Then, the

representative observations are selected from each

segment by the OAT.

(2) Extract representative features from the OAT seg-

ments are to represent the distribution of data pattern

and then to integrate all of the features of each class

in a matrix, called feature vector set.

(3) Use three different machine learning detection

techniques, namely LMT, MLR, and SVM for the

detection of epileptic seizure EEG signals as shown

in Fig. 1.

3.1 Optimum allocation sampling technique (OAT)

In this scenario, we firstly determine the required sample

size from the whole EEG signals of a particular class with a

desired confidence interval and confidence level. The

required sample size of the whole data of a class is deter-

mined by using Eqs. (1) and (2) [1].

n0 ¼
z2 � p� ð1� pÞ

d2
; ð1Þ

where n0 is the sample size; z is the standard normal variate

(Z-value) for the desired confidence level; p is the assumed

proportion in the target population estimated to have a

particular characteristic; and d is the margin of error or the

desired level of precision. If the number of observation in a

particular class is known as N, we use the following for-

mula to determine the sample size (n) in each class.

n ¼ n0

1þ n0�1
N

ð2Þ

Once we determined the sample size (n), the next step is

to determine the number of sample from each and every

segment. We use OAT scheme in order to determine the

required sample from each segment using Eq. (3) that

considers the variability among the signals in each seg-

ment. A detail description of the OAT is available in ref-

erences [1, 5].

nðiÞ ¼
Ni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pp
j�1 S

2
ij

q

Pk
i�1 Ni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pp
j�1 S

2
ij

q� �� n i ¼ 1; 2; . . .; k;

j ¼ 1; 2; . . .; p;

ð3Þ

where nðiÞ is the required sample size of the ith Seg; Ni is

the data size of the ith Seg; s2ij is the variance of the jth

channel of the ith Seg; and n is the sample size of the EEG

recording of a class obtained. Then all of the selected

samples from the segments of each class are united in a set

(named OAT set) and representative characteristics are

calculated from the OAT set as discussed in Sect. 3.3.

3.2 Feature extraction

The feature extraction process transforms the original sig-

nals into a feature vector. These features represent the

behaviours of the EEG signals, which are particularly

significant for recognition and diagnosing purposes. In this

Seg1

Seg2

..……. 

Segk

Decision 
making OAT 

Feature 
Detection by 

machine leaning 
method

Feature 
extraction 

EEG 
signals of 

a class 

Fig. 1 Scheme of the proposed method for the detection of epileptic seizure signals
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paper, the eleven statistical features from each segment of

EEG channel data are extracted as the valuable parameters

for the representation of the characteristics of the original

EEG signals which are mean (XMean), median (XMe), mode

(XMo), standard deviation (XSD), first quartile (XQ1), third

quartile (XQ3), inter-quartile range (XIQR), skewness (Xb1),

kurtosis (Xb2), minimum (XMin), and maximum (XMax). It is

noted that these features are the most representative values

to describe the original EEG signal in each segment. The

feature set is denoted by {XMean, XMe, XMo, XQ1, XQ3, XIQR,

XSD, Xb1,b2, XMin, XMax}. The accumulations of all

obtained features from all segments of all classes are

employed as the input for the three different classifiers.

3.3 Detection

In this paper, three classifiers such as LMT, MLR, and

SVM are used to evaluate the performance of the OAT

feature set. The reason for choosing these classifiers for this

study is its simplicity and effectiveness in implementation.

They are also very powerful and fastest learning algorithm

that examines all its training input for classification in this

area. The following sections provide a brief idea about the

classification methods that are used in this research.

3.3.1 Logistic model trees (LMT)

LMT have been shown to be very accurate and compact

classifiers [13]. LMT are born out of the idea of combining

two complementary classification schemes: linear logistic

regression and tree induction. It has been shown that LMT

perform competitively with other state-of-the-art classifiers

such as boosted decision trees while being easier to inter-

pret [13]. For the details of the LMT induction algorithm,

the reader should consult [13].

