236 research outputs found

    Improving the performance of gas sensor systems with advanced data evaluation, operation, and calibration methods

    Get PDF
    In order to facilitate the widespread use of gas sensors, some challenges must still be overcome. Many of those are related to the reliable quantification of ultra-low concentrations of specific compounds in a background of other gases. This thesis focuses on three important items in the measurement chain: sensor material and operating modes, evaluation of the resulting data, and test gas generation for efficient sensor calibration. New operating modes and materials for gas-sensitive field-effect transistors have been investigated. Tungsten trioxide as gate oxide can improve the selectivity to hazardous volatile organic compounds like naphthalene even in a strong and variable ethanol background. The influence of gate bias and ultraviolet light has been studied with respect to the transport of oxygen anions on the sensor surface and was used to improve classification and quantification of different gases. DAV3E, an internationally recognized MATLAB-based toolbox for the evaluation of cyclic sensor data, has been developed and published as opensource. It provides a user-friendly graphical interface and specially tailored algorithms from multivariate statistics. The laboratory tests conducted during this project have been extended with an interlaboratory study and a field test, both yielding valuable insights for future, more complex sensor calibration. A novel, efficient calibration approach has been proposed and evaluated with ten different gas sensor systems.Vor der weitverbreiteten Nutzung von Gassensoren stehen noch einige Herausforderungen, insbesondere die zuverlässige Messung ultrakleiner Konzentrationen bestimmter Substanzen vor einem Hintergrund anderer Gase. Diese Arbeit konzentriert sich auf drei wichtige Glieder der erforderlichen Messkette: Material und Betriebsweise von Sensoren, Auswertung der anfallenden Daten sowie Generierung von Testgasen zur effizienten Kalibrierung. Neue Betriebsmodi und Materialien für gassensitive Feldeffekttransistoren wurden getestet. Wolframtrioxid kann als Gateoxid die Selektivität für flüchtige organische Verbindungen wie Naphthalin in einem variierenden Ethanolhintergrund verbessern. Der Einfluss von Gate-Bias und ultravioletter Strahlung auf die Bewegung von Sauerstoffionen auf der Oberfläche wurde untersucht und genutzt, um die Klassifizierung und Quantifizierung von Gasen zu verbessern. Eine international anerkannte MATLAB-Toolbox zur Auswertung zyklischer Sensordaten, DAV3E, wurde entwickelt und als open source veröffentlicht. Sie stellt eine nutzerfreundliche Oberfläche und speziell angepasste Algorithmen der multivariaten Statistik zur Verfügung. Die Laborexperimente wurden ergänzt durch vergleichende Messungen in zwei unabhängigen Laboren und einen Feldtest, womit wertvolle Erkenntnisse für die künftig notwendige, komplexe Kalibrierung von Sensoren gewonnen wurden. Ein neuartiger, effizienter Kalibrieransatz wurde vorgestellt und mit zehn unterschiedlichen Sensorsystemen evaluiert

    Enhancement of the Sensory Capabilities of Mobile Robots through Artificial Olfaction

    Get PDF
    La presente tesis abarca varios aspectos del olfato artificial u olfato robótico, la capacidad de percibir información sobre la composición del aire que rodea a un sistema automático. En primer lugar, se desarrolla una nariz electrónica, un instrumento que combina sensores de gas de bajas prestaciones con un algoritmo de clasificación para medir e identificar gases. Aunque esta tecnología ya existía previamente, se aplica un nuevo enfoque que busca reducir las dimensiones y consumo para poder instalarlas en robots móviles, a la vez que se aumenta el número de gases detectables mediante un diseño modular. Posteriormente, se estudia la estrategia óptima para encontrar fugas de gas con un robot equipado con este tipo de narices electrónicas. Para ello se llevan a cabos varios experimentos basados en teleoperación para entender como afectan los sensores del robot al éxito de la tarea, de lo cual se deriva finalmente un algoritmo para generar con robots autónomos mapas de gas de un entorno dado, el cual se inspira en el comportamiento humano, a saber, maximizar la información conocida sobre el entorno. La principal virtud de este método, además de realizar una exploración óptima del entorno, es su capacidad para funcionar en entornos muy complejos y sujetos a corrientes de vientos mediante un nuevo método que también se presenta en esta tesis. Finalmente, se presentan dos casos de aplicación en los que se identifica de forma automática con una nariz electrónica la calidad subjetiva del aire en entornos urbanos

