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ABSTRACT 

SENSING VIA SIGNAL ANALYSIS, ANALYTICS, AND CYBERBIOMETRIC PATTERNS 

 

 Internet-connected, or Internet of Things (IoT), sensor technologies have been increasingly 

incorporated into everyday technology and processes. Their functions are situationally dependent 

and have been used for vital recordings such as electrocardiograms, gait analysis and step counting, 

fall detection, and environmental analysis. For instance, environmental sensors, which exist 

through various technologies, are used to monitor numerous domains, including but not limited to 

pollution, water quality, and the presence of biota, among others. 

 Past research into IoT sensors has varied depending on the technology. For instance, 

previous environmental gas sensor IoT research has focused on (i) the development of these 

sensors for increased sensitivity and increased lifetimes, (ii) integration of these sensors into sensor 

arrays to combat cross-sensitivity and background interferences, and (iii) sensor network 

development, including communication between widely dispersed sensors in a large-scale 

environment. IoT inertial measurement units (IMU’s), such as accelerometers and gyroscopes, 

have been previously researched for gait analysis, movement detection, and gesture recognition, 

which are often related to human-computer interface (HCI). Methods of IoT Device feature-based 

pattern recognition for machine learning (ML) and artificial intelligence (AI) are frequently 

investigated as well, including primitive classification methods and deep learning techniques. 

The result of this research gives insight into each of these topics individually, i.e., using a 

specific sensor technology to detect carbon monoxide in an indoor environment, or using 

accelerometer readings for gesture recognition. Less research has been performed on analyzing the 

systems aspects of the IoT sensors themselves. However, an important part of attaining overall 

situational awareness is authenticating the surroundings, which in the case of IoT means the 

individual sensors, humans interacting with the sensors, and other elements of the surroundings. 

There is a clear opportunity for the systematic evaluation of the identity and performance of an IoT 
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sensor/sensor array within a system that is to be utilized for “full situational awareness”. This 

awareness may include (i) non-invasive diagnostics (i.e., what is occurring inside the body), (ii) 

exposure analysis (i.e., what has gone into the body through both respiratory and eating/drinking 

pathways), and (iii) potential risk of exposure (i.e., what the body is exposed to environmentally). 

Simultaneously, the system has the capability to harbor security measures through the same 

situational assessment in the form of multiple levels of biometrics.  

Through the interconnective abilities of the IoT sensors, it is possible to integrate these 

capabilities into one portable, hand-held system. The system will exist within a “magic wand”, 

which will be used to collect the various data needed to assess the environment of the user, both 

inside and outside of their bodies. The device can also be used to authenticate the user, as well as 

the system components, to discover potential deception within the system. This research introduces 

levels of biometrics for various scenarios through the investigation of challenge-based biometrics; 

that is, biometrics based upon how the sensor, user, or subject of study responds to a challenge. 

These will be applied to multiple facets surrounding “situational awareness” for living beings, non-

human beings, and non-living items or objects (which we have termed “abiometrics”). Gesture 

recognition for intent of sensing was first investigated as a means of deliberate activation of 

sensors/sensor arrays for situational awareness while providing a level of user authentication 

through biometrics. Equine gait analysis was examined next, and the level of injury in the lame 

limbs of the horse was quantitatively measured and classified using data from IoT sensors. Finally, 

a method of evaluating the identity and health of a sensor/sensory array was examined through 

different challenges to their environments.  
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Chapter 1  
Introduction 

Over the past few years, network-enabled (Internet of Things, or IoT) sensors have been 

increasingly adopted for a wide variety of purposes. Sensors for air quality monitoring, movement 

and gait analysis, and location services have been increasingly adopted. In fact, the International 

Data Corporation (IDC) estimated that there will be 41.6 billion connected IoT devices by the year 

2025 [1]. This is five for every human on the planet. These sensors include, but are not limited to, 

gas sensors, pressure sensors, temperature and humidity sensors, miniaturized microphones, GPS 

units, and inertial measurements units (IMU), such as accelerometers and gyroscopes. The need 

for more comprehensive environmental monitoring due to a quickly changing climate is becoming 

more apparent, and the technological advancements in the field of IoT have made high-level 

monitoring more feasible. 

Implementation of environmental monitoring sensors, along with inter-network 

communication with other IoT devices for combined analyses, has yet to be widely executed to 

my knowledge. Error-free readings are important in usage such as (i) smart home systems, (ii) at-

home medical diagnostics, and (iii) environmental exposure analysis for individuals and whole 

communities. Over time, degradation of sensor accuracy has been noted, and methods to 

compensate for this have been theorized and tested, which will be discussed in Chapter 2. A 

reliable, robust description of a sensor’s health, however, has yet to be defined, and a systematic 

method to periodically evaluate it has yet to be developed. To do this, further model development 

in both hardware and software must be considered for short and long-term implementation of this 

technology. Ease of activation of these sensors for users of all ages and technological backgrounds 

is also important to consider when developing such a system. 

 The vast amount of data collection available with this system may require security 

measures such as multi-factor authentication to protect the individual’s privacy rights, and thereby 

ensure data security for the system. Without such protection, there are envisioned scenarios in 

which the data collected may reveal directly or through inference information that might violate 
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the Health Insurance Portability and Accountability Act (HIPAA). Therefore, if the dataset is de-

identified, the number of threats to the data producer (e.g., the user) decreases [2]. Patients in 

assisted care living, who are frequently less technologically grounded, would benefit from a form 

of system activation that concurrently provides security and privacy for the acquired data. Three 

important considerations for privacy include the frequency of data upload, the user focus (e.g., the 

anonymization, or lack thereof, of the user), and the proactivity of the user with the device (e.g., 

the control of collection frequency by the user) [3]. Recently, physical and continuous biometrics 

have been increasingly incorporated for multi-factor authentication through human-computer 

interface (HCI) in cellular devices, personal computers, and elsewhere. These methods can be 

simultaneously employed as biometrics; either individually as continuous biometrics, or in 

combination as hybrid biometrics [4]. This form of authentication is able to eliminate a level of 

identification (or at least reduce the exposure to a single type of biometric) while simultaneously 

adding user focus to the situation. 

A proposed method of combining the components of this system is through the use of a 

“magic wand”, which will harbor multiple IoT sensor technologies that will (i) include ease of 

activation through gesture recognition with intent of sensing, (ii) implement the appropriate 

sensor/sensor array and predictive modeling technique to give accurate and precise readings for 

analysis, (iii) simultaneously provide security through authentication with multiple levels of 

personal and “sensor biometrics” while also evaluating the “health”, or performance, of the utilized 

sensors to determine if replacement of these sensor(s)/sensor arrays is necessary. Potential 

components of the system will be analyzed for their practicality, cost, size, power consumption, 

and accuracy when combined with ML/AI methods. Ultimately, a more general system 

optimization can be formulated for different applications of interest. An extra example of an 

application of interest is demonstrated through a system to evaluate the health status of a horse 

through gait analysis and model development.  

This dissertation is organized as follows. In Chapter 2 a background on general IoT sensor 

technology and machine learning approaches is presented. Chapter 3 provides general details on 

the current implementation of these sensors into technology, and the potential for a meta-analytic 
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system for full “situational awareness” while providing security through user biometrics and 

“sensor biometrics” in the form of a “magic wand” system. Chapter 4 outlines improvements to 

the field of gesture recognition through the use of an optimized objective function that is combined 

with a support vector machine (SVM) and binary comparisons through assigned hamming codes 

and distances, along with a deep learning technique through the conversion of 1-D signals to 3-D 

images in combination with AlexNet. Finally, it covers a biometric authentication system design 

in which a “biometric VPN” (virtual private network), which will be described in detail, is 

maintained through multiple levels of classification and data partitioning of the user authentication. 

Chapter 5 describes how a similar process can be utilized to develop a model for gait analysis and 

prediction of multiple metrics of lameness through wearable sensors. Chapter 6 will outline the 

forensic identification and potential anomaly detection of different IoT environmental sensors 

(namely, MOS sensor technologies) through different environmental and analyte exposures. The 

dissertation concludes with a summary conclusion and identifies future research in Chapter 7.   
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Chapter 2  
Background 

To develop and assess approaches and classification methods for so-called “abiometrics” 

(application of biometric approaches to abiotic elements and systems) of Internet of Things (IoT) 

sensors, an understanding of the various technologies and related features are required. The 

following sections describe the origins of biometrics and IoT technologies, followed with general 

characteristics, functions, and important performance parameters associated with (i) gas sensors 

and (ii) inertial measurement units (IMU’s), such as accelerometers and gyroscopes, and their 

components. The sections continue with a description of the previous work in the fields of Human 

Activity Recognition (HAR) and gesture recognition; gait characterization and analysis for equine 

animals; and modeling, calibration, and processing for environmental sensors.  

2.1 Biometrics Overview 

 Biometrics refer to the assignment of identity through the measurement of physical 

attributes or behavior. Within the traditional triad of security, which includes knowledge, 

possession, and identity [5], biometrics would be considered a part of the identity category. 

Biometrics can be separated into three categories, which include physical, or physiological, 

biometrics; behavioral, or continuous, biometrics; and innate, or chemical, biometrics. Common 

forms of each are highlighted in Table 2.1 [4]. An example is an iris/retina scan, which is a form 

of a physical biometric. Selection of the type of biometric used depends on a number of factors, 

including the level of sensitivity of the information being accessed through the authentication or 

verification, whether authentication (1:N matching) or verification (1:1 matching) is of interest for 

access to the system, the recognition accuracy of the biometric trait, and the availability and 

embeddability of the technology required for measurement.  
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Table 2.1: Comparison between forms of biometrics [4].
 TYPE FORM 

PHYSICAL Face, fingerprint, hand, iris, retina 

BEHAVIORAL 
Arm sweep, handwriting, gesture, heartbeat, 

keystroke, voice, walking 

INNATE Genetic, tissue assay, mass spectroscopy 

 

 According to Dahia et. al [6], the three main biometric recognition tasks include 

enrollment, verification, and identification (Figure 2.1). The authors describe enrollment as “the 

template extracted from the input sample that is stored together with an identity reference”. 

Verification is the “identity reference that is used to retrieve a specific template from the gallery, 

which is then matched against the template extracted from the input sample to decide whether they 

belong to the same subject”. Finally, identification is when “the template extracted from the input 

sample is matched against all templates in the gallery to retrieve its identity reference” [6]. 

 

                          (a)                                                   (b)                                              (c) 

Figure 2.1: Three main biometric recognition tasks: (a) Identification, (b) enrollment, and (c) 
verification. Taken from Dahia et. al. (2019). 
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 Biometric recognition is based on the fundamental premise of distinctiveness and 

permanence of these physical and behavioral characteristics [7]. For behavioral biometrics, such 

as gait and handwriting, distinctiveness and permanence are weak, and thus very few systems have 

incorporated this type of biometric to date because of lack of adequate recognition accuracy as a 

result [8]. Fingerprints, face, and iris detections, however, have been incorporated into many 

commercial systems because of their strong distinctiveness and exceeding permanence compared 

to the former. Nevertheless, each of these modalities has a risk of spoof (including replay and 

replication) attacks, as well as issues for large-scale deployments. For instance, it was reported 

that 2% of the population does not have usable fingerprints for enrollment in fingerprint 

identification systems [7]. As physical biometrics are mostly one-time measurements, it is also 

important to consider that once access from an outsider is gained, there are no other roadblocks to 

get through. Admittance into a system with all the access rights and privileges of the user whose 

device has been infiltrated are then available until any sort of time-out is reached or the access is 

willingly released by the hacker. The deployment combination of different biometric modalities 

can ensure a desired level of security and flexibility in applications where spoof attacks are an 

issue, as it is difficult to spoof multiple modalities simultaneously. Combining more than one 

modality can also address problems like high error rate and can enhance recognition accuracy [9]. 

 Multi-modal biometrics refer to the combination of different forms of biometrics. Multi-

modal systems are often implemented to overcome limitations of each of the individual methods 

and to decrease or reduce the time in which no measurement is available for authentication or 

validation. An example of a multi-modal system is described in [10], in which a database of 10 

fingerprints, two iris scans, and a photograph of the face is used for biometric identification. In 

this reference, it is claimed that this system achieves de-duplication accuracy of more than 99% 

while also ensuring total inclusion, or the ability of every user to utilize the biometric system. 

However, as mentioned previously, even accuracy as high as this can still lead to misidentifications 

on the order of millions in countries like India, where the population far exceeds one billion people, 

and thus a robust system that allows for verification of the output in order to achieve even higher 

accuracy while also being able to recognize flaws is potentially greatly beneficial. Other 
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improvements include, but are not limited to, i) ease of use and ii) increase in overall 

distinctiveness and universality [11].  

 Applications of biometrics to living beings, specifically humans, have been widely studied, 

yet there has been little research into the application of similar ideas and techniques to other living 

beings, such as equine animals, or to non-living objects/items in the case of environmental gas 

sensors and other IoT devices. The following sections will describe the general characteristics, 

functions, and important performance parameters associated with Internet of Things (IoT) sensors 

(specifically, gas sensors and inertial measurement units (IMU’s)), and how these lead to the 

potential for implementation of biometric techniques in the field. These techniques are then applied 

through challenge-based biometrics (which shall be described in detail in Chapter 2) to humans, 

non-human living beings (specifically, equine animals), and non-living items and objects (in this 

case, IoT sensors in the form of environmental sensors). 

2.2 Internet of Things Sensor Technology Overview 

          Internet of Things (IoT) sensors refer to “an open and comprehensive network of intelligent 

objects that have the capacity to auto-organize, share information, data and resources, reacting and 

acting in face of situations and changes in the environment” [12]. The basic purpose of IoT is to 

combine a set of diverse sensors, such as accelerometers and gyroscopes, gas and environmental 

sensors, microphones, among others, as well as devices such as Global Positioning Systems (GPS), 

RS, Radio-Frequency Identification (RFID), laser scanner, and networks to comprehend the 

information sharing of global things.  

IoT can encompass millions of networked embedded smart devices, or smart things; these 

smart things are capable of accumulating information about themselves, their environment, and 

associated smart devices and interconnect this information to other devices and systems via the 

Internet [12]. IoT devices have been applied in healthcare [13]–[15], agricultural and 

environmental analyses [16], [17], as well as flood monitoring and mapping [18], [19], 

transportation [20], and construction automation [21]. The key objective of the IoT paradigm is to 

enable users to “uniquely identify, signify, access, and control things at anytime and anywhere via 
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the internet”. For the construction of these systems, a focus in improvement in sensor design, along 

with advances in micro- and nano-fabrication technology, leads to development of high-

performance sensors [22].  

IoT architecture has been discussed by many, including by Burhan et. al. [20]. According 

to these authors, there is no consensus on the architecture of IoT; many authors argue on whether 

the architecture should be broken into three-, four-, or five-layer schemes (Figure 2.2). In general, 

the potential architectures share commonalities with regard to the application and perception 

layers. The perception layer, or the sensor layer, is where identification and collection of 

information sources is accomplished. Sensors are selected based on the need of the user(s) within 

the system. The application layer consists of all applications that use, or have been deployed by, 

the IoT system. Examples of applications include, but are not limited to, smart homes, smart cities, 

and smart health, among others.  

 

Figure 2.2: Three-, four-, and five-layer architectures of IoT networks. Taken from Burhan et. al. 
(2018). 

 Within the three- and four- layer architectures is the network layer, or the transmission 

layer, that is the connection between the perception and application layer. As is in the name, the 

network layer is meant to transmit information collected by the perception layer to the application 
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layer, while also connecting the individual smart thing applications (e.g., the previously mentioned 

smart homes and smart devices) to each other. The four-layer architecture also includes a support 

layer, which is intended for secure computing (both locally, and in the cloud) and anti-virus 

protection for the network layer. In contrast, while the five-layer architecture includes the original 

three layers of the three-layer architecture, the network layer is often called the transport layer in 

this structure, it also includes a processing and business layer. This architecture is meant to add 

even more security to the system. Here, the processing layer (or the middleware layer) collects and 

processes big data while removing extra information and extracting the useful information. The 

business layer is utilized to manage and control the applications within the IoT system of interest 

with business and profit models while also maintaining the privacy of the many users within the 

network.  

Within the architecture of the IoT system, there are many potential opportunities for outside 

attack [20], [23]. Attacks can come at all levels or layers. In the perception layer, for instance, 

attacks can be in the form of eavesdropping, or the interception of private communications; node 

capture, or the gain of control of a key node; replay attacks, or the use of eavesdrop to steal 

authentic information that is later used in an attack between the intruder and victim with the proof 

of their identify and authenticity; timing attacks, or attacks that are used to determine the time it 

takes the system to respond to different queries; and fake or malicious nodes, where an extra node 

is added to the system to input fake data meant to mimic the existing real data. These attacks often 

come in a form that is mis-identified as an anomaly, or a pattern that does not conform to the 

expected behavior [23]. This is especially common with malicious attacks, where the attacker 

attempts to make the data appear normal, which can not only be difficult to detect, but also will 

skew the ability the define “normal” sensor behavior.  

With potential adversaries in mind, many have attempted to implement measures that 

would secure and protect the data, as well as the transmission and storage of that data, within an 

IoT system. The authors in [24] reviewed research that has examined equipping smart devices in 

smart city ecosystems, in which data is collected by IoT sensors, with biometric authentication 

services. Their review focuses on the perception layer, which in this instance is focused on the 
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interaction between the user and the device for authentication. Once the user has gained access to 

the services, they are within the application layer, as defined by the authors, and can access 

applications such as those for smart utilities, smart mobility, smart healthcare services, smart 

governance, and a smart economy. This review, however, did not consider malicious attacks on 

the sensors themselves. 

In [25], Intrusion Detection Systems (IDS’s) within IoT systems are reviewed as a method 

of detecting and mitigating IoT-related security attacks. IDS systems, which are tools for 

monitoring data to identify and protect against intrusions, can be divided into three stages. The 

first stage, the monitoring stage, is made up of network-based and host-based sensors. The second, 

the analysis stage, relies on feature extraction and pattern recognition methods. The third and final 

stage, the detection stage, relies on anomaly or misuse intrusion detection. In this process, the IDS 

is able to detect potentially harmful activities.  The types of methods reviewed by the authors 

include, but are not limited to, host-based, or single system, and network-based, or network traffic 

system, intrusion detection, as well as anomaly-based intrusion detection. Specifically, the 

methods of anomaly-based intrusion detection include the use of data mining, machine learning, 

statistical models, rule and payload models, and signal processing models. The performance of 

IDS’s is often characterized using true positive rates, false positive rates, precision, F-score, error 

rate, and energy consumption and processing time of the method utilized. The authors note that it 

is important to search for these attacks, as they can degrade the usability of the many IoT 

applications.  

Increasing numbers of sensors are being employed in IoT networks. In fact, it is estimated 

that there will be approximately 42 billion IoT devices in use by the year 2025 [1] With this 

increasing popularity of these sensors and devices, there is an ever-growing opportunity for 

everyday citizens to participate in collection of data that can benefit themselves, as well as their 

constituents. The participation of a population in such a manner is known as popular epidemiology 

using citizen science, which is a population understanding, responding to, and reducing pollutant 

concentrations and health patterns to which people are exposed using a mobile IoT sensor 

information system. Such a platform would not only provide a means for collecting this important 
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data, but also engage and educate members in the community about pollution, associated adverse 

health effects, and their exposure environment. In addition, by linking the local pollutant 

measurements taken by community members with health-related information, it may be possible 

for environmental and health-care scientists to make associations between pollutant levels and 

local illness patterns. These associations would, in turn, provide closer to optimal responses to 

health hazards in real-time, including potential municipal, policy, or business responses.  

In this sense, through the capabilities of IoT sensors, it is possible for everyday citizens to 

measure what’s going on inside of their bodies, what’s going into their bodies, and what is 

occurring around them in both indoor and outdoor environments through measurements made with 

the same technology. Activation of the correct sensor/sensor array allow the users to make each of 

these measurements in this way. A device that allows for the incorporation of different sensor 

technologies for situational awareness, along with the ability to activate the correct sensors while 

forensically identifying the user is proposed here. This device will be further discussed in Chapter 

3. Before discussing such a system, however, it is important to understand the underlying theories 

of the existing technologies, and how their characteristics and previous assessments can lead to 

such an application. 

2.2.1 Overview of Gas Sensor Technologies 

 To develop and assess biometric applications towards gas sensors, an understanding of 

sensor technology and related theories is required. The following section describes the general 

characteristics, functions, and performance parameters associated with gas sensor systems and 

their individual components. 

In many cases, gas sensors comprise a transducer and an active layer. The purpose of these 

sensors is to convert a desired chemical reaction into a measurable electronic signal [22]. This is 

done through changes in resistance, frequency, current, and voltage. Different gas sensor 

technologies include, but are not limited to, electrochemical sensors (e.g., metal oxide 

semiconductors (MOS), chemiresistive sensors, amperometric sensors, among others), carbon 

nanotube (CNT) sensors, acoustic gas sensors (e.g., quartz crystal micro-balance (QCM), surface 
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acoustic waves (SAW), flexural plate wave (FPW) and thin rod sensors, among others), and optical 

gas sensors (e.g., fiber optic, photonic crystal, among others). The selection of the sensor 

technology is chosen based on the application of the technology and environment in which it will 

be used [22], [26], [27]. Each sensor type is developed to improve upon: 

 

• Sensitivity, or the smallest volume concentration of the target gas that can be sensed in 
the time of detection (Rg/Ra for oxidizing gases, and Ra/Rg for reducing gases, where Ra 

is the resistance in the reference gas, and Rg is the resistance in the target gas);  
 

• Selectivity, or the ability of the gas sensors to detect a specific gas in a mixture of gases; 
 

• Response time, or the period from the time when a gas concentration reaches a specific 
value to that when a sensor generates a corresponding signal;  
 

• Reversibility, or the ability of a gas sensor to return to its original state once the 
surrounding environment is at a normal state, and 
 

• Recovery time, or the time required for a sensor signal to return to its initial value after a 
change from a concentration value to zero [27]. 
 

Accuracy and precision, or the ability of the sensor to output a recognized ideal value at a 

given concentration of gas (or the amount of shift from the true value) and have an acceptable 

amount of agreeability between repeated measurements (which can be measured through the width 

of the distribution of said measurements), respectively, are also important considerations when 

developing various gas sensor technologies [28]. Table 2.2 provides a comparison of 

characteristics of each sensor technology to highlight the strengths and weaknesses of each. 

Several authors [27], [29]  have observed that devices based on electrochemical technologies, 

specifically semiconductor metal oxide thin films, are the most promising among solid-state gas 

sensors due to their small size, low cost, real-time operation, and high compatibility with 

microfabrication processing. For the purpose of this dissertation, the focus will be on the 

technology behind electrochemical sensors (specifically, MOS sensors).  
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Table 2.2: Performance characteristics of various gas sensor technologies. Reprinted from 
Materials Science and Engineering: B, “Semiconductor metal oxide gas sensors: A review”, Pages 
No. 206-217, Copyright 2018, with permission from Elsevier.  

 

    

The MOS gas-sensing mechanism consists of a Micro-Electrical Mechanical System 

(MEMS)-fabricated substrate that the sensor is fabricated on, a MOS sensing layer, an electrode, 

and a microheater. Figure 2.3 provides a general cross-sectional diagram of the basic setup for a 

MOS sensor. The technology is based on the change in conductivity of the device-sensing 

component in the presence of reducing or oxidizing gases [22]. The design of these sensors allows 

for the sensing layer to be directly exposed to the target analyte(s). There is a correlation between 

the resistance and energy barrier which changes by charge carrier density at the grain boundaries, 

and this correlation is directly proportional to the concentration of the exposed analytes.  
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Figure 2.3: MOS sensor cross-sectional view, which includes the Micro-electrical Mechanical 
System (MEMS) substrate that the sensor is fabricated on, the MOS sensing layer, the electrode, 
and the microheater. Taken from Nazemi et al (2019). 

 

There are two types of MOS sensors: n-type and p-type. The n-type sensors, which are 

most commonly fabricated using TiO2, ZnO, SnO2 and WO3, are dependent on electrons as charge 

carriers, while the p-type sensors, which are most commonly fabricated using NiO, Mn2O4 and 

Cr2O3, are dependent on “positive holes”, or lack of electrons, as the charge carriers. The MOS 

sensor’s sensitivity relies on the thickness of receptor layer, the catalytic metal particles placed in 

it, and the temperature of the receptor layer (which is generated by the microheater component of 

the sensor), and the resultant changes in resistance are dependent on whether the sensor is n- or p-

type. The attributes of MOS sensors are simplicity and durability, as well as and ease and low cost 

of fabrication, while the limitations include high operating temperature (150°C-400°C), power 

consumption, susceptibility to temperature and humidity changes, and drift over the lifetime of 

use.  

 The material, production, and design of the core components of the MOS sensor are 

selected to achieve specific performance goals [27]. Specific sensor fabrication, dynamic range, 

and calibration are selected and fulfilled based on the desired interaction and reaction with the 

analyte(s) of interest. Within the same technology, these ranges can be tweaked, or modulated, to 

sense many different analytes. This is advantageous for portable sensing systems, as fewer sensors 

are necessary to sense the complexity of the environment within a setting. 
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2.2.2 Overview of Inertial Measurement Units 

To develop and assess the application of intent of sensing with biometric applications 

towards the human-computer interface-based control of the aforementioned device in which full 

situational awareness can be measured, an understanding of sensor technology and related theories 

is required. The following section describes the general characteristics, functions, and performance 

parameters associated with inertial measurement unit (IMU) technologies. 

IMU’s consist of accelerometers, gyroscopes, and magnetometers. Accelerometers are 

instruments used for measuring forces generated by acceleration from movements, vibrations, or 

gravity of objects. Their uses range from detecting the actions of a user, such as measurements of 

sedentary time, physical activity, physical activity energy expenditure (PAEE), shaking or palsies, 

gait types and behaviors, and sleep-related behaviors, all the way to image stabilization in cameras, 

measuring the orientation of a device relative to Earth’s gravitational pull (e.g. to enable automatic 

display rotation between landscape and portrait mode, and detection of orientation for device 

activation in smart phones). Similarly, gyroscopes are instruments used to measure forces that 

generate rotational velocity with respect to the reference position of the device. They are used in 

automotive, defense, industrial, smart technology, and medical applications [30].   

Two forms of accelerometers are currently utilized in today’s technology, including 

piezoelectric/piezoresistive and capacitive accelerometers. Capacitive accelerometers, however, 

are the most commonly used sensors in micro technologies [31]. Figure 2.4 depicts a capacitive-

based accelerometer. 
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Figure 2.4: Diagram of capacitive accelerometer technology. Taken from Sharma et. al. (2012). 

 

The different forms of gyroscopes include mechanical, optical, and quartz, among others. 

The theory behind gyroscopes is based on the Coriolis Effect, which describes the transfer of 

energy between two vibration modes. Put simply, the Coriolis acceleration, which is proportional 

to the angular velocity of the object, is an apparent acceleration that is observed in a rotating frame 

of reference. In Figure 1 in [32], the relationships between sense direction, drive direction, and 

angular velocity are shown . Modern accelerometers and gyroscopes, particularly in the MEMS 

form, are known for their low cost, low power consumption, and ease of use, among others. 

2.3 Machine Learning Overview 

 With the advancements and reduction in size and cost of sensor development and 

implementation, as well as data acquisition, cloud communication, and storage, there exists the 

ability to collect copious amounts of data on from the aforementioned IoT sensor technology.  

Sensor developers and manufacturers collect data that must be calibrated, and features must be 

selected and utilized to give the most salient and accurate information for a useful output.  Sensor 

outputs include, but are not limited to, specific gas concentrations from gas sensors, three-
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dimensional acceleration and rotation data from accelerometers and gyroscopes, and voice 

recordings from microphones. Given the availability of this information, the opportunity exists to 

apply machine learning, deep learning, and classification methods to improve the different outputs 

of each IoT sensor technology. These approaches could be utilized to provide information about 

the user, the users’ surroundings, and the environment in which they are being deployed, as well 

as biometric/abiometric information about the sensor, sensor system, and the user. Feature 

selection and generation are also possible through data mining, analysis, and dimension reduction 

techniques, and this all can allow the user to evaluate the level of selectivity of gas sensors and the 

patterns and types of movements for IMU’s. The following section describes literature review on 

general machine learning information. 

 Machine learning can be categorized into three different forms: (i) clustering, (ii) 

classification, and (iii) regression. Clustering is defined as a method in which data is divided into 

groups in a way that objects in a group share more similarity than with objects in other groups. It 

is utilized in data mining, bioinformatics, energy studies, machine learning, networking, and 

pattern recognition [33]. Classification is the allocation of objects into either initially undefined 

classes so that the individual objects in that class are close to one another and can be recognized 

as such and classes can be defined based off of the results [34], or into pre-defined classes [35]. 

Regression is the estimation of relationships between a dependent variable and one or more 

independent variables [36]. Each form of machine learning model is developed through datasets 

that are split into training and testing sections, in which the training data is used to train the model 

(and is often split itself into training and validation data to validate and produce the model), and 

the testing data is used to test the model.  

There are multiple forms of training for the different types of machine learning models. 

Training can be in the form of supervised, unsupervised, and reinforced learning [37]. Firstly, 

supervised learning is an approach that utilizes labeled training data using a mapping function 

(e.g., classification or regression). The data is utilized to generate models that are verified with the 

training data and then correctly assign the testing data. Unsupervised learning is an approach that 

attempts to identify inherent patterns within unlabeled data through underlying patterns (e.g., 
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clustering) in hopes of determining the correct output for testing data. Finally, reinforced learning 

is an approach that updates based on rewards or penalties for the actions it performs in a sequence 

of decisions to train the model.  

A literature review [35]–[44] on germane machine learning identified several common 

high-level learning and modeling techniques for imaging and signal-based classification. 

Elementary classification methods, or methods that can be built upon or combined, include but are 

not limited to Support Vector Machines (SVM), k-Nearest Neighbors (kNN), Decision Trees, and 

Naïve Bayes. SVM [38], [41] classify between two or more classes using an N-dimensional 

hyperplane boundary. The training samples this method focuses on are those closest in the feature 

space to the optimal boundary between the classes, and these samples are the “support vectors”. 

The aim is to find the optimal boundary between two classes, and it can be used in the problem of 

more than two classes by repeatedly applying the classifier to each possible combination of classes 

while being combined with ensemble approaches (e.g., decision tree, voting) in order perform 

higher level classifications. For nonlinear class boundaries, the feature space can be projected into 

a higher dimension through the use of kernel tricks, such as polynomial kernels or radial basis 

function (RBF) kernels.  

k-Nearest Neighbors (kNN) [35] models compare each unknown sample directly against 

the original training data, and that sample is assigned to the most common class of k training 

samples that are nearest in the feature space to the unknown sample. The object is assigned to the 

class that is most common to its surrounding neighbors. The model is developed by utilizing 

training data that has been pre-classified to points within an n-dimensional Euclidean space. The 

selection of k is dependent on the training data that is available; a low k will mean a very complex 

decision boundary, and a higher k will result in greater generalization. Decision tree classification 

[41] models utilize a recursive split of the input data, where “trees” represent repeated splits, 

branches represent the paths through the splits, and leaves are the ultimate target values. The splits 

could be based off of a certain band or feature being above or below a threshold, or simply a “yes” 

or “no” decision, depending on the problem being addressed. Naïve Bayes [45] is an algorithm 

that utilizes Bayes’ rule while under the assumption that the attributes are conditionally 
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independent, which can be considered to be naïve, hence the name. Compared to the 

aforementioned classification techniques, it usually requires less data to train the necessary 

parameters for accurate classification. It operates under the assumption that the presence (or 

absence) of a particular feature of a class is unrelated to the presence (or absence) of any other 

feature. 

Outside of the elementary classification models, neural network (NN) models [40] are an 

approach that uses a network of nodes to derive and emulate relationships within complex datasets. 

In the same regard that the biological neural system has an organization of neurons, axon, and 

dendrites that carry and relay information from generated electrical impulses, neurons (or nodes) 

in neural networks are formed through training to create weight connections between inputs and 

outputs. These models can be trained through supervised, unsupervised, or reinforced learning 

techniques. Deep learning models are NN models that have more than a few layers within the 

network. Artificial neural networks (ANN’s), which are a form of NN, are structured so that 

neurons are organized in layers of varying size in the NN model. Convolutional neural networks 

(CNN’s), another form of NN, have a network architecture with convolution, sub-sampling, and 

classification layers. Different forms of CNN’s, which are commonly used in image classification 

problems, are LeNet, AlexNet, ZFNet, and GoogLeNet, among others.  

Dynamic Time Warping (DTW) is an important tool in supporting various efforts, 

including but not limited to speech recognition, handwriting and signature matching, sign language 

recognition, amino acid sequence alignment, gesture recognition, biometrics, and time series 

clustering, among others [42], [43]. It is used to align signals whose features experience effects of 

temporal distortion or phase-shifting, which are common artifacts in the efforts listed above, and 

measure similarity between the two sequences. The algorithm attempts to minimize the effects of 

shifting and distortion in time while measuring similarity by allowing “elastic” transformation of 

time series to detect similar shapes with different phases, which occurs as the cost function is 

minimized, along with the optimal warping path, or the minimal path of the distance matrix built 

between the two signals.  
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Similarly, Hidden Markov Models (HMM’s) have been widely used in speech recognition, 

bioinformatics, facial expression and gesture recognition, and gene sequencing prediction [44]. 

They are statistical models designed using a Markov process with hidden states, and the likelihood 

of transitions between states depend only on the current state, as they are a memory-less algorithm. 

HMMs are well equipped for sequences of data, as well as data of variable-length inputs, and thus 

have similar strengths and applications as DTW.  

Principle Component Analysis (PCA) and Linear Discriminant Analysis (LDA) [39], [46] 

are similar techniques used for dimensionality reduction of high-dimension datasets and feature 

extraction, which allows for ease of interpretation and computation while maintaining information 

and algorithm performance. PCA, which is commonly used in pattern recognition and data 

visualization tasks, looks to reduce dimensionality while preserving as much variability, or 

statistical information, as possible by finding new variables that are linear functions of those in the 

original dataset that maximize variance and are uncorrelated with each other; these are known as 

the “principal components”. In this sense, the principal components are then representative of the 

most variance of the data while eliminating variables removing variables that add no new 

information to the classification task or model. LDA utilizes a linear combination of features to 

classify two or more groups or events. The ratio of between-class to within-class variance is 

maximized in LDA to maximize separability, and an optimized decision boundary is created using 

the covariance and probability of classes within the dataset. It is especially useful for class 

definition and data classification tasks. 

To determine which classification technique to use with the task at hand, it is important to 

note that the selection of the classification algorithm is case specific. How the classes are mapped, 

the nature of the training data, and the predictor variables determine the optimal algorithm for the 

problem of interest. Therefore, the analyst of a specific task should experiment with multiple 

classifiers to determine which provides the optimal classification for a specific task [38]. There is 

also the potential for multiple classification methods to be used together to improve the accuracy 

of a classification problem. Meta-algorithmics [47] refers to the “pattern-driven means of 

combining two or more algorithms, classification engines, or other systems”. Algorithms can be 
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combined through first-, second-, or third-order means, and oftentimes it is true that the 

combination of poorly-performing classification algorithms can be useful when combined with 

others.  

2.4 Implementation, Modeling, and Machine Learning/Artificial 

Intelligence with Respect to IoT Sensor Applications and Biometrics  

Previous literature has applied modeling, machine learning, and deep learning techniques 

to i) human activity recognition (HAR), including gesture recognition and gait analysis, ii) gait 

analysis and activity recognition in other living beings, such as equine animals, and iii) 

environmental sensor monitoring. Machine learning and modeling in these spaces has yet to reach 

the accuracy and robustness desired for the mass implementation imagined, which can lead to 

undesired rates of misclassification and error in any envisioned space. Given this, it is important 

to be able to determine the current and future performance of these techniques in each field, and 

how biometrics/abiometrics can be applied. The following sections describe information collected 

through literature reviews related to the use of machine learning and modeling techniques for the 

aforementioned fields. 

2.4.1 IMU’s and Machine Learning for Human Activity Recognition, Including 

Gesture Recognition 

Human activity recognition (HAR) can be categorized into several forms, including 

walking, running, sitting, stair ascent and descent, and movement and gesture recognition. 

American Sign Language recognition, upper limb protheses, and capacitive touch are of similar 

interest in the application and processes that they follow. Data for HAR can be captured through 

computer vision- or video-based methods [48]–[50], as well as sensor-based methods [49]–[52] 

(e.g., IMUs, electrocardiogram (ECG), electromyogram (EMG), and combinations of these). 

Video-based methods often suffer from partial image occlusion and background clutter, lighting 

issues, change in scale and viewpoint, and detecting and extracting human location from image 

sequences, as well as expense of the system, privacy issues, and difficulty in implementation of 

cameras into different settings [48]. Therefore, sensor-based HAR data capture, which include 
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sensors embedded in smart phones, wearable devices, and home settings [51], has been growing 

in popularity due to its ease of use and implementation without affecting daily lifestyle, low cost 

and power, and miniaturized nature, as well as lack of issues with different environments (such as 

lighting) and the ability to communicate through wireless sensor networks. 