3.3.2 Multinomial logistic regression with a ridge

estimator (MLR)

MLR has become increasingly popular with the easy

availability of appropriate computer routines. Ridge esti-

mators are used in MLR to improve the parameter esti-

mates and to diminish the error made by further prediction

when maximum-likelihood estimators (MLE) are non-

unique and infinite to fit data. When the number of

explanatory variables is relatively large and or when the

explanatory variables are highly correlated, the estimates

of parameters are unstable, which means they are not

uniquely defined (some are infinite) and/or the maximum

of log likelihood is achieved at 0 [14, 15]. In this situation,

ridge estimators are used to generate finiteness and

uniqueness of MLE to overcome such problems. For the

details of the MLR induction algorithm, the reader should

consult [14, 15].

3.3.3 Support vector machine (SVM)

SVM is the most popular machines learning tool that can

classify data separated by non-linear and linear boundaries,

originated from Vapnik’s statistical learning theory

[16].The main concepts of the SVM are to first transform

input data into a higher dimensional space and then con-

struct an optimal separating hyper plane (OSH) between

the two classes in the transformed space [17, 18]. Those

data vectors nearest to the constructed line in the trans-

formed space are called the support vectors that contain

valuable information regarding the OSH. SVM is an

approximate implementation of the ‘‘method of structural

risk minimization’’ aiming to attend low probability of

generalization error. In most real-life problems (including

our problem), the data are not linearly separable. In order to

solve non-linear problems, SVMs use a kernel function [17,

18], which allows better fitting of the hyperplane to more

general datasets. In more recent times, SVMs have been

extended to solve multiclass-classification problems. One

frequently used method in practice is to use a set of pair-

wise classifiers, based on one-against-one decomposition

[18]. For the details of the SVM induction algorithm, the

reader should consult [16–18].

4 Experimental design

4.1 Training and testing: cross cvalidation

There are many choices of how to divide the data into

training and test sets [21]. In order to reduce the bias of

training and test data, we propose employing k-fold cross-

validation technique [21–24] considering k = 10. This

technique is implemented to create the training set and

testing set for evaluation. Generally, with k-fold cross

validation, feature vector set is divided into k subsets of

(approximately) equal size. The proposed classifiers are

trained and tested k times, in which one of the subsets from

training is left out each time and tested on the omitted

subset. Each time, one of the subsets (folds) is used as a test

set and the other k-1 subsets (folds) are put together to

form a training set. Then, the average accuracy across all

k trials is computed for consideration.

4.2 Performance evaluation of classification schemes

Criteria for evaluating the performance of a classifier are an

important part in its design. In this paper, we assess the

performance of the proposed classifiers through most of the
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criteria that are usually used in biomedical research such as

sensitivity, specificity, precision, F-measure, ROC, and

total classification accuracy. These criteria allow estimat-

ing the behaviour of the classifiers on the extracted feature

data. The evaluation measure most used in practice is the

accuracy rate which evaluates effectiveness of the classifier

by its percentage of correct prediction. More detailed

descriptions of these evaluation criteria are discussed in

[5].

5 Data, experimental results, and discussions

We used the EEG time series database [19] which is

publically available and is considered as a benchmark of

testing classification techniques. The detailed descriptions

of the dataset are discussed by Andrzejak et al. [20]. To

validate the effectiveness of the proposed approach, we

examine the scheme on the epileptic EEG database as

discussed in Sect. 4.1. The experimental results are carried

out in MATLAB (version 7.14, R2012a). We experimented

three classification algorithms: LMT, MLR with a ridge

estimator, and SVM implemented in WEKA machine

learning toolkit [25]. LibSVM (version 3.2) [26] is used for

the SVM classification in WEKA. In all of these cases, we

consider the parameter values that have been used in

WEKA default parameters settings.