    Sensing via signal analysis, analytics, and cyberbiometric patterns

    Get PDF
    Includes bibliographical references.2022 Fall.Internet-connected, or Internet of Things (IoT), sensor technologies have been increasingly incorporated into everyday technology and processes. Their functions are situationally dependent and have been used for vital recordings such as electrocardiograms, gait analysis and step counting, fall detection, and environmental analysis. For instance, environmental sensors, which exist through various technologies, are used to monitor numerous domains, including but not limited to pollution, water quality, and the presence of biota, among others. Past research into IoT sensors has varied depending on the technology. For instance, previous environmental gas sensor IoT research has focused on (i) the development of these sensors for increased sensitivity and increased lifetimes, (ii) integration of these sensors into sensor arrays to combat cross-sensitivity and background interferences, and (iii) sensor network development, including communication between widely dispersed sensors in a large-scale environment. IoT inertial measurement units (IMU's), such as accelerometers and gyroscopes, have been previously researched for gait analysis, movement detection, and gesture recognition, which are often related to human-computer interface (HCI). Methods of IoT Device feature-based pattern recognition for machine learning (ML) and artificial intelligence (AI) are frequently investigated as well, including primitive classification methods and deep learning techniques. The result of this research gives insight into each of these topics individually, i.e., using a specific sensor technology to detect carbon monoxide in an indoor environment, or using accelerometer readings for gesture recognition. Less research has been performed on analyzing the systems aspects of the IoT sensors themselves. However, an important part of attaining overall situational awareness is authenticating the surroundings, which in the case of IoT means the individual sensors, humans interacting with the sensors, and other elements of the surroundings. There is a clear opportunity for the systematic evaluation of the identity and performance of an IoT sensor/sensor array within a system that is to be utilized for "full situational awareness". This awareness may include (i) non-invasive diagnostics (i.e., what is occurring inside the body), (ii) exposure analysis (i.e., what has gone into the body through both respiratory and eating/drinking pathways), and (iii) potential risk of exposure (i.e., what the body is exposed to environmentally). Simultaneously, the system has the capability to harbor security measures through the same situational assessment in the form of multiple levels of biometrics. Through the interconnective abilities of the IoT sensors, it is possible to integrate these capabilities into one portable, hand-held system. The system will exist within a "magic wand", which will be used to collect the various data needed to assess the environment of the user, both inside and outside of their bodies. The device can also be used to authenticate the user, as well as the system components, to discover potential deception within the system. This research introduces levels of biometrics for various scenarios through the investigation of challenge-based biometrics; that is, biometrics based upon how the sensor, user, or subject of study responds to a challenge. These will be applied to multiple facets surrounding "situational awareness" for living beings, non-human beings, and non-living items or objects (which we have termed "abiometrics"). Gesture recognition for intent of sensing was first investigated as a means of deliberate activation of sensors/sensor arrays for situational awareness while providing a level of user authentication through biometrics. Equine gait analysis was examined next, and the level of injury in the lame limbs of the horse was quantitatively measured and classified using data from IoT sensors. Finally, a method of evaluating the identity and health of a sensor/sensory array was examined through different challenges to their environments

    Electronics for Sensors

    Get PDF
    The aim of this Special Issue is to explore new advanced solutions in electronic systems and interfaces to be employed in sensors, describing best practices, implementations, and applications. The selected papers in particular concern photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) interfaces and applications, techniques for monitoring radiation levels, electronics for biomedical applications, design and applications of time-to-digital converters, interfaces for image sensors, and general-purpose theory and topologies for electronic interfaces