 Multiple authors [48], [52] have described the methods for the current “state of the art” 

approaches for robust and accurate classification of different forms of human activity recognition 

(HAR).  Forms of activity can be categorized into static and dynamic. Static activities include, but 

are not limited to, sitting, standing, and sleeping, while dynamic activities include walking, 

running, going up and down stairs, and gesturing, among others. There are also activities with 

postural transitions, which are activities that shift between static and dynamic, or between dynamic 

and dynamic or static and static. Examples include, but are not limited to, a jog to a stand or a walk 

to a jog.  

 The process behind HAR includes data acquisition, pre-processing (including noise 

filtering and distortion removal), followed by feature extraction, feature selection, and 

classification. The authors in [50] summarize common machine learning techniques in HAR when 

data is collected through wearable sensors and smartphones. They include Decision Trees, k-

Nearest Neighbors (kNN’s), Hidden Markov Models (HMM’s), and Support Vector Machine 

(SVM) techniques. While each of these techniques have their respective strengths, the weaknesses 

include the challenges with extraction of principal features that will be effective for classification, 

as well as overfitting when less training data is available (in the case of SVM, this situation 

conversely leads to underfitting). The authors in [50] and [52] summarize the common deep 

learning techniques in HAR, and they include Convolutional Neural Networks (CNN’s) applied to 

images formed from raw sensory data (e.g., virtual images and frequency images), CNN’s applied 

to raw time series signals, Long-Short Term Memory (LSTM) Models for raw signals, and hybrid 

models that include multiple deep-learning techniques (e.g., an LSTM model with convolutional 

and global pooling layers). Challenges for deep learning techniques include, but are not limited to, 

the tradeoff between computational complexity and accuracy and the optimization of 

hyperparameters (e.g., convolutional layers, filters and filter sizes, neurons, epochs, etc.).  
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 Gesture recognition, a subset of HAR, can be used to express emotion, aide or replace 

speech (through sign language), and  control the activation of different smart devices or 

technology through human-computer interface (HCI). Specifically, it has been used in the past to 

interact with smartphones, gaming systems (e.g., the Wii) and virtual reality/augmented reality 

(VR/AR), and other smart technologies [53]. A review [54] highlighted the commonly used 

processing technique, which is similar to that used in HAR; data must be denoised and segmented 

in the pre-processing phase, features can be extracted in the time-,frequency, or wavelet transform-

domains, and wrapper, filter, or embedded methods are often utilized for feature selection.  

 Several authors [55]–[59] have used different machine learning and modeling techniques 

for gesture recognition. In [55], the authors used a Hidden Markov Model (HMM) for gesture 

recognition with a handheld device. With seven participants, there were 10 gestures studied and 

20 samples per gesture. The authors removed the effect of gravity through orthogonal 

normalization, as well as the effect of variable duration and the magnitude of the observed 

accelerations that depend on the rate of the gestures. A left to right HMM with continuous normal 

output distributions was used with 8 states, two transition probabilities, and one Gaussian output 

distribution with great effect. The method achieved 96.76% accuracy when using user dependent 

training, and 99.76% accuracy when using user independent training. 

 In [56], the authors recognized that gestures, along with other forms of human recognition, 

are likely to be performed at different speeds, and therefore implemented a Dynamic Time 

Warping (DTW) algorithm with a time series template optimization that looked to find a set of 

small distances to the templates of the respective class of the gesture while having large distances 

to the templates of the classes of other gestures. In other words, the authors looked to define a 

target function as a measure for class separability of a template and look to optimize that function 

to maximize the spread between intraclass and interclass distributions. Multiple methods were 

utilized as potential target functions, including (i) calculating the difference between minimal 

interclass distance and maximal intraclass distance(s), (ii) calculating the difference of center 

points of distributions, (iii) calculating the Kullback-Leibler divergence, which is a measurement 

of dissimilarity for probability distributions that accounts for deviations of the distributions that 
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the other two methods do not take into account, and finally (iv) error function integrals, which 

minimizes the threshold classification error and calculates the classification error through the 

Gauss error function. To test the different target functions, the authors had seven participants 

complete a set of fifteen instances of nine different classes of hand gestures, and it was seen that 

the first two target functions achieved higher precision and recall than the latter two. With the 

optimized templates, the algorithm yielded a precision rate of 97.35% and a recall rate of 85.86% 

with user-dependent classification.  

The authors in [57] used a Frame-based Descriptor and multi-class SVM (FDSVM) to 

classify the 12 gestures recorded from ten individuals over two weeks using the existing IMU in a 

Wii remote. Here, the Frame-based descriptor was used to reduce the effect of the intra-class 

variation and noise seen in feature extraction, and the SVM was used to deal with the highly non-

linear gesture space issue and the limited sample size of the study. Frequency- and temporal-based 

input features were used by the authors, including mean frequency, energy, frequency-based 

entropy, standard deviation of the amplitude, and temporal correlation among axes. The SVM was 

a multi-class SVM, as more than two types of gestures are recognized. It was converted to a multi-

class problem through the use of several binary-class problems. The experiments by the authors 

here were aimed at determining the optimal frame number for the frame-based descriptor, as well 

as evaluating the recognition performance for user-dependent and user-independent gesture 

recognition. The user-independent recognition accuracy for this study was 98.23% when only 4 of 

the gestures were examined, and 89.29% when all 12 gestures were examined, while the user-

dependent recognition accuracy was 99.38% for 4 gestures and 95.21% for all 12 gestures.  

Deep learning techniques have also been considered for recognizing and classifying 

different gestures for gesture recognition by several authors. The authors in [58] used a multi-

layered feed forward artificial neural network (ML-FFNN) to recognize and classify gestures made 

through recordings made with an IMU attached to the users’ wrist. The 26 gestures used were each 

recorded 50 times, and the authors split those recordings into training, validation, and testing data 

(560 samples for training, 260 samples for validation, and 560 samples for testing for each user). 

The authors took steps to remove high-frequency noise generated from involuntary muscle 
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movement with a rolling average function and used a 3.5 second window for segmentation to 

remove inconsistencies and high variance of the signals. The ML-FNN included a bipolar logistic 

as an activation function and underwent supervised training using back-propagated stochastic 

gradient descent with Least Squared Error (LSE) as the cost function. The study examined inter- 

and intra-class variance, as well as the optimization of parameters such as the input vector 

dimensions, the number of classes, and the number of hidden neurons when the number of input 

and output nodes were held constant. Using this method, the authors were able to achieve 99.42% 

recognition accuracy after the optimization of the network parameters was done successfully, and 

variance was reduced.  

Similarly, in [59], the authors utilized a feedforward neural network and  similarity 

matching (FNN and SM) model on a dictionary of 24 gestures that included 8 “basic” and 16 

“complex” gestures. The authors collected data from five participants using a pen-like sensing 

device that included an IMU attachment. The FNN recognition algorithm was employed for the 

basic gestures here, and the algorithm for the complex gestures included the SM algorithms. A 

segmentation algorithm, which was used to identify the starting and ending points of each basic 

gesture automatically, both in their own respects and within the construct of the complex gestures, 

was also developed in this study. Following raw data collection, the authors used a moving average 

filter for preprocessing, and the zero-crossing points of the smoothed signals were used as 

indications of beginning and ending points for segmentation. The features extracted from the 

filtered and segmented signals included mean absolute value (MAV) of the x- and y-axes of 

acceleration (which encompassed most of the movement, as the gestures were generated by 

movements in the x- and y-axes of the accelerometer), the ratio of the MAV of the x-axis over the 

MAV of the y-axis, the absolute value of the differences in MAVx and MAVy, the value of the 

maximum absolute acceleration point, and the correlation coefficient between the x- and y- axis, 

among others.   

The FNN was constructed with three layers, and each node included a non-linear logistic 

function. Each basic gesture was assigned a corresponding 4-bit Johnson code, and a Hamming 

distance between the codes were utilized to measure the similarity between recognized basic 
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gestures within a complex gesture and pre-defined gesture “templates”, or the sequence of basic 

gestures within a complex gesture, that the participants were supposed to complete. The authors 

conducted both user-dependent and user-independent experiments, and the overall recognition 

accuracy for the user dependent experiments was reported as 99.88%, while the user-independent 

recognition accuracy was reported as 98.88%. Both results were measured using 5-fold cross-

validation, where the data from four participants were used to create a training set and the fifth 

was used to create a test set. 

Additional considerations for gesture recognition first include incorporating meta-

algorithmics and analytics, which have been shown to improve similar systems using the strength 

of individual classification methods [47]. Another matter is the intent of the gestures being 

considered, which can be applied to the activation of sensing options within a device, similar to 

the activation of different smart devices seen in [53]. This activation can trigger certain sensors 

within an array, the algorithm or model necessary for a desired analyte, or the temperature 

modulation necessary for that analyte, which gives options and the power of decision-making to 

the user. Finally, although computer vision or image-based gestures suffer from lighting or 

occlusion issues, among others, the image recognition algorithms that have been developed 

recently, such as AlexNet and GoogLeNet [60], [61], are powerful classification tools.  

Alternatively, incorporation of these considerations to biometrics techniques, including the 

conversion of 1-D signals generated from IMUs to 3-D images for improved recognition accuracy 

and 2nd and 3rd order meta-algorithmics to combine different classification methods for increased 

accuracy may be beneficial, and will be examined below. 

2.4.2 Machine Learning and Modeling for Equine Activity Recognition, Including 

Gait Analysis and Lameness Detection 

 Equine activity recognition, including gait and lameness detection, is often a combination 

of analysis of the equine animal in question’s stride frequency and length in combination with the 

distinction of gait between one of the potential symmetrical or asymmetrical gaits. The 

symmetrical gaits of interest of an equine animal include walking, trotting, and pacing, while 
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asymmetrical gaits include cantering and galloping. Similarly, footfall sequence and lameness 

detection are of equal importance when examining the activity recognition of an equine animal.  

 Methods of gait measurement exist in different forms, which include kinetic and kinematic 

measurements. Kinetic measurements are measurements taken by force plates to measure ground 

reaction force (GRF), as exerted on a limb during the stance phase, in three dimensions. Common 

methods of kinetic data capture include, but are not limited to, force-measuring horseshoes, 

treadmills, and ground-based plates. While they are a commonly used data collection method, 

force-based measurements can suffer from limited, laborious, and time-consuming data collection 

(mostly in the case of force plates and treadmills).  

Kinematic measurements are measurements taken through visual- and sensor-based means 

to measure gait characteristics, such as optical motion capture (OMC) and inertial measurement 

unit (IMU). In OMC, markers are attached to the body of the equine animal, and multiple cameras 

are distributed that track the 3-D position of the markers in space. With IMU sensors, kinematic 

measurements are taken using strategically placed sensors to measure displacement and orientation 

of the area of interest on the body of the equine animal. While OMC suffers from issues such as 

image occlusion, lighting issues, and the restriction of data collection to indoor environments, 

IMU-based measurements have been noted to have ease of use, low cost and power, among other 

advantages, and thus have been increasingly employed to for kinematic measurements of gait. The 

focus in this dissertation, therefore, will be on IMU-based gait measurement techniques. 

Several authors [62]–[64] have employed different machine learning and modeling 

techniques to distinguish locomotion types of equine animals, as well as to score lameness. In [62], 

the authors used stride timing, limb angle parameters, upper body symmetry and vertical 

displacement patterns, as well as a symmetry index as inputs to compare IMU-based data to OMC-

based data for lameness scoring of seven Warmblood clinic-owned mares. Bland-Altman analysis 

was used here to study the agreement between measurements of the IMU and OMC systems using 

the protraction, retraction, abduction, and adduction angles of the limbs in both the sagittal and 

coronal planes of the horse as it progressed through its gait during trotting. Similarly, statistical 

analyses of the limb angle parameters were calculated to show per horse variation and between 
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horse variation. The authors utilized eight ProMove-mini wireless IMU sensors and eighteen 

infrared cameras that tracked the position of reflective markers, three of which were on the poll 

(head), three on the girth, three on the pelvis of the horse, and one on each of the attached IMU 

sensors, for data collection. Data from the IMUs was collected at a rate of 200 Hz. Two 

experiments were performed for each of the ten horses at walk and trot. Bland-Altman analysis 

showed that there was a small bias between the two systems of measurement, excluding the coronal 

angles for the forelimbs, which the authors speculated was likely due to poor depth perception of 

the OMC system. Also, the authors noted that while the per-horse variation is low, a large variation 

is noticeable between horses in all calculated limb parameters. It is important to note that the 

authors observed the need for the biological significance to be investigated with respect to their 

correlation with lameness. 

In [63], the authors utilized LDA using stride timings to find criteria that are optimal for 

discriminating between the different gaits of an Icelandic equine animal. In this study, the right 

and left foot timings (e.g., the varied stance and swing times), as well as the ratios of foot-contact 

times, for all four limbs were inputs to the generated model. Speed was measured throughout the 

experiment using a GPS receiver attached to the rider’s hat, and IMUs were attached to the dorsal 

portion of the hoof. The samples collected from the IMUs were collected at a rate of 200 Hz. The 

extracted features were checked using cross-validation, and the LDA generated seven functions, 

the first three of which cumulatively explained over 95% of the variance between the different 

gaits and classified 95% of the original and cross-validated cases correctly. Specifically, for the 

symmetrical gaits, 99% of walk strides, 96% of tolt strides, 99% of trot strides and 77% of pace 

strides were correctly classified, and for the asymmetric gaits 76% of left canter strides were 

correctly classified, as were 97% of left gallop, 99% of right canter and 70% right gallop. The 

variability in classification was mostly due to misclassification between gaits that shared the same 

lead limb, according to the authors (i.e. left canter instead of left gallop). 

To distinguish between sound and lame horses during galloping and trotting gaits, the 

authors in [64] used a supervised neural network. Single IMU sensors were placed on the head, 

pelvis, and each limb of the Thoroughbred racehorses utilized in this study. A sound horse was 
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exercised through both trot and gallop trials, and then lameness of either the forelimb or hind limb 

was induced using increased sole pressure; the limb selected was based off a coin flip. Variable 

increases in sole pressure were utilized to collect data from three levels of lameness, including an 

approximate score of 1 or 2, a 3, and a score of greater than 3. The maximum, minimum, range, 

and time indices of the vertical head and pelvic acceleration, head rotation in the sagittal plane, 

pelvic rotation in the frontal plane, limb contact intervals, stride durations, and limb lead 

preference were inputs to the neural network.  

Misclassification rate was between 0.2 and 0.65 for classifications between sound and lame 

limbs, as well as lameness between individual limbs (e.g., sound vs. left forelimb lame, and 

forelimb lame vs. hind limb lame, respectively). The authors also examined stride frequency 

differences between sound and lame horses and found that stride frequency was significantly less 

for the right limb lead during galloping after induction of lameness in the right forelimb, but this 

was not true of the left limb lead before and after induction of lameness in the left forelimb, or any 

other timing variables used to distinguish between sound and lame states. It was also noted by the 

authors that, against their desire, they created a least one case of residual mild lameness in the right 

forelimb at the time of the second induced lameness, which may have influenced their results. 

When examining further research into characterizing and modeling equine gait and 

lameness, there are multiple considerations. First, when developing ground truthing for class and 

model development for the different stages and levels of lameness, as well as the type of lameness, 

it is important to consider that lameness scoring is dependent on the observer. The authors of [62] 

noted a lack of consistency between different levels of experience of observers, as well as a 

limitation of human visual symmetry perception and the bias effect. In other words, visual 

perception of lameness has been shown to be influenced by the horse, the gait of the horse, and the 

type of lameness it is experiencing. It is also important not to create or increase any existing 

variability in the gait of the horse through sensor placement while also considering the position of 

the sensor with respect to any prospective rider. In the same sense, it is important to consider the 

variability in gait imposed by the rider themselves, as well as the surface on which the horse is 

exercising on, and the familiarity that the horse has with the environment that it is exercising in. 
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Finally, it is of particular interest of researchers to minimize the potential for variability caused by 

sensor placement and presence, and therefore models and approaches developed for sensors in 

areas such as the head and sacrum, where extra equipment is commonly required to place the 

sensors, must be reconsidered, and adjusted accordingly. It is also notable that models developed 

around the individual horse of interest may be of benefit to the model performance for that horse, 

as gait is likely varied between individual horses, and lameness is likely to be expressed and 

measured in different manners that cannot be considered on a larger scale.  

2.4.3 Implementation of Environmental Sensors 

 As was stated previously, environmental sensors are designed to convert a chemical 

reaction into a measurable electronic signal to respond to changes in their environments. This 

occurs through the technologies themselves, the different methods of fabrication within those 

technologies, and the connection to other sensors within networks and sets of networks.  

Implementation of environmental IoT sensors, namely MOS sensors, involve several common 

areas of interest using machine learning and modeling techniques. Calibration and re-calibration 

models are produced to ensure that sensors generate and maintain accurate readings, and 

improvement in these processes can occur through data pre-processing and robust feature 

selection. Similarly, correction for variations in measurements are also a common occurrence that 

requires modeling, including but not limited to environmental differences (e.g., temperature, 

humidity), interference gases, and aging (or more commonly known as drift) of individual sensors. 

Improvement in sensitivity and selectivity (outside of technology selection and fabrication) 

through machine learning models that distinguish between background analytes and the analyte of 

interest. Reproducibility and inherent variability are commonly examined as well, as sensors of 

the same technology and makeup often output differing responses to environmental challenges. 

Topics similar to these will be reviewed and discussed in this section. 

 Several authors have employed different machine learning and modeling techniques for 

data pre-processing, feature selection and extraction, and classification of sensed analytes. The 
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authors in [65]–[67] discuss these topics in relation to electronic-nose (e-nose) sensor arrays, but 

similar theories can be applied elsewhere. 

Modeling techniques have also been employed to correct for issues such as sensor drift, 

aging, and correction. Data pre-processing techniques were examined in [65]. Here, the authors 

split pre-processing into i) baseline manipulation, ii) compression, and iii) normalization. The 

methods of baseline manipulation, or the attempts to reduce the effects of sensor drift, include 

differential, fractional, and subtractive. Compression, or operations used to reduce the number of 

measurements per example to a reasonable number, was examined through steady-state, transient 

integral, and windowed time slicing. Normalization, or the set of operations for smoothing between 

variations, was examined by the authors using vector normalization, vector auto-scaling, and 

dimension auto-scaling. In total, this led to the possibility of 48 different combinations of 

techniques. To measure the performance of the different pre-processing techniques, the authors 

utilized predictive accuracy, and a classification method involving a combination of LDA as a 

feature extraction tool and kNN voting rule as a classifier, which was evaluated using 5-fold cross-

validation. The results showed substantial differences in the transformation and compression 

techniques, but no great effect from normalization techniques. The greatest improvement in 

classification was seen through differential baseline manipulation, compression through transient 

response, and dimensional auto-scaling normalization.  

In [66], the authors propose the use of embedded PC technology with a GNU/Linux 

operating system and appropriate pattern recognition or regression software in an electronic nose 

(e-nose) prototype to examine different processing methods. E-nose instruments, according to the 

authors, include nonspecific sensors in combination with a pattern recognition system. The sensor 

design included three sensor modules, which each contained four metal oxide sensors, one 

temperature sensor and signal conditioning electronics on a printed circuit board. The sensor 

fabrication contained internal structure based on micro-beads of sensing material that was 

deposited over a coil, and this was meant to provide the ability for fast thermal response to a 

modulating heater voltage. In this study, sequential forward floating selection (SFFS) was used for 

feature selection, and feature extraction was done using linear discriminant analysis (LDA) and 
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principal component analysis (PCA). To test the performance of the feature extraction and 

selection, both a kNN classifier and Gaussian mixture model (GMM) classifier were utilized. The 

data set was collected over three days, and the dataset consisted of odors from coffee, tobacco, and 

cedar-wood. 16 samples were taken for each odor in random order. It was observed that, when 

using classification rate and boundary stability as metrics of performance, the GMM outperformed 

the kNN model slightly (86.4% and 85% accuracy using the validation data, respectively). The 

authors also noted that there was a significant dependence of the performance of the GMM on the 

number of principal components found using PCA, and that this could be improved by instead 

using LDA during dimension reduction.  

 The authors in [67] attempted to address issues of calibration of metal oxide 

semiconductors due to their inherent high correlation among features, sensor drift, scattering at 

different concentrations, and lack of reproducibility. This is largely due to the fact that calibration 

models are only robust to the environmental conditions in which they are constructed, and thus 

cross-sensitivity is highly present in varied conditions. It is also noted that a similar effect is seen 

through the inherent differences in manufacturing of sensors of similar types, as they also require 

specific calibration models with less generalization. This applies not only to the calibration of the 

original sensors within a system, but also replacement sensors of the same Stock Keeping Unit 

(SKU). In their study, the authors used five replicas of a 24-sensor array that included eight sensors 

within three different MOX gas sensor SKUs. The arrays were exposed to a total of 48 different 

conditions, which included changes in the analyte being exposed to the sensors, the concentration 

of the analytes, and the humidity level (e.g., six gases at eight humidity and gas concentration 

combinations). This study examined four different scenarios of calibration of sensor arrays: 

• An individual calibration model obtained with data from one sensor array that is then 
tested with data from the same sensor array; 
 

• An individual calibration model obtained from data with one sensor array that is tested 
with the other sensor arrays; 

 

• A calibration model that is generalized through collection and training from multiple 
replicas of the sensor array, and is applied to different sensor arrays, and 
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• A calibration model that is again generalized through collection and training from 

multiple replicas of the sensor array, but features are extracted and selected through 
various sensor types and operating temperatures. 
 

The authors used partial least squares-discriminant analysis (PLS-DA) in combination with kNN 

in the latent variable (LV) subspace as a model for calibration, as well as feature selection using a 

genetic algorithm. In the first scenario, the classification rate was 100% when the calibration model 

was used on the same sensor array that the model was trained on, but in scenario two, the 

classification rate dropped significantly to 91% when the model was applied to other sensor arrays. 

The third scenario saw a classification rate of 99% when the models generated from four of the 

sensor array replicas were tested on the fifth sensor array, and in the fourth scenario, the addition 

of feature selection resulted in a classification rate of 97.5%, which is a drop from the first 

generalized model, but still an improvement from the non-generalized models.  

 When examining further research into modeling and correcting sensor readings, there are 

considerations that have yet to be examined. First, raw signals require complex analysis that is not 

easily interpretable. Most methods require optimization, and the success of optimization is 

dependent on the quality and quantity of the data. Sensor variability and the constrained conditions 

of calibration models hinder their generalization capacity, and this, along with the inherent 

variability of similar sensor and sensor array constructs, mean that there are real-world 

implementation issues. However, the inherent sensor variability can potentially be utilized for 

other purposes related to biometrics, and this will be an important aspect of examination in this 

dissertation. 

2.4.4 Implementation of Biometric Techniques 

 As mentioned above, biometrics are biological measurements that are used to refer to the 

authentication or verification of a person by measuring and assessing physical and behavioral 

characteristics. They are implemented in unimodal methods, where individual biometrics are 

assessed, as well as multi-modal methods, where multiple biometrics are combined. Data utilized 
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for biometric problems is collected in both sensor- and image-based fashions. In-depth reviews of 

the different stages of biometric implementation will be examined in this section. 

Several authors [68]–[70] have reviewed the implementation of biometric techniques. In 

[68], the authors reviewed sensor-based biometric recognition techniques through the examination 

of the acquisition of biometric data from a sensor, data pre-processing and potential dimensionality 

reduction, feature extraction, recognition and/or classification, clustering, and validation. Data 

acquisition is split between physiological, behavioral, and biosignal-based data. The authors 

identified several issues with sensor-based data acquisition, including varying presentation of the 

signals, irreproducible presentation of the signals, defective signal acquisitions, and sensor 

technology inconsistency (e.g., differing sensor data changes between technologies and 

manufacturers). To extend information between different biometric sensors with different 

characteristics and data types, data pre-processing is an important step. The authors describe pre-

processing as a “process of selecting different constraints that are expressive of the sensor data”, 

which can take different forms depending on the type of biometric. For physiological and 

behavioral biometrics, the stages are described as i) cropping or resizing, ii) normalization and 

segmentation, and iii) filtering. Biosignal-based sensor data, while often requiring similar 

cropping, normalization, and segmentation, also require different filtering methods.  

 Feature extraction and selection with respect to sensor-based biometric techniques can 

account for the issue of dimensionality reduction, where the likely high-dimensional data is not 

appropriate to be handled, according to the authors. Extraction of the features conserves the 

maximum amount of information as the original filtered data, while selection then selects the best 

features to categorize classes of the data. Feature extraction can be categorized as non-transformed 

or transformed descriptors, structural, or graph descriptors, while feature selection is categorized 

into exhaustive searches, branch and bound algorithms, sequential selections, and bidirectional 

searches. According to several authors, features can also be used from several biometric sensors 

through feature fusion, and each feature can respectively have an assigned weight that determines 

its impact on the final decision of the respective output of the biometric decision. Fusion can also 
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occur at the algorithm and biometric level, as it is possible to combine both various feature 

algorithms and biometric sources (e.g., a combination of a fingerprint and facial recognition).  

In classification, the authors note commonly used algorithms in biometric problems, such 

as k-Nearest Neighbors, Bayesian Classifiers, Support Vector Machines, and deep learning 

methods, which include neural networks that include an appropriate architecture selection and 

regularization. When considering clustering, the authors also note multiple steps and techniques. 

The steps include specifying i) a variation in measurement among the samples, ii) a clustering 

principle, and iii) a search algorithm to assign the data to various clusters after the variation and 

principle have been determined. Clustering methods discussed include hierarchical, density-based, 

grid-based, and partition-based. Finally, the authors discuss validation, which is meant to report 

the performance and issues with a choice of process and model. Considerations the authors noted 

here include proper model and algorithm selection, constraint settings, and over and underfitting 

the training of the model. Validation methods here include k-fold cross-validation, leave-one-out-

cross-validation, random subsampling cross-validation, and boot-strapping methods. After 

parameter settings and the model have been selected and optimized, testing data should be utilized 

to estimate the performance with new data. 

In [69], the authors discuss Multiple Classifier Systems (MCS), and their application in the 

field of biometrics. An MCS is categorized by classifier dependencies, or the outputs of the 

classification based on the different parameters and methods; type of classifier outputs, which 

include abstract, rank, and measurement; aggregation procedures, which include trainability and 

adaptivity; and architecture, which is the grouping of the multiple classifiers into hierarchical, 

cascading, and parallel configurations. In the case of multi-modal biometrics, the fusion of 

information can also occur at the pre-classification level or post-classification level. In the pre-

classification level, fusion can occur either through sensor or feature level fusions. Sensor level 

fusion combines raw data from sensors, while feature level fusion combines feature vectors either 

from different sensors or different extraction algorithms on the same data. In the post-classification 

level, fusion occurs through abstract-level fusion, which is the combination of decisions already 

taken by individual biometric systems (i.e., majority and weighted voting); rank-level fusion, 



36 

which allows for a system to provide possible matches ranked according to the output of the full 

classification; and measurement-level fusion, which provides probabilities of the rankings between 

different classifiers.  

Gawande et. al. [70] reviewed both unimodal and multimodal biometric techniques, as well 

as some of the evaluations of performance and limitations associated with biometric problems. 

According to the authors, the accuracy of biometric systems are not static, but are dependent on 

several factors, including but not limited to biometric quality of the data, size of the database, the 

time interval between enrollment and verification, variations in the operating environment, 

distinctiveness of biometric modality, and robustness of the employed algorithm(s). The common 

performance metrics include, but are not limited to, false acceptance rate, or the rate of accepting 

an imposter as a legitimate user; false rejection rate, or the rejection of authorized individuals; 

failure to enroll, or the lack of required biometric trait from the user; and equal error rate, or the 

number of both false rejections and false acceptances. Other metrics of biometric algorithms 

include cost, interoperability, user convenience, and security.  

The authors continue to discuss the issues with unimodal biometric systems, which include 

(i) noisy data acquired by the sensor, which can greatly reduce the accuracy of the biometric 

system, (ii) non-universality, which refers to the lack of ability for every individual to produce the 

biometric trait of interest, (iii) lack of individuality, or the measure of similarity between 

individuals with certain biometric traits, (iv) lack of invariant representation, or the inherent 

variability between the user’s template data and verification data, and (v) susceptibility to 

circumvention, or the ability of an imposter to circumvent a biometric system using spoofed traits 

of a user. Due to these issues, the authors propose multimodal systems, as including different types 

of biometrics together can improve the performance of the biometric system over unimodal 

systems. While this is true, multimodal systems have their own disadvantages, including high 

computational cost and storage, time for enrollment and verification, and risk of not combining 

the different modalities correctly, which can further decrease the accuracy of the system from the 

unimodal possibilities.  
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According to the authors, the methods of forming multi-modal biometric systems include 

(i) through multiple modalities, (ii) through similar measurements from multiple sensors (e.g., 

collecting data of a subject’s face from both a static image and a video frame), (iii) through multiple 

features (usually from an image), and (iv) through repeated instances, where a measurement can 

be taken repeatedly for increased recognition accuracy. The authors discuss a method of fusion 

known as fixed rule fusion, which include maximum or minimum rule, sum rule, product rule, and 

mean rule. Within fixed rule fusion, matching techniques that measure the distance between the 

template and validation data include city block distance, Euclidean distance, Mahalanobis 

distance, and Hamming distance. These measurements of matching can be utilized in multimodal 

systems where one biometric is less informative than another, such as when a user has dry hands 

or is wearing facial protections in certain environments, as well as when multimodal systems have 

different expectations of performance, such as when a gait-based biometric is combined with a 

facial scan. Typically, different biometrics have greatly different authentication probabilities; for 

example, iris detection provides many more bits of recognition than gait analysis. This leads to the 

common application of gait and similar biometric recognition techniques to “auxiliary” biometrics, 

while facial and iris detection are commonly primary forms of recognition. 

Another important consideration when examining biometric implementation is the level of 

biometric which is being utilized. In [4], the author discusses dynamic and challenge-based 

biometrics. In biometric-based security systems, once access is gained, there is oftentimes no 

further check into the identity of the user who has gained said access. With dynamic biometrics, 

the level of security changes throughout the session, and the level of authorization can be adjusted 

based upon the current confidence of the system based upon the previously interpreted biometric 

measurement. These dynamic biometrics are based upon two or more biometrics in combination 

and are also based upon the availability of the biometrics for said combination. These biometrics 

can be harvested through certain challenges, which can be asked of the user attempting to gain 

access to the system. The author uses this theory here to develop a biometric cepstrum, which is 

established through the availability and performance of the measurable biometrics. This method is 
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used to maintain a biometric virtual private network (VPN), which is the secured link between the 

user and the information being protected. 
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Chapter 3  
Example of Sensor Implementation in At-Home 
Healthcare Through “Magic Wand” 

As was mentioned in Chapter 2, the capabilities of IoT-enabled sensors have expanded due 

to increased research in the fields of non-invasive medical diagnostics and therapeutic monitoring 

techniques. This leads to the potential for at-home healthcare opportunities, both for those in 

assisted-care situations – in which frequent diagnostics may be necessary – and for those who have 

limited availability to proper healthcare services. All of these groups are in need of frequent 

diagnostics, such as for diabetes. Addressing these needs is possible through a combination of data 

collection, connectivity of multiple types and units of sensors, artificial intelligence (AI) and 

machine learning (ML) algorithms, and “smart home” environments. In developing countries, 

where healthcare infrastructure is often limited and the burden of disease is high, technology for 

the monitoring of specific biosignals will be especially beneficial. This is also true of remote 

locations in any locale. The most recent Personalized Medicine Coalition (PMC) report of the year 

(which represents innovators, scientists, patients, providers and payers, and promotes the 

understanding and adoption of personalized medicine concepts, services, and products to benefit 

patients and health systems) stated that one of the most important goals of healthcare moving 

forward is to implement better personalized healthcare in order to optimize medical decisions, 

improve medical treatments, and reduce waiting lists and financial costs while treating patients 

holistically [71]. Mobile diagnostics give the opportunity for both of these goals, and many others, 

to be met. As mentioned previously, the two main methods of mobile medical diagnostics are 

through sensing and imaging. This section, however, will focus on the potential for IoT (Internet 

of Things) based sensing capabilities in the field of mobile health diagnostics. 

To describe a method of implementing the previously reported technologies in a single 

portable device, this chapter will examine the capabilities of these IoT enabled sensors, and their 

expansion into the field of non-invasive medical diagnostics and therapeutic monitoring 

techniques. Similarly, it will outline the capabilities of these sensing opportunities in the field of 
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cyber security through both (i) biometrics of the user and (ii) so-called “abiometrics” (biometric 

approaches applied to non-living items) of the device components. This leads to the potential for 

secure at-home healthcare opportunities, as reported in [72].  

3.1 Environmental Gas Sensor Arrays for Non-Invasive Diagnostics and 

Exposure Analysis 

  The knowledge that breath odors can be used for diagnostic purposes goes back as far as 

400 B.C, where it is mentioned by Hippocrates as a diagnostic tool [73]. In recent years, 1,765 

different gases/VOC’s (volatile organic compounds) have been recognized in exhaled breath (EB) 

[74]. The methods of measuring these components include gas chromatography (GC), mass 

spectrometry, laser-absorption spectroscopic techniques, and chemical sensors and sensor arrays 

[74]. For sensing or detection methods to be viable, they must have sufficient sensitivity, high 

selectivity, and system stability [75]. The cheaper and simpler alternatives to GC, which has been 

the most common method to this point, are chemical sensor arrays, which have shown promising 

results in medical diagnostics for kidney disease, diabetes, Alzheimer’s, Parkinson’s, and lung 

cancer. Multiple reviews have summarized the potential uses of sensitive materials in the form of 

semiconductor-based chemiresistors or sensor arrays, which include metal oxides, graphene, and 

carbon nanotubes, among others [74]–[76]. Chemiresistive gas sensors are reasonably applicable 

to the field of early disease screening through EB measurements due to their recent advancements 

in compact size, low power consumption, inexpensive price, and easy integration into sensor arrays 

[77]. 

Examples of VOC’s and their corresponding diseases are shown in Table 3.1.  
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Table 3.1: Examples of verified biomarkers present in EB, and their respective diseases. © 2020 
IEEE. Reprinted, with permission, from W. Anderson, S. Simske, “At-Home Healthcare through 
Smart-Environmental Sensing, including Biometrics for Multi-Factor Authentication”, IEEE 
ICHI, Dec. 2020. 

Gas/VOC 
Corresponding Disease(s) for which the 

gas/VOC has relevant diagnostic value 

Acetone Diabetes[74] 

Ammonia Kidney disease[73] and renal function[74] 

Carbon Monoxide Lung inflammation[74] 

Dimethyl Sulfide Liver Disease[74] 

Ethane Schizophrenia[74] 

Hydrogen Cyanide Bacterial Infection[74] 

Nitric Oxide Asthma[74] 

Methane 
Irritated bowl syndrome, oxidative stress, 

etc.[75] 

Carbon dioxide Helicobacter pylori infection[76] 

 

These diseases range from minor bacterial infections to major ailments, such as liver or kidney 

disease. Major diseases, such as lung cancer, colorectal cancer, breast cancer, and tuberculosis 

have biomarkers identified, but more studies are needed to verify and simplify these [78]. Saidi et 

al. recently discovered four new biomarkers for lung cancer through exhaled breath analysis and 

showed that electronic nose (e-nose) type sensor arrays are viable for not only determining the 

presence of lung cancer, but also the histological type of lung cancer [79]. Further studies of this 

sort must continue to help narrow down the most descriptive biomarkers, as many of these major 

diseases need early detection and diagnosis for improved treatment options and results. This 
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follows the rule, “the earlier detected, the better.” Sensor arrays are generally useful for 

distinguishing the presence of a single disease from a healthy person; however, the ability to 

distinguish the presence of different diseases from each other is not yet possible due to the vast 

overlap of biomarkers between diseases [78]. The ability to distinguish patterns for distinct 

diseases is available; this method is analogous to a “fingerprint” measurement of a person. 

“Fingerprints” of biomarkers can be determined through further studies to give a more in-depth 

distinction between sets of biomarkers present in the state of a disease.  

Lung function analysis, or finding the spot where expiration ends and the consecutive 

inspiration starts, is a crucial step in pulmonary function testing [80]. Changes in the respiratory 

cycle, including frequency and continuity of breathing, are other informative measurement made 

possible through sensor arrays. Individual psychological stress caused by cardiac and arterial 

vascular dysfunction can be monitored [77], and the presence of lung diseases and infections can 

be detected and diagnosed at early stages through the tracking of this cycle. The final use of EB 

measurements is the tracking of environmental exposure through VOC detection. Most of the 

VOC’s found in EB are in fact due to this environmental exposure, which has practical uses in the 

broader area of personalized medicine, wherein measurement, diagnosis, prognosis, and therapy 

are customized to the individual. 

3.2 Diagnostics Through Voice Recordings 

Microphones have been integrated into much of the current technology used in today’s 

world, including cellular devices, laptops, the interiors of cars, and many others. Low cost, low 

power devices give high-quality signals that allow for speech recognition, and the expanding 

research on noise cancellation creates superb results. Multiple studies have recently recognized 

that, because of the direct correlation between voice impairments and Parkinson’s disease in 90% 

of patients, a voice recognition method is very useful for early detection of the disease [81]–[85], 

which affects seven to ten million people worldwide [84]. Similarly, speech analysis has been used 

by groups like Koing et al. to diagnosis mild cognitive impairment (MCI) and early stage 

Alzheimer’s disease with as high as 87% accuracy [86]. Kaminska et al. showed that, through 
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speech analysis and acoustic features, the four states of bipolar disorder (mania, euthymia, 

depression, and normal) were able to be monitored with varied success through clustering methods 

(up to 80% correlation of clustering) [87]. Early diagnosis and frequent monitoring of these 

diseases improves treatment options for those who suffer the effects, and speech analysis through 

data acquisition using microphones are making this more and more possible.  