According to our framework as discussed in Sect. 3, we

divide each of the three classes (healthy, seizure-free, and

seizure) into four parts (k = 4). As every channel of a class

contains 4097 data points of 23.6 s, in each class, the sizes

of each of the first three parts 1024 and the size of the

fourth part are 1025, and each segment contains the data

for 5.9 s. Then, we select a sample from each of the four

parts in every class using the OAT scheme as discussed in

Sect. 3. For this scheme, first determine the number of

items need to be selected from each class, then determine

the number of items from each and every part depending on

the variability of the observations in that part. The required

sample size under OAT scheme is given in Table 1.

After selection of the samples from each of the four

parts of each dataset by the OAT procedure, we combine

all four samples of a dataset in a total set called ‘‘Total

OAT’’ of that set. In this study, finally we combine the

‘‘Total OAT’’ of set A and set B denoted as the combined

OAT sample for healthy set and for set C and set D denoted

as the combined OAT sample of seizure-free set. Then we

extract eleven features separately from the ‘‘Combined

OAT sample’’ set of each class (healthy, seizure-free, and

seizure) to represent the distribution pattern of that class.

Each set of A and B consists of 100 single channel EEG

signals, thus the size of feature vector for the healthy class

is 100 9 11 in the OAT schemes. Similarly, the size of

feature vector for both the seizure-free class and the seizure

class is 100 9 11. Thus, the size of whole feature vector

for all three classes (health, seizure-free, and seizure) is

300 9 11. In this study, 10-fold cross-validation process is

employed to generate training set and testing set for per-

formance evaluation of the proposed algorithms. In each of

the 10 iterations, the training set holds 250 9 11 data

point, while the testing set contains 50 9 11 data point.

Here the training set is used to train the classifier and the

testing set is used to evaluate the accuracy and the effec-

tiveness of the classifiers for the detection of the multiclass

EEG data. In each classification system (LMT, MLR with a

ridge estimator, and SVM), the training set is fed into the

three different classifiers as the input to train the classifier

and the performances are assessed with the testing test. It

should be noted that in order to determine the consistency

of the approach, each and every experiment is repeated

twenty times and the average values of different perfor-

mance parameters are reported.

To illustrate the distribution of different features (11

features) of the OAT scheme, Fig. 2 presents a side by side

box plot of different features. For example, the first box

plot represents the distribution of the mean, the second box

plot represents the distribution of the median, and so on. It

should be noted that the features are plotted combining all

the healthy, seizure-free, and seizure classes. As we can see

from Fig. 2, the statistical features of mean, minimum, and

the maximum obtained from the OAT scheme are almost

same (constant) and so there is no well-designed distribu-

tions. For other features, the distributions are asymmetric

(either positively skewed or negatively skewed) with some

outliers. The outliers are expected as the features come

from all classes of healthy, seizure-free, and seizure set.

Table 1 Sample sizes by the

OAT scheme from each

segment of each class

Different classes Data sets OAT procedure Combined

OAT sample
Seg1 Seg2 Seg3 Seg4 Total OAT

Healthy set Set A 797 822 837 832 3288 6576

Set B 815 840 805 828 3288

Seizure-free set Set C 839 841 780 828 3288 6576

Set D 828 833 788 839 3288

Seizure set Set E 833 844 815 796 3288 3288

Epileptic seizure detection from EEG signals using logistic model trees

123



As said before, to explore the performance of the OAT

features, we tested three machine leaning methods: LRT,

MLR with a ridge estimator, and SVM for detection of

epileptic seizure EEG signals (healthy, seizure-free, and

seizure). Table 2 reports the detection performance for the

LRT classifier for the OAT features. This table provides

different performance parameter (sensitivity, specificity,

precision, F-measure, and ROC) values for each of the

three classes (healthy, seizure-free, and seizure) in addition

to the overall performance. As shown in Table 2, all of the

performances indicators demonstrate excellent detection of

three categories (healthy, seizure-free, and seizure) EEG

signals by the LMT classifier with OAT scheme. In this

case, all of the measurements of sensitivity, specificity,

precision, F-measure, and ROC for seizure class are 99, 99,

98.5, 98.5, and 99.4 %, respectively The total classification

accuracy is 95.33 %, and the other performance parameters

(sensitivity, specificity, precision, F-measure, and ROC)

are at least 92 % for both healthy and seizure-free classes.