    Advanced Occupancy Measurement Using Sensor Fusion

    Get PDF
    With roughly about half of the energy used in buildings attributed to Heating, Ventilation, and Air conditioning (HVAC) systems, there is clearly great potential for energy saving through improved building operations. Accurate knowledge of localised and real-time occupancy numbers can have compelling control applications for HVAC systems. However, existing technologies applied for building occupancy measurements are limited, such that a precise and reliable occupant count is difficult to obtain. For example, passive infrared (PIR) sensors commonly used for occupancy sensing in lighting control applications cannot differentiate between occupants grouped together, video sensing is often limited by privacy concerns, atmospheric gas sensors (such as CO2 sensors) may be affected by the presence of electromagnetic (EMI) interference, and may not show clear links between occupancy and sensor values. Past studies have indicated the need for a heterogeneous multi-sensory fusion approach for occupancy detection to address the short-comings of existing occupancy detection systems. The aim of this research is to develop an advanced instrumentation strategy to monitor occupancy levels in non-domestic buildings, whilst facilitating the lowering of energy use and also maintaining an acceptable indoor climate. Accordingly, a novel multi-sensor based approach for occupancy detection in open-plan office spaces is proposed. The approach combined information from various low-cost and non-intrusive indoor environmental sensors, with the aim to merge advantages of various sensors, whilst minimising their weaknesses. The proposed approach offered the potential for explicit information indicating occupancy levels to be captured. The proposed occupancy monitoring strategy has two main components; hardware system implementation and data processing. The hardware system implementation included a custom made sound sensor and refinement of CO2 sensors for EMI mitigation. Two test beds were designed and implemented for supporting the research studies, including proof-of-concept, and experimental studies. Data processing was carried out in several stages with the ultimate goal being to detect occupancy levels. Firstly, interested features were extracted from all sensory data collected, and then a symmetrical uncertainty analysis was applied to determine the predictive strength of individual sensor features. Thirdly, a candidate features subset was determined using a genetic based search. Finally, a back-propagation neural network model was adopted to fuse candidate multi-sensory features for estimation of occupancy levels. Several test cases were implemented to demonstrate and evaluate the effectiveness and feasibility of the proposed occupancy detection approach. Results have shown the potential of the proposed heterogeneous multi-sensor fusion based approach as an advanced strategy for the development of reliable occupancy detection systems in open-plan office buildings, which can be capable of facilitating improved control of building services. In summary, the proposed approach has the potential to: (1) Detect occupancy levels with an accuracy reaching 84.59% during occupied instances (2) capable of maintaining average occupancy detection accuracy of 61.01%, in the event of sensor failure or drop-off (such as CO2 sensors drop-off), (3) capable of utilising just sound and motion sensors for occupancy levels monitoring in a naturally ventilated space, (4) capable of facilitating potential daily energy savings reaching 53%, if implemented for occupancy-driven ventilation control

    Proceedings of Abstracts, School of Physics, Engineering and Computer Science Research Conference 2022

    Get PDF
    © 2022 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Plenary by Prof. Timothy Foat, ‘Indoor dispersion at Dstl and its recent application to COVID-19 transmission’ is © Crown copyright (2022), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected] present proceedings record the abstracts submitted and accepted for presentation at SPECS 2022, the second edition of the School of Physics, Engineering and Computer Science Research Conference that took place online, the 12th April 2022

    Micro-hotplate based CMOS sensor for smart gas and odour detection

    Get PDF
    Low cost, highly sensitive, miniature CMOS micro-hotplate based gas sensors have received great attention recently. The global sensor market is expanding rapidly with an expected increase of 5 ~ 8% grow thin the next five years. The application areas for a gas sensor include but are not limited to, air quality monitoring, industrial and laboratory conditions, military, and biomedical sectors. It is the key hardware component of an electronic nose, as well as the signal processing on the software side. In this thesis, both aspects of such a system were studied with new sensor technologies and improved signal processing algorithms. In addition, this thesis also described different applications and research projects using these sensor technologies and algorithms. A novel plasmonic structure was employed as an infrared source for anon- dispersive infrared gas sensor. This structure was based on a CMOS micro hot plate with three metal layers and periodic cylindrical dots to induce plasmon resonance, that allowed a tunable narrow band infrared radiation with high sensitivity and selectivity. Five gases were studied as target gases, namely, carbon monoxide, carbon dioxide, acetone, ammonia and hydrogen sulfide. These emitter sources were fabricated and characterised with a gascell, optical filters and commercial detectors under different gas concentrations and humidity levels. The results were promising with the lowest detection limit for ammonia at 10 ppm with 5 ppm resolution. On the data processing side, various signal processing methods were explored both on-board and on-board. Temperature modulation was the on-board method by switching the operating temperatures of a micro hotplate. This technique was proven to over come and reduce some typical sensor issues, such as drift, slow re-sponse/recovery speed (from tens of seconds to a few seconds) and even cross sensitivities. Off-board post processing methods were also studied, including principal component analysis, k-nearest neighbours, self-organising maps and shallow/deep neural networks. The results from these algorithms were compared and overall an 85% or higher classification accuracy could be achieved. This work showed the potential to discriminate gases/odours, which could lead to the development of a real-time discrimination algorithm for low cost wearable devices

    The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry

    Get PDF
    The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry was held on 1–15 July 2021. The scope of this online conference was to gather experts that are well-known worldwide who are currently working in chemical sensor technologies and to provide an online forum for the presention and discussion of new results. Throughout this event, topics of interest included, but were not limited to, the following: electrochemical devices and sensors; optical chemical sensors; mass-sensitive sensors; materials for chemical sensing; nano- and micro-technologies for sensing; chemical assays and validation; chemical sensor applications; analytical methods; gas sensors and apparatuses; electronic noses; electronic tongues; microfluidic devices; lab-on-a-chip; single-molecule sensing; nanosensors; and medico-diagnostic testing

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering
    corecore