Speech analysis has also been utilized for pathology detection in patients by multiple 

research groups [88]–[90]; in these studies, those participants who are healthy and who are sick 

are recognized correctly with accuracy as high as 98.23% [89]. Though this type of analysis is not 

specific to any certain disease: some groups are attempting to use speech analysis to diagnose 

specific illnesses. Brown et al. have begun studies into using recordings of both speech and 

coughing, along with an input of symptoms by the user, to diagnose COVID-19, where they have 

had mild success to date [91]. Similarly, Lei et al. used recordings of breathing sounds for both 

classification between healthy and pathological patients and as reliable diagnostic indicators for 

influenza, pneumonia, and bronchitis [92]. Detecting voice disorders -- which can occur after a 

lasting cold or flu, a continuing virus or bacteria, or from vocal abuse -- are important as well. 

Akbari et al. was able to distinguish, with varying success, between subsets of different voice 

disorders, including paralysis, hyperfunction, unilateral vocal fold paralysis, vocal fold polyp, 

vocal fold nodules, A–P squeezing, and gastric reflux [93]. Accuracy was as high as 97% in this 

study. From these results, it is clear that the clinical relevance of diagnostics based on voice data 

and speech analysis is practical for implementation in a mobile healthcare system.  

3.3 Wearable Monitors for Vital Recordings, Motion, Gait, and Related 

Therapeutics 

The ability to portably monitor heart rate and blood pressure has been made reliable in the 

past few decades [94] .This has been made possible through wearable monitors, such as pulse 

oximeters which use photoplethysmography. Wearable cuffs, which are now commonly found in 

many smartwatch products, such as the AppleWatch, have also proven useful. Data from these 

sensors are of great importance, as hypertension, or high blood pressure, is an often-undetected 
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health disorder that can lead to more severe diseases, such as heart disease (including congestive 

heart failure) and renal dysfunction [95]. This issue can be resolved through wearable monitoring 

systems that communicate alert messages to the patient and the healthcare provider when these 

sensors detect alarming measurements [96]. These wearable monitors can also be utilized to 

measure stress levels, as studied by Can et al., who reported 97.92% accuracy for three-level stress 

detection with their person-specific models [97]. When integrated into a system of other IoT’s, the 

impact of these wearable monitors is quite likely to increase.  

Inertial measurement units (IMU’s) have been integrated into many of the same 

technologies that microphones have, including cellular devices, newer drive-assist vehicles, and 

various others. These IoT sensors have also been heavily studied as wearable sensors for their 

ability to monitor the various stages of rehabilitation for patients with cerebral palsy [98]–[100]. 

This is important, as the high incidence and costs associated with cerebral palsy means that 

improved rehabilitation strategies are necessary [100]. Rehabilitation post-stroke is a similar 

situation that can require high incidence and improved rehabilitation strategies [101], [102]. 

Laudanski et al. reported recognition of overground walking, stair ascent, and stair descent with 

100% accuracy; and overground walking, stair ascent, and descent with a distinction between 

stepping pattern used while negotiating stairs (step-over-step (SOS) and step-by-step (SBS)) with 

94% accuracy for post-stroke patients [101].   

The same sensors have been utilized to monitor everyday function for signs of something 

out of the ordinary for elderly patients, or those at high risk for injury [103].  Similarly, these 

sensor systems can monitor with recognition rates above 85% the rehabilitation motions of patients 

suffering from frozen shoulder, knee surgery, and hip surgery [104]. While results of wearable 

IMU devices for different rehabilitation tracking and monitoring techniques is proven to be 

sufficient, the number of IMUs needed for these applications is difficult to determine because 

comparison between descriptions of positions of these sensors throughout the different studies is 

not precise enough for the comparisons to be considered uniform [105]. This does not deter from 

the fact that these sensors have shown their utility within their own systems and would be 

beneficial when included in an at-home healthcare system with other IoT sensor systems. 
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3.4 Effects of Environmental Pollution on Human Health Conditions  

Air pollution exists in many different forms and has a major impact on the lives of those 

that live in its midst. Many studies agree on the major impacts that air pollution has on respiratory 

diseases, functions, and inflammations; as well as cardiovascular diseases and functions [106]–

[109]. In 2016, the World Health Organization estimated that particulate matter (PM) air pollution 

contributes to approximately 800,000 premature deaths each year through these ailments; this 

number has likely increased over the past few years [108]. Example pollutants include particle 

pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead [109]. 

PM pollution, which is comprised of a mixture of solid particles and liquid droplets (e.g., soot, 

smoke, etc.) can be readily detected through sensor arrays. This is of the utmost importance, as 

susceptible populations, such as the elderly, asthmatics, or those infected with COVID-19, may 

benefit from limiting their outdoor activity during times where pollution is at a peak, and when 

poor air quality days are occurring.  

Changes in behavior such as outlined above may benefit individual patients in both short-

term, symptomatic control and in long-term cardiovascular and respiratory complications [108]. 

The use of these sensor arrays, in combination with breath analysis, will be beneficial for informing 

public officials of the presence of such pollution spikes in hopes of mitigation, as well as for the 

spread of public knowledge of the timings and locations of such occurrences. It is also estimated 

that 4.3 million people die from household air pollution every year globally [110]; localized 

mitigation, therefore, is also of the utmost importance. Integration of the same sensor arrays used 

for breath analysis into a monitoring system is advantageous for these purposes. 

3.5 Biometrics, and Multi-Factor Authentication 

Biometrics, or the assignment of identity through the measurement of physical attributes 

or behavior [71], has recently been adopted at an extensive rate for security purposes. This is due 

to the fact that, when used individually, many former security measures, such as passcodes and 

pins, are easily stolen or lost. Thus, a recent push to use physical biometrics has taken place. 
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Physical biometrics include facial recognition, fingerprint or iris/retina scans [4], which are 

still the most popular forms [7]. When combined with other security measures, such as pin codes 

and passwords, multiple levels of authentication are created. This is a form of identification 

scheme that pairs a “who-you-are” with a “what-you-know” technique [111]. Another form of 

identification, “what-you-have”, can also be utilized as a level of authentication; an example of 

this would be an RFID card, or an e-token [111]. The location of the user is an often forgotten 

biometric, but it can be utilized in any setting where the location data is readily available.  

Similarly, biometrics can be extended to continuous forms, which include arm sweeps, 

finger writing, gestures, handwriting, keystroke, heartbeat, voice recordings, and gait analyses [4]. 

With the availability of IoT technology through mobile devices, these biometrics are all readily 

available for use. Recently, a study by Zhao et al. showed that recordings of intervocalic breath 

sounds, or sounds made through inhalation of air during speech, was successfully used as a 

biometric; the group was able to recognize individuals using this biometric with a CNN-LSTM 

method at 91.3% accuracy when testing a group of fifty speakers [112].  

Biometrics are part of the continuum between inspection (or validation) and the forensic 

identification of a single individual, item, or process. Because of this, IoT sensors of different types 

also contribute a biometric of their own to the system. Therefore, to achieve multi-factor 

authentication, one must only select the best performing biometrics, whether that be individually 

or as a combination of two or more through hybrid biometrics. This decision, along with a set of 

sensor biometrics and a location determination using a GPS unit, provides a path to three-factor 

authentication, ensuring with even higher confidence the security of the system. 

3.6  Integration of IoT sensors into “Magic Wand” Appliance” 

A system that integrates multiple of IoT sensors for personalized medicine through expired 

breath analysis, voice recordings, vital monitors, and gait analysis (Figure 3.1) is able to output 

both 1) the status of the user, with respect to the user’s body and to their surroundings; and 2) the 

security of the data from the system. This mobile healthcare and environmental monitoring are 

given through the previously described magic wand appliance (Figure 3.2) [113].  
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When combined with a ML/AI algorithm for classification, the system will be able to 

combine outputs from the sensing options mentioned and make a combined decision on the user’s 

health status while simultaneously validating the identification of the user through multiple 

biometrics. When applied to specific application areas, evolutionary and agent-based models will 

also be employed for overall system design, deployment, test, and measurement optimization. For 

successful output of the system, it is likely that a Bayesian algorithm will be effective for 

classification of both health status and biometric validation. Communication of the system can be 

easily implemented through cellular devices, as over 94% of the world population-- that is, 6.8 

billion people-- are subscribers of cell phone technologies, and an estimated 2.7 billion subscribers 

are using Internet [114]. This platform can be employed to assess all necessary health conditions 

of the user and help educate and empower individuals and communities to understand their local 

environment and associated health effects. This, in turn, allows them to actively participate in 

avoidance and/or remediation strategies; that is, personalized healthcare. 

 

 

Figure 3.1: Integration of IoT sensors into one comprehensive system in which data fusion allows 
for biometrics and diagnostics cohesively. © 2020 IEEE. Reprinted, with permission, from W. 
Anderson, S. Simske, “At-Home Healthcare through Smart-Environmental Sensing, including 
Biometrics for Multi-Factor Authentication”, IEEE ICHI, Dec. 2020. 
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Figure 3.2: Magic wand device in which fusion allows for biometrics and diagnostics cohesively. 
© 2020 IEEE. Reprinted, with permission, from W. Anderson, S. Simske, “At-Home Healthcare 
through Smart-Environmental Sensing, including Biometrics for Multi-Factor Authentication”, 
IEEE ICHI, Dec. 2020. 
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Chapter 4  
Classification Examples for Gestures with Intent 

          In this Chapter, gesture recognition through IoT sensors in the form of inertial 

measurement units (IMU’s) is addressed because of their ease of use, potential of added security 

through the potential biometric measurements of the user, and the ability of gestures to be used 

with intent of sensing. This is a form of Human-Computer Interface (HCI), where a user 

communicates its intentions with a smart technology or device (possibly within a smart system). 

Alternatively, activation by button pressing has been used for household appliances for generations 

but (i) it might be difficult for elderly users who are unable to distinguish different buttons within 

the control system and (ii) doesn’t engage younger users like “waving a wand” might. When a 

movement is made for a gesture, acceleration naturally occurs, and this information can be used to 

determine how the movement was made along with the path of the extremity. As mentioned in 

Chapter 2, gesture recognition exists in both the form of video- and sensor-based recognition, and 

these vary in both their data collection and classification methods. However, the low cost and low 

power use associated with accelerometer and IMU-based gesture recognition are more desirable 

than vision-based detection, which can be altered by illumination differences and poor image 

quality.  As discussed previously, there have also been many different uses for gesture recognition, 

including American Sign Language (ASL) detection [115]–[117], as well as recognition for static 

and dynamic hand gestures [118]–[120] and pens and holdable objects [59], among others. 

Common machine learning (ML) algorithms for gesture recognition mentioned previously include 

dynamic time warping [121], [122], Hidden Markov Models [117], [121], Support Vector Machine 

[123], [124], and Linear Discriminant Analysis [115], [125], among others. 

To begin the work described in this chapter of the dissertation, it was prudent to first start 

with a basic method of gesture recognition through a simple set of equations, known as an objective 

function. These equations would use the basis of the IMU technology, the axes on which they 

collect data, to recognize simple movements that could later be built upon as a combination of 

these simple movements. These “atomic gestures” (or elementary gestures) are defined as 
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movements that cannot be decomposed any further and can be used in combination for complex 

gesture recognition [126]. Objective functions such as the ones that will be defined in this section 

have yet to be examined, and they will be compared to previous methods to determine their 

effectiveness. If possible, it will then be sensible to examine methods of improving the efficacy of 

the equations.  

  Deep learning techniques, such as Convolution Neural Networks (CNN), have also been 

studied extensively for such recognition. Although images from vision-based sensing are less 

desirable for gesture recognition due to the inconsistencies of image quality, the image processing 

techniques available are often more robust and accurate than many of the machine learning 

techniques described previously. AlexNet, a CNN, won first place in ImageNet Large-Scale Visual 

Recognition Competition in 2010, and has since been one of the gold standards for image 

recognition due to its superiority over other classification methods [60], [61]. Nakano et al. [127] 

noted the potential of converting 1-D signals to other forms for the purpose of improved 

classification, as techniques for data reduction and ease of visualization are needed for accurate 

classification. Representing time series data as images, therefore, is an attractive method for 

potential value in 1D signal classification and will be examine in this section as well. 

This chapter herein describes a proof-of-concept pilot study in which multiple 

classification methods, including a simple optimized objective function, an SVM with that 

objective function as a form of initial decision through predictive selection, and through 

representing 1-D time series signals as 3-D images, which are then recognized using state-of-the-

art image recognition algorithms such as AlexNet (the CNN used herein). Due to the limited data 

collection from the COVID-19 pandemic, the small sample sizes here limit the conclusiveness of 

the statements made in this chapter. 

4.1 Methods 

Classification through an Objective Function with SVM 

Data was first collected from 5 participants using a LSM9DS1 9-axis 

accelerometer/gyroscope/magnetometer connected to an Arduino UNO at the end of a 6-inch-long 
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PVC pipe (Figure 4.1). The subjects were asked to hold the gesture sensing device vertically to 

perform the gestures depicted in Figure 4.2. 

 

Figure 4.1: LSM9DS1 9-axis accelerometer/ gyroscope/ magnetometer attached to the end of a 6-
in long PVC pipe.   

 

For the purpose of this study, five participants (four males and one female) completed a set 

of pre-defined “atomic” gestures (Figure 4.2). These movements are composed of translational 

(Figure 4.2(a-c.)) and rotational movements (Figure 4.2(d-f)). Each participant completed a total 

of 50 of each gesture with each hand, for a total of 600 movements.  

 

       (a)                  (b)             (c)                     (d)                                   (e)                                (f)  

Figure 4.2: Atomic gestures; (a) x-direction, (b) y-direction, (c) z-direction, (d) yz rotation, (e) xz 
rotation, and (f) xy rotation. 

 

Each trial began with a user-initiated start through the push of a button, and the respective 

trial ended when the user returned to their initial starting position, and no movement is detected 
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for a full second. Data is sampled at 50 Hz from the three axes of the accelerometer (x, y, and z-

axes) and gyroscope (roll, pitch, and yaw axes). Classification is based on a 50% training and 50% 

testing configuration of the movement set for each user. To classify movements, data must first be 

separated into “movement” and “non-movement”. This is performed using an adaptive threshold, 

which is optimized for each user based off accuracy (Figure 4.3). 20 ms windows of data with no 

overlapping frames are utilized to segment the data based on the beginning and ending of each 

movement. The mean acceleration and angular velocity are stored, along with calibration data 

acquired during pre-measured non-movement that is used to compensate for potential offsets of 

the sensor, including gravity. 

 The objective function equations, defined to differentiate among the six primary movement 

behaviors, are described below (Eqns 4.1-4.6),  

 

  𝐽𝐽𝑥𝑥 =  
2 ∗  |𝑥𝑥 −  𝑥𝑥𝑜𝑜|

|𝑦𝑦 −  𝑦𝑦𝑜𝑜| +  |𝑧𝑧 −  𝑧𝑧𝑜𝑜|
+  𝑊𝑊2 |𝑝𝑝 −  𝑝𝑝𝑜𝑜| +  |𝑞𝑞 −  𝑞𝑞𝑜𝑜|

|𝑟𝑟 −  𝑟𝑟𝑜𝑜|
  (4.1)   

𝐽𝐽𝑦𝑦 =  
2 ∗  |𝑦𝑦 −  𝑦𝑦𝑜𝑜|

|𝑥𝑥 −  𝑥𝑥𝑜𝑜| +  |𝑧𝑧 −  𝑧𝑧𝑜𝑜|
+  𝑊𝑊2 |𝑟𝑟 −  𝑟𝑟𝑜𝑜| +  |𝑞𝑞 −  𝑞𝑞𝑜𝑜|

|𝑝𝑝 −  𝑝𝑝𝑜𝑜|
 (4.2) 

                      𝐽𝐽𝑧𝑧 =  
2 ∗  |𝑧𝑧 −  𝑧𝑧𝑜𝑜|

|𝑥𝑥 −  𝑥𝑥𝑜𝑜| +  |𝑦𝑦 −  𝑦𝑦𝑜𝑜|
+  𝑊𝑊2 |𝑟𝑟 −  𝑟𝑟𝑜𝑜| + |𝑝𝑝 −  𝑝𝑝𝑜𝑜|

|𝑞𝑞 −  𝑞𝑞𝑜𝑜|
                          (4.3) 

𝐽𝐽𝑦𝑦𝑧𝑧 =  
|𝑦𝑦 −  𝑦𝑦𝑜𝑜| + |𝑧𝑧 −  𝑧𝑧𝑜𝑜|

2 ∗ |𝑥𝑥 −  𝑥𝑥𝑜𝑜|
+ 𝑊𝑊1 2 ∗ |𝑟𝑟 −  𝑟𝑟𝑜𝑜|

|𝑝𝑝 −  𝑝𝑝𝑜𝑜| +  |𝑞𝑞 −  𝑞𝑞𝑜𝑜|
 (4.4)          

𝐽𝐽𝑥𝑥𝑧𝑧 =  
|𝑥𝑥 −  𝑥𝑥𝑜𝑜| +  |𝑧𝑧 −  𝑧𝑧𝑜𝑜|

2 ∗  |𝑦𝑦 −  𝑦𝑦𝑜𝑜|
+  𝑊𝑊1 2 ∗ |𝑝𝑝 −  𝑝𝑝𝑜𝑜|

|𝑟𝑟 −  𝑟𝑟𝑜𝑜| +  |𝑞𝑞 −  𝑞𝑞𝑜𝑜|
 (4.5) 

 𝐽𝐽𝑥𝑥𝑦𝑦 =  
|𝑥𝑥 −  𝑥𝑥𝑜𝑜| +  |𝑦𝑦 −  𝑦𝑦𝑜𝑜|

2 ∗  |𝑧𝑧 −  𝑧𝑧𝑜𝑜|
+  𝑊𝑊1 2 ∗ |𝑞𝑞 −  𝑞𝑞𝑜𝑜|

|𝑟𝑟 −  𝑟𝑟𝑜𝑜| +  |𝑝𝑝 −  𝑝𝑝𝑜𝑜|
 (4.6) 

 

where x, y, and z are accelerometer data in the x, y, and z directions, respectively, r, p, and q are 

angular velocity in the roll, pitch, and yaw directions, respectively, x0, y0, z0, r0, p0, and q0 are the 

respective calibration data for each axes, and W1 and W2 are optimized weights determining what 

relative amount of the gyroscope data will give the best model accuracy.  Each Jn is the respective 
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output for each potential class of the classifier, where n is the direction of movement in each case 

(e.g., Jx is a movement, or gesture, in the x-direction).  

 The optimization algorithm for this objective function is described in Figure 4.3 below. 

 

Figure 4.3: Optimization algorithm for determining the threshold and weight of gyroscope data 
used to achieve the highest accuracy of the model. C1 and C2 represent the thresholds for the 
accelerometer and gyroscope data, respectively, and W1 and W2 represent the weights applied to 
the gyroscope data in the objective function equations for the rotational (eqns 4.4-4.6) and 
translational (eqns 4.1-4.3) movements, respectively.   

In this algorithm, the threshold between “movement” and “non-movement” data is first 

optimized (C1 and C2, where C1 represents the threshold for accelerometer data, and C2 represents 

the threshold for gyroscope data). After an initial optimization of just the threshold for 

accelerometer data, the weights for the gyroscope data for both translational and rotational 

movements are optimized similarly (W1 and W2, respectively). Once accuracy has reached a 

maximum value, the threshold weights are again optimized, this time including the threshold of 

the gyroscope data (C1 and C2, respectively). C1 is examined in a range of 3 to 10 m/s2, while C2 

was examined in a range of 25 to 40 dps. If the accuracy between the initial threshold optimization 

and the second optimization is unchanged, classification occurs. If not, the process of optimization 
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of both the weights of (i) gyroscope data and (ii) thresholds of each type of data are repeated until 

accuracy is maximized (and error is no longer changing).  

Improvement of Classification through Axis Shift 

The method of improving the previously described classification (the classification through 

an objective function with SVM) is examined, specifically for the translational movements through 

an axis shift which has been presented in publication [128]. 

The same optimization and classification approach is used as previously described (Eqns 

4.1-4.6, Figure 4.3). To improve accuracy, data manipulation can be applied through projecting 

the translational movement data onto the respective axis the movement was made. This is 

performed by finding the mean amount of acceleration data in the x-, y-, and z-directions 

throughout each respective movement, normalizing each vector, and placing it into a matrix (Eqn. 

4.7), 

𝑆𝑆 =  �𝑥𝑥𝑚𝑚,𝑥𝑥 𝑦𝑦𝑚𝑚,𝑥𝑥 𝑧𝑧𝑚𝑚,𝑥𝑥𝑥𝑥𝑚𝑚,𝑦𝑦 𝑦𝑦𝑚𝑚,𝑦𝑦 𝑧𝑧𝑚𝑚,𝑦𝑦𝑥𝑥𝑚𝑚,𝑧𝑧 𝑦𝑦𝑚𝑚,𝑧𝑧 𝑧𝑧𝑚𝑚,𝑧𝑧�   (4.7) 

where xm,x, ym,x, and zm,x are the mean accelerometer data for an x movement; xm,y, ym,y, and zm,y 

are the mean accelerometer data for a y movement; and xm,z, ym,z, and zm,z are the mean 

accelerometer data for a z movement, respectively. This matrix is acquired from the training set 

movement data, and applied onto the test set through matrix multiplication of the inverse of the 

normalized matrix by the new movement data (Eqn. 4.8), 

 𝐴𝐴 = 𝑆𝑆−1𝑀𝑀 (4.8) 

where S-1 is the inverse of the normalized matrix S, and M is the new movement data. To further 

analyze the user’s movements, the acceleration data is transformed into distances through 

integration (Eqn. 4.9), 

              𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  ∆𝑑𝑑2� � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑 𝑑𝑑𝑑𝑑2𝑒𝑒
𝑏𝑏  

 

𝑒𝑒
𝑏𝑏 (4.9) 
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where ∆t is the period between samples, b is the beginning sample of the movement, and e is the 

ending sample. Data acquired from the three gyroscope axes cannot be similarly decomposed, as 

they are one integration away from being constants, and therefore they are left unmanipulated. 

The distances the wand travels during each movement is analyzed by plotting them in 3-D 

space, and in this way the data can be visualized before and after it has been shifted by the axis 

projection. Finally, the number of movements each user made within 30 degrees of each axis is 

determined by using cosine similarities between the distance the movement traveled along its path 

and its respective axis. An example of this is shown (Eqn. 4.10), 

 

cos∅ =
𝑥𝑥 ∙ 𝑥𝑥0‖𝑥𝑥‖‖𝑥𝑥0‖  (4.10) 

 

where x0 is the x-axis. Using Eqns. 4.10-4.13, it is possible to visualize the data to better 

understand how to improve the results of the algorithm, as well as to determine if shifting the data 

to the respective axis that the user is moving on will improve the accuracy for the translational 

movements with this algorithm. 

Classification from 1-D Signals Converted to 3-D Images 

 

Figure 4.4: Proposed framework for gesture recognition using AlexNet. 

The process for converting 1-D signals generated from IMU-based data is as follows. The 

data collected from the previously made atomic gestures were computationally manipulated to 

generate a set of complex movements comprising of the “atomic” movements completed 

previously (Figure 4.5). These 20 different complex movements are composed of sets of two, three, 

or four movements.  
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Figure 4.5: Framework of complex gestures, which are linear combinations of atomic gestures 
(Figure 4.2). 

 

Post-segmented data was utilized for form 3-D images in the three following methods. 

1. Arrays of data were formed with each axis in their own respective regions (Eqn 4.11),  

 

𝐼𝐼 =  � 𝑥𝑥1  ⋯  𝑥𝑥1,𝑛𝑛   𝑦𝑦1⋯  𝑦𝑦1,𝑛𝑛   𝑧𝑧1⋯  𝑧𝑧1,𝑛𝑛    ⋯
         ⋮                    ⋮                    ⋮            ⋯ 𝑥𝑥𝑚𝑚,1⋯  𝑥𝑥𝑚𝑚,𝑛𝑛  𝑦𝑦𝑚𝑚,1⋯𝑦𝑦𝑚𝑚,𝑛𝑛 𝑧𝑧𝑚𝑚,1⋯𝑧𝑧𝑛𝑛,𝑚𝑚⋯ 
       ⋮                       ⋮                      ⋮          ⋱ �  (4.11) 
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where m represents the number of rows (or samples) from one movement, and n represents 

the number of columns in which the data from that movement is expected to be above a 

minimum noise threshold below which no movement is assumed. This was extended to 

include the three axis of gyroscope data (roll, pitch, yaw). The data was then repeated until 

the dimensions of the array were 256x256 (Eqn 4.12).  

 𝐼𝐼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = �𝐼𝐼 ⋯ 𝐼𝐼⋮ ⋱ ⋮𝐼𝐼 ⋯ 𝐼𝐼�  (4.12) 

 

MATLAB’s grayscale function is then used to convert the data into grayscale, and the 

repmat function is used to create a 3-D stack of the data to form an image of minimum 

dimension 227x227x3, which is required for implementation with AlexNet. An example 

of this image type is shown in Figure 4.6(a). 

2. A similar process to 1. above is carried out, but the data generated from the 3-axis 

gyroscope is excluded to examine the effects of gyroscope data for this method of 

recognition (Eqn. 4.13). 

 𝐼𝐼 =  � 𝑥𝑥1  ⋯  𝑥𝑥1,𝑛𝑛     𝑦𝑦1⋯  𝑦𝑦1,𝑛𝑛     𝑧𝑧1⋯  𝑧𝑧1,𝑛𝑛   

         ⋮                    ⋮                    ⋮            𝑥𝑥𝑚𝑚,1⋯  𝑥𝑥𝑚𝑚,𝑛𝑛  𝑦𝑦𝑚𝑚,1⋯𝑦𝑦𝑚𝑚,𝑛𝑛 𝑧𝑧𝑚𝑚,1⋯𝑧𝑧𝑛𝑛,𝑚𝑚 �  (4.13) 

 

The data was again repeated until the dimensions of the array were again 227x227 (Eqn. 

2), and the grayscale and repmat functions were utilized to form an image of dimension 

227x227x3. An example of this image type is shown in Fig. 4.6(b). 
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           (a) x-x movement (gyroscope data included)             (b) x-x movement (no gyroscope data) 

Figure 4.6: Example of gray-scaled images: (a) Type 1 and (b) Type 2. 

1.  Each of the three accelerometer axes are converted from acceleration data to distance 
(Eqn. 4.14), 

                                             𝑑𝑑 =  ∆𝑑𝑑2� � 𝑑𝑑 𝑑𝑑𝑑𝑑2𝑡𝑡2𝑡𝑡1
𝑡𝑡2𝑡𝑡1                                                         (4.14) 

where d is distance, a is acceleration, and t1 and t2 are the beginning and ending of each 

completed atomic gesture within a complex gesture, respectively. The three axes of data 

(x, y, z) are then assigned a color; red is assigned to x, green is assigned to y, and blue is 

assigned to z. The axes are normalized between 0 and 1 (Eqn. 4.15), 

                                                 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛 =
𝑥𝑥 −  𝑥𝑥𝑚𝑚𝑚𝑚𝑛𝑛𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 −  𝑥𝑥𝑚𝑚𝑚𝑚𝑛𝑛                                                        (4.15) 

and the amount of color applied to each axis will depend on the amount of data, e.g. the 

distance traveled, in that axis. Examples of these “RGB images” are shown in Figure 4.7 

(a) and (b).    

 



59 

     (a) x-x-x-x                              (b) y-y-y-y                                (c) z-z-z-z 

Figure 4.7: Example of RGB images (Type 3). 

With each image type, a set of training and testing data was randomly formed (50% 

training, 50% testing), and the training images were used to train the AlexNet image classifier (500 

images for each hand) with an initial learning rate of 1x 10-4 seconds, a min-batch size of 10, and 

the max epochs at 6.  

Gesture Recognition for Simultaneous Sensing and User Validation 

Here, an expanded dataset was collected in a similar method described previously. Ten 

participants (seven males and three females) completed a set of each gesture 12 times for a total 

of 120 movements with their dominant hand (as previously mentioned, all participants are right-

handed). The gestures were constructed from the previously described sets of “atomic” movements 

(Figure 4.2).  

 The system of networks (Figure 4.8) includes a comparison between the following two 

options: 

Option A: A network trained by all potential gestures and all participants (global gesture 

set) is used to initially classify a gesture from the training set. Once that gesture is recognized, a 

network trained to biometrically identify a person (depicted as A.-J. in Figure 4.13) using the same 

image is employed, and the specific participant who made the gesture is then identified. A network 

trained off of only the gestures made by that specific participant (individual gesture set), which is 

therefore dependent on the recognized user, is then utilized to classify the gesture again. At this 

point, the initial classification of the gesture using the global gesture set is compared to the gesture 

classification of the final output, based only on the individual gesture set. The error rate here is the 

minimum functional error rate in the system, since it guarantees a system classification error has 

occurred (one of the gestures identified must be a mistake). It hides reverse errors, where the initial 

error (gesture ID’d against the global gesture set) is the inverse of the final error (gesture ID’d 

from the individual gesture set), and so the actual error rate is at least as high as the gesture 

comparison error. 
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Option B: Like Option A, the initial classification of the gesture is made using a network 

trained on all training data from all participants (global gesture set). In this case, the next 

classification is based off networks trained on clusters of the individuals, which are formed using 

the confusion matrix generated during training and validation of the network. Here, the confusion 

matrix was first made symmetrical by adding the elements with inverse indices to each other; for 

example, element 1-2 was added to 2-1. The matrix was then normalized based off the sum of all 

individual cells, and distances were forged using misclassification. It is analogous to the sum of (1 

– accuracy) and is also known as the error rate (ER). Error below a certain threshold (here, 0.1) is 

then used to cluster classes in such a way that the ratio of mean squared error between cluster 

means to the mean squared error from the mean within each cluster is maximized [47]. Alternative 

clustering approaches could certainly have been used. As will be shown shortly, the relative value 

of the clustering approach can be directly tested by the systemic errors computed for Option A and 

Option B when comparing them for different clustering approaches. 

 

Figure 4.8: Depiction of the proposed system flow, which includes Option A and Option B. 
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Using this method, two independent clusters of participants were formed for each of the 

six individual gestures (Cluster A and Cluster B in Figure 4.8), and networks trained on these 

clusters were then utilized to biometrically identify the participant from which the gesture was 

generated from. A network trained from the gestures made by that participant individually is then 

utilized to classify the gesture again (individual gesture set), and finally, the initial classification 

of the gesture (based on the global gesture set) made by the user is compared to the gesture 

classification of the final output (individual gesture set). For comparison, matching percentage is 

also to be examined with all ten possible clusters of the five participants when grouped in sets of 

five and five. 

      A ranking difference value (RDV) computed from the difference between the ranking of the 

final output gestures was generated to compare between the two options. An elementary example 

of this is as follows:  

 

 

In this case, the RDV is equal to 1, as the top ranking of the output of the six gestures (x in the first 

output ranking) was different by one position in the second output ranking (where “x” is ranked 2 

instead of 1). 

 To test for the level of repeatability of the gestures made by the participants, a separate 

experiment was conducted in which the models trained from gestures made by individual people 

(i.e., user-dependent models) were tested with the full set of data (i.e., both the first and second 

half of the data was used to train and test the model in individual tests). Here, the results are 

indicative of how consistently, or inconsistently, the users made the individual gestures, which can 

be seen in the similarity/difference of the model performance when the first half of the gestures 

were used to train the model compared to when the second half of the gestures were used. 

 

x y z yz xz xy

1 2 3 4 5 6

2 1 3 4 5 6

x y z yz xz xy
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4.2 Results 

Classification through an Objective Function with SVM 

The resulting accuracies of the proposed algorithm are shown in Table 4.1.  

Table 4.1: Mean accuracy for translational movements compared to one another, rotational 
movements compared to one another, and all six movements compared to one another with the 
objective function algorithm. 

 

 

From the results of the algorithm on translational and rotational movements, it was clear that a 

binary classifier to discriminate these two “superclasses” computationally before a comparison 

algorithm is used to distinguish among the remaining two sets of three classes will benefit the 

results. This is a variant of the Predictive Selection meta-algorithmic pattern [47]. For its 

previously reported performance as a strong binary classifier [129], [130], as well as its low 

computational costs and storage requirements [131], a support vector machine (SVM) was used as 

a method of predictive selection. 

Table 4.2: Mean accuracy for all six movements compared to one another using just objective 
function results, and mean accuracy for the objective function results after binarization into 
translational and rotational movements. 

 

Movements made by all five subjects were compiled into a confusion matrix (Figure 4.9) to 

visualize where sources of error were present.  

LEFT HAND RIGHT HAND

TRANSLATIONAL 78% 97%
ROTATIONAL 76% 98%
ALL 6 59% 61%

LEFT HAND RIGHT HAND

OBJECTIVE 59% 62%
OBJECTIVE + SVM 76% 92%
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Figure 4.9: Confusion matrix of the objective function algorithm combined with SVM for right-
handed (dominant hand) movements. 

 

The majority of confusion (that is, the errors) was present between movements with shared axes 

(e.g., yz-movements were often confused with y movements, xz-movements, and xy-

movements). The range of accuracies within the group of participants is shown in Table 4.3. 

 

Table 4.3: Mean accuracy and range of accuracies from the proposed algorithm. 

 

Precision and recall are calculated as:  

 𝑃𝑃𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑 =
𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃  (4.16) 

 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 =
𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹  (4.17) 
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𝐹𝐹1 𝑆𝑆𝑑𝑑𝑎𝑎𝑟𝑟𝑑𝑑 =
2 ∗ 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ∗ 𝑃𝑃𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 + 𝑃𝑃𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑  (4.18) 

    

The precision and recall were calculated for each movement (Appendix A.1) to show how well 

each movement was recognized individually. 

Improvement of Classification through Axis Shift 

The results of the objective function algorithm (Eqns. 4.1-4.6) combined with an SVM are 

shown in Table 4.3. For further visualization of the effects of the axis shift (Eqns. 4.7 and 4.8), 

accelerometer data was converted to distance (Eqn. 4.9) and plotted before and after shifting 

occurred. For further analysis of the translational movements, the mean number of movements 

made within 30 degrees of each axis (Eqn. 4.10) for both left- and right-handed gestures is shown 

(Table 4.4). A line-of-best-fit was created using a built-in search function in MATLAB known as 

fminsearch, which optimizes the line to find minimum error between points (Figure 4.10).  

 

Figure 4.10: An example of mapping of data before and after the axis projection was applied. The 
circles represent the original mapping, and the x’s represent the mapping of the shifted data. The 
line of best fit for each data set is included. 
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The mean distance traveled by the movement in each axis before and after the data 

manipulation (Table 4.4) further quantifies the effect of the data shift.  

Table 4.4: Mean number of movements from the “test” set made within 30 degrees of each axis 
for both left- and right-handed gestures (out of 25). 

 

 

The result of shifting the axis on the accuracy of the translational movements is shown in 

Table 4.5. 

 

 

Table 4.5: Effects of the axis shift on the translational data; the boldfaced data is the axis in which 
the movement was supposed to be made. 
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An Analysis of Variance (ANOVA) was used to analyze the ranges of accuracies before 

and after the axis shift was applied to determine if the change in accuracy between the two methods 

is significant for both dominant and non-dominant handed movements. The resulting confusion 

matrices from the axis shift (Eqn. 4.7 and 4.8) are shown in Figure 4.11.  

            

              (a)                                                                        (b)  

Figure 4.11: Confusion matrix for (a) left-handed translational movements and (b) right-handed 
translational movements after the axis-shifting algorithm. 

The resulting increase in accuracy range is shown in Table 4.6, and the mean percentage 

increase of each axis is shown in Table 4.7. 

Table 4.6: Accuracy ranges of the translational movements before and after applying the axis shift 
to those movements. 

 

Table 4.7: Mean increase of data towards correct axis for x-, y-, and z-movements, respectively 
(Note: data may be skewed by User 4, who did not make any movements within 30 degrees of any 
respective axis). 
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Classification from 1-D Signals Converted to 3-D Images 

 As before, precision, recall, and F1-score were used as metrics to evaluate the effectiveness 

of this classification method (Eqns. 4.16-4.18, respectively). The precision of each complex 

gesture type when formatted in the Type 1 image formation is shown in detail in Table 4.8. 

 

Table 4.8: Precision of each individual complex movement type as a result of the Type 1. image 
formation (Fig. 4.6(a)) with respect to each hand the gesture was made with. 

 

 

Similarly, the precision of each complex gesture type when formatted in the previously 

described Type 2 image is shown in detail in Table 4.9, and the same for the Type 3 image in Table 

4.10.   

Table 4.9: Precision of each individual complex movement type as a result of the Type 2. image 
formation (Fig. 4.6 (b)) with respect to each hand the gesture was made with. 