Tables 3 and 4 display the classification results of the

MLR and SVM classifiers under the OAT approach. As

shown in Table 3, the overall classification accuracy is

82.67 % for the OAT scheme based on MLR approach. In

this table, the sensitivity and specificity for seizure class

are 98 and 100 %, whereas these performances for healthy

class are 80.0 and 85.0 % and for seizure-free class are

70.0 and 89.0 %, respectively.

We can also see in Table 4 that the OAT technique

achieves only 36.0 % of the overall classification accuracy

for the SVM classifier. This may be due to that fact that,

under the OAT approach, the statistical features do not

represent the whole EEG signals for the SVM classifier.

According to the classification results as displayed in

Tables 2, 3 and 4, it is obvious that the OAT scheme is a

very reasonable way for achieving representative
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Fig. 2 Box plot of obtained eleven features in the whole feature set to

show their distribution

Table 2 Performances of the LMT classifier on the OAT scheme

Class Sensitivity (%) Specificity (%) Precision (%) F-measure (%) ROC Total accuracy (%)

Healthy 95.0 97.0 94.10 94.50 0.993 95.33

Seizure-fee 92.0 97.0 93.90 92.90 0.978

Seizure 99.0 99.0 98.0 98.50 0.994

Overall 95.30 97.70 95.30 95.30 0.988

Table 3 Performances of the MLR classifier on the OAT scheme

Class Sensitivity (%) Specificity (%) Precision (%) F-measure (%) ROC Total accuracy (%)

Healthy 80.0 85.0 72.70 76.20 0.901 82.67

Seizure-fee 70.0 89.0 76.10 72.90 0.894

Seizure 98.0 100.0 100.0 99.0 0.999

Overall 82.70 91.30 82.90 82.70 0.932

Table 4 Performances of the SVM classifier on the OAT scheme

Class Sensitivity (%) Specificity (%) Precision (%) F-measure (%) ROC Total accuracy (%)

Healthy 4.0 100 100 7.70 0.52 36.0

Seizure-fee 4.0 100 100 7.70 0.52

Seizure 100 4.0 34.2 51.0 0.52

Overall 36.0 68.0 78.10 22.10 0.52
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information from various categories EEG signals and the

LMT classifier is the best suited with the OAT-based fea-

tures for detecting multi-category EEG signals.

Figure 3 displays a stacked bar diagram showing the

overall classification accuracy, kappa value, and the mean

absolute error. The highest overall accuracy and kappa

values represent the paramount performance, whereas the

highest mean absolute error represents worst performance.

As we can see from Fig. 3, the highest overall accuracy and

kappa value and the lowest mean absolute are achieved for

the LMT classifier. The SVM classifier has a worst per-

formance in respect of all the performance parameters of

overall accuracy, kappa value, and the mean absolute error.

On the other hand, the MLR classifier has a moderate

performance. Thus, the statistical features obtained from

the OAT scheme can be used as an input vector and the

LMT can be used as a detection technique for detecting

epileptic seizure EEG signals.

6 Conclusion

Accurate and perfect detection of epileptic seizure EEG

signals is a complicated problem, requiring the analysis of

large sets of EEG data. This paper proposes a structure

based on sampling and machine learning approach to detect

multi-category EEG signals. The OAT scheme are

employed to select representative samples from different

parts of multi-category EEG signals. We tested this

methodology on benchmark epileptic EEG database. To

determine the consistency of the approach, each and every

experiment is repeated twenty times and the average values

of the performances are reported. The experimental results

show that the features obtained from the OAT well repre-

sent the epileptic seizure EEG signals and achieve the

consistent detection rates in terms of overall classification

accuracy, class specific sensitivity, specificity, and the

other detection parameters with the LMT classifier. Thus,

the OAT can be used as a perfect scheme for feature

extractions, while the LMT can be considered as an opti-

mum choice with it for the detection of multi-category

EEG signals. The proposed method may be applied for

analysis and classification of other non-stationary

biomedical signals.
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