 

 

 

x-x x-x-x x-x-x-x x-y-x-y x-y-z x-y-xy y-y

Left Hand 0.33 0.49 0.38 0.67 0.91 0.81 0.38

Right Hand 0.37 0.35 0.39 0.8 0.91 0.88 0.41

y-y-y y-y-y-y y-yz-x z-z z-z-z z-z-z-z z-xz-x

Left Hand 0.42 0.43 0.91 0.4 0.36 0.46 0.93

Right Hand 0.41 0.44 0.95 0.38 0.4 0.43 0.92

xy-z xy-x-xy xy-xy xy-xy-x-x yz-yz xz-xz

Left Hand 0.94 0.79 0.76 0.86 0.82 0.84

Right Hand 0.92 0.92 0.82 0.85 0.94 0.93

x-x x-x-x x-x-x-x x-y-x-y x-y-z x-y-xy y-y

Left Hand 0.31 0.31 0.3 0.8 0.96 0.83 0.31

Right Hand 0.31 0.33 0.32 0.86 0.96 0.93 0.33

y-y-y y-y-y-y y-yz-x z-z z-z-z z-z-z-z z-xz-x

Left Hand 0.31 0.32 0.96 0.32 0.32 0.32 0.89

Right Hand 0.33 0.33 0.95 0.33 0.33 0.33 0.94

yz-yz xz-xz xy-z xy-x-xy xy-xy xy-xy-x-x

Left Hand 0.9 0.84 0.93 0.81 0.74 0.86

Right Hand 0.93 0.93 0.92 0.86 0.85 0.89
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Table 4.10: Precision of each individual complex movement type as a result of the Type 3. image 
formation (RGB image) with respect to each hand the gesture was made with. 

 

 

 The precision, recall, and F1-score for both the left hands and right hands are shown in 

Figure 4.12 and Figure 4.13, respectively.  

 

Figure 4.12: Precision, recall, and F1-score for the three types of images: left hand data. 

x-x x-x-x x-x-x-x x-y-x-y x-y-z x-y-xy y-y

Left Hand 0.85 0.89 0.9 0.97 0.9 1 0.87
Right Hand 0.94 0.96 0.944 1 0.98 0.99 0.93

y-y-y y-y-y-y y-yz-x z-z z-z-z z-z-z-z z-xz-x

Left Hand 0.78 0.89 1 0.9 0.88 0.89 0.93
Right Hand 0.86 0.94 1 0.96 0.89 0.98 0.99

yz-yz xz-xz xy-z xy-x-xy xy-xy xy-xy-x-x

Left Hand 0.95 0.79 0.9 0.97 0.95 0.99

Right Hand 0.99 0.97 0.94 0.99 0.99 0.99
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Figure 4.13: Precision, recall, and F1-score for the three types of images: right hand data. 

 

Gesture Recognition for Simultaneous Sensing and User Validation 

The percent match between the initial and final gesture classification of Option B (Fig. 4.8) 

for all 126 possible cluster sets when using all possible groupings of five and five is shown in Fig. 

4.14.  

 

 

Figure 4.14: Percent matching (% matching) when different combinations of groups of 5 clusters 
are created (126 different combinations possible). 
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      The percent match between the initial and final classification when comparing the clusters of 

participants generated using the confusion matrix method is provided in Table 4.11. The mean 

RDV comparing the rankings of the top-ranking gesture from the global gesture set with the 

ranking of this gesture in the individual gesture set was also calculated for each of the gestures in 

the training set. The RDV of Option A was calculated to be 0.15, while Option B was 0.13 (when 

using the confusion matrix method of clustering). 

 

Table 4.11: Percent matching between the initial and final classification (Figure 4.8). 

 

4.3 Discussions 

Classification through an Objective Function with SVM 

When comparing the six different movements together by the different users, the meta-

algorithmic method reduced error percentage from 38.5% to 1.9%, a 36.6% reduction. However, 

this is only true when the user is using their dominant hand for gestures; error was only reduced 

by 17% when users made movements with their non-dominant hand, and 24% error is still 

measured with this meta-algorithmic approach.   

Precision and recall, which are important measures for determining how often this classifier 

would activate the wrong sensing option in this “magic wand” appliance, were over 85% for most 

classifications (28 out of 30 times for precision, and 27 out of 30 times for recall). This statistic 

shows that, as a proof of concept, this meta-algorithmic approach could be suitable for a high-

quality gesture recognition technique with potential to reach 100% accuracy when correctly 

manipulated, and particularly for the dominant hand.  

Furthermore, during static calibration (i.e., the time between the start of data acquisition 

and the movement being made), the 9-axis IMU measures the opposing force of gravity in the 
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downward-pointing direction. This biometric allows for a further “super-superclass” to be made 

that will allow for activation of multiple sensors with high accuracy, precision, and recall. 

Improvement of Classification through Axis Shift 

The optimization of the objective function algorithm (Eqns. 4.1-4.6) showed that 

gyroscope data had no positive effect on the classifications made during this study, which is likely 

due to the lack of twist in any direction during the movements made during this small proof-of-

concept study. The mean number of movements made outside of 30 degrees of the axis during 

translational movements show that (i) users in this study were able to make movements more 

repeatably and accurately with their dominant hand, which is agreeable with previous work [132] 

and (ii) that the movement in the z-direction was the most difficult to repeat accurately (Table 4.4). 

The change in accuracy from before and after the axis shift for non-dominant hand movements 

resulted in significant changes in accuracy for the translational movements (F(1,8) = 61.47, p < 

0.001). This shows promise for improving the objective function algorithm to compete with current 

processes mentioned previously. 

The post-movement tracking of data (Figure 4.10) gives a visualization of the movement 

for the user to improve their motion, as visualization of movement has been shown to have a 

positive effect on repeatability and recognition of movements [133]. Data manipulation (Table 

4.5) show that the axis shift had the desired effect of shifting the data towards the correct axis for 

the proposed objective function algorithm. The mean percentage increase of each axis is likely 

the cause in the significant improvement in the accuracy of the algorithm. Further separation of 

the data in this way can potentially improve other algorithms that utilize spacing between 

clusters of datapoints, such as k-Nearest-Neighbors (kNN’s). The effect of the axis shift also 

allows for better performance of the objective function algorithm described here, as 

mathematical separation is achieved with the shift of the data. 

The movements made in this section are building blocks that will allow for a set of 

personalized, user-dependent gestures for the activation of our “magic wand”. The accuracies 

achieved by the algorithm are well above “guessing”, even when the user does not make 

movements correctly.  
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Classification from 1-D Signals Converted to 3-D Images 

The three methods of 3-D image construction from 1-D signals created during user-made 

gestures had varied success in classification with AlexNet. It is clear that the first two image types 

(Type 1 and 2) were unsuccessful at recognizing repeated gestures (e.g., x-x, y-y, etc.), but were 

more successful at recognizing 8 out of 20 complex gestures with over 80% precision. However, 

this was not true for the third type of image (Type 3); all 20 complex gestures were recognized 

with over 85% precision when the participants used their right hand, and 18 of those gestures were 

above 93% precision. There was no significant difference between the precision, recall, and F1-

score of the Type 1 and 2 image types. This shows that including time series data from the 

gyroscope portion of the IMU has no significant effect for image recognition when the images are 

formed with this method. The overall system achieved 96% precision, recall and F1-score when 

the 1-D time series signals were converted to RGB images and classified using AlexNet which 

shows that this method of gesture recognition exhibits potential. Comparatively, previous studies 

examining classification of 1-D signals commonly use accuracy as a measure of the effectiveness 

of a system. Methods such as Kundu et al. [18] achieved as high as 94% accuracy through a shape-

based feature extraction and Dendrogram Support Vector Machine (DSVM) classifier.  

Improvement of this method may be possible if the parameters of the AlexNet neural 

network were fit to this model, similarly to [15], as this is a small image training dataset. It can 

also be noted that the structure of the complex gesture framework using atomic gestures from 

Figure 4.2 means that there is vast potential for personalized, user-selected gestures. 

Gesture Recognition for Simultaneous Sensing and User Validation 

In both instances, it is clear there is an increase in system accuracy when adopting Option 

B. The optimal cluster results in obvious improvement in accuracy (90.3%). System error (9.7% 

for the best clustering case for Option B) is still appreciable for both options, and this error 

represents of the minimal error of the system. However, the more robust system afforded by Option 

B has the potential to be applied to other similar systems in which intermediate outputs can be 

interpreted and vetted for system improvement.  
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The system presented demonstrates measurably increased effectiveness when partitioning 

of subjects was incorporated as an intermediate step in the overall gesture identification 

(specifically, there was an 18% decrease in the mean RDV as a result of the partitioning). This 

type of system design is fitted to the design feature of maintaining a biometric VPN until it is 

shown that the user has changed, since a change in gesture classification hides the details of the 

inner clustering from the decision, allowing challenge-based biometrics to be readily 

accommodated without requiring security through obscurity. In the future, such a system would 

need further testing that involves both i) a higher number of participants in a full study and ii) a 

higher number of templates to create training data for, especially when using an image recognition 

technique such as AlexNet. The system should also be tested for cost, which is an important metric 

when evaluating biometric systems, as well as an assortment of error metrics, such as false 

acceptance rate, false rejection rate, and equal error rate. This proposed system is meant for 

applications to any number of biometric techniques, and thus can be evaluated on these techniques 

as seen fit. Perhaps most importantly, this system provides a closed-loop verification of the 

biometric classification that can be used to compare the relative value of any number of different 

clustering algorithms in a biometric classification system. This systems engineering-based design 

thus obviates the need for expensive and time-consuming ground truthing of the clustering or 

gesture data, allowing the possibility for automated optimization of the overall system design. 

Separately, the viability of using gestures as a means of biometric recognition was tested 

through comparing using the first and last five gestures as the training set for the AlexNet model. 

When the models were trained using the first five gestures, the mean accuracy was 88.8 ± 9.7 %, 

while the mean accuracy was 93.9 ± 5.1% when the models were trained using the second five 

gestures. Although these results are not statistically significantly different (p = 0.16, α < 0.05), the 

difference still implies that there is some level of “learning” that the users experience when using 

the device with respect to how to make the gestures, and while the level of repeatability is not 

significant initially, these results will likely become more similar as users become more 

comfortable with the device. Also, as alluded to in Section 4.2, the hand that the user makes the 

gestures with can influence the results, as many of the movements can be inconsistently made with 
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the non-dominant hand of the user. The repeatability in this sense is something that will need 

further examination in future works, as it can greatly affect the results of gestures as a biometric 

tool. 

 

  



75 

Chapter 5  
Gait Analysis and Lameness Prediction of Equine 
Subjects 

As mentioned previously, biometric principles and techniques have yet to be implemented 

with non-human living beings in any application. However, as discussed in Chapter 2, there is 

potential to apply such principles to the different states of an animal, namely an equine animal, to 

assess its well-being. Gait analysis is an application in which biometric principles have the 

potential to be utilized to examine and potentially recognize the various “states” of gait.  

Lameness is a term used to describe a horse's visual and/or measurable change in gait from 

the normal, usually in response to pain somewhere in a limb, but also possibly as a result of a 

mechanical restriction on movement. Other metrics of lameness include, but are not limited to, 

range of motion (ROM), or the relationship between joint contracture and soft tissue adaptive 

shortening with a form of lameness; synovial fluid effusion (EFF), or inflammation of the synovial 

membrane that lines the joints and causes an increase in severity of fluid accumulation within the 

joint; and flexion (FLEX), or a measurement of pain associated with a joint or soft-tissue structure 

during or following the flexing of the limb. This section herein describes a proof-of concept study 

in which a model for different metrics of lameness in an equine subject is created through biometric 

principles using feature extraction of signals generated from four inertial measurement unit (IMU) 

sensors placed strategically on the left and right fetlock, as well as just above the left and right 

knee (Figure 5.1).  
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Figure 5.1: Placement of four MoveSense IMU sensors on the left and right fetlock, as well as 
just above the left and right knee of the horse. 

Due to the ongoing COVID-19 pandemic, the number of horses was limited to a single 

horse, and therefore the data was very limited in this chapter. However, the methods here are a 

“steppingstone” that can be further tested with a larger sample size in the future. 

5.1 Methods 

Quantification of Variability of Within-Day and Between-Day Exercise 

Before attempting to find effective features that will be able to accurately quantify 

lameness, it is first prudent to measure and evaluate any underlying variability that may exist in an 

equine animal that is sound. These measurements characterize the baseline noise and entropy 

expectations. To quantify this variability, or lack thereof, of exercise within a single day, as well 

as between days, the following experiment and analysis took place.  

A single horse with sensor attachment (shown in Figure 5.1) was exercised five to ten times 

per data collection episode while trotting at a constant speed of 12 km/hr. This speed was estimated 

and maintained by a trainer, who ran alongside the horse as it completed each individual trial. 

Timestamps indicating the horse reaching that constant speed, as well as slowing from that 

constant speed, were recorded and stored. This data was collected three times a day (in morning, 

mid-day, and evening, denoted as AM, MD, and PM), three days a week over two weeks. The 

IMU utilized for this study is the MoveSense IMU, and data was collected at a frequency of 208 

Hz.  
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 Once collected, the timestamps were utilized to segment the data, which was then 

standardized (Eqn 5.1) 𝑋𝑋𝑚𝑚 =  
𝑥𝑥𝑚𝑚 − 𝜇𝜇 𝜎𝜎  (5.1), 

 

where X is the standardized datapoint, x is the raw datapoint, i is the index of the specific data 

features, μ is the mean of the data, and 𝜎𝜎 is the standard deviation. For within-day exercise, 

variability between similar signals (e.g., the x-axis of the right fetlock sensor to itself) was 

measured using cross correlation and Pearson Correlation coefficients between the samples taken 

within a day (Eqn. 5.2),  

𝑟𝑟 =  
∑(𝑋𝑋𝑚𝑚 −  𝑋𝑋) (𝑌𝑌𝑚𝑚 −  𝑌𝑌)�∑��𝑋𝑋𝑚𝑚 −  𝑋𝑋��2∑�𝑌𝑌𝑚𝑚 −  𝑌𝑌�2  (5.2), 

where r is the correlation coefficient, 𝑋𝑋𝑚𝑚 and 𝑌𝑌𝑚𝑚  are the two samples being compared (after 

standardization), and 𝑋𝑋 and 𝑌𝑌 are the respective standardized means of the two samples.  

Modeling of Differences in Gait Over Time with Surgically Induced Lameness 

A single horse with sensor attachment shown in Figure 5.1 was exercised six times per data 

collection while trotting a known distance of 15.5 meters. Data collection occurred before the 

surgical production of lameness, ten days post-surgery, and then weekly until the end of the study. 

The front left limb of the equine animal underwent a surgically induced osteochondral, or bone 

fragment, in the carpus (or knee) that induces a mild to moderate lameness. Timestamps indicating 

the beginning and end of that known distance were again recorded and stored.  

Once collected, the timestamps were again utilized to segment the data, which was then 

standardized (Eqn 5.1). Features were extracted using a calculation of the Energy Spectral Density 

(ESD),  𝐸𝐸𝑑𝑑𝑑𝑑𝑟𝑟𝐸𝐸𝑦𝑦 𝑆𝑆𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑑𝑑𝑎𝑎 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦 =  |𝐹𝐹𝐹𝐹𝑇𝑇2(𝑥𝑥)|  (5.3), 
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where FFT is the fast Fourier Transform of each axis of acceleration data. The ESD of each axis 

of each sensor was then segmented into “windows” of the ESD, which are formed by dividing the 

signal into groups based off the peaks and valleys of the full ESD, and two different calculations 

were implemented: 

• The percentage of signal in single, double and triple groups (or windows), and 
 

• The ratio of percentages between singles/doubles and singles/triples (Figure 5.2). 
 

      

                   (a)                                                      (b)                                                       (c)  

Figure 5.2: Windowing of ESD groups; (a) single, (b) double, and (c) triple groups. 

 

Entropy was also calculated as a feature (Equation 5.4),  

                                               𝐻𝐻(𝑥𝑥) =  −�𝑃𝑃(𝑥𝑥𝑚𝑚𝑛𝑛
𝑚𝑚=1 )log (P(𝑥𝑥𝑚𝑚))                                                            (5.4) 

where H is the entropy of the signal, x is the axis of acceleration for one of the sensors, and P is 

the likelihood of occurrence. The number of total features was therefore 516; the list of features is 

shown in Table 5.1 

Table 5.1: Engineered feature set used by the classifiers. 

 

Feature Name Description Number of features

Entropy Entropy of the standardized acceleration 12
Single Percentage Percentage of ESD in each window of the "single" groups 84
Double Percentage Percentage of ESD in each window of the "double" groups 72
Triple Percentage Percentage of ESD in each window of the "triple" groups 60

Single-Double Ratio Ratio of signal of each "single" group to the "double" groups that encompass them 144
Single-Triple Ratio Ratio of signal of each "single" group to the "triple" groups that encompass them 144

Total number of features: 516
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Each of these features was normalized between trials (within a single day) by a linear 

regression to remove the inherent variability between trials (i.e., the features were normalized 

around their respective mean to remove the effect of fatigue as a covariate). Once normalized, 

individual trials (i.e., each set of measurements taken when the horse trotted down the track) 

were split into 50% training and 50% testing to develop and train models. In this pilot study, four 

previously discussed primitive classification methods were examined, including: 

• Support Vector Machine (SVM) 
 

• k-Nearest Neighbors (KNN’s) 
 

• Decision Tree 
 

• Naïve Bayes. 
 

Classes for model development were generated for each of the four metrics based off of the 

various scoring between days of the study (Table 5.2). Scoring for each metric is as follows:  

• Synovial Effusion (EFF), which is a subjective measure of the severity of fluid 
accumulation within the joint, is scored 0 for no fluid, 1 for mild, 2 for moderate, and 
3 for severe. 
 

• Lameness, which is a lameness grade at a trot, is scored 0 for no lameness, 1 for mild 
asymmetry in limb use, 2 for occasional head nod (which is used as a compensation 
mechanism, as the horse lifts its head when the lame leg is about to touch the ground), 
3 for consistent head nod, 4 for lame at walk, and 5 for the horse being unable to walk 
on the leg completely. 
 

• Range of Motion (ROM), which is a description of loss of the range of motion of a 
particular limb, is scored 0 for normal ROM, 1 for a mild reduction, 2 for a moderate 
reduction, and 3 for a severe reduction. 
 

• Flexion, which is a lameness grade after flexion of the joint and follows the same 
scoring as lameness. It is expected, therefore, that a worse than regular lameness 
score will be assigned, as there is an expected increase in pain after flexion. 
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Table 5.2: Metrics of lameness over the course of pilot study.  

 

Separate models were generated for i) individual limbs (e.g., sensor data generated from 

the left limb was modeled separately from sensor data generated from the right limb), ii) combined 

limbs (e.g., a model was generated from all data collected from both limbs). Metrics used to show 

the results of the different algorithms are precision, recall, and F1-score.  

5.2 Results 

Quantification of Variability of Within-Day and Between-Day Exercise 

An example of the resulting cross-correlation and Pearson Correlation coefficients between 

each of the five trials on the first day (specifically, the x-axis accelerometer data of the left fetlock 

sensor) is shown in Figure 5.3. The full set of Pearson Correlation coefficients for each 

Limb OA Day Date

Synovial 

Fluid 

Effusion 

(EFF)

Lame

Range of 

Motion 

(ROM)

Flexion

R 0 0 10/22/2020 0 0 0 0

L 0 0 10/22/2020 0 0 0 0

R 0 10 11/5/2020 1 0 1 0

L 1 10 11/5/2020 2 2 3 3

R 0 14 11/9/2020 1 0 0 1

L 1 14 11/9/2020 2 2 2 3

R 0 21 11/16/2020 1 0 0 0

L 1 21 11/16/2020 2 2 2 4

R 0 28 11/23/2020 1 0 0 0

L 1 28 11/23/2020 2 2 2 4

R 0 35 11/30/2020 1 0 0 0

L 1 35 11/30/2020 2 2 2 3

R 0 42 12/7/2020 1 0 0 0

L 1 42 12/7/2020 2 1 1 2

R 0 49 12/14/2020 0 1 0 0

L 1 49 12/14/2020 1 2 1 1

R 0 56 12/21/2020 0 0 0 0

L 1 56 12/21/2020 1 1 1 1

R 0 63 12/28/2020 0 0 0 0

L 1 63 12/28/2020 1 1 1 1

R 0 70 1/4/2020 0 1 0 0

L 1 70 1/4/2020 2 1 0 1
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configuration of data collection during the full study is included in Appendix A (Figures A.5 – 

A.22).  

 

Figure 5.3: Example of Pearson Correlation coefficients on Day 1 of Week 1 between each trial 
(specifically, the x-axis accelerometer data of the left fetlock sensor). The individual trials are 
labeled as T1, T2, T3, T4, and T5, respectively. 

 

 Between day variability was quantified using a similarity score between days (Eqn 5.5),  𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑟𝑟𝑑𝑑 =
(𝑥𝑥1 ∙ 𝑥𝑥2)2

(‖𝑥𝑥12‖ ∗  ‖𝑥𝑥22‖)
 (5.5), 

where x1 and x2 are the respective arrays of energy of the two days (Eqn. 5.6) 𝐸𝐸𝑑𝑑𝑑𝑑𝑟𝑟𝐸𝐸𝑦𝑦 =  �|𝐹𝐹𝐹𝐹𝑇𝑇|2 (5.6). 

Examples of similarity scoring between similar signals (as before, between the acceleration data 

in the x-axis between the left fetlock sensor from one day to another) is shown in Figure 5.4.  

 

                        (a)                                                   (b)                                                   (c)   

Figure 5.4: Example of similarity scores between similar times of day (specifically, the x-axis 
accelerometer data of the left fetlock sensor); (a) AM, (b) Mid-Day (MD), and (c) PM.  
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Changes in similarity scores over time over the different times of day are shown below in Figure 

5.5.  

 

Figure 5.5: Example of changes in similarity scores between times of day over the full study (x-
axis of all four sensors). 

 

Modeling of Differences in Gait Over Time with Surgically Induced Lameness 

Full results (Appendix A, Figures A.25-A.31), as well as results from the best performing 

algorithm (Figure 5.6, Figure 5.7) are presented. 

 

Figure 5.6: Classification results from models developed using individual limbs for each of the 
four metrics of lameness using kNN. 
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Figure 5.7: Classification results from models developed using both limbs for each of the four 
metrics of lameness using kNN. 

To quantify the clinical relevance of the extracted features, the correlation between features 

and lameness metrics were measured. An example can be seen in Figures 5.8 and 5.9, where a 

wrapper algorithm (forward selection) was utilized to select the feature with the highest 

performance criterion, and this feature was plotted against the various scorings of lameness 

throughout the study. Figure 5.8 displays the scoring split between the left and right forelimb, and 

the feature selected through the wrapper algorithm was the percentage of energy in the fourth 

window of the x-axis of the forelimb fetlock sensors. In Figure 5.9, the means of that feature were 

plotted against the three measured scores (0, 1, 2), and the correlation and p-value were calculated 

through a linear model. 
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Figure 5.8: Change in feature selected through wrapper algorithm over time. 

 

 

Figure 5.9: Correlation between feature selected and subjective lameness scoring. 
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5.3 Discussions 

Quantification of Variability of Within-Day and Between-Day Exercise 

The correlation between within-day measurements, or the Pearson Correlation 

Coefficients, are a tool used to measure the amount of correlation, or lack thereof, between the gait 

of the horse during each exercise. It is therefore prudent to examine the data and look for a 

relatively similar amount of variability between trials of exercise within a day (i.e., there is a level 

of symmetry, or equality, in values in the Pearson correlation table (Figure 5.3)). However, there 

are multiple points that are outside of the range of symmetry, meaning that these are trials that are 

greatly dissimilar from the others. This may be indicative of data that needs to be discarded, as it 

likely has a high amount of variability that is outside of the norm. Although this data is taken from 

a single horse, this method can be used to generally describe variability that can be corrected for 

when measuring differences in gait (against the norm). 

Similarly, is it clear that there is a significant difference between the developed similarity 

scores depending on the time of day. The timing of the difference in similarity is likely indicative 

of the equine animal needing to “warm up”, as the increase in difference is seen during trials in 

the morning, and it is plausible, therefore, that the horse may be stiff after a long period of non-

movement or exercise. The similarity scores, while again taken from a single horse, are potentially 

powerful in that, when combined with more ground truthing of the horse’s health and injury status, 

it is possible that they can be utilized to improve the level of exercise, or lack thereof, that the 

horse should undergo, as increases in gait variability may be indicators of underlying fatigue, 

injury, or illness that may be undetected beforehand. This will need to be verified statistically in 

the future with a much larger sample size, however, before any conclusive statements can be made.  

Modeling of Differences in Gait Over Time with Surgically Induced Lameness 

As shown in Figures 5.6 and 5.7, the kNN classifier correctly classified each of the four 

metrics with their respective scores with near 100% precision, recall, and F1-score for all but the 

lameness score of the right limb, wherein the model was trained on individual limbs (Figure 5.6). 

The difference in this performance is likely due to the lack of balance in the classes of the 
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individual models, as the vast majority of classes of the right limb were zeroes (as the surgery was 

performed on the other limb), which plausibly caused biasing towards that class. From plotting the 

most informative feature (as selected by the wrapper algorithm), the correlation of 0.58 is almost 

identical to subjective comparison of lameness among veterinarians, as described in Chapter 2. 

However, the data analysis techniques used here allow for more detailed correlation to other 

objective outcomes, such as other forms of injury and lameness, over time. It would, therefore, be 

prudent to have multiple professionals examine the horse, and see if performance of features 

matches the variability of scoring between vet professionals. 

 It is plausible that advanced data analytical techniques using these data also provide a 

possible means of further characterizing lameness and response to therapy with greater fidelity 

than current methods. It is important to note that, while these results are promising and warrant 

further studies with a larger sample size of equine animals, the current results have no statistical 

power, and thus conclusive statements on the performance of the models and viability of the 

selected features are not able to be made until further analysis is carried out on the larger dataset. 

However, from these results, the IMU data clearly follows trends similar to subjective scoring, 

which indicates that they can be used to further characterize pain and resulting lameness in horses. 
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Chapter 6  
Forensic Identification of Environmental Sensors 

 Various forms of IoT environmental sensors are being examined for mass implementation 

into a multitude of systems and platforms. These sensors vary in size, configuration, fabrication, 

chemistry, and operational use. As alluded to in Chapters 2 and 3, metal oxide semi-conductors 

and chemiresistive sensors have shown great promise in sensing and analyzing a user’s 

surrounding environment, the food and drink that the user is consuming, and the health status of 

user. However, there is a need for securing a home and/or smart environment with biometrics (i.e., 

a forensic environment). To show the validity of establishing biometric identity through 

challenging environmental sensors in a smart system (portable or stationary) with varied 

environments and analytes, a set of pre-selected sensors were tested in various scenarios.  

6.1 Sensor and Environmentally Controlled Chamber Selection 

 To test the validity of establishing biometric identity through challenging environmental 

sensors, a set of metal-oxide semiconductor (MOS) sensors was purchased (Figure 6.1). The MQ 

sensor series, which includes a number of different sensors of similar build and are sensitive to 

specific analytes, was selected; specifically, the MQ-5, which is sensitive to liquefied petroleum 

gas and natural gas, the MQ-7, which is sensitive to carbon monoxide, and the MQ-135, which is 

sensitive to NH3, nitric oxide, alcohol, Benzene, smoke, and carbon dioxide.  

 

Figure 6.1: MQ sensor series used for this study, including the MQ-5, MQ-7, and MQ-135. 
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 An environmentally controlled chamber was also purchased for the purpose of this study. 

The LHE-6, a benchtop-style stability test chamber, was purchased from Associated 

Environmental Systems (Figure 6.2). This chamber has a working volume of 4.96 cu. ft., a 

temperature range of -20°C to 94°C, and a humidity range of 10% to 98% relative humidity (RH).  

 

Figure 6.2: Environmentally controlled chamber selected for this study, The LHE-6 Stability 
Benchtop-Style Test Chamber from Associated Environmental Systems (AES). 

 This chapter herein describes a study in which the aforementioned gas sensors were 

exposed to various environments and gases in order to evaluate the efficacy and effectiveness of 

applying biometric principles, specifically challenge-based biometrics, to environmental gas 

sensors for multiple purposes, described in Chapter 2. Specifically, the study discussed is first to 

test the viability of “abiometrically” validating the I.D. of environmental sensors through 

challenging them with different environments. Here, the hypothesis is that the raw data collected, 

which is data commonly used to calibrate the sensors (controlled calibration), will be distinctly 

different i) between sensor types (i.e., the MQ-5, MQ-7, and MQ-135) and ii) within sensor types 

(e.g., MQ-5 sensors will have different raw responses to other MQ-5 sensors). This will be tested 
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by exposing a set of each sensor type to a number of different temperature and humidity settings, 

which are common settings used in the calibration of these sensors. Next, the viability of 

“abiometrically” validating the I.D. of environmental sensors is tested through challenging them 

with different analytes. The hypothesis here is that the reaction of the different sensor types will 

be significantly different, and this in turn will allow for classification between the sensor types, 

and potentially the different sensors within those types, to occur with high accuracy. To test this 

hypothesis, the sensors will be exposed to three analytes of interest, all three of which are 

commonly used to calibrate the sensors of interest: hydrogen (H2), carbon monoxide (CO), and 

methane (CH4). 

6.2 Methods 

Analysis of Sensor Response to Environmental Challenges 

Ten of each of the aforementioned MQ sensors (i.e., the MQ-5, MQ-7, and MQ-135) were 

exposed to varied combinations of temperature and humidity settings within the environmentally 

controlled chamber. Specifically, the temperature settings were between 20°C and 50°C in 

increments of 5 (e.g., 20°C, 25°C, 30°C, 35°C, 40°C, 45°C, 50°C), and these settings were in 

combination with a relative humidity (RH) of either 33% RH or 85% (in the case of 85%, the 

chamber was able to reach steady-states of 10°C and 15°C, so these temperatures were added to 

the original set). At each of these settings, five measurements were taken with each sensor for a 

total of 480 readings.  

During measurements, the sensors were placed directly in the middle of the LHE-6 

Stability Benchtop-Style Test Chamber, and wires were used to connect the sensor to an Arduino 

Uno that was placed outside of the chamber. The experimental setup is shown in Figure 6.3.  
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Figure 6.3: Sensor placement inside of environmentally controlled chamber. 

After data collection, the changes in environmental setting were examined by first grouping 

the sensors by stock keeping unit (SKU) (i.e., MQ-5, MQ-7, and MQ-135). The data was then 

normalized by the raw output of the first setting to examine the trajectories of change between 

settings with each sensor without the effect of the initial offset. Finally, the differences in that 

normalized raw response between settings was also calculated. 

 Analysis of Variance (ANOVA) was then utilized to determine the statistical probability 

that each sensor would be recognized without confusion with another sensor of both i) the same 

SKU and ii) a different SKU through the following method. For all settings N (of which there are 

16 total between the two RH settings), the number of comparisons between sensors is 𝐶𝐶 =
𝐿𝐿(𝐿𝐿 − 1)

2
 (6.1) 

where C is the total number of comparisons, and L is the number of sensors within the SKU. The 

probability of a false match, therefore, is 𝑝𝑝(𝑓𝑓𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑ℎ) =
𝑄𝑄𝐶𝐶 ∗ 𝐹𝐹  (6.2) 

where Q is the number of sensors that are not statistically significantly different from one another. 

Here, C = 45, as L = 10. For statistical forensic purposes, the desired outcome is a probability of 

less than 10-9 of a false positive (i.e., a one in a billion chance that the recognition is not a false 
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positive). In an example where, when comparing sensors within the same SKU, Q = 17 (meaning 

there were 17 mismatches), then 𝑝𝑝(𝑓𝑓𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑ℎ) =
1716∗45 = 0.024. In this case, to determine the 

minimum number of settings that would guarantee that a sensor is positively matched to its correct 

identity, then 

(0.024)𝑇𝑇 < 10−9 (6.3) 

Where T is the minimum number of settings that would be required to guarantee statistical 

forensics of the sensor in question. Here, solving for T would result in a T = 5.56, meaning that 

measurements at six settings (by rounding) would be needed to ensure this forensic identification.  

To show the level of repeatability of these raw measurements with respect to each sensor, 

the level of repeatability of each sensor measurement at the different environmental settings was 

calculated by  𝑅𝑅 =  
𝜎𝜎𝑚𝑚𝑛𝑛𝑖𝑖𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝐹𝐹𝑒𝑒 ∗ 𝐹𝐹  (6.4) 

where 𝜎𝜎𝑚𝑚𝑛𝑛𝑖𝑖 is the standard deviation of the individual sensor measurements, 𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝐹𝐹𝑒𝑒 is the standard 

deviation of the full sample size (all 30 sensors), and N is the number of sensor within the sample 

size. Ideally, a value for R < 1would be desired, as this indicates that the measurements are 

repeatable.  

 

Analysis of Sensor Response to Various Gases 

Ten of each of the aforementioned MQ sensors (i.e., the MQ-5, MQ-7, and MQ-135) were 

exposed to three calibration gases while in a constantly controlled environment of 25°C and 33% 

RH. Calibration gases included H2 at a concentration of 50 parts per million (ppm), CO at a 

concentration of 50 ppm, and methane at a concentration of 100 ppm. Each gas was balanced with 

21% oxygen in nitrogen. These calibration gases were mixed and filled by GASCO. Each sensor 

was exposed to each calibration gas separately five times for a total of 450 readings. Due to obscure 

readings from improper clearing of the gas between measurements, eleven of the CO readings 

were discarded. 



92 

During measurements, the sensors were placed directly in the middle of the LHE-6 

Stability Benchtop-Style Test Chamber, and wires were used to connect the sensor to an Arduino 

Uno that was placed outside of the chamber. A hose was connected to sampling bags outside of 

the chamber, and for each reading, the sampling bag was filled for twenty seconds with a 0.5 L/min 

gas regulator for a total of 0.17 L. The gas was then released into the chamber with the hose placed 

strategically at 1 cm away from the sensor, and the sensors sampled the environment for one 

minute during each reading. The gas was then removed from the controlled environment through 

a fan and vent, which operated for ten minutes to properly clear the environment between each 

reading. The experimental setup is shown in Figure 6.4. 

 

Figure 6.4: Experimental setup for gas exposure analysis. 

The raw responses of each sensor to the three calibration gases were both corrected for the 

initial offset (or baseline) and aligned temporally with respect to the timing at which the gas was 

released into the chamber.  To utilize the capabilities of the AlexNet classifier, as shown in Chapter 

4, images were generated from the 1-D response signals from each sensor. To do so, the 1-D 

response was repeated n times to generate a matrix of sufficient dimensionality (as mentioned 

previously, this is at minimum 227 x 227) (Eqn 6.5),  
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𝐼𝐼 =  � 𝑥𝑥1 ⋯ 𝑥𝑥1,𝑛𝑛 ⋮ ⋱ ⋮𝑥𝑥𝑚𝑚,1 ⋯ 𝑥𝑥𝑚𝑚,𝑛𝑛�  (6.5) 

 

where m represents the number of rows (or samples) from one measurement, and n is the number 

of columns. A moving mean was utilized to reduce the number of rows of the sample from the full 

amount to a number below the minimum resize requirement (for AlexNet, this is 256 x 256). Once 

the array was formed, the “greyscale” function in MATLAB was used to convert the data into 

normalized greyscale values between 0 and 1, which is based on the maximum and minimum 

sample reading from the full dataset. The data was then stacked three dimensionally using the 

“repmat” function in MATLAB, and example images resulting from this method is shown in 

Figure 6.5. 

      

                     (a)                                                  (b)                                                   (c) 

Figure 6.5: Examples of images from sensor responses to (a) H2, (b) CO, and (c) CH4.  

  

 The resulting images were used to train an AlexNet classifier for six different classification 

problems: 

• Classification between the three gases, 
 

• Classification between the three sensor types (MQ-5, MQ-7, MQ-135), 
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• Classification between the individual sensors (ten of each of the MQ series 
utilized, for a total of 30 classes) using images generated from the responses to all 
three gases, 

 
• Classification between the individual sensors using only the response to H2, 

 
• Classification between the individual sensors using only the response to CO, and 

 
• Classification between the individual sensors using only the response to CH4. 

 

The output of the classification results (namely, the classification of individual sensors 

from the response to the individual gases) can be utilized to determine the number of sensors which 

can be distinguished based on the results. To determine the number of sensors that each 

classification output can distinguish, the ranking of each output of the classification was recorded, 

and the ranking between the different classification outputs was combined through a mean. The 

number of sensors that the sensor in question can distinguish between is then 𝐹𝐹𝑁𝑁𝑠𝑠𝑁𝑁𝑑𝑑𝑟𝑟 𝑎𝑎𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑟𝑟𝑑𝑑 =
𝐹𝐹𝜇𝜇  (6.6) 

where N is the total number of sensors, and µ is the mean of the included rankings. It is important 

to note that this assumes a smooth curve for N versus correct ranking.   

6.3 Results  

Analysis of Sensor Response to Environmental Challenges 

 Box plots showing the mean raw response (mV) of all sensors grouped by (SKU) at each 

environmental setting is shown in Figures 6.6 and 6.7. 
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                                      (a)                                                                         (b) 

 

                                      (c)                                                                         (d)         

 

                                      (e)                                                                         (f) 



96 

 

  (g) 

Figure 6.6: Raw response of the sensors to varied environments, including (a) 20℃ and 33% 
RH,(b) 25℃ and 33% RH, (c) 30℃ and 33% RH, (d) 35℃ and 33% RH, (e) 40℃ and 33% RH, 
(f) 45℃ and 33% RH, and (g) 50℃ and 33% RH. 

 

        

                                    (a)                                                                            (b)    
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                                      (c)                                                                         (d) 

                                                                                     

                                     (e)                                                                           (f) 

       

                                    (g)                                                                             (h) 
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  (i) 

Figure 6.7: Raw response of the sensors to varied environments, including (a) 10℃ and 85% RH, 
(b)15℃ and 33% RH, (c) 20℃ and 85% RH, (d) 25℃ and 85% RH, (e) 30℃ and 85% RH, (f) 35℃ 
and 85% RH, (g) 40℃ and 85% RH, (h) 45℃ and 85% RH, and (i) 50℃ and 85% RH. 

   

The normalized raw output of each sensor is shown in Figure 6.8, and the differences in 

that normalized raw response between settings are shown in Figures 6.9-6.14. 

 

 

(a)                                                                         (b)     
 



99 

     

                                        (c)                                                                         (d) 

 

                                       (e)                                                                        (f) 

Figure 6.8: Normalized response for each sensor; (a) MQ-5 (33% RH), (b) MQ-5 (85% RH), (c) 
MQ-7 (33% RH),  (d) MQ-7 (85% RH),  (e) MQ-135 (33% RH),  and (f) MQ-135 (85% RH). 
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Figure 6.9: Normalized differences between temperature settings; MQ-5 sensors at 33% RH. 

 

Figure 6.10: Normalized differences between temperature settings; MQ-5 sensors at 85% RH. 
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Figure 6.11: Normalized differences between temperature settings; MQ-7 sensors at 33% RH. 

 

Figure 6.12: Normalized differences between temperature settings; MQ-7 sensors at 85% RH. 
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 Figure 6.13: Normalized differences between temperature settings; MQ-135 sensors at 33% RH. 

 

Figure 6.14: Normalized differences between temperature settings; MQ-135 sensors at 85% RH. 

Analysis of Variance (ANOVA) was calculated between sensor groups and between each 

sensor, including both between types and within types for the latter, and the resulting F-statistics 

(F(1,9) = 3.36, p < 0.05) are included in Appendix A (Figures A.32-A.129). The number of false 
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matches, as well as the resulting number of required settings for forensic identification, is shown 

in Table 6.1. 

 

Table 6.1: Summary of statistical forensic analysis of response to different environmental settings. 

 

The repeatability of the measurements at each environmental setting with each individual 

sensor of each sensor type is included in Appendix A (Figure A.130).   

Analysis of Sensor Response to Various Gases 

 The mean response for all sensors of each type to each gas is shown in Figures 6.15 - 6.17. 

The mean response of the individual sensors is presented in Appendix A (Figures A.131-A.133). 

 

Figure 6.15: MQ-5 mean sensor response to H2, CO, and CH4. 

# of Non-statistical significance # of settings for forensic accuracy

MQ-5 - MQ-5 18 5.6 (6)
MQ-7 - MQ-7 6 4.32 (5)

MQ-135 - MQ-135 4 3.99 (4)
MQ-5 - MQ-7 30 6.52 (7)

MQ-7 - MQ-135 18 5.6 (6)
MQ-5 - MQ-135 8 4.61 (5)
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Figure 6.16: MQ-7 mean sensor response to H2, CO, and CH4. 

 

Figure 6.17: MQ-135 mean sensor response to H2, CO, and CH4. 

 The results of the six classification problems presented is shown in Figure 6.18.   
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Figure 6.18: Classification performance of AlexNet for generated images. 

 

 In Figure 6.18, the dashed lines correspond to the accuracy at which “guessing” would be 

achieved (for three class problems, this is 1/3, and for thirty classes, this is 1/30, or 0.033). Based 

on the results, the rankings of the classification of H2 and CH4 were combined, and the calculation 

of the ranking of the correct classifications for each sensor, as well as the number of corresponding 

sensors that each sensor would be able to be distinguished from, are shown in Figures 6.19 and 

6.20, respectively.  
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Figure 6.19: Ranking of classification for the responses to CH4, H2, and the mean (combination) 
of the two. 

 

Figure 6.20: The resulting number of sensors that the combination of classifications is able to 
distinguish between. 
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6.4 Discussions  

Analysis of Sensor Response to Environmental Challenges 

 The plots of the normalized response, as well as the normalized differences in response 

(Figures 6.8 – 6.14), show that there is a common trend at which each sensor increases in raw 

response when challenged with the different settings. There are, however, clear outliers to the 

trends, and these can be corrected for, but also potentially recognized as a sensor that is operating 

incorrectly and may need replaced, or as a set of data that does not follow with the generalized 

model of expected response. There is also clearly a great effect in increased humidity, which can 

be seen in the increase in slope between readings at 85% RH in comparison to the measurements 

taken at 33% RH. 

The results of the ANOVA of the full set of respective SKU sensor response show that, 

overall, there is not a consistent statistically significant difference between the MQ-5, MQ-7, and 

MQ-135 sensors when grouped. The MQ-7 and MQ-135 were statistically significantly different 

at different settings, but overall there were only 22 instances out of 48 possibilities where this was 

true (i.e., 26 of the possible comparisons were not significantly different) (F(1,9) = 3.36, p < 0.05). 

However, this was not the case for the individual sensors overall. The number of mismatches in 

each comparison (Table 6.1) showed that there were very few instances where the raw responses 

to the different settings were not statistically significantly different (F(2,29) = 2.49, p < 0.05). 

Through analysis (Equations 6.1 – 6.3), examining each sensor in the range of four to seven 

environmental settings (e.g., exposing each sensor to four to seven different temperature and 

humidity settings) will be required to achieve a one in a billion chance that the sensor was 

forensically validated. This is a potentially important process, as these readings are taken 

commonly for commercial calibration purposes, and do not take extra effort to examine. These 

measurements are also clearly repeatable (Figure A.130), as the vast majority of the calculated 

ratios (Eqn 6.4) are below 1.0 (85.2%). The source of the lack of repeatability of some sensors was 

likely due to the lack of stability of the set environmental settings in the chamber (i.e., the 

environmental settings fluctuated when attempting to maintain “stable” environments). In other 
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words, the measurements are repeatable when tested in stable conditions. Also, while some of the 

raw measurements at different settings are correlated strongly within individual sensors (mean R2 

= 0.81 for 33% RH, and R2 = 0.89 for 85% RH), the correlation is as low as 0.05 for the sensors 

at 33% RH and 0.07 for 85% RH. This lack of correlation is likely the cause of the “mismatches”, 

or sensors that were not statistically significantly different from each other at the various settings, 

which is why the statistical analysis utilized here is necessary for statistical forensics. 

Analysis of Sensor Response to Various Gases 

From the results, it is clear that each classification problem was well above guessing (less 

so for the sensor classification problem, which was only slightly above guessing at 0.42 for 

accuracy, and 0.44 for precision, recall, and F1-score). Although the classification of all individual 

sensors using the full dataset (i.e., responses for all three gases) was approximately 20%, this is 

still more than six times greater than the result from guessing, and when the classification problem 

is split to be based only on the individual gases, the thirty-class problem increases in the different 

performance metrics significantly. It is also clear that, compared to the results from using H2 and 

CH4, using CO calibration gas was not as effective. This is likely due to the high polarization of 

CO molecules, which compared to the non-polar H2 and CH4, caused a great amount of variability 

in response, and this had an effect on the resulting classification. The performance of the 

classification using H2 and CH4, however, was further examined using the rankings of both 

outputs. The results show that each sensor can distinguish between a mean of 14 other sensors (and 

median of 10). This, when combined in a system with an initial classification of the measured 

analyte, can be used as a tool of dimension reduction that will require augmentation with other 

analyses to achieve forensic authentication within a smart IoT system. It is again important to note 

that this calculation assumes a smooth curve for N versus correct ranking, which is not the case 

for the results (which exhibit kurtosis in the distribution), so this is only an estimate. A larger 

dataset with more resolution with respect to different analyte concentrations will further 

characterize this relationship and show more definitively the relationship between classification 

and the ability to distinguish between sensors within the proposed smart IoT system. 
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Chapter 7  
Conclusions and Future Work 

7.1 Conclusion 

 The research conducted in this dissertation introduced the use of challenge-based 

biometrics in applications to three areas: gesture recognition for the relay of the intent of sensing  

to a portable hand-held device, equine gait analysis for the detection and diagnosis of lameness in 

an equine animal with four different metrics of lameness, and forensic authentication of sensors 

that have the potential to be utilized within the hand-held portable “magic wand” device through 

the exposure of varied environments and analytes. Two approaches were applied to gesture 

recognition in the effort to classify pre-determined “atomic” movements, one of which was 

improved upon through an axis shifting method that resulted in an increased accuracy, and the 

other of which the conversion of 1-D signals to 3-D images (or signal dimensional transformation) 

was utilized in order to employ AlexNet as a classification algorithm. Finally, the generated 

images, along with the AlexNet classification method, were used in a system in which the internal 

error was quantized through initial and final classifications of gestures, and the partitioning of 

subjects was able to improve the overall results, and this system was shown to be useful in the 

maintenance of a biometric VPN that can be established through other commonly used methods.  

 The method of using within and between day variability through calculation of Pearson 

correlation coefficients and similarity scoring was demonstrated, and the features derived from the 

energy spectral density of the signals demonstrated high accuracy and strong correlation to the 

subjective scoring of professional veterinarians seen in the literature. These objective measures of 

lameness in horses using wearable sensors not only provide an opportunity for more objective 

characterization of pain, but also provide an opportunity to use these devices at home and during 

training to remotely monitor equine health. However, a larger cohort of equine animals will be 

needed to verify these results.  

Finally, the controlled exposure of MOS environmental sensors to varied environments 

showed promise in the forensic authentication, with as few as four measurements needed to 
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guarantee a one in a billion chance of a false positive, which is necessary for forensic 

authentication. Similarly, the exposure of the various sensors to multiple analytes showed that the 

modeling of the response through images generated through 1-D signals gives high enough 

accuracy that exposure to two analytes can distinguish one sensor from a mean of 14 other 

individual sensors. These challenge-based “abiometrics” give promise in anomaly detection, 

which in turn can be utilized to detect perception-layer attacks within IoT systems.  

7.2 Future Work  

 In the future, multiple objectives can be accomplished that will bring further 

implementation of the technologies and theories discussed. 

• Objective 1: Investigate the use of complex movements, which are linear combinations of 

the proposed atomic movements, that can be used as “passcodes” to gain access with the 

handheld system. 

• Objective 2: Gather and develop a vast database of horse gait data with controlled sensor 

placement and utilization to be able to statistically verify the modeling results of this 

dissertation, and  

• Objective 3: Examine similar sensor technologies and develop modeling-based 

techniques using the presented challenges to provide security to other perception-layer 

objects within an IoT system. Also, examine the layers outside of the perception layer, 

such as network layer attacks, to secure the system of portable-based devices presented.  

 

 This future work will provide further validation of the use of challenge-based biometrics 

in practice for multiple scenarios in the IoT realm, including forensic security of portable IoT 

devices (such as the proposed magic wand), the health and safety of non-human entities such as 

equine animals, and the items and objects within IoT systems, such as environmental sensors, 

which have multiple security risks as described here.  
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Additional Figures 
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Figure A.1: Precision and recall of each gesture recognition. (a) xmovements, (b) y-movements, 
(c) z-movements, (d) yzmovements, (e) xz-movements, and (f) xy-movements.  
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Figure A.2: Pearson Correlation Coefficients - Week 1, Day 1, AM. 
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Figure A.3: Pearson Correlation Coefficients - Week 1, Day 2, AM. 
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Figure A.4: Pearson Correlation Coefficients - Week 1, Day 3, AM. 
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Figure A.5: Pearson Correlation Coefficients - Week 2, Day 1, AM. 
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Figure A.6: Pearson Correlation Coefficients - Week 2, Day 2, AM. 
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Figure A.7: Pearson Correlation Coefficients - Week 2, Day 3, AM. 
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Figure A.8: Pearson Correlation Coefficients - Week 1, Day 1, MD. 
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Figure A.9: Pearson Correlation Coefficients - Week 1, Day 2, MD. 
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Figure A.10: Pearson Correlation Coefficients - Week 1, Day 3, MD. 
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Figure A.11: Pearson Correlation Coefficients - Week 2, Day 1, MD. 
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Figure A.12: Pearson Correlation Coefficients - Week 2, Day 2, MD. 
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Figure A.13: Pearson Correlation Coefficients - Week 2, Day 3, MD. 
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Figure A.14: Pearson Correlation Coefficients - Week 1, Day 1, PM. 
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Figure A.15: Pearson Correlation Coefficients - Week 1, Day 2, PM. 
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Figure A.16: Pearson Correlation Coefficients - Week 1, Day 3, PM. 
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Figure A.17: Pearson Correlation Coefficients - Week 2, Day 1, PM. 
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Figure A.18: Pearson Correlation Coefficients - Week 2, Day 2, PM. 
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Figure A.19: Pearson Correlation Coefficients - Week 2, Day 3, PM. 
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Figure A.20: Similarity scores of the left forelimb fetlock sensor. 

 

 

 

 

Figure A.21: Similarity scores of the right forelimb fetlock sensor. 

 

 

 

 

 

 

 



144 

 

 

  

Figure A.22: Similarity scores of the left forelimb knee sensor. 

 

 

 

 

Figure A.23: Similarity scores of the right forelimb knee sensor. 
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Figure A.24: Change in similarity score of right and left forelimb fetlock and left and right 
forelimb knee sensors. 
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Figure A.25: Classification results from models developed using individual limbs for each of the 
four metrics of lameness using SVM. 

 

Figure A.26: Classification results from models developed using individual limbs for each of the 
four metrics of lameness using Decision Tree. 
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Figure A.27: Classification results from models developed using individual limbs for each of the 
four metrics of lameness using Naïve Bayes. 

 

 

Figure A.28: Classification results from models developed using individual limbs for each of the 
four metrics of lameness using Ensemble. 
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Figure A.29: Classification results from models developed using both limbs for each of the four 
metrics of lameness using SVM. 

 

Figure A.30: Classification results from models developed using both limbs for each of the four 
metrics of lameness using Decision Tree. 
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Figure A.31: Classification results from models developed using both limbs for each of the four 
metrics of lameness using Naïve Bayes.  

 

 

Figure A.32: ANOVA f-statistics for comparisons between sensor groups (33% RH 
measurements). 
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Figure A.33: ANOVA f-statistics for comparisons between sensor groups (85% RH 
measurements). 

 

 

Figure A.34: MQ-5 ANOVA f-statistics (20°C, 33% RH). 

 

Figure A.35: MQ-5 ANOVA f-statistics (25°C, 33% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 20855.62 3856.88 2162.387 14412.66 6104.979 7648.438 4841.299 10191.94 367.5167

Sensor 2 20855.62 0 27333.69 1072.715 638.5113 775.3307 889.6102 729.9649 4525.826 826.3033

Sensor 3 3856.88 27333.69 0 6731.62 21764.18 13112.5 15144.67 11240.23 17632.83 2007.327

Sensor 4 2162.387 1072.715 6731.62 0 347.7667 110.2542 132.3128 80.25061 0.028074 62.29333

Sensor 5 14412.66 638.5113 21764.18 347.7667 0 83.39094 84.85234 98.10591 1496.913 406.0781

Sensor 6 6104.979 775.3307 13112.5 110.2542 83.39094 0 0.485418 1.773865 277.6702 233.3065

Sensor 7 7648.438 889.6102 15144.67 132.3128 84.85234 0.485418 0 4.237849 387.8087 252.5361

Sensor 8 4841.299 729.9649 11240.23 80.25061 98.10591 1.773865 4.237849 0 178.163 203.3405

Sensor 9 10191.94 4525.826 17632.83 0.028074 1496.913 277.6702 387.8087 178.163 0 82.30988

Sensor 10 367.5167 826.3033 2007.327 62.29333 406.0781 233.3065 252.5361 203.3405 82.30988 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 260109.1 80355.07 11529.19 17226.92 7.232367 30432.52 7874.698 598.3441 1925.719

Sensor 2 260109.1 0 911455.3 7581.504 843.4445 17.56806 2653.73 2739.842 670.7435 3391.974

Sensor 3 80355.07 911455.3 0 54346.08 55577.51 50.12902 105112.4 32277.55 3205.56 11913.86

Sensor 4 11529.19 7581.504 54346.08 0 1119.166 1.387693 1160.974 71.09178 13.76719 141.9914

Sensor 5 17226.92 843.4445 55577.51 1119.166 0 8.82297 31.76263 423.2267 264.1111 1168.973

Sensor 6 7.232367 17.56806 50.12902 1.387693 8.82297 0 7.227348 2.791257 0.424316 0.081412

Sensor 7 30432.52 2653.73 105112.4 1160.974 31.76263 7.227348 0 335.2244 212.9597 1097.086

Sensor 8 7874.698 2739.842 32277.55 71.09178 423.2267 2.791257 335.2244 0 49.41715 285.6514

Sensor 9 598.3441 670.7435 3205.56 13.76719 264.1111 0.424316 212.9597 49.41715 0 5.989645

Sensor 10 1925.719 3391.974 11913.86 141.9914 1168.973 0.081412 1097.086 285.6514 5.989645 0
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Figure A.36: MQ-5 ANOVA f-statistics (30°C, 33% RH). 

 

Figure A.37: MQ-5 ANOVA f-statistics (35°C, 33% RH). 

 

Figure A.38: MQ-5 ANOVA f-statistics (40°C, 33% RH). 

 

Figure A.39: MQ-5 ANOVA f-statistics (45°C, 33% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 49512.53 26467.86 10319.74 19858.6 23565.21 41012.16 3463.903 511.6448 111.8742

Sensor 2 49512.53 0 104485 5868.313 479.9885 1909.279 867.4428 2097.432 509.5672 529.6193

Sensor 3 26467.86 104485 0 42250.47 53502.27 66286.76 95998.82 15654.66 2725.29 1067.329

Sensor 4 10319.74 5868.313 42250.47 0 1897.82 1131.275 2850.318 2.839034 2.285018 53.08226

Sensor 5 19858.6 479.9885 53502.27 1897.82 0 217.2446 0.552898 804.2407 243.6577 318.5357

Sensor 6 23565.21 1909.279 66286.76 1131.275 217.2446 0 318.7007 389.1055 124.2216 210.0209

Sensor 7 41012.16 867.4428 95998.82 2850.318 0.552898 318.7007 0 935.2515 246.0738 319.4388

Sensor 8 3463.903 2097.432 15654.66 2.839034 804.2407 389.1055 935.2515 0 4.643705 57.92944

Sensor 9 511.6448 509.5672 2725.29 2.285018 243.6577 124.2216 246.0738 4.643705 0 25.08826

Sensor 10 111.8742 529.6193 1067.329 53.08226 318.5357 210.0209 319.4388 57.92944 25.08826 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 429178.5 75704.15 9099.776 19945.86 67879.76 4566.738 5173.774 2468.503 494.4758

Sensor 2 429178.5 0 600481.1 8725.674 343.8748 9895.763 494.4983 306.8171 1544.074 2338.661

Sensor 3 75704.15 600481.1 0 44593.25 57716.02 190511.4 15871.51 16919.62 11592.36 4708.887

Sensor 4 9099.776 8725.674 44593.25 0 2181.326 1581.131 394.2372 576.0409 15.74786 167.8302

Sensor 5 19945.86 343.8748 57716.02 2181.326 0 485.3775 109.2222 40.34903 653.4141 1368.942

Sensor 6 67879.76 9895.763 190511.4 1581.131 485.3775 0 1.446844 32.8257 246.9409 872.8601

Sensor 7 4566.738 494.4983 15871.51 394.2372 109.2222 1.446844 0 10.83021 151.6427 594.5594

Sensor 8 5173.774 306.8171 16919.62 576.0409 40.34903 32.8257 10.83021 0 242.2455 740.8293

Sensor 9 2468.503 1544.074 11592.36 15.74786 653.4141 246.9409 151.6427 242.2455 0 183.2047

Sensor 10 494.4758 2338.661 4708.887 167.8302 1368.942 872.8601 594.5594 740.8293 183.2047 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 1041645 75398.84 7567.693 77602.38 13409.45 5968.259 3715.206 1018.603 41.05394

Sensor 2 1041645 0 461875 9731.685 788.1713 2077.767 831.9884 443.7369 458.2548 1536.133

Sensor 3 75398.84 461875 0 38597.55 159820.2 44840.39 21092.89 13165.52 4579.639 1384.586

Sensor 4 7567.693 9731.685 38597.55 0 5000.946 932.3861 575.9781 426.3617 44.40197 211.6106

Sensor 5 77602.38 788.1713 159820.2 5000.946 0 758.4991 330.2877 172.6932 265.8995 1202.365

Sensor 6 13409.45 2077.767 44840.39 932.3861 758.4991 0 0.882951 3.514923 36.4253 642.5023

Sensor 7 5968.259 831.9884 21092.89 575.9781 330.2877 0.882951 0 0.953356 38.21887 607.1488

Sensor 8 3715.206 443.7369 13165.52 426.3617 172.6932 3.514923 0.953356 0 41.88689 577.8021

Sensor 9 1018.603 458.2548 4579.639 44.40197 265.8995 36.4253 38.21887 41.88689 0 252.264

Sensor 10 41.05394 1536.133 1384.586 211.6106 1202.365 642.5023 607.1488 577.8021 252.264 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 230289 91789.87 5695.817 31687.86 15775.73 13459.51 29231 144.8778 243.7407

Sensor 2 230289 0 372313.5 8176.61 104.1797 2865.078 502.6869 3139.412 407.8 1162.481

Sensor 3 91789.87 372313.5 0 33975.69 85352.41 57003.13 42454.99 93055.63 1184.066 2504.622

Sensor 4 5695.817 8176.61 33975.69 0 4035.562 955.6095 1776.072 1676.362 5.418827 40.63097

Sensor 5 31687.86 104.1797 85352.41 4035.562 0 1108.387 151.5131 906.0828 329.5761 925.0957

Sensor 6 15775.73 2865.078 57003.13 955.6095 1108.387 0 250.5368 49.87403 103.3763 333.8299

Sensor 7 13459.51 502.6869 42454.99 1776.072 151.5131 250.5368 0 126.6016 210.8723 600.3247

Sensor 8 29231 3139.412 93055.63 1676.362 906.0828 49.87403 126.6016 0 138.812 436.5579

Sensor 9 144.8778 407.8 1184.066 5.418827 329.5761 103.3763 210.8723 138.812 0 2.618332

Sensor 10 243.7407 1162.481 2504.622 40.63097 925.0957 333.8299 600.3247 436.5579 2.618332 0
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Figure A.40: MQ-5 ANOVA f-statistics (50°C, 33% RH). 

 

Figure A.41: MQ-5 ANOVA f-statistics (10°C, 85% RH). 

 

Figure A.42: MQ-5 ANOVA f-statistics (15°C, 85% RH). 

 

Figure A.43: MQ-5 ANOVA f-statistics (20°C, 85% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 358578.8 137434 3142.016 33154.57 24214.23 113074.7 3529.577 2735.401 207.978

Sensor 2 358578.8 0 756939.1 7994.561 104.9532 4971.429 1211.947 113.2721 1535.647 1181.83

Sensor 3 137434 756939.1 0 24937.29 97845.03 95080.16 313947.3 11878.15 13668.74 2410.593

Sensor 4 3142.016 7994.561 24937.29 0 4408.458 1426.877 5226.204 863.9208 212.4086 17.21053

Sensor 5 33154.57 104.9532 97845.03 4408.458 0 1531.98 54.26644 42.56319 978.2553 954.2759

Sensor 6 24214.23 4971.429 95080.16 1426.877 1531.98 0 1967.508 117.2609 98.19706 351.315

Sensor 7 113074.7 1211.947 313947.3 5226.204 54.26644 1967.508 0 15.64244 897.3986 875.6183

Sensor 8 3529.577 113.2721 11878.15 863.9208 42.56319 117.2609 15.64244 0 238.5772 491.6671

Sensor 9 2735.401 1535.647 13668.74 212.4086 978.2553 98.19706 897.3986 238.5772 0 141.963

Sensor 10 207.978 1181.83 2410.593 17.21053 954.2759 351.315 875.6183 491.6671 141.963 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 32509.97 3959.605 3190.832 26507.01 59494.74 12685.69 15873.55 1145.908 242.4081

Sensor 2 32509.97 0 22511.83 1438.668 227.5594 972.6681 342.7509 1707.037 251.7948 2032.57

Sensor 3 3959.605 22511.83 0 7703.426 22766.7 21734.35 15232.52 15219.64 3576.003 2298.94

Sensor 4 3190.832 1438.668 7703.426 0 2090.816 641.992 466.5446 145.479 18.20821 311.8427

Sensor 5 26507.01 227.5594 22766.7 2090.816 0 1817.059 863.9758 2548.065 453.2838 2575.945

Sensor 6 59494.74 972.6681 21734.35 641.992 1817.059 0 0.532442 531.2029 66.13399 1342.988

Sensor 7 12685.69 342.7509 15232.52 466.5446 863.9758 0.532442 0 225.2243 63.41171 1165.95

Sensor 8 15873.55 1707.037 15219.64 145.479 2548.065 531.2029 225.2243 0 3.68452 778.5697

Sensor 9 1145.908 251.7948 3576.003 18.20821 453.2838 66.13399 63.41171 3.68452 0 280.7271

Sensor 10 242.4081 2032.57 2298.94 311.8427 2575.945 1342.988 1165.95 778.5697 280.7271 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 226263.5 468818.6 4492.808 470093.9 15219.37 15628.05 3387.404 8095.094 2605.643

Sensor 2 226263.5 0 643363.9 1074.813 850.9557 1179.922 466.9438 621.1937 2402.057 6077.573

Sensor 3 468818.6 643363.9 0 17578.42 1313240 51820.61 49080.95 12691.89 33105.58 18716.42

Sensor 4 4492.808 1074.813 17578.42 0 1607.325 83.66709 225.3449 3.686726 5.209926 497.5486

Sensor 5 470093.9 850.9557 1313240 1607.325 0 2128.937 1039.226 955.5322 3559.288 7803.782

Sensor 6 15219.37 1179.922 51820.61 83.66709 2128.937 0 63.03258 32.94933 205.2885 1545.702

Sensor 7 15628.05 466.9438 49080.95 225.3449 1039.226 63.03258 0 119.9207 453.3306 2046.047

Sensor 8 3387.404 621.1937 12691.89 3.686726 955.5322 32.94933 119.9207 0 17.2334 474.8155

Sensor 9 8095.094 2402.057 33105.58 5.209926 3559.288 205.2885 453.3306 17.2334 0 585.5329

Sensor 10 2605.643 6077.573 18716.42 497.5486 7803.782 1545.702 2046.047 474.8155 585.5329 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 375838.4 772747.9 13661.62 108255.4 44704.19 41523.36 611.7903 6483.519 10595.03

Sensor 2 375838.4 0 1033788 5023.208 509.5576 3753.362 2006.077 92.03999 3190.091 14969.86

Sensor 3 772747.9 1033788 0 61112.73 286939.6 160448.5 140874.3 2333.188 30692.13 68458.3

Sensor 4 13661.62 5023.208 61112.73 0 5775.002 547.7249 901.3137 12.98196 11.95441 636.0183

Sensor 5 108255.4 509.5576 286939.6 5775.002 0 4387.072 2814.35 151.7791 3961.874 14108.63

Sensor 6 44704.19 3753.362 160448.5 547.7249 4387.072 0 83.10638 2.000358 493.3708 3268.11

Sensor 7 41523.36 2006.077 140874.3 901.3137 2814.35 83.10638 0 9.374244 763.6497 3976.246

Sensor 8 611.7903 92.03999 2333.188 12.98196 151.7791 2.000358 9.374244 0 20.97944 88.52757

Sensor 9 6483.519 3190.091 30692.13 11.95441 3961.874 493.3708 763.6497 20.97944 0 276.236

Sensor 10 10595.03 14969.86 68458.3 636.0183 14108.63 3268.11 3976.246 88.52757 276.236 0
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Figure A.44: MQ-5 ANOVA f-statistics (25°C, 85% RH). 

 

Figure A.45: MQ-5 ANOVA f-statistics (30°C, 85% RH). 

 

Figure A.46: MQ-5 ANOVA f-statistics (35°C, 85% RH). 

 

Figure A.47: MQ-5 ANOVA f-statistics (40°C, 85% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 959726 371097.1 9954.477 91615.35 27401.97 15369.65 5987.727 18488.97 1088.8

Sensor 2 959726 0 1473300 3969.799 677.2068 3365.434 316.5257 1464.581 4449.842 2187.128

Sensor 3 371097.1 1473300 0 44268.5 228236.4 98592.55 48520.82 24545.6 73965.32 7756.287

Sensor 4 9954.477 3969.799 44268.5 0 4697.161 280.9873 796.5079 29.34543 53.14292 201.5905

Sensor 5 91615.35 677.2068 228236.4 4697.161 0 3960.875 795.4123 2103.232 4984.518 2754.967

Sensor 6 27401.97 3365.434 98592.55 280.9873 3960.875 0 269.1783 51.01476 110.6651 596.3328

Sensor 7 15369.65 316.5257 48520.82 796.5079 795.4123 269.1783 0 341.5477 577.2314 1029.484

Sensor 8 5987.727 1464.581 24545.6 29.34543 2103.232 51.01476 341.5477 0 0.000397 281.4247

Sensor 9 18488.97 4449.842 73965.32 53.14292 4984.518 110.6651 577.2314 0.000397 0 359.4665

Sensor 10 1088.8 2187.128 7756.287 201.5905 2754.967 596.3328 1029.484 281.4247 359.4665 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 1594432 134630.9 4559.677 10159.32 28493.89 260605 6358.094 67983.58 474.0128

Sensor 2 1594432 0 807551.2 2174.441 12.48557 5931.659 18234.19 1414.994 18040.84 3225.581

Sensor 3 134630.9 807551.2 0 21459.74 28274.44 100564.3 419735.9 25776.79 200709.6 5986.147

Sensor 4 4559.677 2174.441 21459.74 0 1087.385 99.52072 535.1858 52.0073 61.42561 415.5164

Sensor 5 10159.32 12.48557 28274.44 1087.385 0 999.5753 534.8843 716.0444 1251.463 2157.749

Sensor 6 28493.89 5931.659 100564.3 99.52072 999.5753 0 650.0274 0.736313 27.67757 947.3474

Sensor 7 260605 18234.19 419735.9 535.1858 534.8843 650.0274 0 184.113 2206.2 1647.692

Sensor 8 6358.094 1414.994 25776.79 52.0073 716.0444 0.736313 184.113 0 3.584409 692.3279

Sensor 9 67983.58 18040.84 200709.6 61.42561 1251.463 27.67757 2206.2 3.584409 0 886.7541

Sensor 10 474.0128 3225.581 5986.147 415.5164 2157.749 947.3474 1647.692 692.3279 886.7541 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 142341.8 167890.3 9000.192 39666.57 32942.34 15237.76 15977.95 14916.16 166.0833

Sensor 2 142341.8 0 307330.2 4297.847 219.8644 4717.967 186.0308 1214.319 3746.825 1225.734

Sensor 3 167890.3 307330.2 0 43570.02 101581.7 118100.9 47860.3 56636.6 62165.44 2303.103

Sensor 4 9000.192 4297.847 43570.02 0 4091.387 264.8639 1188.195 541.747 79.35075 197.3078

Sensor 5 39666.57 219.8644 101581.7 4091.387 0 3716.751 460.945 1536.778 3507.713 1467.123

Sensor 6 32942.34 4717.967 118100.9 264.8639 3716.751 0 656.732 136.9625 47.17091 393.9701

Sensor 7 15237.76 186.0308 47860.3 1188.195 460.945 656.732 0 176.1046 803.0807 814.9488

Sensor 8 15977.95 1214.319 56636.6 541.747 1536.778 136.9625 176.1046 0 253.9422 539.203

Sensor 9 14916.16 3746.825 62165.44 79.35075 3507.713 47.17091 803.0807 253.9422 0 305.9539

Sensor 10 166.0833 1225.734 2303.103 197.3078 1467.123 393.9701 814.9488 539.203 305.9539 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 58417.89 63687.75 3505.391 17416.35 8966.789 6029.361 2230.862 3369.855 1211.446

Sensor 2 58417.89 0 143383.7 2172.81 138.4559 2362.154 69.28623 325.8922 847.0113 5244.387

Sensor 3 63687.75 143383.7 0 18792.81 45996.05 38876.61 19528.28 9080.959 14872.49 13384.96

Sensor 4 3505.391 2172.81 18792.81 0 2131.549 65.78447 596.9232 99.6238 62.0397 345.7546

Sensor 5 17416.35 138.4559 45996.05 2131.549 0 2039.653 216.2921 509.4321 1054.781 4415.457

Sensor 6 8966.789 2362.154 38876.61 65.78447 2039.653 0 408.2246 27.00718 3.153544 884.5105

Sensor 7 6029.361 69.28623 19528.28 596.9232 216.2921 408.2246 0 90.85824 230.9219 1675.792

Sensor 8 2230.862 325.8922 9080.959 99.6238 509.4321 27.00718 90.85824 0 11.06546 549.5278

Sensor 9 3369.855 847.0113 14872.49 62.0397 1054.781 3.153544 230.9219 11.06546 0 597.2023

Sensor 10 1211.446 5244.387 13384.96 345.7546 4415.457 884.5105 1675.792 549.5278 597.2023 0
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Figure A.48: MQ-5 ANOVA f-statistics (45°C, 85% RH). 

 

Figure A.49: MQ-5 ANOVA f-statistics (50°C, 85% RH). 

 

Figure A.50: MQ-7 ANOVA f-statistics (20°C, 33% RH). 

 

Figure A.51: MQ-7 ANOVA f-statistics (25°C, 33% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 176611.9 246911.4 4689.446 17235.58 4664.284 9837.027 9869.382 557.412 129.615

Sensor 2 176611.9 0 489556.5 4645.239 103.8519 1048.317 272.5672 505.9411 259.9098 3843.89

Sensor 3 246911.4 489556.5 0 34041.76 53698.98 23531.01 38476.57 40597.36 3290.967 5487.827

Sensor 4 4689.446 4645.239 34041.76 0 2989.099 225.357 1057.73 873.8941 15.18789 491.9552

Sensor 5 17235.58 103.8519 53698.98 2989.099 0 1037.725 384.2612 570.1235 348.3489 3494.128

Sensor 6 4664.284 1048.317 23531.01 225.357 1037.725 0 190.8776 115.5343 8.895733 973.3264

Sensor 7 9837.027 272.5672 38476.57 1057.73 384.2612 190.8776 0 13.357 96.37183 1924.681

Sensor 8 9869.382 505.9411 40597.36 873.8941 570.1235 115.5343 13.357 0 67.8396 1746.505

Sensor 9 557.412 259.9098 3290.967 15.18789 348.3489 8.895733 96.37183 67.8396 0 238.0138

Sensor 10 129.615 3843.89 5487.827 491.9552 3494.128 973.3264 1924.681 1746.505 238.0138 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 95970.58 474632.7 2557.803 3605.878 4546.16 3736.817 6595.067 1342.78 9.251627

Sensor 2 95970.58 0 363394.3 4702.111 0.008858 1188.212 50.20776 187.968 676.8225 2038.045

Sensor 3 474632.7 363394.3 0 30396.3 14479.07 29287.22 16854.74 31289.43 10025.36 2708.792

Sensor 4 2557.803 4702.111 30396.3 0 1026.937 374.0494 847.6744 1124.136 93.59378 246.7596

Sensor 5 3605.878 0.008858 14479.07 1026.937 0 331.4203 23.50199 58.95921 335.9247 1261.581

Sensor 6 4546.16 1188.212 29287.22 374.0494 331.4203 0 192.7883 196.9757 14.63378 674.453

Sensor 7 3736.817 50.20776 16854.74 847.6744 23.50199 192.7883 0 5.887761 212.2507 1089.662

Sensor 8 6595.067 187.968 31289.43 1124.136 58.95921 196.9757 5.887761 0 203.0723 1170.812

Sensor 9 1342.78 676.8225 10025.36 93.59378 335.9247 14.63378 212.2507 203.0723 0 399.4614

Sensor 10 9.251627 2038.045 2708.792 246.7596 1261.581 674.453 1089.662 1170.812 399.4614 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 1351.524 19.66333 14.0348 461.1635 3.860501 5.57635 73.21043 8.03949 8.03949

Sensor 2 1351.524 0 27288.46 158176.9 16260.4 112364 49588.73 43673.57 48360.57 48360.57

Sensor 3 19.66333 27288.46 0 1159.61 10195.57 101.3832 56.19818 2447.764 719.9599 719.9599

Sensor 4 14.0348 158176.9 1159.61 0 28731.83 3238.897 1358.868 1580.705 38.28113 38.28113

Sensor 5 461.1635 16260.4 10195.57 28731.83 0 31599 16320.13 7501.83 12493.76 12493.76

Sensor 6 3.860501 112364 101.3832 3238.897 31599 0 5.124328 5224.232 863.261 863.261

Sensor 7 5.57635 49588.73 56.19818 1358.868 16320.13 5.124328 0 3097.458 617.1517 617.1517

Sensor 8 73.21043 43673.57 2447.764 1580.705 7501.83 5224.232 3097.458 0 1035.759 1035.759

Sensor 9 8.03949 48360.57 719.9599 38.28113 12493.76 863.261 617.1517 1035.759 0 0

Sensor 10 8.03949 48360.57 719.9599 38.28113 12493.76 863.261 617.1517 1035.759 0 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 3279.089 256.3707 5.53962 979.2309 162.6781 151.5037 8.267143 15.91587 7384.576

Sensor 2 3279.089 0 1451442 509472.9 91912.6 204671.4 33198.78 889276.3 500130.9 37900947

Sensor 3 256.3707 1451442 0 17650.73 206569.9 354.8465 52.81019 51520.49 13018.66 1173890

Sensor 4 5.53962 509472.9 17650.73 0 80446.25 3591.996 750.3975 2687.228 187.2983 939225.6

Sensor 5 979.2309 91912.6 206569.9 80446.25 0 62827.61 12691.98 77338.17 85289.33 1780269

Sensor 6 162.6781 204671.4 354.8465 3591.996 62827.61 0 0.484565 9127.53 2517.247 217622.8

Sensor 7 151.5037 33198.78 52.81019 750.3975 12691.98 0.484565 0 1691.576 538.3128 35289.74

Sensor 8 8.267143 889276.3 51520.49 2687.228 77338.17 9127.53 1691.576 0 4407.855 2083574

Sensor 9 15.91587 500130.9 13018.66 187.2983 85289.33 2517.247 538.3128 4407.855 0 842925.9

Sensor 10 7384.576 37900947 1173890 939225.6 1780269 217622.8 35289.74 2083574 842925.9 0
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Figure A.52: MQ-7 ANOVA f-statistics (30°C, 33% RH). 

 

Figure A.53: MQ-7 ANOVA f-statistics (35°C, 33% RH). 

 

Figure A.54: MQ-7 ANOVA f-statistics (40°C, 33% RH). 

 

Figure A.55: MQ-7 ANOVA f-statistics (45°C, 33% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 9746.998 848.7372 127.6004 2649.465 1723.633 321.8166 114.9765 23.06735 24241.02

Sensor 2 9746.998 0 2378900 217319 100953.7 197840.2 2795553 559135.6 136191.4 25786418

Sensor 3 848.7372 2378900 0 5332.01 277353.6 1970.079 18397.27 14368.49 7225.731 3560029

Sensor 4 127.6004 217319 5332.01 0 55354.6 6640.771 722.3474 8.169434 335.2754 386482.4

Sensor 5 2649.465 100953.7 277353.6 55354.6 0 76438.02 224921.6 102752.9 33778.59 2226075

Sensor 6 1723.633 197840.2 1970.079 6640.771 76438.02 0 6387.907 8989.718 8413.015 125681.3

Sensor 7 321.8166 2795553 18397.27 722.3474 224921.6 6387.907 0 2370.775 2128.242 7638510

Sensor 8 114.9765 559135.6 14368.49 8.169434 102752.9 8989.718 2370.775 0 356.2384 1098041

Sensor 9 23.06735 136191.4 7225.731 335.2754 33778.59 8413.015 2128.242 356.2384 0 295912.6

Sensor 10 24241.02 25786418 3560029 386482.4 2226075 125681.3 7638510 1098041 295912.6 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 30121.22 6562.347 1686.079 4979.253 6840.904 2261.271 585.3541 361.3104 95388.06

Sensor 2 30121.22 0 1522212 392172.3 74831.32 348830 188314.7 565266.5 60922.08 18300637

Sensor 3 6562.347 1522212 0 10882.13 161829 285.2347 2809.684 36850.29 5021.088 1621540

Sensor 4 1686.079 392172.3 10882.13 0 60508.75 7404.831 280.435 2016.414 479.4814 645562.2

Sensor 5 4979.253 74831.32 161829 60508.75 0 87733.95 42658.08 55322.15 12931.28 1209469

Sensor 6 6840.904 348830 285.2347 7404.831 87733.95 0 2977.335 17260.9 5249.678 252744

Sensor 7 2261.271 188314.7 2809.684 280.435 42658.08 2977.335 0 2534.166 942.0252 246689.3

Sensor 8 585.3541 565266.5 36850.29 2016.414 55322.15 17260.9 2534.166 0 0.459251 1373326

Sensor 9 361.3104 60922.08 5021.088 479.4814 12931.28 5249.678 942.0252 0.459251 0 126978.2

Sensor 10 95388.06 18300637 1621540 645562.2 1209469 252744 246689.3 1373326 126978.2 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 155486.5 2027.902 6783.721 24355.97 33439.03 3813.536 203.5319 1663.046 457771.9

Sensor 2 155486.5 0 28740.67 250637.4 126385.2 341059.2 69342.1 18425.73 3328236 16450610

Sensor 3 2027.902 28740.67 0 104.4821 10322.08 1358.157 10.73013 506.0929 1165.73 28272.3

Sensor 4 6783.721 250637.4 104.4821 0 64066.81 10954.88 94.78339 402.9839 5283.994 303595.1

Sensor 5 24355.97 126385.2 10322.08 64066.81 0 126138.7 23037.79 4792.108 123669.5 1847220

Sensor 6 33439.03 341059.2 1358.157 10954.88 126138.7 0 3539.543 4388.925 40890.8 126158.7

Sensor 7 3813.536 69342.1 10.73013 94.78339 23037.79 3539.543 0 557.5811 2303.651 74157.06

Sensor 8 203.5319 18425.73 506.0929 402.9839 4792.108 4388.925 557.5811 0 4.686109 39004.68

Sensor 9 1663.046 3328236 1165.73 5283.994 123669.5 40890.8 2303.651 4.686109 0 3820945

Sensor 10 457771.9 16450610 28272.3 303595.1 1847220 126158.7 74157.06 39004.68 3820945 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 67920 9556.239 6606.62 8682.14 814.5923 1109.827 2133.943 436.2398 233842.5

Sensor 2 67920 0 833309.7 211714.7 38120.61 3595.168 13484.26 743270.6 87802.81 10676901

Sensor 3 9556.239 833309.7 0 1.240359 71064.76 270.4968 7.995046 13235.49 5164.583 959548.4

Sensor 4 6606.62 211714.7 1.240359 0 41482.41 272.424 9.322979 4205.39 3498.977 236399.4

Sensor 5 8682.14 38120.61 71064.76 41482.41 0 1786.339 4730.434 41613.65 14035.58 640754.6

Sensor 6 814.5923 3595.168 270.4968 272.424 1786.339 0 205.9613 529.086 631.4453 839.0346

Sensor 7 1109.827 13484.26 7.995046 9.322979 4730.434 205.9613 0 393.8027 614.1376 13338.02

Sensor 8 2133.943 743270.6 13235.49 4205.39 41613.65 529.086 393.8027 0 353.2737 1574529

Sensor 9 436.2398 87802.81 5164.583 3498.977 14035.58 631.4453 614.1376 353.2737 0 216916.1

Sensor 10 233842.5 10676901 959548.4 236399.4 640754.6 839.0346 13338.02 1574529 216916.1 0
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Figure A.56: MQ-7 ANOVA f-statistics (50°C, 33% RH). 

 

Figure A.57: MQ-7 ANOVA f-statistics (10°C, 85% RH). 

 

Figure A.58: MQ-7 ANOVA f-statistics (15°C, 85% RH). 

 

Figure A.59: MQ-7 ANOVA f-statistics (20°C, 85% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 88171.77 16496.13 16299.34 10233.79 53012.51 1880.254 561.1902 1353.471 61955.38

Sensor 2 88171.77 0 634384.1 305155.3 28235.73 366757.4 15559.87 17848.05 174590.6 164686

Sensor 3 16496.13 634384.1 0 1011.905 70060.89 35060.75 153.6304 356.5355 12029.62 45053.75

Sensor 4 16299.34 305155.3 1011.905 0 58827.89 17868.29 40.83392 692.2356 11527.85 37578.23

Sensor 5 10233.79 28235.73 70060.89 58827.89 0 111005.6 5953.857 4721.272 22793.54 93312.32

Sensor 6 53012.51 366757.4 35060.75 17868.29 111005.6 0 964.7594 5741.867 50601.45 15555.23

Sensor 7 1880.254 15559.87 153.6304 40.83392 5953.857 964.7594 0 450.5412 1086.52 8752.937

Sensor 8 561.1902 17848.05 356.5355 692.2356 4721.272 5741.867 450.5412 0 90.27617 20951.55

Sensor 9 1353.471 174590.6 12029.62 11527.85 22793.54 50601.45 1086.52 90.27617 0 57196.25

Sensor 10 61955.38 164686 45053.75 37578.23 93312.32 15555.23 8752.937 20951.55 57196.25 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 209436.6 26002.28 116.9614 10827.69 2176.103 1939.958 34888.44 268.4358 247154.8

Sensor 2 209436.6 0 544566.6 15374.19 8993.225 26520.48 39290.69 202806.7 13956.88 1106224

Sensor 3 26002.28 544566.6 0 1522.133 37511.79 14.90859 474.348 8139.008 813.3312 137925.8

Sensor 4 116.9614 15374.19 1522.133 0 4071.191 659.5942 345.0035 6032.627 25.38634 25640.58

Sensor 5 10827.69 8993.225 37511.79 4071.191 0 9375.601 10885.04 49515.28 4183.295 156180.1

Sensor 6 2176.103 26520.48 14.90859 659.5942 9375.601 0 109.7654 2085.183 367.1459 16262.33

Sensor 7 1939.958 39290.69 474.348 345.0035 10885.04 109.7654 0 5124.432 135.502 32867.08

Sensor 8 34888.44 202806.7 8139.008 6032.627 49515.28 2085.183 5124.432 0 4184.597 22774.2

Sensor 9 268.4358 13956.88 813.3312 25.38634 4183.295 367.1459 135.502 4184.597 0 19074.23

Sensor 10 247154.8 1106224 137925.8 25640.58 156180.1 16262.33 32867.08 22774.2 19074.23 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 3303796 40165.81 21739.4 268024.3 11074.04 2053.714 28514.43 1910.064 579375

Sensor 2 3303796 0 530275.8 3090611 241058.6 112347.5 58431.47 135424 61969.5 1636326

Sensor 3 40165.81 530275.8 0 23112.71 185506.3 284.6853 742.5669 7745.478 1008.246 167650.7

Sensor 4 21739.4 3090611 23112.71 0 340324.3 7191.257 783.0882 22826.37 654.9704 500496.2

Sensor 5 268024.3 241058.6 185506.3 340324.3 0 47788.74 20622.14 71200.5 21398.95 887744.2

Sensor 6 11074.04 112347.5 284.6853 7191.257 47788.74 0 1153.976 3474.87 1411.409 44840.02

Sensor 7 2053.714 58431.47 742.5669 783.0882 20622.14 1153.976 0 7485.563 6.411107 51309.65

Sensor 8 28514.43 135424 7745.478 22826.37 71200.5 3474.87 7485.563 0 8279.138 12991.21

Sensor 9 1910.064 61969.5 1008.246 654.9704 21398.95 1411.409 6.411107 8279.138 0 57060.22

Sensor 10 579375 1636326 167650.7 500496.2 887744.2 44840.02 51309.65 12991.21 57060.22 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 79903419 436659.7 5379.326 98445.14 18404.54 2824.732 1616376 8645.748 2067169

Sensor 2 79903419 0 4308578 206539.3 146459.3 102265 61866.57 6316603 144702.6 5228060

Sensor 3 436659.7 4308578 0 9647.878 325318.2 2579.502 1312.667 269218.3 1455.326 804112.2

Sensor 4 5379.326 206539.3 9647.878 0 46184.92 8151.232 191.1835 87923.2 905.9734 266860.3

Sensor 5 98445.14 146459.3 325318.2 46184.92 0 44634.43 18468.63 789063.2 42254.17 1322464

Sensor 6 18404.54 102265 2579.502 8151.232 44634.43 0 3886.625 2375.331 4108.434 28490.8

Sensor 7 2824.732 61866.57 1312.667 191.1835 18468.63 3886.625 0 20044.67 69.76085 71533.19

Sensor 8 1616376 6316603 269218.3 87923.2 789063.2 2375.331 20044.67 0 36440.1 226785.6

Sensor 9 8645.748 144702.6 1455.326 905.9734 42254.17 4108.434 69.76085 36440.1 0 135652.2

Sensor 10 2067169 5228060 804112.2 266860.3 1322464 28490.8 71533.19 226785.6 135652.2 0
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Figure A.60: MQ-7 ANOVA f-statistics (25°C, 85% RH). 

 

Figure A.61: MQ-7 ANOVA f-statistics (30°C, 85% RH). 

 

Figure A.62: MQ-7 ANOVA f-statistics (35°C, 85% RH). 

 

Figure A.63: MQ-7 ANOVA f-statistics (40°C, 85% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 566258.3 106497.4 24557.31 28999.38 19773.38 1817.736 85484.28 16247.65 1549143

Sensor 2 566258.3 0 5578261 1028932 79740.41 111234.3 28292.35 353437.1 238395 13082697

Sensor 3 106497.4 5578261 0 17215.03 163064.8 3774.288 132.7086 33831.65 217.7803 2889585

Sensor 4 24557.31 1028932 17215.03 0 82847.44 8256.213 83.13499 48701.17 1625.133 1229457

Sensor 5 28999.38 79740.41 163064.8 82847.44 0 42971.62 8377.266 136559 53099.56 1023631

Sensor 6 19773.38 111234.3 3774.288 8256.213 42971.62 0 1898.695 2572.854 3768.493 35592.68

Sensor 7 1817.736 28292.35 132.7086 83.13499 8377.266 1898.695 0 7158.367 34.71459 31314.6

Sensor 8 85484.28 353437.1 33831.65 48701.17 136559 2572.854 7158.367 0 23504.07 37069.89

Sensor 9 16247.65 238395 217.7803 1625.133 53099.56 3768.493 34.71459 23504.07 0 222708.3

Sensor 10 1549143 13082697 2889585 1229457 1023631 35592.68 31314.6 37069.89 222708.3 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 12912.39 2378.154 1445.024 2121.244 3898.757 774.0525 16585.39 2253.959 40997.2

Sensor 2 12912.39 0 2113664 448051.7 65669.86 27067.37 26172.81 2418243 324344.2 6349034

Sensor 3 2378.154 2113664 0 2185.616 150193.1 1704.405 130.8885 356889.4 1.445304 2480100

Sensor 4 1445.024 448051.7 2185.616 0 73344.54 2336.153 0.542525 142562.5 927.188 548038.3

Sensor 5 2121.244 65669.86 150193.1 73344.54 0 12641.79 7817.382 425860.1 70989.09 966410.9

Sensor 6 3898.757 27067.37 1704.405 2336.153 12641.79 0 1626.249 398.6547 1618.938 5710.159

Sensor 7 774.0525 26172.81 130.8885 0.542525 7817.382 1626.249 0 9418.4 128.8887 30837.82

Sensor 8 16585.39 2418243 356889.4 142562.5 425860.1 398.6547 9418.4 0 73765.21 248866

Sensor 9 2253.959 324344.2 1.445304 927.188 70989.09 1618.938 128.8887 73765.21 0 298942.8

Sensor 10 40997.2 6349034 2480100 548038.3 966410.9 5710.159 30837.82 248866 298942.8 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 104931.2 29687.73 14457.08 16857.23 1714.917 12045.8 26787.4 14305.73 413711.9

Sensor 2 104931.2 0 561267.1 192561.2 91729.11 5519.047 107114.8 92589.1 153941.6 1645293

Sensor 3 29687.73 561267.1 0 17.41433 290722.9 669.5982 385.8318 11365.49 126.9061 629216.4

Sensor 4 14457.08 192561.2 17.41433 0 71609.32 686.0013 373.6768 10327.11 140.5574 202356.7

Sensor 5 16857.23 91729.11 290722.9 71609.32 0 2879.599 40813.03 49306.99 58160.24 1392918

Sensor 6 1714.917 5519.047 669.5982 686.0013 2879.599 0 514.6286 0.159568 595.0112 473.7229

Sensor 7 12045.8 107114.8 385.8318 373.6768 40813.03 514.6286 0 6529.146 75.85549 82792.16

Sensor 8 26787.4 92589.1 11365.49 10327.11 49306.99 0.159568 6529.146 0 8436.893 8419.063

Sensor 9 14305.73 153941.6 126.9061 140.5574 58160.24 595.0112 75.85549 8436.893 0 137984.7

Sensor 10 413711.9 1645293 629216.4 202356.7 1392918 473.7229 82792.16 8419.063 137984.7 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 5297.561 1662.529 1935.606 607.6476 9107.282 1615.795 3539.479 2081.903 25234.16

Sensor 2 5297.561 0 220228.4 86097.68 28687.96 271635.6 17243.29 14343.96 122655.5 780836.5

Sensor 3 1662.529 220228.4 0 263.4584 128055.6 56866.04 241.3302 1956.538 563.9642 787388.7

Sensor 4 1935.606 86097.68 263.4584 0 35480.17 15852.57 85.5161 1565.881 2.279035 100651.7

Sensor 5 607.6476 28687.96 128055.6 35480.17 0 182145.6 6791.625 7662.93 55133.65 782656.8

Sensor 6 9107.282 271635.6 56866.04 15852.57 182145.6 0 1788.806 38.57138 21984.16 57297.03

Sensor 7 1615.795 17243.29 241.3302 85.5161 6791.625 1788.806 0 830.0041 78.07757 11416.05

Sensor 8 3539.479 14343.96 1956.538 1565.881 7662.93 38.57138 830.0041 0 1566.042 1216.904

Sensor 9 2081.903 122655.5 563.9642 2.279035 55133.65 21984.16 78.07757 1566.042 0 162537.1

Sensor 10 25234.16 780836.5 787388.7 100651.7 782656.8 57297.03 11416.05 1216.904 162537.1 0
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Figure A.64: MQ-7 ANOVA f-statistics (45°C, 85% RH). 

 

Figure A.65: MQ-7 ANOVA f-statistics (50°C, 85% RH). 

 

Figure A.66: MQ-135 ANOVA f-statistics (20°C, 33% RH). 

 

Figure A.67: MQ-135 ANOVA f-statistics (25°C, 33% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 11928.19 4037.038 4313.349 834.6824 26245.7 6037.555 34561.8 5910.015 68701.6

Sensor 2 11928.19 0 387037.2 96290.8 61074.02 385887.4 51183.96 1272556 198925.6 2188462

Sensor 3 4037.038 387037.2 0 370.4798 133443.6 72672.18 2008.59 649328.9 2150.143 2315119

Sensor 4 4313.349 96290.8 370.4798 0 31168.76 21649.69 840.4382 40443.73 103.2252 116185.6

Sensor 5 834.6824 61074.02 133443.6 31168.76 0 209167.7 20039.69 843363.9 70736.73 1728798

Sensor 6 26245.7 385887.4 72672.18 21649.69 209167.7 0 4430.057 1073.338 30915.58 52735.36

Sensor 7 6037.555 51183.96 2008.59 840.4382 20039.69 4430.057 0 7306.181 614.7507 27795.5

Sensor 8 34561.8 1272556 649328.9 40443.73 843363.9 1073.338 7306.181 0 83407.95 869562.6

Sensor 9 5910.015 198925.6 2150.143 103.2252 70736.73 30915.58 614.7507 83407.95 0 259038.7

Sensor 10 68701.6 2188462 2315119 116185.6 1728798 52735.36 27795.5 869562.6 259038.7 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 9871.733 4291.875 9586.032 602.9012 29408.21 8705.246 36698.92 7429.504 73333.81

Sensor 2 9871.733 0 347633.5 207107 45350.3 129665.3 68285.54 738977.1 221348.5 1479944

Sensor 3 4291.875 347633.5 0 11049.35 137482.9 34150.42 4491.325 359553.6 6268.19 1967474

Sensor 4 9586.032 207107 11049.35 0 90146.8 17125.58 320.7144 48673.34 894.6174 194335.4

Sensor 5 602.9012 45350.3 137482.9 90146.8 0 77840.43 29800.32 493167.8 90549.3 1206538

Sensor 6 29408.21 129665.3 34150.42 17125.58 77840.43 0 8246.177 1292.984 22179.14 2598.652

Sensor 7 8705.246 68285.54 4491.325 320.7144 29800.32 8246.177 0 8279.773 1201.991 35182.06

Sensor 8 36698.92 738977.1 359553.6 48673.34 493167.8 1292.984 8279.773 0 83489.02 99049.34

Sensor 9 7429.504 221348.5 6268.19 894.6174 90549.3 22179.14 1201.991 83489.02 0 309239.6

Sensor 10 73333.81 1479944 1967474 194335.4 1206538 2598.652 35182.06 99049.34 309239.6 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 7273.92 16479.6 324.3653 1062.741 11366.39 20899.62 39494.84 27235.75 26612.16

Sensor 2 7273.92 0 215.4789 7854.917 1051.378 822.7895 2882.51 7797.799 4475.592 3173.091

Sensor 3 16479.6 215.4789 0 35724.95 2207.579 606.0906 4245.392 142748.8 9947.087 11783.29

Sensor 4 324.3653 7854.917 35724.95 0 572.174 12595.47 29546.54 103934.6 45860.56 54610.42

Sensor 5 1062.741 1051.378 2207.579 572.174 0 2806.421 5212.785 8568.253 6539.93 5366.152

Sensor 6 11366.39 822.7895 606.0906 12595.47 2806.421 0 305.0091 1425.822 666.7007 167.4133

Sensor 7 20899.62 2882.51 4245.392 29546.54 5212.785 305.0091 0 577.5519 83.09687 102.0514

Sensor 8 39494.84 7797.799 142748.8 103934.6 8568.253 1425.822 577.5519 0 285.5768 5946.437

Sensor 9 27235.75 4475.592 9947.087 45860.56 6539.93 666.7007 83.09687 285.5768 0 658.8141

Sensor 10 26612.16 3173.091 11783.29 54610.42 5366.152 167.4133 102.0514 5946.437 658.8141 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 152130.2 1393.123 500.7338 26409.44 54599.18 67923.41 565802.4 395817 317611.2

Sensor 2 152130.2 0 14.629 67570.79 95488.07 977.6196 4605.44 188060.9 82746.57 45366.63

Sensor 3 1393.123 14.629 0 1129.245 426.3165 93.13335 291.7896 924.2481 637.9094 426.6184

Sensor 4 500.7338 67570.79 1129.245 0 8514.461 37610.22 48567.51 229754.7 176858.5 145308.8

Sensor 5 26409.44 95488.07 426.3165 8514.461 0 25804.11 36792.26 810270.2 420220.6 298786.9

Sensor 6 54599.18 977.6196 93.13335 37610.22 25804.11 0 825.2989 12670.79 6785.899 3286.219

Sensor 7 67923.41 4605.44 291.7896 48567.51 36792.26 825.2989 0 4596.925 1611.543 275.5592

Sensor 8 565802.4 188060.9 924.2481 229754.7 810270.2 12670.79 4596.925 0 10530.72 29626.51

Sensor 9 395817 82746.57 637.9094 176858.5 420220.6 6785.899 1611.543 10530.72 0 4234.3

Sensor 10 317611.2 45366.63 426.6184 145308.8 298786.9 3286.219 275.5592 29626.51 4234.3 0
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Figure A.68: MQ-135 ANOVA f-statistics (30°C, 33% RH). 

 

Figure A.69: MQ-135 ANOVA f-statistics (35°C, 33% RH). 

 

Figure A.70: MQ-135 ANOVA f-statistics (40°C, 33% RH). 

 

Figure A.71: MQ-135 ANOVA f-statistics (45°C, 33% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 9710.418 2616.67 63.21842 3855.914 25058.05 2890.347 84640.78 62008.72 61699.56

Sensor 2 9710.418 0 215.028 11473.62 5243.566 46.24234 377.4981 6119.633 2829.095 2385.51

Sensor 3 2616.67 215.028 0 2566.088 784.7346 440.754 6.95735 4242.28 2491.419 2216.416

Sensor 4 63.21842 11473.62 2566.088 0 8954.647 49427.24 2899.882 309936.6 200043.2 230116.2

Sensor 5 3855.914 5243.566 784.7346 8954.647 0 27597.29 787.9554 338195.7 183209.5 235264.2

Sensor 6 25058.05 46.24234 440.754 49427.24 27597.29 0 766.3307 25672.89 9948.403 8955.308

Sensor 7 2890.347 377.4981 6.95735 2899.882 787.9554 766.3307 0 6188.06 3736.88 3362.567

Sensor 8 84640.78 6119.633 4242.28 309936.6 338195.7 25672.89 6188.06 0 13379.99 43898.46

Sensor 9 62008.72 2829.095 2491.419 200043.2 183209.5 9948.403 3736.88 13379.99 0 619.7425

Sensor 10 61699.56 2385.51 2216.416 230116.2 235264.2 8955.308 3362.567 43898.46 619.7425 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 7063.341 5930.338 29.23968 2748.206 20082.15 4295.37 104342.6 66737.49 50206.32

Sensor 2 7063.341 0 1225.177 8742.951 4185.568 62.88993 2.521436 3950.759 1108.642 1056.782

Sensor 3 5930.338 1225.177 0 10211.3 2366.384 2444.213 694.015 39309.14 19416.2 15152.02

Sensor 4 29.23968 8742.951 10211.3 0 9544.641 41794.3 5030.363 421788.7 252140.8 114073.6

Sensor 5 2748.206 4185.568 2366.384 9544.641 0 19543.46 2335.282 362180.1 188482.7 74517.38

Sensor 6 20082.15 62.88993 2444.213 41794.3 19543.46 0 18.76998 37815.98 12415.17 8063.7

Sensor 7 4295.37 2.521436 694.015 5030.363 2335.282 18.76998 0 2555.268 770.0066 755.0803

Sensor 8 104342.6 3950.759 39309.14 421788.7 362180.1 37815.98 2555.268 0 48326.78 8455.7

Sensor 9 66737.49 1108.642 19416.2 252140.8 188482.7 12415.17 770.0066 48326.78 0 2.357847

Sensor 10 50206.32 1056.782 15152.02 114073.6 74517.38 8063.7 755.0803 8455.7 2.357847 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 18356.22 1641.85 74.69721 866.4375 4645.299 12431.77 58391.91 28417.78 36108.77

Sensor 2 18356.22 0 6563.805 81398.61 17207.13 1846.279 0.026896 46616.39 3341.017 9818.536

Sensor 3 1641.85 6563.805 0 3881.193 291.8483 782.405 4483.582 32745.42 12702.86 16995.47

Sensor 4 74.69721 81398.61 3881.193 0 3193.171 9566.3 28392.28 474265.8 136099.9 292637.5

Sensor 5 866.4375 17207.13 291.8483 3193.171 0 2379.665 9621.737 78244.44 30589.44 43782.55

Sensor 6 4645.299 1846.279 782.405 9566.3 2379.665 0 1276.244 18847.63 5372.41 7770.268

Sensor 7 12431.77 0.026896 4483.582 28392.28 9621.737 1276.244 0 12261.07 1246.831 2624.842

Sensor 8 58391.91 46616.39 32745.42 474265.8 78244.44 18847.63 12261.07 0 24601.29 73837.65

Sensor 9 28417.78 3341.017 12702.86 136099.9 30589.44 5372.41 1246.831 24601.29 0 791.5326

Sensor 10 36108.77 9818.536 16995.47 292637.5 43782.55 7770.268 2624.842 73837.65 791.5326 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 8918.768 445.5435 163.95 490.0243 2560.316 5333.295 39523.57 16348.25 22365.68

Sensor 2 8918.768 0 11396.1 22500.63 12405.21 4185.032 554.5712 8299.603 239.455 1115.334

Sensor 3 445.5435 11396.1 0 4313.649 0.361168 2489.799 5930.904 159407.2 38887.6 78789.44

Sensor 4 163.95 22500.63 4313.649 0 5842.9 11564.51 14246.33 311337.1 79527.59 170771.2

Sensor 5 490.0243 12405.21 0.361168 5842.9 0 2895.824 6439.826 259886.9 50071.85 123458.2

Sensor 6 2560.316 4185.032 2489.799 11564.51 2895.824 0 1368.284 61243.04 13419.87 25534.15

Sensor 7 5333.295 554.5712 5930.904 14246.33 6439.826 1368.284 0 15364.57 2075.591 4352.885

Sensor 8 39523.57 8299.603 159407.2 311337.1 259886.9 61243.04 15364.57 0 22544.08 48674.48

Sensor 9 16348.25 239.455 38887.6 79527.59 50071.85 13419.87 2075.591 22544.08 0 1074.671

Sensor 10 22365.68 1115.334 78789.44 170771.2 123458.2 25534.15 4352.885 48674.48 1074.671 0
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Figure A.72: MQ-135 ANOVA f-statistics (50°C, 33% RH). 

 

Figure A.73: MQ-135 ANOVA f-statistics (10°C, 85% RH). 

 

Figure A.74: MQ-135 ANOVA f-statistics (15°C, 85% RH). 

 

Figure A.75: MQ-135 ANOVA f-statistics (20°C, 85% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 26576.16 630.0469 1204.554 111.5745 668.8918 2486.273 70830.37 16176.9 36876.47

Sensor 2 26576.16 0 126598.1 151724.8 117648.9 12517.77 2598.129 219843.5 78.07811 8251.074

Sensor 3 630.0469 126598.1 0 221.2774 3732.581 2963.974 5576.169 334378.9 42449.05 140063.3

Sensor 4 1204.554 151724.8 221.2774 0 6293.259 4016.634 6666.427 391752.8 48589.44 162241.3

Sensor 5 111.5745 117648.9 3732.581 6293.259 0 531.7394 2558.509 394605.1 29860.14 127926.3

Sensor 6 668.8918 12517.77 2963.974 4016.634 531.7394 0 738.4344 41111.5 7951.031 19665.12

Sensor 7 2486.273 2598.129 5576.169 6666.427 2558.509 738.4344 0 14020.81 1743.474 5544.528

Sensor 8 70830.37 219843.5 334378.9 391752.8 394605.1 41111.5 14020.81 0 19888.23 29901.91

Sensor 9 16176.9 78.07811 42449.05 48589.44 29860.14 7951.031 1743.474 19888.23 0 2816.717

Sensor 10 36876.47 8251.074 140063.3 162241.3 127926.3 19665.12 5544.528 29901.91 2816.717 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 149142.9 41674.05 7986.218 31876.53 66946.34 50382.57 176812.2 109335.5 161773.5

Sensor 2 149142.9 0 86668.54 16992.04 45685.11 468.934 15.22208 20637.96 1771.55 14099.09

Sensor 3 41674.05 86668.54 0 961.9498 24.93283 19453.54 11316.87 108782.4 42186.89 90811.34

Sensor 4 7986.218 16992.04 961.9498 0 730.145 13810.35 9579.311 30744.1 18823.42 28252.84

Sensor 5 31876.53 45685.11 24.93283 730.145 0 17510.75 10500.09 73798.96 33246.31 63849.29

Sensor 6 66946.34 468.934 19453.54 13810.35 17510.75 0 315.8662 1899.196 29.0261 1305.831

Sensor 7 50382.57 15.22208 11316.87 9579.311 10500.09 315.8662 0 3931.169 663.0587 3087.204

Sensor 8 176812.2 20637.96 108782.4 30744.1 73798.96 1899.196 3931.169 0 2730.53 127.1334

Sensor 9 109335.5 1771.55 42186.89 18823.42 33246.31 29.0261 663.0587 2730.53 0 1720.36

Sensor 10 161773.5 14099.09 90811.34 28252.84 63849.29 1305.831 3087.204 127.1334 1720.36 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 53207.83 15132.12 11017.58 20000.59 67808.15 64731.83 108422.2 80827.42 93600.78

Sensor 2 53207.83 0 43753.65 53516.82 33260.56 237.9375 441.5324 5514.048 397.4287 3698.551

Sensor 3 15132.12 43753.65 0 2772.849 3256.42 81608.51 127001.1 381829.2 184980.6 173226.2

Sensor 4 11017.58 53516.82 2772.849 0 11272.87 97258.15 152702.1 417093 213523.4 197336.8

Sensor 5 20000.59 33260.56 3256.42 11272.87 0 63050.19 90694.15 299432.2 140230.4 138927.4

Sensor 6 67808.15 237.9375 81608.51 97258.15 63050.19 0 2269.679 4865.671 7.379424 2763.298

Sensor 7 64731.83 441.5324 127001.1 152702.1 90694.15 2269.679 0 31735.42 4932.587 15319.47

Sensor 8 108422.2 5514.048 381829.2 417093 299432.2 4865.671 31735.42 0 9591.157 103.933

Sensor 9 80827.42 397.4287 184980.6 213523.4 140230.4 7.379424 4932.587 9591.157 0 4141.66

Sensor 10 93600.78 3698.551 173226.2 197336.8 138927.4 2763.298 15319.47 103.933 4141.66 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 383815.7 23807.13 76861.25 143418.6 306198.1 79726.8 1174414 360838.9 832991.3

Sensor 2 383815.7 0 13949.5 206939.4 135709.4 211.3084 974.8846 18044.27 5.201642 14560.92

Sensor 3 23807.13 13949.5 0 3724.43 671.0142 11829.49 5319.615 30576.26 14023.5 29721.9

Sensor 4 76861.25 206939.4 3724.43 0 15544.67 154127.2 32024.81 1060902 192118.7 609769.3

Sensor 5 143418.6 135709.4 671.0142 15544.67 0 98950.64 19190.97 770018.3 126346.5 442098.6

Sensor 6 306198.1 211.3084 11829.49 154127.2 98950.64 0 494.7386 18873.87 265.8198 15930.07

Sensor 7 79726.8 974.8846 5319.615 32024.81 19190.97 494.7386 0 8379.176 1037.793 8145.045

Sensor 8 1174414 18044.27 30576.26 1060902 770018.3 18873.87 8379.176 0 15497.79 13.88958

Sensor 9 360838.9 5.201642 14023.5 192118.7 126346.5 265.8198 1037.793 15497.79 0 12799.1

Sensor 10 832991.3 14560.92 29721.9 609769.3 442098.6 15930.07 8145.045 13.88958 12799.1 0
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Figure A.76: MQ-135 ANOVA f-statistics (25°C, 85% RH). 

 

Figure A.77: MQ-135 ANOVA f-statistics (30°C, 85% RH). 

 

Figure A.78: MQ-135 ANOVA f-statistics (35°C, 85% RH). 

 

Figure A.79: MQ-135 ANOVA f-statistics (40°C, 85% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 184621.8 50880.59 15867.47 40879.94 85065.39 59266.31 373571.7 215835.6 385016.6

Sensor 2 184621.8 0 72174.67 101111.6 105790.4 798.2086 3621.273 11486.24 47.15167 14667.32

Sensor 3 50880.59 72174.67 0 8432.59 1937.283 22131.03 10757.98 259997.4 92315.56 273217.5

Sensor 4 15867.47 101111.6 8432.59 0 3639.081 40155.13 24180.35 249757.1 120494.6 260442.1

Sensor 5 40879.94 105790.4 1937.283 3639.081 0 31730.86 16822.45 415864.5 142429.1 432273.3

Sensor 6 85065.39 798.2086 22131.03 40155.13 31730.86 0 781.5017 8804.174 647.3377 10425.17

Sensor 7 59266.31 3621.273 10757.98 24180.35 16822.45 781.5017 0 15298.79 3485.701 17229.86

Sensor 8 373571.7 11486.24 259997.4 249757.1 415864.5 8804.174 15298.79 0 22073.31 1026.865

Sensor 9 215835.6 47.15167 92315.56 120494.6 142429.1 647.3377 3485.701 22073.31 0 27498.13

Sensor 10 385016.6 14667.32 273217.5 260442.1 432273.3 10425.17 17229.86 1026.865 27498.13 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 2985397 161812.5 28014.84 41641.83 16844.27 151567.6 1327728 1466791 3485644

Sensor 2 2985397 0 327304.3 187098.2 91307.16 1397.967 41731.32 23529.09 1198.595 80200.32

Sensor 3 161812.5 327304.3 0 4816.963 5.567898 3744.576 17163.33 322701.2 230293.3 537896.8

Sensor 4 28014.84 187098.2 4816.963 0 2445.712 6519.401 26881.73 223896.1 155308.9 292525.9

Sensor 5 41641.83 91307.16 5.567898 2445.712 0 3569.455 9930.373 124565.5 76678.73 156675.9

Sensor 6 16844.27 1397.967 3744.576 6519.401 3569.455 0 392.046 4001.228 1050.866 4834.675

Sensor 7 151567.6 41731.32 17163.33 26881.73 9930.373 392.046 0 71755.06 31659.42 98616.57

Sensor 8 1327728 23529.09 322701.2 223896.1 124565.5 4001.228 71755.06 0 25534.2 1041.138

Sensor 9 1466791 1198.595 230293.3 155308.9 76678.73 1050.866 31659.42 25534.2 0 63734.04

Sensor 10 3485644 80200.32 537896.8 292525.9 156675.9 4834.675 98616.57 1041.138 63734.04 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 53979.27 2564.644 2556.274 5668.917 22358.98 18066.13 76504.6 49974.15 87206.7

Sensor 2 53979.27 0 25731.81 78674.22 45340.37 2978.299 10774.54 3375.044 1991.502 8145.905

Sensor 3 2564.644 25731.81 0 177.5164 174.3437 8634.316 5382.459 39279.43 21750.04 45858.3

Sensor 4 2556.274 78674.22 177.5164 0 1448.875 18788.5 14418.27 146682.7 83259.41 189722.6

Sensor 5 5668.917 45340.37 174.3437 1448.875 0 10329.56 6374.761 82726.03 42709.74 104544

Sensor 6 22358.98 2978.299 8634.316 18788.5 10329.56 0 886.0087 8338.527 1113.679 11537.59

Sensor 7 18066.13 10774.54 5382.459 14418.27 6374.761 886.0087 0 23948.19 7113.037 31724.07

Sensor 8 76504.6 3375.044 39279.43 146682.7 82726.03 8338.527 23948.19 0 21328.28 1964.015

Sensor 9 49974.15 1991.502 21750.04 83259.41 42709.74 1113.679 7113.037 21328.28 0 51315.57

Sensor 10 87206.7 8145.905 45858.3 189722.6 104544 11537.59 31724.07 1964.015 51315.57 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 7820.226 219.8323 303.9908 824.5873 4498.526 2729.676 10725.73 6220.85 12195.26

Sensor 2 7820.226 0 37839.28 25493.73 21281.35 3553.097 11859.64 586.5 1677.414 1716.701

Sensor 3 219.8323 37839.28 0 94.02197 2748.464 42256.93 50862.43 213619.3 170846.1 324248.9

Sensor 4 303.9908 25493.73 94.02197 0 928.4599 19595.31 13118.09 74888.37 43082.8 95177.8

Sensor 5 824.5873 21281.35 2748.464 928.4599 0 15318.85 8838.493 80965.42 43849.22 109870.1

Sensor 6 4498.526 3553.097 42256.93 19595.31 15318.85 0 5158.768 21034.44 2263.082 34408.68

Sensor 7 2729.676 11859.64 50862.43 13118.09 8838.493 5158.768 0 133022.2 102831.8 304022.3

Sensor 8 10725.73 586.5 213619.3 74888.37 80965.42 21034.44 133022.2 0 38548.7 1953.354

Sensor 9 6220.85 1677.414 170846.1 43082.8 43849.22 2263.082 102831.8 38548.7 0 132266.7

Sensor 10 12195.26 1716.701 324248.9 95177.8 109870.1 34408.68 304022.3 1953.354 132266.7 0
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Figure A.80: MQ-135 ANOVA f-statistics (45°C, 85% RH). 

 

Figure A.81: MQ-135 ANOVA f-statistics (50°C, 85% RH). 

 

Figure A.82: MQ-5 vs. MQ-135 ANOVA f-statistics (20°C, 33% RH). 

 

Figure A.83: MQ-5 vs. MQ-135 ANOVA f-statistics (25°C, 33% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 162293 1806.858 5501.815 9648.814 12052.9 17453.77 185291.2 17552.35 579061.2

Sensor 2 162293 0 177101.2 70160.45 41791.03 2737.957 11143.55 1455.825 2836.705 5513.641

Sensor 3 1806.858 177101.2 0 3084.017 6987.22 10283.91 14769.78 200809.4 15282.53 1039791

Sensor 4 5501.815 70160.45 3084.017 0 918.9403 5718.849 6125.928 86713.21 8434.652 172580

Sensor 5 9648.814 41791.03 6987.22 918.9403 0 3269.877 2620.085 54332.92 4922.846 94615.82

Sensor 6 12052.9 2737.957 10283.91 5718.849 3269.877 0 353.264 4979.034 18.82037 6949.269

Sensor 7 17453.77 11143.55 14769.78 6125.928 2620.085 353.264 0 17045.46 678.351 25928.81

Sensor 8 185291.2 1455.825 200809.4 86713.21 54332.92 4979.034 17045.46 0 5453.738 461.297

Sensor 9 17552.35 2836.705 15282.53 8434.652 4922.846 18.82037 678.351 5453.738 0 8016.692

Sensor 10 579061.2 5513.641 1039791 172580 94615.82 6949.269 25928.81 461.297 8016.692 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0 676666.1 1535.745 2835.898 12223.61 7325.617 12964.23 154086.2 39731.54 1451817

Sensor 2 676666.1 0 311602.6 87612.48 101099.7 5434.407 24606.46 816.0667 3252.117 10084.34

Sensor 3 1535.745 311602.6 0 4723.121 13848.42 8820.268 15096.78 135250.3 41094.17 464743.2

Sensor 4 2835.898 87612.48 4723.121 0 836.171 3274.637 3559.941 60578.8 17927.89 123781.2

Sensor 5 12223.61 101099.7 13848.42 836.171 0 1924.44 1623.737 59456.59 14467.45 153441

Sensor 6 7325.617 5434.407 8820.268 3274.637 1924.44 0 280.8908 6516.194 1068.319 8823.641

Sensor 7 12964.23 24606.46 15096.78 3559.941 1623.737 280.8908 0 22210.63 4685.924 37679.28

Sensor 8 154086.2 816.0667 135250.3 60578.8 59456.59 6516.194 22210.63 0 4344.752 220.19

Sensor 9 39731.54 3252.117 41094.17 17927.89 14467.45 1068.319 4685.924 4344.752 0 8062.76

Sensor 10 1451817 10084.34 464743.2 123781.2 153441 8823.641 37679.28 220.19 8062.76 0

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 1399.015 17021.73 41223.45 4642.77 3887.006 22130.5 40289.26 81829.97 53374.3 56614.68

Sensor 2 9765.08 221.1924 36.75305 11087.3 1877.781 217.4567 1345.556 4317.1 2301.68 1276.777

Sensor 3 7600.674 24046.76 36275.48 12369.04 10321.8 28855.36 40620.97 56357.77 46826.88 45934.62

Sensor 4 610.4166 598.3303 1085.457 294.4033 0.002214 1660.525 2828.583 4175.46 3399.49 2683.193

Sensor 5 5691.29 109.4362 860.0182 5817.549 611.1192 1471.847 4278.178 10745.87 6380.034 4976.215

Sensor 6 2285.311 284.1115 829.8776 1685.043 166.8917 1453.703 3112.158 5507.662 4055.469 3066.334

Sensor 7 2847.632 314.435 1027.743 2245.125 210.1056 1667.785 3765.374 7129.045 5037.294 3876.738

Sensor 8 1788.26 287.6937 747.3988 1235.924 116.301 1339.685 2719.878 4563.057 3466.506 2608.935

Sensor 9 2495.018 2570.268 11486.42 2098.674 0.024002 6066.735 15187.53 47617.3 23351.37 24365.75

Sensor 10 39.8301 560.8738 787.1992 1.11833 71.9043 1150.105 1650.98 2135.686 1867.877 1525.654

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 16318.62 236450.9 3003.964 15555.62 83756.65 94890.55 110001.6 629123 481243.4 406602.7

Sensor 2 173910 970.3797 40.50499 77572.94 119351.9 324.109 3051.929 160585.4 66181.01 33558.92

Sensor 3 206399.8 853815.3 8833.619 143140.7 504679.4 264524.1 281320.4 1893271 1427388 1233774

Sensor 4 2858.533 6206.449 386.5644 1620.083 0.171967 7343.644 11169.76 28008.87 22227.29 17857.64

Sensor 5 7481.887 494.9144 17.92581 5570.319 1862.705 1203.526 2760.142 8856.934 6365.579 4529.368

Sensor 6 0.51085 15.26323 11.94807 0.099364 1.355695 20.92959 29.40898 47.34428 39.78345 33.55492

Sensor 7 12775.46 1739.272 46.66147 8760.848 2751.011 2906.191 5904.708 21587.83 15651.5 11395.65

Sensor 8 2402.126 2153.822 220.3189 1583.083 111.7695 3133.33 5151.399 11900.2 9332.154 7346.543

Sensor 9 100.8101 566.9995 255.8232 50.32099 13.80487 808.3136 1193.585 2083.986 1715.663 1416.636

Sensor 10 219.9196 2914.328 600.1942 77.2817 171.7624 3777.979 5373.538 9750.392 8087.985 6751.154
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Figure A.84: MQ-5 vs. MQ-135 ANOVA f-statistics (30°C, 33% RH). 

 

Figure A.85: MQ-5 vs. MQ-135 ANOVA f-statistics (35°C, 33% RH). 

 

Figure A.86: MQ-5 vs. MQ-135 ANOVA f-statistics (40°C, 33% RH). 

 

Figure A.87: MQ-5 vs. MQ-135 ANOVA f-statistics (45°C, 33% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 4365.715 25001.8 7083.971 12633.7 43415.38 92894.23 8440 375678.9 270595.2 299577.8

Sensor 2 16375.15 4.113121 298.9283 23974.01 11738.58 38.99479 530.6242 12676.29 5555.782 4777.934

Sensor 3 34655.25 60086.25 21584.34 66101.43 111408.9 162469.3 26223.95 378359.9 309944.2 323081.8

Sensor 4 1473.426 3678.989 749.884 1552.33 19.13862 8652.871 728.3273 36583.82 25211.93 24214.35

Sensor 5 6602.894 280.3171 6.585799 7727.864 2660.74 843.5388 37.91487 11052.73 6217.647 5581.801

Sensor 6 6009.299 1093.769 52.70853 7799.043 1827.37 3209.644 20.71138 25589.35 15572.29 14605.64

Sensor 7 10982.08 425.2904 5.331148 16650.67 6007.183 1801.459 39.6403 28006.43 15342.53 14343.45

Sensor 8 654.0981 1649.929 434.0556 553.6333 0.223278 2611.374 383.1261 9710.416 6791.521 6338.36

Sensor 9 81.53076 463.7006 184.77 57.35808 6.37146 580.1287 154.721 1860.946 1337.876 1244.343

Sensor 10 0.306768 497.5301 268.3487 0.362377 65.56142 580.8198 239.8011 1458.1 1110.963 1047.113

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 8425.672 18982.4 34532.57 22174.35 74658.77 106569.5 11026.11 1057022 660989 238130.9

Sensor 2 34076.38 8.80715 4863.852 133690.9 78259.74 212.0055 0.087056 268085.2 58362.6 13095.12

Sensor 3 62547.42 49607.01 109171.1 139924.8 234228.2 241272.4 29715.21 1056456 791584.4 413095.9

Sensor 4 726.3482 3260.951 1235.339 1203.787 30.42896 5987.267 2082.383 34675.6 20727.52 18075.9

Sensor 5 5940.27 204.4602 440.4751 7873.278 3002.222 125.7651 108.2995 9388.659 3793.019 3471.223

Sensor 6 8570.612 1337.049 1.06448 19073.59 4712.365 3695.025 723.3176 83474 39920.65 24895.49

Sensor 7 1254.858 410.088 2.451253 1488.334 363.864 331.0633 293.6821 4319.73 2135.755 2092.437

Sensor 8 1578.475 266.0976 35.57209 1850.981 557.294 185.151 183.9015 3700.149 1714.094 1682.432

Sensor 9 344.048 1198.15 221.6034 443.5189 2.897693 1216.892 915.8702 6781.507 3971.306 3878.397

Sensor 10 3.354958 1971.334 823.5643 0.160489 250.2043 2011.565 1633.106 6797.569 4509.473 4447.716

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 5399.865 241072.3 16480.93 30399.98 22142.19 26740.68 64222.26 2686498 388475.5 1727216

Sensor 2 17515.84 917.9867 5437.599 147171 17117.48 1093.958 238.5127 329037 13163.63 84439.05

Sensor 3 37380.25 308991.7 58359.22 117732 81871.19 73655.35 133475.3 810298.3 402586.2 629828.7

Sensor 4 240.9935 10877.43 528.1422 773.5467 99.14346 2445.411 7776.513 38854.82 17920.18 22697.33

Sensor 5 9138.441 1717.654 2187.16 27516.36 6302.942 165.5947 894.7959 36536.67 7403.245 13008.26

Sensor 6 2129.07 2874.591 109.5208 4024.244 683.5321 206.105 2189.359 17179.69 6233.169 8241.357

Sensor 7 1235.059 1230.159 76.82131 1890.852 381.0036 94.47781 1074.383 7222.244 2689.985 3428.306

Sensor 8 870.1077 682.2259 67.64343 1225.366 277.0288 45.27435 625.8537 4153.474 1531.148 1938.457

Sensor 9 155.7144 613.7487 3.59238 230.1028 12.06194 144.4923 590.259 2460.555 1106.31 1320.219

Sensor 10 93.16695 1765.856 485.2603 61.69 311.5669 944.8349 1717.095 4007.849 2430.461 2699.809

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 4204.073 48909.81 37927.8 17343.26 60792.06 44868.39 35498.13 1574356 223229.3 816255.8

Sensor 2 9785.515 480.4682 23470.7 60591.67 32226.27 5059.908 86.37895 81497.26 4516.201 18121.77

Sensor 3 29953.23 113782.4 140131.5 113874.8 188220.1 133142.9 93953.5 1039276 365511.1 726041

Sensor 4 49.65027 7646.512 146.5894 499.8372 164.8462 1791.992 4341.261 36547.87 14366.32 19991.85

Sensor 5 4975.799 574.0342 5279.853 12769.82 5689.359 1190.919 1.032001 14240.73 2021.996 4122.544

Sensor 6 1444.776 3309.734 803.559 4365.35 849.5042 34.88034 1231.001 25680.34 7358.973 11451.79

Sensor 7 2329.363 1047.271 1697.931 5020.87 1760.126 176.0915 178.5668 10572.46 2373.2 3897.667

Sensor 8 2370.154 3303.796 1970.832 8412.048 2179.108 4.231841 1033.05 37330.43 9009.426 15568.7

Sensor 9 0.22299 560.1029 23.37503 4.442155 24.03283 131.5464 338.9704 1497.219 708.9741 864.47

Sensor 10 12.74219 1509.09 108.0138 0.08099 110.6925 421.2704 952.4891 3936.535 1930.858 2339.956



164 

 

Figure A.88: MQ-5 vs. MQ-135 ANOVA f-statistics (50°C, 33% RH). 

 

Figure A.89: MQ-5 vs. MQ-135 ANOVA f-statistics (10°C, 85% RH). 

 

Figure A.90: MQ-5 vs. MQ-135 ANOVA f-statistics (15°C, 85% RH). 

 

Figure A.91: MQ-5 vs. MQ-135 ANOVA f-statistics (20°C, 85% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 11152.68 672640 20119.61 16386.94 62629.26 16517.26 17194 1917919 112270.2 494225.8

Sensor 2 14113.21 14999.66 68191.54 83347.63 51836.79 5350.84 496.7864 244663.6 1985.983 31046.53

Sensor 3 66944.4 1134992 157890.5 153624.1 281658.1 70991.45 56335.8 2216643 268829.6 891875.8

Sensor 4 111.2291 13715.14 26.0767 131.1124 364.9094 916.1426 2534.387 32947.97 10506.29 19150.29

Sensor 5 5152.485 2136.939 11740.7 13749.17 6386.281 1965.478 126.8698 17313.07 1194.38 5671.877

Sensor 6 1293.121 13032.79 4999.056 6524.916 1344.891 62.1951 471.4234 47118.62 7599.104 21090.31

Sensor 7 7778.396 11608.77 29004.06 35203.24 16747.02 2475.762 54.49151 83901.56 3773.576 23371.42

Sensor 8 648.7759 557.317 1204.068 1432.517 528.9899 198.4219 0.169778 2902.272 441.76 1209.274

Sensor 9 76.24232 3161.843 404.5806 585.4283 23.30168 29.83625 502.7931 9210.219 2644.309 4976.004

Sensor 10 69.26127 1885.279 6.656579 0.162518 117.8613 263.1428 679.733 4157.588 1720.902 2620.614

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 1323.137 147715.7 31860.11 4456.111 23043.23 57574.62 41925.59 173649.1 99886.25 156614.8

Sensor 2 40235.76 607.6648 6805.437 6743.65 6456.714 1107.278 233.4047 6426.284 1878.252 5340.704

Sensor 3 2233.889 31775.54 15057.64 8747.566 14222.93 29983.29 25757.83 41908.29 33841.26 40358.36

Sensor 4 5005.647 2913.583 0.000495 240.7146 2.044561 3414.281 2254.457 6752.958 4068.873 6207.022

Sensor 5 32704.6 0.003374 6837.191 7386.615 6690.386 150.8705 5.22868 2003.36 305.928 1569.974

Sensor 6 69408.31 17538.09 9838.551 5610.804 7338.65 6468.262 2764.783 43888.29 14070.11 35902.28

Sensor 7 17051.05 1554.068 1339.418 2461.871 1403.996 2054.166 955.8838 6232.007 2797.324 5486.006

Sensor 8 21871.9 6514.829 655.9248 1778.37 721.2878 5850.692 3267.297 17325.91 8575.677 15411.78

Sensor 9 1721.596 498.8705 22.51382 172.8134 29.90729 698.4333 436.1108 1367.182 790.203 1250.11

Sensor 10 628.4865 2972.37 429.1033 85.87306 386.4695 3409.305 2636.796 5254.168 3743.824 4958.921

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 498.9521 126538.4 131854.2 80806.12 171939.6 227550.4 463069 1088502 568297 435421.8

Sensor 2 51001.74 1901.564 58331.44 74378.64 40062.52 5115.935 1373.13 33224.87 9048.105 19682.96

Sensor 3 14993.27 313334.6 860277 657253.1 916465.9 548885.1 1270699 2571571 1422481 978214.7

Sensor 4 4982.899 2254.176 423.3474 818.6384 142.3239 2966.285 1768.352 5573.559 3168.192 5099.01

Sensor 5 62956.02 722.0044 124266.7 150166.5 87662.19 3035.985 101.4808 37210.6 6608.275 17804.12

Sensor 6 13048.68 3068.13 2446.275 3850.391 1278.828 4504.337 2418.885 10159.06 5106.437 8859.639

Sensor 7 13779.07 1785.142 3197.086 4653.086 1921.552 2761.248 1230.986 6857.586 3113.176 5973.323

Sensor 8 3912.063 1413.694 384.2326 691.2684 154.036 1865.834 1059.66 3556.685 1973.089 3270.709

Sensor 9 7849.581 4547.586 617.6366 1299.762 163.0331 6106.402 3887.259 11681.15 6740.934 10459.44

Sensor 10 3100.816 8856.651 91.61217 0.899235 433.4765 10999.89 8249.353 17875.95 11942.03 16350.12

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 1965.879 521858.7 21275.84 130655.2 266456.5 384971.3 78077.36 4133914 474717.7 1599494

Sensor 2 277380.7 8714.742 5521.956 121499.1 67697.65 5194.637 357.6921 70426.68 8632.296 55211.36

Sensor 3 194238.6 1243689 89391.58 966166.5 1283927 943930 207895.3 7655658 1131250 3266424

Sensor 4 15734.58 11811.05 29.60977 2028.555 227.0625 10189.28 5141.973 24247.19 11900.94 23811.46

Sensor 5 107023.3 1217.828 6129.224 43942.64 26405.39 598.4341 0.397233 11350.93 1291.928 10828.23

Sensor 6 47120.76 13017.3 379.0004 11059.66 3841.093 10510.54 3658.006 34559.49 13067.25 32976.94

Sensor 7 44147.7 8721.707 720.2883 11583.11 4671.294 6948.4 2376.78 24404.59 8807.206 23552.97

Sensor 8 719.4347 279.0501 5.535186 140.6217 40.98382 240.0221 148.425 595.5497 285.0374 602.0293

Sensor 9 7716.203 7133.128 64.60972 817.2307 45.50026 6264.07 3672.347 13730.76 7214.236 13660.11

Sensor 10 12770.74 28022.61 1135.513 245.8491 427.7925 24588.01 12235.15 52626.49 28002.57 50897.73
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Figure A.92: MQ-5 vs. MQ-135 ANOVA f-statistics (25°C, 85% RH). 

 

Figure A.93: MQ-5 vs. MQ-135 ANOVA f-statistics (30°C, 85% RH). 

 

Figure A.94: MQ-5 vs. MQ-135 ANOVA f-statistics (35°C, 85% RH). 

 

Figure A.95: MQ-5 vs. MQ-135 ANOVA f-statistics (40°C, 85% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 19.83894 457096 150036.4 32571.41 146810.5 124663.3 82178.37 3880154 764062.6 3738948

Sensor 2 161062.4 16740.44 43976.03 73003.4 84145.73 2192.622 42.09137 181671.1 22832.28 197005.2

Sensor 3 70583.16 870688.4 496194 213273.4 529287.5 293753.3 215755.6 3201881 1280558 3190929

Sensor 4 9027.595 10488.59 3.54207 1231.233 154.2984 6258.721 3419.316 19525.18 10365.4 20797.92

Sensor 5 66535.7 1714.076 14656.19 29358.07 21627.21 161.4477 208.1472 10396.92 1547.709 11983.95

Sensor 6 22253.84 12058.49 596.316 5191.373 1947.534 5861.143 2546.516 26704.01 12123.62 28727.97

Sensor 7 14227.85 2875.764 1215.015 4448.417 2263.573 1346.993 362.5183 7092.064 2725.629 7769.373

Sensor 8 5769.547 4562.826 26.8382 1022.389 238.9576 2827.989 1455.125 8570.001 4409.865 9175.213

Sensor 9 15645.65 13020.15 77.56545 2841.465 706.1384 6966.808 3469.514 26369.36 13044.81 28197.27

Sensor 10 1108.064 4520.548 276.2167 5.122183 91.08775 3320.233 2203.845 7093.06 4396.502 7472.62

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 1038.277 2277920 159411.4 30919.53 44579.98 17681.99 154493.1 1226696 1284992 2775480

Sensor 2 2151391 126016.8 143331 96121.13 39140.81 6.206371 6675.324 131986.5 49504.78 384669.3

Sensor 3 151609.4 1048596 324671.5 159359.4 168404.7 50166.73 319826.4 992302.5 898129.6 1277915

Sensor 4 4190.215 5776.035 55.62767 631.7254 63.17691 1164.597 708.874 9531.929 5142.579 10619.95

Sensor 5 9688.86 462.8836 2441.559 4106.503 2404.18 18.74447 386.7468 1624.828 324.2195 1990.096

Sensor 6 26745.55 19663.59 1491.765 5123.449 1290.895 1228.235 1006.484 33370.26 16803.3 39223.6

Sensor 7 264545.9 90941.44 21701.19 30929.06 9957.521 609.4 188.7519 128026.1 64493.85 199420.3

Sensor 8 5911.065 4598.934 320.9331 1287.388 328.25 721.3723 298.3468 8116.159 4022.948 9145.641

Sensor 9 64778.33 55528.16 2532.316 8778.32 1747.797 1687.929 2773.744 84369.67 45709.63 106917.3

Sensor 10 392.302 5929.588 379.6052 48.09049 351.472 2299.069 1847.191 8472.083 5490.291 9146.23

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 322.5997 347496.7 7605.64 18924.02 27899.9 59199 63072.5 1285405 755997.3 4786552

Sensor 2 27937.31 8411.578 9965.731 30059 14651.54 95.66148 702.2629 25217.49 4649.142 37264.7

Sensor 3 25753.59 543359.9 49011.58 123736.5 127059.7 148747.1 172593.3 1091470 803950.8 1567679

Sensor 4 3972.406 13451.52 292.4804 1017.368 69.96553 4201.976 2039.435 20884.75 10444.97 24441.26

Sensor 5 19063.25 1427.576 7779.666 14511.65 8477.325 34.16316 1003.655 4295.467 377.6528 5970.625

Sensor 6 9682.124 20791.96 1585.244 5039.491 1259.527 4058.974 1498.536 38179.21 16666.99 47677.25

Sensor 7 8666.246 3034.436 2708.287 4800.475 2347.047 335.1914 1.720725 5834.104 1703.088 7245.522

Sensor 8 7787.471 7052.399 1785.677 3804.675 1409.311 1412.693 268.7843 12274.72 4769.391 14865.39

Sensor 9 6111.036 13941.54 798.5072 2288.104 441.297 3620.095 1486.221 22940.82 10647.33 27396.86

Sensor 10 72.09163 2500.745 63.39419 20.63051 138.8655 1359.513 859.2485 3262.858 2003.318 3594.796

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 109.7459 69299.36 17835.52 8373.363 23423.71 104397.7 203102.1 449204.3 502166.7 724966.3

Sensor 2 4272.305 2919.392 24840.4 14271.23 10305.01 0.560403 2605.147 12107.67 1204.337 18361.44

Sensor 3 4603.829 145023 114340 61619.71 103773.9 222309.4 329199.4 549702.5 530735.6 708679.5

Sensor 4 688.4324 5969.972 560.0089 334.2167 13.28939 2391.749 793.4377 9956.881 4288.259 12017.07

Sensor 5 4139.196 562.4256 8560.458 6767.434 4680.362 142.3233 1386.28 1735.658 11.18729 2693.254

Sensor 6 1224.797 7486.147 2075.572 1291.614 305.8443 2769.822 634.1907 15184.46 5921.077 18950.09

Sensor 7 2002.183 1217.83 2444.708 1971.016 1091.115 78.2015 77.15745 2317.499 420.2059 3076.852

Sensor 8 876.3126 1502.96 668.691 517.4463 186.5213 344.6606 27.76614 2359.451 757.3855 2926.553

Sensor 9 951.8117 3096.424 854.0145 612.6898 163.357 913.1493 160.9927 5030.541 1829.802 6175.145

Sensor 10 128.9036 10543.87 2.91613 34.12302 465.8735 5771.08 3104.203 16744.51 8911.501 19565.72
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Figure A.96: MQ-5 vs. MQ-135 ANOVA f-statistics (45°C, 85% RH). 

 

Figure A.97: MQ-5 vs. MQ-135 ANOVA f-statistics (50°C, 85% RH). 

 

Figure A.98: MQ-5 vs. MQ-7 ANOVA f-statistics (20°C, 33% RH). 

 

Figure A.99: MQ-5 vs. MQ-7 ANOVA f-statistics (25°C, 33% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 2832.089 230369.8 20509.1 13248.94 17585.4 15472.25 24540.88 254055.3 22528.79 1251985

Sensor 2 108914.8 11021.21 122149.4 34722.22 16709.55 46.50328 1729.482 20349.4 2.24984 55985.26

Sensor 3 190016.8 520786.8 371573.9 142189.8 124985.4 54501.11 102059.3 539442.2 75541.63 1777237

Sensor 4 2902.305 13171.36 1943.47 407.4354 6.467364 1916.646 1093.549 17803.17 2653.932 22910.06

Sensor 5 13896.65 1040.041 12136.87 7439.875 4756.597 158.1584 1046.654 2431.691 85.52078 3567.575

Sensor 6 3342.453 4613.793 2554.244 1086.053 377.6047 482.9861 88.74495 6775.856 715.9768 8448.062

Sensor 7 7522.384 3253.015 6218.265 3291.419 1716.75 65.36087 60.58936 5382.105 158.6248 7124.353

Sensor 8 7423.348 4216.718 6069.243 3047.426 1482.256 149.2575 12.60264 6724.614 294.5567 8888.484

Sensor 9 387.154 935.4183 276.5801 102.7511 23.1069 180.9539 51.59644 1333.298 232.9997 1547.985

Sensor 10 16.75672 7788.046 2.597879 178.0303 522.706 2633.704 1894.174 9792.081 3117.809 11179.83

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 8450 796139.6 89.1257 7029.214 22053.14 9827.221 18796.52 179154.4 48902.58 1679086

Sensor 2 75797.36 15725.32 67451.05 21760.66 18143.14 448.9663 3698.774 12872.25 470.9751 32943.69

Sensor 3 585241.9 1835145 179263.4 123893.5 224570.7 48697.14 117347.4 468095 170854.5 3096799

Sensor 4 1354.858 15550.33 2169.421 139.7202 9.84844 1252.987 706.5944 16409.44 5756.483 21219.38

Sensor 5 2849.05 642.9716 3405.81 1673.06 1122.69 101.4747 397.2412 974.3254 53.08284 1230.981

Sensor 6 3125.369 6344.746 4084.496 1141.129 463.4665 167.2993 0.234305 7404.078 1929.77 9372.811

Sensor 7 2864.52 1311.842 3496.777 1537.479 951.1846 22.57951 239.847 1808.689 229.8692 2241.679

Sensor 8 4982.229 2980.931 6056.096 2450.076 1474.194 7.357187 287.1253 3836.552 574.374 4938.253

Sensor 9 877.2908 2831.264 1226.264 288.8169 81.39685 172.8958 21.21001 3454.103 1089.071 4033.874

Sensor 10 5.63686 4387.066 3.92599 135.5401 324.1399 1158.508 795.2715 4983.223 2542.34 5501.929

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 9.839027 62580.31 24.76616 2147.086 20593.13 49.67652 12.99728 4127.14 926.3367 926.3367

Sensor 2 736.9077 2965.389 12472.54 21356.67 1031.19 26401.72 17667.62 9440.248 13984.06 13984.06

Sensor 3 411.9113 50392.68 2248.325 9664.17 25654.85 5165.802 3938.258 11736.77 7072.942 7072.942

Sensor 4 191.9784 3701.746 2006.459 930.2169 344.6988 2051.902 1908.048 264.7431 960.7941 960.7941

Sensor 5 470.8339 7820.692 8672.416 13193.65 4.349677 18113.35 12032.86 4881.282 8659.825 8659.825

Sensor 6 350.0563 4596.824 4744.193 3776.019 73.65272 6419.11 5336.555 1513.261 3334.466 3334.466

Sensor 7 363.693 5797.841 5544.248 5113.523 75.90779 8381.269 6597.394 1982.492 4228.912 4228.912

Sensor 8 326.9049 3882.325 3983.32 2794.728 88.31602 4931.876 4270.204 1121.745 2590.871 2590.871

Sensor 9 215.8708 30057.53 5429.532 9408.88 2271.903 14452.16 7952.629 1565.302 4748.184 4748.184

Sensor 10 59.16274 1975.476 417.6948 72.57402 396.3265 308.3745 318.0183 0.492445 94.74745 94.74745

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 137.0429 611674.6 1612.295 6003.811 124313.6 41.99589 13.27752 19403.38 3945.403 667502.7

Sensor 2 1533.36 143484.2 517548.9 188336 6418.624 103431.1 18094.03 238991.4 192450.5 5726378

Sensor 3 1949.049 1891620 87819.13 142209.5 452849.7 33419.66 6231.564 255618.3 125902.6 293991.8

Sensor 4 268.3223 25685.94 16168.52 5269.072 2981.479 10155.73 4251.898 2943.436 6160.254 165485.5

Sensor 5 832.2301 7776.19 21804.27 10457.99 14.84049 15687.93 7716.376 7635.503 11480.63 142251.8

Sensor 6 1.193696 43.96705 10.68377 2.020203 9.850014 8.09317 8.298476 0.509131 2.699886 161.5488

Sensor 7 754.9346 19173.7 40514.03 18055.29 214.3613 24558.21 8786.881 13320.56 19852.32 289707.8

Sensor 8 375.4428 10802.22 10426.25 3986.133 892.9701 7523.96 4152.34 2438.466 4559.904 90564.36

Sensor 9 84.12524 1920.306 826.6524 231.0197 329.0208 645.1868 588.8353 100.8351 282.8049 9612.777

Sensor 10 84.94986 9032.476 2793.7 636.1314 1773.72 2003.589 1399.566 221.2185 810.4537 37825.43
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Figure A.100: MQ-5 vs. MQ-7 ANOVA f-statistics (30°C, 33% RH). 

 

Figure A.101: MQ-5 vs. MQ-7 ANOVA f-statistics (35°C, 33% RH). 

 

Figure A.102: MQ-5 vs. MQ-7 ANOVA f-statistics (40°C, 33% RH). 

 

Figure A.103: MQ-5 vs. MQ-7 ANOVA f-statistics (45°C, 33% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 681.2144 356685.8 141.9606 2373 101280.9 2016.478 1706.785 4116.709 3960.665 398957.4

Sensor 2 3595.876 9978.487 67727.66 32033.28 943.0287 51517.12 53150.35 39051.33 23563.14 392079.2

Sensor 3 6779.179 363608.6 33643.62 38146.37 171767.6 9419.092 49298.05 51128.98 39033.5 53004.64

Sensor 4 384.744 32736.21 13748.95 4612.846 4685.907 14961.31 8403.67 5159.914 2682.615 172912

Sensor 5 1998.749 9250.466 24254.56 12335.36 13.03746 24710.83 18005.84 13550.14 9148.925 166232.5

Sensor 6 1439.097 22082.9 31488.21 13378.48 747.657 28301.85 22468.48 15635.31 9175.071 255854.8

Sensor 7 2239.322 23602.63 59415 24371.52 45.5544 43370.47 44540.81 30661.4 16867.01 420713

Sensor 8 313.9286 8637.77 4044.198 1650.679 1235.808 5758.629 2494.446 1657.4 1044.652 47882.54

Sensor 9 68.09136 1664.408 577.0799 225.5624 289.8943 955.2688 336.3506 215.9582 135.9399 7761.603

Sensor 10 0.333971 1328.562 133.7304 24.47635 355.2354 283.2575 54.05525 21.81494 6.115836 3482.439

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 4712.705 922983.5 1663.773 4577.671 121105.4 1612.681 909.6044 18687.35 3081.245 1065147

Sensor 2 10295.13 180846.9 712391.6 168813.3 5523.888 180325.4 86443.02 216061.2 24516.32 9805321

Sensor 3 30575 972172.9 69602.69 87647.56 278956.9 29110.06 45036.86 143370.4 34100.19 126210.9

Sensor 4 175.2711 30200.2 12006.65 4085.638 3511.305 11758.8 4759.053 2115.086 1230.897 132950.2

Sensor 5 3212.576 7485.675 23583.77 12869.27 49.23707 22785.56 13359.78 9791.11 6495.999 136714.5

Sensor 6 2768.006 68801.14 89059.08 34118.05 977.99 57803.93 27178.96 27497.55 8082.17 712679.6

Sensor 7 765.4362 3600.576 5465.996 2814.654 59.74198 5843.063 3266.912 1926.466 1644.351 37168.15

Sensor 8 1004.943 3039.699 6126.343 3298.152 9.794166 6510.192 3774.284 2335.9 1998.46 38683.3

Sensor 9 145.3156 5880.208 3127.042 1256.11 610.213 3455.544 1588.925 689.1915 584.6937 30092.17

Sensor 10 36.39057 6078.566 734.749 123.0277 1350.786 897.0345 226.539 13.38184 10.71774 14405.91

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 27843.81 3770294 40.82971 2737.177 291470.3 7968.11 262.5959 1429.173 137214.2 1952348

Sensor 2 46480.96 360245.2 13412.35 104081.6 4067.542 180140.4 31373.6 6859.399 573338.3 6159402

Sensor 3 103904.6 785432.6 7431.259 54694.08 313982.8 12124.67 18270.31 13352.69 171861.3 68411.49

Sensor 4 29.40089 32676.25 1824.501 3076.56 5893.559 14626.78 2701.626 249.0517 653.8024 110909.8

Sensor 5 13491.05 27198.09 9565.859 35209.89 15.41398 74322.33 18668.84 4517.277 31858.63 471890.3

Sensor 6 1782.884 13566.31 4239.521 7495.754 780.8107 20903.79 6256.613 1538.712 3903.102 108669.4

Sensor 7 897.2076 5656.253 2950.027 3645.348 306.1119 10226.36 3621.472 1098.336 1775.923 47402.4

Sensor 8 607.9849 3231.718 2223.524 2352.324 152.6261 6512.25 2491.836 853.3293 1142.188 28732.67

Sensor 9 73.28863 1993.155 714.3295 588.2929 248.1256 2081.616 701.7447 193.7878 203.0794 10500.56

Sensor 10 180.1714 3489.148 14.22854 0.001316 1178.416 339.2231 6.336417 54.49875 75.76381 4454.457

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 16837.15 1562504 4511.037 1436.831 101052.7 165.9777 41.56892 42843.71 10796.62 1349978

Sensor 2 15526.19 54726.42 153364 68268.76 694.1505 2037.074 5911.918 99411.16 23597.25 1425970

Sensor 3 79633.75 977781.5 106740.3 52737.81 222456.1 91.5912 4109.893 179483.2 68437.96 77775.15

Sensor 4 40.43336 29589.86 3151.914 2622.577 5274.949 720.947 782.1065 501.1565 84.29664 88269.2

Sensor 5 5074.378 9547.181 24002.35 19521.2 25.80539 1830.788 4474.308 13938.14 7864.78 182567.5

Sensor 6 959.0715 19493.43 10854.25 8916.099 1323.727 1208.19 2230.236 4673.559 2266.44 132649.6

Sensor 7 1849.857 7541.159 9974.754 8816.183 106.9894 1509.929 2999.366 5212.107 3202.871 88708.99

Sensor 8 2023.573 27960.72 20287.74 15166.09 1176.627 1333.881 2786.166 9545.181 4189.413 228321.4

Sensor 9 14.10435 1221.997 71.70908 69.35472 302.0829 310.786 79.79599 3.721046 0.115861 2897.316

Sensor 10 75.32816 3246.612 101.952 96.94576 880.2774 373.1797 103.1797 2.09E-05 11.92808 6429.157
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Figure A.104: MQ-5 vs. MQ-7 ANOVA f-statistics (50°C, 33% RH). 

 

Figure A.105: MQ-5 vs. MQ-7 ANOVA f-statistics (10°C, 85% RH). 

 

Figure A.106: MQ-5 vs. MQ-7 ANOVA f-statistics (15°C, 85% RH). 

 

Figure A.107: MQ-5 vs. MQ-7 ANOVA f-statistics (20°C, 85% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 32686.73 640019.3 16280.78 2070.848 96789.15 13885.58 6.950812 1533.101 30786.73 33831.9

Sensor 2 22026.13 64800.09 332371.2 143387 268.3082 212990.5 6945.719 6020.422 57751.25 112410.7

Sensor 3 154873.5 1065803 266273.1 103195 265446.6 15037.58 4047.445 14744.77 188836.8 5591.027

Sensor 4 487.8282 25222.57 955.3417 1561.058 5919.853 9899.193 698.5055 21.03178 21.99301 28960.66

Sensor 5 4763.547 10405.1 22686.79 23716.8 0.258428 50541.77 5258.918 3828.127 9278.256 68703.88

Sensor 6 757.6238 31293.51 14017.5 15169.36 2625.809 41830.52 2835.72 1375.009 3206.704 59818.28

Sensor 7 9318.356 41588.27 82069.58 63691.07 141.2941 120136.5 5472.177 4171.475 22983.22 93382.52

Sensor 8 431.738 1983.462 2235.734 2668.144 48.95142 6716.592 1986.96 958.788 893.6313 17324.49

Sensor 9 4.873652 6941.185 1329.37 1775.77 1133.27 6614.006 1161.235 294.0162 192.0709 19822.47

Sensor 10 148.0376 3363.991 35.03166 85.2459 1002.934 942.7375 126.9946 3.201171 35.56113 4919.98

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 5542.89 227654.4 4337.927 251.6751 21174.17 363.3378 69.37469 16223.6 60.68874 146054.3

Sensor 2 18781.07 6340.263 55762.33 5869.068 301.7595 12235.22 14954.8 65025.46 5821.681 205035.9

Sensor 3 8182.536 42082.02 1702.482 3364.048 18406.31 1082.524 2243.444 8.96153 2478.165 6462.661

Sensor 4 930.7985 6513.208 6425.739 904.5411 679.3334 3127.116 2768.523 13376.69 1118.746 39924.59

Sensor 5 16054.2 1775.732 41725.56 6727.296 874.4943 12960.17 15183.8 54026.22 6670.248 144881.7

Sensor 6 34522.97 67282.97 139487.9 4545.777 42.71657 10929.36 14349.46 94371.18 4546.421 494619.9

Sensor 7 6107.746 6004.556 21957.74 3205.312 13.23973 7581.877 8161.178 33734.38 3395.817 96992.81

Sensor 8 6630.837 17963.6 31212.99 2531.766 484.0798 7005.7 7882.753 43346.02 2730.857 152646.4

Sensor 9 413.4539 1277.868 2074.975 541.929 94.14348 1555.017 1237.054 4455.182 677.1728 11529.34

Sensor 10 1.571577 5071.491 900.6231 22.73218 1386.336 567.325 327.3483 3164.223 71.53733 11374.1

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 121778 2617067 3157.272 48208.61 471535.3 1878.967 51.45984 13195.44 123.6642 355940.6

Sensor 2 123331 37854.5 157144.9 155680.3 4359.684 55111.77 26324.62 78585.94 27320.52 654291.2

Sensor 3 1684134 7417623 62719.96 1147755 1656390 8548.696 15233.19 7.132445 17576.52 92767.22

Sensor 4 1414.974 5311.54 6055.825 2238.743 347.6441 6330.34 3032.707 13206.96 2905.695 37851.33

Sensor 5 292519.6 49776.55 235873.7 353291.7 16092.53 66677.94 32131.82 90734.14 33606.35 918805.9

Sensor 6 5926.255 9744.669 18665.3 8524.645 155.7742 15721.13 7709.083 28839.95 7589.904 100326.6

Sensor 7 6731.756 6492.813 18946.84 9265.062 0.75724 16396.02 8519.613 29138.91 8401.294 93338.57

Sensor 8 1138.421 3369.513 4554.995 1747.436 169.543 4954.87 2479.61 10277.2 2370.192 27248.34

Sensor 9 2386.99 11274.55 10699.36 3898.718 897.2793 9908.781 4430.58 20318.36 4285.584 69764.67

Sensor 10 157.2208 17450.43 4224.791 637.3608 3694.347 4455.908 1371.449 11999.59 1259.44 46526.93

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 598793.1 7405073 7591.559 5179.447 302261.6 4176.18 480.3948 441525.5 300.9157 1038366

Sensor 2 152702.2 73473.11 398308.2 66856 4525.137 55400.69 26126.48 875462 58031.34 1410340

Sensor 3 3336477 12235355 434107.4 102828 945907.7 3355.508 23060.82 2500.054 42843.11 228554

Sensor 4 1759.823 23864.07 17116.74 5023.125 1996.072 16297.73 4524.11 55866.21 7584.317 130650

Sensor 5 44747.93 10952.16 121294 43960.91 3983.22 50038.66 24488.16 263450.5 44569.6 483379.8

Sensor 6 10604.71 34144.79 53096.51 15972.22 599.664 28823.92 10371.97 146090.3 19199.89 307448.7

Sensor 7 11116.01 23980.89 48946.71 16494.24 119.4975 29461.17 11199.27 129093.5 19758.66 268260.9

Sensor 8 125.2124 579.4485 748.0779 320.1323 21.753 1332.138 417.7863 2168.919 502.7437 4921.048

Sensor 9 680.7487 13473.65 8253.359 2506.085 1376.095 10722.72 2740.713 28148.78 4172.622 67872.71

Sensor 10 130.7689 52218.09 14364.26 2375.18 8330.576 13130.54 2344.709 61499.62 4672.814 158359
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Figure A.108: MQ-5 vs. MQ-7 ANOVA f-statistics (25°C, 85% RH). 

 

Figure A.109: MQ-5 vs. MQ-7 ANOVA f-statistics (30°C, 85% RH). 

 

Figure A.110: MQ-5 vs. MQ-7 ANOVA f-statistics (35°C, 85% RH). 

 

Figure A.111: MQ-5 vs. MQ-7 ANOVA f-statistics (40°C, 85% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 118399 5863137 1351.231 22395.46 172267.7 3261.339 206.9127 31487.83 518.5471 2821548

Sensor 2 115532.9 222010.3 909816.6 287564.9 2822.305 58311.29 11816.86 200797.4 96747.03 4239516

Sensor 3 491162.6 3691724 394249.2 308769.3 458357.3 5097.539 9870.346 302.497 62083.02 257045.6

Sensor 4 546.964 20006.02 9212.147 4557.29 1735.319 12781.17 2385.415 30953.67 6533.218 98599.8

Sensor 5 27397.23 11022.97 87739.88 57132.44 2735.166 47581.27 12293.38 117695.4 50342.67 436514.1

Sensor 6 3487.27 27572.54 25698.46 14173.83 844.0211 22638.24 4543.801 58311.62 16208.48 210411.4

Sensor 7 3269.849 7320.231 14563.5 9162.574 0.613734 17855.54 5001.283 36512.21 11321.56 96223

Sensor 8 543.1293 8771.873 5579.199 3006.409 568.2315 9222.639 2181.11 19399.75 4394.966 52725.38

Sensor 9 1611.198 27129.16 17223.86 8975.364 1586.126 18106.24 3412.049 46330.77 11289.58 161853

Sensor 10 16.95294 7214.534 970.0913 312.9499 1351.699 2790.163 397.1851 6427.561 732.0635 19074.99

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 3219.905 1981268 7619.45 6783.195 170310.8 1236.207 400.0472 258427.8 762.395 1812837

Sensor 2 3485.134 242284.6 1866769 208960.6 2238.465 15155.73 10748.83 1951989 154467.3 7216944

Sensor 3 18761.73 1165386 169187.3 115396.9 336166.8 757.8593 11271.93 1743.515 69519.8 75688.32

Sensor 4 68.2209 10102.96 3560.413 2388.214 1167.281 4787.229 1305.786 19189.73 3371.709 44618.61

Sensor 5 1659.369 1810.471 8857.727 7145.918 172.411 8801.587 4486.238 26023.72 8493.534 49861.57

Sensor 6 430.5964 36605.14 23262.03 14598.9 2166.841 8144.408 3400.773 99888.8 17854.53 227506

Sensor 7 1229.118 167801.4 232781.2 78699.36 1633.815 10920.97 6000.143 641084.3 71563.53 1681674

Sensor 8 244.5783 8654.839 5137.466 3637.964 626.5145 5790.244 1951.703 23300.21 4840.068 51741.7

Sensor 9 370.606 97304.67 55905.95 27810.67 5341.7 8360.059 3526.864 231612.4 30988.13 565137.1

Sensor 10 192.5335 8823.727 266.6398 89.38674 2326.446 1577.494 58.6283 5031.595 265.5332 14575.33

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 51742.08 814379.1 11529.07 2101.5 546047.4 480.0364 47.16442 8210.217 522.5223 681335

Sensor 2 15389.6 26258.51 102360.5 54590.34 1115.833 3226.162 38749.7 49776.88 49247.08 569670

Sensor 3 189876.8 904922.1 185665.6 72120.18 632731.8 14.37064 28244.68 296.7005 48127.24 52411.09

Sensor 4 3.282973 22134.42 5681.508 4600.064 2992.841 1686.681 5489.009 17194.74 5280.648 86607.48

Sensor 5 7914.698 5089.11 31165.47 25190.83 1098.684 3494.015 23814.4 38551.88 25553.54 171584.4

Sensor 6 809.5691 39394.48 21958.04 14787.8 3122.568 2081.409 13670.28 28341.39 15157.25 231318.4

Sensor 7 1937.736 6547.901 11482.41 9951.197 1.867394 2673.796 10734.48 23237.04 10685.28 84142.54

Sensor 8 1037.315 13340.46 11420.07 9427.106 480.4448 2291.895 10089.61 23212.07 10173.69 104277.5

Sensor 9 205.6233 24288.26 9883.046 7715.177 2413.623 1912.312 8363.049 21600.26 8462.061 120823

Sensor 10 194.9737 3473.503 55.16082 46.3134 940.5757 640.127 126.9943 1625.045 83.90439 5280.191

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 2896.761 227293.4 8672.244 468.8888 135359.6 27303.51 2.825302 1240.322 637.6596 365426.3

Sensor 2 858.1416 11802.84 46127.42 26962 246.2773 103297 7221.458 8076.644 35328.86 300238.9

Sensor 3 13204.84 359659.5 116889.4 31532.73 267373.2 3864.087 3873.486 44.79452 44857.5 29921.13

Sensor 4 41.46553 10624.08 1801.28 2082.621 1769.278 12525.63 1497.102 3458.728 2315.588 38120.11

Sensor 5 1068.601 2213.001 13134.54 12291.07 426.2436 34807.92 6436.434 7890.564 13583.91 78831.99

Sensor 6 0.14734 15595.14 5259.899 5030.668 1926.589 26427.69 2479.447 4460.117 5863.057 79412.4

Sensor 7 253.2817 2733.276 4154.871 4415.385 7.77425 14335.85 3233.99 5231.427 4716.893 34284.15

Sensor 8 17.62682 2695.557 1369.486 1602.536 195.694 6418.212 1519.27 3332.503 1688.447 16646.21

Sensor 9 1.207406 5576.595 1971.223 2252.545 589.5043 10303.15 1790.958 3747.399 2431.065 28317.38

Sensor 10 505.145 17351.39 296.659 509.5319 4826.443 8071.886 523.4997 2241.811 589.2786 30728.74
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Figure A.112: MQ-5 vs. MQ-7 ANOVA f-statistics (45°C, 85% RH). 

 

Figure A.113: MQ-5 vs. MQ-7 ANOVA f-statistics (50°C, 85% RH). 

 

Figure A.114: MQ-7 vs. MQ-135 ANOVA f-statistics (20°C, 33% RH). 

 

Figure A.115: MQ-7 vs. MQ-135 ANOVA f-statistics (25°C, 33% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 7798.385 526352.8 20585.44 619.8649 225630.2 44414.7 343.6696 486935.4 386.4835 2235309

Sensor 2 1459.383 36851.44 110845.7 34410.49 790.93 198861.9 22371.63 589581.6 71362.56 1129702

Sensor 3 37949.71 974562.8 346582.3 45147.12 616295.2 3294.939 9291.502 3298.408 84584.03 115432.4

Sensor 4 357.9132 21177.16 1723.153 2127.478 3435.838 22160.36 3801.518 30587.57 3238.624 66605.72

Sensor 5 1220.775 3223.365 11620.92 11132.04 387.4753 39725.31 12400.73 50018.11 14079.17 87450.89

Sensor 6 1.90812 7945.673 2369.807 2783.804 614.9842 16828.3 4388.582 21177.83 3653.877 42294.43

Sensor 7 198.0203 6588.841 5875.861 6067.76 59.3933 27802.63 7765.834 35290.66 7848.579 66053.65

Sensor 8 113.3839 8208.562 5711.693 5867.766 177.2932 28877.25 7554.111 37224.19 7741.29 70739.62

Sensor 9 13.82139 1493.552 253.6917 362.0822 169.5482 2450.195 777.5151 2896.951 450.6835 5968.16

Sensor 10 1194.248 10781.24 8.475204 10.18606 3194.965 3466.529 357.5535 4581.057 49.49353 12413.36

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 8413.011 431130 47957.79 1001.27 206985.2 23689.26 1156.995 199727.6 47.35912 1151072

Sensor 2 700.6044 25665.54 60961.7 64841.82 46.89634 72294.44 27738.67 273170.4 60492.55 573681.1

Sensor 3 44726.76 1020754 893863.2 80144.83 746604.1 262.3319 13105.59 5113.631 137520.6 92772.45

Sensor 4 951.7913 21011.07 546.7884 3497.497 4676.521 20076.52 3724.347 23766.1 2153.629 55465.33

Sensor 5 161.115 1358.93 2196.642 4224.082 2.552614 13717.26 4703.022 12337.68 3408.57 22495.35

Sensor 6 80.44929 9608.25 1999.086 5536.267 1084.419 21741.69 5647.646 23857.53 4056.191 49436.52

Sensor 7 58.8357 2420.073 2125.724 4433.907 29.91805 15353.07 4893.609 14208.54 3496.272 26778.61

Sensor 8 40.88882 5197.294 3634.297 7637.595 136.5912 24164.62 7586.778 26095.04 6013.825 50233.89

Sensor 9 107.0213 4239.403 517.4537 1777.991 611.6464 9620.164 2224.068 8177.9 1232.892 17250.29

Sensor 10 1007.25 5693.451 59.16278 60.06247 1956.383 2983.381 182.909 1998.112 4.591871 5791.74

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 24.322 572.8497 702.1769 69.83966 204.3706 930.4783 1192.784 1426.78 1299.899 1113.82

Sensor 2 31410.16 5570.965 17828.57 60370.46 7298.086 920.6769 207.2527 163.7537 30.75327 1418.938

Sensor 3 1075.746 10182.84 16466.03 2539.998 3109.476 14045.29 21209.79 31034.22 25064.52 23688.46

Sensor 4 53.75146 16500.52 192076.3 2130.42 1891.439 21789.41 56344.45 638307.6 101500 176686

Sensor 5 7539.351 212.5272 2405.145 9901.592 657.4134 2137.571 7126.53 28372.11 12021.66 11312

Sensor 6 1369.172 21517.74 88317.74 6470.082 3971.985 26799.48 57298.09 190269.9 86419.54 109218.2

Sensor 7 1027.73 14296.15 31131.48 3395.176 3335.826 19150.62 33535.56 62168.07 43168.26 44058.03

Sensor 8 323.7541 6629.629 22825.85 2.271459 498.644 11032.57 24106.68 64661.92 35066.56 37726.51

Sensor 9 99.28332 10766.21 28439.58 1129.104 1745.226 15507.36 29931.97 64894.18 40661.45 42556.99

Sensor 10 99.28332 10766.21 28439.58 1129.104 1745.226 15507.36 29931.97 64894.18 40661.45 42556.99

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 8.198574 1372.772 682.1537 33.5747 281.2114 1728.678 2278.684 3493.814 3006.353 2601.941

Sensor 2 548356.9 170724.1 793.6648 217512.5 812849.9 10157.95 3179.033 12451.96 3781.314 19299.82

Sensor 3 39659.46 470109.2 3615.945 30300.35 191114.3 127729.3 144219.8 1449112 978645 801434.2

Sensor 4 2227.197 167724.5 1897.93 3519.916 41127.59 66418.68 80283.71 526829.5 389286.8 320866.7

Sensor 5 64667.18 3378.462 9.108178 33791.31 23203.67 3776.352 8866.937 102778.7 63207.98 42026.52

Sensor 6 8474.764 94839.41 3085.521 9713.091 33917.33 64566.8 76394.04 213872.8 180190.9 157529.6

Sensor 7 1667.099 16655.8 2655.018 2239.642 5934.388 17716.91 21684.31 34920.25 30686.7 27259.57

Sensor 8 0.009398 207949.2 1396.491 564.5304 36748.42 58911.2 72852.06 898030.1 567648.6 442849.7

Sensor 9 3686.71 172195.5 2072.092 4936.54 45778.03 70176.28 84183.65 517325.7 387654.4 321818.4

Sensor 10 1347091 5322724 20913.04 667306.8 4260811 704525.7 705214.7 28564090 10030972 7641107
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Figure A.116: MQ-7 vs. MQ-135 ANOVA f-statistics (30°C, 33% RH). 

 

Figure A.117: MQ-7 vs. MQ-135 ANOVA f-statistics (35°C, 33% RH). 

 

Figure A.118: MQ-7 vs. MQ-135 ANOVA f-statistics (40°C, 33% RH). 

 

Figure A.119: MQ-7 vs. MQ-135 ANOVA f-statistics (45°C, 33% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 0.02173 3041.304 1301.996 10.28978 532.6223 4161.658 1272.199 10672.72 8129.748 7716.678

Sensor 2 77785.74 4837.004 3573.055 290185.3 315527.4 20036 5261.955 3684.208 5936.097 25971.41

Sensor 3 6774.019 29997.97 7963.38 31461.18 136959.5 164058.4 9657.533 2252943 1061311 2089865

Sensor 4 782.7008 16625.6 4433.198 2665.958 17522.54 57743.98 5146.138 232130.8 166343.4 177538.1

Sensor 5 18894.2 360.3836 26.1747 49078.86 23569.95 2855.828 95.87673 116951.8 52489.72 60339.07

Sensor 6 8571.609 29897.07 9935.051 16968.35 38575.67 79670.39 11780.77 209049.8 164858.9 169224.4

Sensor 7 2621.924 23246.97 5817.42 14305.42 93976.09 132472.9 6962.83 2541796 1023878 2462591

Sensor 8 850.1945 18200.97 4516.659 4121.211 33466.54 84590.08 5305.846 582440.1 365421.1 460419.1

Sensor 9 132.4426 12877.82 3397.826 641.7411 8636.043 39617.49 3859.775 146911.6 106442.5 109526.9

Sensor 10 197778.5 173103.1 56206.18 868438.8 2038370 964596.1 71793.99 19559276 6637879 27154388

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 93.89108 4346.457 2260.445 205.21 493.2333 7557.868 2879.999 34103.55 21568.32 19297.51

Sensor 2 92337.51 2935.25 32706.71 365331.8 302471.2 28801.76 1923.945 5565.526 21819.32 4088.497

Sensor 3 12800.65 21899.59 43273.47 38664.69 116423.4 133525.8 12683.3 1780827 1049088 296328.4

Sensor 4 2164.793 13134.67 19039.97 4111.423 25338.92 61219.33 7677.389 443708.5 285839 143107

Sensor 5 15312.85 574.9863 617.5085 38774.03 14508.18 1316.255 282.5376 94233.36 38479.24 20366.26

Sensor 6 11291.39 21670.75 35707.63 20598.74 50617.7 87419.71 13031.28 384034.6 272983.8 169134.9

Sensor 7 2837.932 13738.82 17844.84 4240.806 17788.08 47240.42 8324.952 209080.5 143552.1 99117.23

Sensor 8 438.6946 10415.08 14039.42 687.2543 18715.06 54940.19 5978.072 657523.7 385835 145645.3

Sensor 9 169.4456 7638.53 6218.431 121.9631 3180.99 17021.21 4887.25 68105.15 45355.61 38155.16

Sensor 10 244235.6 108389.9 322161.1 997253.2 1709188 794063.5 63505.87 25221697 10403063 1399564

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 214.6414 37397.19 1299.397 1677.412 490.3209 4919.242 16775.82 176997 63855.28 104330.6

Sensor 2 50144.96 31958.88 26611.41 451026.8 65947.07 14314.72 7968.101 20006.19 12915.94 46916.35

Sensor 3 1036.712 14520.64 3755.626 982.9296 2924.173 6613.664 12255.3 32594.22 19679.85 22510.19

Sensor 4 1587.706 78933.08 8015.453 3208.335 8135.047 14957.03 35951.52 274795.6 117608.3 183136.1

Sensor 5 11385.91 4510.558 2563.951 67749.17 9016.475 143.0411 1490.726 152486.4 19370.47 54673.97

Sensor 6 12329.15 140239.6 25083.94 30094.5 30776.8 35679.64 69251.69 365586.1 188397 268907.3

Sensor 7 1511.276 31598.83 6047.348 1812.009 5211.966 10827.98 22149.56 78293.79 43903.33 53498.98

Sensor 8 20.87548 7807.081 1122.788 0.001085 594.7871 2869.93 6610.465 21518.72 11598.94 13595.75

Sensor 9 28.29397 119010.8 3799.741 108.778 3200.97 9747.468 30786.31 2078791 216841.3 1171233

Sensor 10 119949.6 1233228 157147.5 852007.2 270743.5 180029.4 324479 10346911 1718196 7836507

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 217.0152 10337.51 55.94419 1869.034 72.41681 2376.669 5602.635 83899.46 26768.16 43792

Sensor 2 32358.41 4660.003 130129.7 267973.2 216440.5 46389.67 10254.26 12957.54 11063.13 19836.83

Sensor 3 2102.52 38467.11 21206.54 6195.448 32126.95 30244.47 26865.08 895394.9 163366 485728.6

Sensor 4 1747.467 30773.97 11657.78 2973.606 14466.14 19953.46 21465.45 243767.9 86728.5 149331.6

Sensor 5 6550.772 1282.482 11204.77 31048.83 13826.72 1837.173 43.28825 54640.71 6412.58 16394.7

Sensor 6 624.0976 2336.934 882.839 519.0129 888.9354 1317.523 1855.714 4057.667 2657.336 2957.93

Sensor 7 551.6635 6531.447 1356.836 367.0487 1393.775 2817.253 4622.3 15821.83 8633.127 10286.1

Sensor 8 154.1102 24905.13 5790.033 5.442014 9097.588 14157.48 15710.81 804317 114791.9 389483.8

Sensor 9 0.384905 14402.84 1028.313 336.3307 1230.38 5086.323 8640.785 106085.1 36643.68 58938.5

Sensor 10 80543.74 234293.9 502884.6 534007.7 851600.8 364811.7 203202 8918489 1072251 4845858
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Figure A.120: MQ-7 vs. MQ-135 ANOVA f-statistics (50°C, 33% RH). 

 

Figure A.121: MQ-7 vs. MQ-135 ANOVA f-statistics (10°C, 85% RH). 

 

Figure A.122: MQ-7 vs. MQ-135 ANOVA f-statistics (15°C, 85% RH). 

 

Figure A.123: MQ-7 vs. MQ-135 ANOVA f-statistics (20°C, 85% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 226.958 47166.11 3121.377 4849.024 74.17084 259.0774 1932.695 144377.4 20075.9 62559.17

Sensor 2 50063.87 30837.1 187722.1 215576.8 182082 28394.2 9182.66 7631.957 8574.903 4310.169

Sensor 3 4578.792 756851.6 5727.265 3424.536 33317.34 8978.141 11086.64 3336857 86292.11 468864.9

Sensor 4 5868.223 238752.3 6682.307 4660.102 24056.28 10313.92 12389.93 548862.5 75040.11 238268.1

Sensor 5 8706.322 6280.132 28326.72 33786.15 16897.43 3138.888 183.8022 54817.77 2266.598 15127.24

Sensor 6 25681.74 300981.1 40428.45 36604.25 74010.2 31494.88 29567.49 546655.8 127363.2 305463.6

Sensor 7 1264.624 9893.715 729.5619 540.0659 1738.987 2337.034 3878.945 18744.33 8752.793 12700.51

Sensor 8 199.6388 9921.453 2.360922 12.8719 448.189 954.0062 2384.685 22738.36 8141.813 13743.77

Sensor 9 115.416 113838.9 530.8259 1501.777 1364.756 1726.963 4181.137 322918.8 36294.95 127685.8

Sensor 10 46672.87 134143.2 52008.4 49493.5 66449.67 52295.01 51264.52 189894.7 106437.4 147363.2

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 11592.83 120281.3 11874.83 529.4784 7640.599 38437.16 26055.16 144914.4 72763.01 127276.2

Sensor 2 218915.3 64352.83 197010.8 32090.7 101138.6 1658.9 3738.909 180.2044 2687.317 4.045249

Sensor 3 380.7936 375731.5 94072.12 12090.07 61451.46 95043.64 70060.57 343597.6 183957 303936.9

Sensor 4 942.0573 9414.013 1776.118 475.5859 1599.3 9632.78 7487.603 15575.4 11120.55 14697.83

Sensor 5 27516.67 2053.714 2766.68 3813.904 2757.726 2457.595 1030.346 9021.905 3681.02 7822.724

Sensor 6 12.79887 18325.61 6247.282 2926.651 5808.241 17772.44 14632.93 26575.57 20321.55 25359.68

Sensor 7 128.7444 26185.28 7524.089 2708.705 6777.647 23090.66 18376.73 38572.84 28115.3 36498.72

Sensor 8 8892.765 153541.6 68486.42 23687.49 58484.72 93852.21 76337.45 181716.3 131600.5 171381.3

Sensor 9 454.5687 8820.627 1992.293 681.598 1824.926 9175.32 7279.012 14187.91 10386.48 13444.62

Sensor 10 100358.2 902873.6 438531.4 97273.95 320598.8 293788.8 236851.9 796265.7 512460 730752

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 7769.703 73271.68 22808.35 5420.823 47235.7 139463.9 289477.8 858831.7 383639.6 295965.8

Sensor 2 111082.2 5087.375 677566.8 699944.9 506396.5 4478.21 41254.69 316.9895 10919.41 0.531165

Sensor 3 17.3668 115600.3 65475.66 47001.34 84173.35 178151.8 238680.1 435207.2 293184.4 285030.5

Sensor 4 4408.193 89630.36 52405.07 22364.28 83957.38 167306.8 348611.7 950373.6 447792.9 342252.8

Sensor 5 43657 8570.232 73667.42 98447.61 42167.3 19525.63 18376.96 136525.5 45790.73 58801.56

Sensor 6 272.7788 57419.81 18989.28 14591.07 24056.8 71692.82 68410.9 110130.2 83954.17 96483.16

Sensor 7 391.6472 30565.48 5532.174 3601.116 7994.332 37791.28 33257.19 58285.12 42808.1 52134.3

Sensor 8 5738.09 80278.64 38613.33 32970.67 44727.4 95608.13 92491.53 133530.3 108094 120551.7

Sensor 9 535.1021 31523.5 5480.11 3484.187 8047.367 39343.89 34797.1 61651.22 44981.61 54756.9

Sensor 10 60206.12 423442.5 586743.4 516825.4 630091 621763 914945.3 1334142 1009804 892260

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 125145.3 260794.3 3347.004 472.416 23968.4 182759.5 31949.04 4556615 235867 1053357

Sensor 2 1313213 17944.48 30152.78 1321044 957153.7 18646.43 8042.325 383.4745 15246.08 187.0405

Sensor 3 101.9569 541862.1 26230.24 153835.5 282621.9 408385.9 88057.2 3057495 496633 1487889

Sensor 4 7509.363 104415.1 7658.237 3920.828 14080.05 90122.7 35490.38 203601.2 102324.7 185345.2

Sensor 5 220076.2 26235.15 1930.491 77728.46 34944.72 18235.59 2929.724 137519.5 25386.94 104916.5

Sensor 6 2754.652 73269.12 20216.8 17014.69 25155.48 68443.45 45364.33 102653.2 73101.53 100587.6

Sensor 7 1072.989 39638.99 6073.945 2370.864 6170.089 36194.51 21970.33 62292.23 39622.76 60950.94

Sensor 8 142533.4 1065223 81558 694111.1 933344.8 824473 192296 4786881 978051.9 2546275

Sensor 9 1067.448 85793.98 10686.37 7192.927 16385.77 76711.05 37679.85 144272.9 84896.74 136805.7

Sensor 10 515964 1617241 184962 1286018 1542096 1315062 359390.8 4561055 1508154 3099183
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Figure A.124: MQ-7 vs. MQ-135 ANOVA f-statistics (25°C, 85% RH). 

 

Figure A.125: MQ-7 vs. MQ-135 ANOVA f-statistics (30°C, 85% RH). 

 

Figure A.126: MQ-7 vs. MQ-135 ANOVA f-statistics (35°C, 85% RH). 

 

Figure A.127: MQ-7 vs. MQ-135 ANOVA f-statistics (40°C, 85% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 31744.36 129361.8 6190.995 1084.879 1383.222 39401.96 22004.92 505542.7 176426.7 522824

Sensor 2 390052.9 13102.18 284155.4 263940.7 463882.8 9444.836 16109.63 130.5188 25945.05 664.4433

Sensor 3 200.4277 439627.5 138715.3 28721.41 133861 119650.3 78459.41 3713079 733499.7 3583237

Sensor 4 5858.547 243373.2 48843.82 6497.021 36975.37 78017.66 49598.44 911384.9 341364.7 929373.1

Sensor 5 80937.5 19406.12 9864.029 28371.56 19858.5 5225.1 1234.156 74460.86 22095.75 80963.29

Sensor 6 2562.767 77702.17 27995.92 14541.12 23349.62 55004.86 43153.82 109486.6 79833.41 112802.9

Sensor 7 227.9614 19198.76 3792.191 1033.244 2595.473 14320.13 10584.68 27866.84 19086.15 29014.47

Sensor 8 21404.22 228597 106165.6 61458.18 95733.09 139269.9 109580.4 345570.7 247858.1 353663.3

Sensor 9 428.1527 125030.4 29359.97 8110.219 22035.24 63676.83 44259.22 230501.5 139484.2 238593.7

Sensor 10 288750.5 1792119 1339842 608136.1 1584354 557933.6 422340.3 9943308 2908366 9612293

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 2905.102 7887.716 16.78655 196.2509 10.80148 1879.668 1477.381 12243.61 7126.901 13510.91

Sensor 2 2303605 47288.91 441448.9 264231.7 143241.8 4430.96 86929.31 236.1702 43620.43 382.8398

Sensor 3 4380.638 2658869 132591.7 21110.53 34395.89 15315.86 134677.1 1228929 1330099 3165629

Sensor 4 5029.469 348967.4 30328.58 6227.337 14979.54 11906.31 62818.51 373399 288022.4 499748.4

Sensor 5 167454.2 27701.87 24450.63 34175.13 14354.44 117.4054 552.4145 54100.25 20412.08 74778.4

Sensor 6 1398.606 21229.3 6575.041 4416.626 6278.568 10420.88 11373.25 26313.78 20252.83 27727.49

Sensor 7 286.1464 18346.18 1995.069 606.0224 1809.493 5636.541 6463.662 25071.38 17049.79 27120.56

Sensor 8 318230 2495102 539978.8 194901.4 193996.3 46914.31 409436 1766389 1808232 2934544

Sensor 9 304.5184 248454.1 31278.52 9613.493 18549.25 14071.21 61586.84 285280.4 216100.4 350650.9

Sensor 10 2392287 8181160 1756795 598184.7 516032.6 92101.52 961669.4 4087170 4958945 8568542

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 7736.556 53642.73 482.2392 3088.183 131.6229 9916.867 5876.426 110869.1 54520.74 149678.3

Sensor 2 77493.48 4640.907 40681.02 138750.6 81439.56 9503.644 25319.95 392.345 20936.91 116.839

Sensor 3 29.49354 256082.9 4071.863 8175.914 15877.12 45500.24 45545.41 781619 460664.4 1725753

Sensor 4 48.83672 117797.6 3034.318 4044.01 9205.496 33364.04 29727.15 204690.5 129506.1 257544.4

Sensor 5 27527.46 27527.91 8337.976 36830.2 14449.67 1055.373 31.38098 112418.4 29223.63 242326.9

Sensor 6 605.6355 4593.105 1348.43 1190.64 1581.479 3376.269 2765.584 5323.401 4088.419 5628.77

Sensor 7 82.09599 73878.92 3930.245 4589.197 8805.306 28987.58 24637.16 107309.7 71201.63 123732.7

Sensor 8 7132.142 73788.15 15660.9 18224.37 23223.62 43269.01 38895.96 91252.81 69618 98845.76

Sensor 9 3.97007 99922.11 3698.499 4779.021 9742.14 32782.83 28800.07 158828.8 103056.3 190900

Sensor 10 70564.02 965479.5 104806.2 294637.8 273476.4 257735.6 318666.3 2103784 1605628 3312297

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 849.647 3001.469 695.2142 494.2134 115.2718 919.8645 184.9391 4775.552 1785.448 5832.446

Sensor 2 11345.77 1073.859 124768.3 62265.6 61632.73 17375.3 59666.13 351.4876 18053.1 51.96707

Sensor 3 3.511112 57794.16 6666.505 3023.631 13221.1 90434.76 292521.7 564284.9 1149307 1245393

Sensor 4 9.884316 39409.98 2779.826 2526.175 7062.249 35958.04 30036.82 102449.8 67858.77 125084.8

Sensor 5 3860.57 5884.581 47995.14 18272.22 14029.09 449.891 3608.601 42174.77 9414.678 72442.24

Sensor 6 2489.42 111044.4 64105.91 36866.37 64926.69 156543.6 210070.9 397108.9 356725.7 506286.2

Sensor 7 80.82008 12013.73 887.8635 1030.3 2015.6 7669.827 5143.098 16575.88 10299.61 18661.84

Sensor 8 1215.591 11439.53 2849.945 3001.555 3996.973 8301.651 6469.895 13783.76 9914.618 14952.73

Sensor 9 14.30571 48356.88 4588.771 3482.586 10168.82 51969.33 52266.87 166240.9 120299.1 214164.9

Sensor 10 11631.94 262264.6 445357.8 166973.2 288091.6 543927.8 1508051 1674757 2581431 2676393
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Figure A.128: MQ-7 vs. MQ-135 ANOVA f-statistics (45°C, 85% RH). 

 

Figure A.129: MQ-7 vs. MQ-135 ANOVA f-statistics (50°C, 85% RH). 

 

                      (a)                                               (b)                                                  (c) 

 

                      (d)                                                 (e)                                                (f)  

Figure A.130: Ratio of standard deviation of individual sensor measurements to the standard 
deviation of the full sample size at each environmental setting; (a) MQ-5 Sensors (33% RH), (b) 
MQ-5 Sensors (85% RH),  (c) MQ-7 Sensors (33% RH),  (d) MQ-7 Sensors (85% RH),  (e) MQ-
135 Sensors (33% RH), and (f) MQ-135 Sensors (85% RH). 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 5576.38 6722.279 4348.691 1835.637 667.1204 553.635 87.85454 9915.043 863.4979 12888.1

Sensor 2 333477.1 3618.463 423836.2 129813 76389.84 6325.524 22539.15 210.7688 7167.62 47.40318

Sensor 3 2489.182 165524.9 180.1636 2364.48 6034.04 9768.195 13746.69 189061.7 14526.55 872461.8

Sensor 4 5.228432 61944.18 236.105 2009.78 4380.712 9318.701 10633.72 74865.07 12745.73 111841

Sensor 5 121708.4 19276.44 151756.7 31733.9 13656.87 10.4159 774.7173 31594.53 102.327 105021.1

Sensor 6 49493.4 251928.5 71930.76 59197.37 61369.32 39004.44 62888.65 274694.1 52613.09 493783.8

Sensor 7 987.3939 37535.61 1809.998 3692.712 5705.502 10655.99 10880.12 44726.52 13265.85 54693.28

Sensor 8 245873 587476.8 803407.1 147086.3 123804.9 50607.39 97511.88 599373.3 71013.92 3455923

Sensor 9 166.35 115023.8 1691.333 5106.475 8840.039 12228.87 16514.13 134399.1 17303.41 264527.4

Sensor 10 798221.9 1006252 3239287 363789.4 278903.8 92133.06 189377.8 991856.5 127924.4 7061911

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Sensor 1 6144.168 6160.052 7536.442 2602.882 1416.614 17.926 129.9351 7250.351 1398.927 9687.216

Sensor 2 373980.7 5357.716 259332.2 96975.19 106257.3 9021.074 33780.17 441.6075 7931.125 196.6171

Sensor 3 11761.58 691401.1 8264.755 559.4133 5676.443 5263.03 8458.766 136015.9 32218.21 1782317

Sensor 4 4552.458 216259.6 1071.119 7594.531 16979.53 11007.83 18311.84 124932.2 43972.82 293273.8

Sensor 5 162419.6 35761.09 108644.7 27410.16 24788.57 362.7979 3886.207 19184.85 808.8018 81000.91

Sensor 6 28597.91 119063.1 22989.44 31362.24 40186.93 31501.46 42365.59 108390.9 65053.44 137242.2

Sensor 7 2550.776 58728.67 1279.107 4986.271 8397.485 9769.28 11716.88 54312.68 26298.16 72381.77

Sensor 8 254869.7 1092105 103801.2 87551.13 154658.6 40129.35 91238.29 372782.1 139688.6 1605767

Sensor 9 1241.855 245455 1.089633 4388.158 12340 8684.254 14324.84 123151.7 39063.96 350772.1

Sensor 10 1327936 2813233 405102.4 237845.1 412749 78910.39 198932.7 676800.5 260848.5 4784469
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Figure A.131: MQ-5 Sensor Response to H2, CO, and CH4. 
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Figure A.132: MQ-7 Sensor Response to H2, CO, and CH4. 
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Figure A.133: MQ-135 Sensor Response to H2, CO, and CH4. 
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