2,413 research outputs found

    Graph-Based Classification of Omnidirectional Images

    Get PDF
    Omnidirectional cameras are widely used in such areas as robotics and virtual reality as they provide a wide field of view. Their images are often processed with classical methods, which might unfortunately lead to non-optimal solutions as these methods are designed for planar images that have different geometrical properties than omnidirectional ones. In this paper we study image classification task by taking into account the specific geometry of omnidirectional cameras with graph-based representations. In particular, we extend deep learning architectures to data on graphs; we propose a principled way of graph construction such that convolutional filters respond similarly for the same pattern on different positions of the image regardless of lens distortions. Our experiments show that the proposed method outperforms current techniques for the omnidirectional image classification problem

    Omnidirectional Vision Based Topological Navigation

    Get PDF
    Goedemé T., Van Gool L., ''Omnidirectional vision based topological navigation'', Mobile robots navigation, pp. 172-196, Barrera Alejandra, ed., March 2010, InTech.status: publishe

    A multisensor SLAM for dense maps of large scale environments under poor lighting conditions

    Get PDF
    This thesis describes the development and implementation of a multisensor large scale autonomous mapping system for surveying tasks in underground mines. The hazardous nature of the underground mining industry has resulted in a push towards autonomous solutions to the most dangerous operations, including surveying tasks. Many existing autonomous mapping techniques rely on approaches to the Simultaneous Localization and Mapping (SLAM) problem which are not suited to the extreme characteristics of active underground mining environments. Our proposed multisensor system has been designed from the outset to address the unique challenges associated with underground SLAM. The robustness, self-containment and portability of the system maximize the potential applications.The multisensor mapping solution proposed as a result of this work is based on a fusion of omnidirectional bearing-only vision-based localization and 3D laser point cloud registration. By combining these two SLAM techniques it is possible to achieve some of the advantages of both approaches – the real-time attributes of vision-based SLAM and the dense, high precision maps obtained through 3D lasers. The result is a viable autonomous mapping solution suitable for application in challenging underground mining environments.A further improvement to the robustness of the proposed multisensor SLAM system is a consequence of incorporating colour information into vision-based localization. Underground mining environments are often dominated by dynamic sources of illumination which can cause inconsistent feature motion during localization. Colour information is utilized to identify and remove features resulting from illumination artefacts and to improve the monochrome based feature matching between frames.Finally, the proposed multisensor mapping system is implemented and evaluated in both above ground and underground scenarios. The resulting large scale maps contained a maximum offset error of ±30mm for mapping tasks with lengths over 100m

    An adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In previous work we introduced a method to update the reference views in a topological map so that a mobile robot could continue to localize itself in a changing environment using omni-directional vision. In this work we extend this longterm updating mechanism to incorporate a spherical metric representation of the observed visual features for each node in the topological map. Using multi-view geometry we are then able to estimate the heading of the robot, in order to enable navigation between the nodes of the map, and to simultaneously adapt the spherical view representation in response to environmental changes. The results demonstrate the persistent performance of the proposed system in a long-term experiment

    Towards Visual Ego-motion Learning in Robots

    Full text link
    Many model-based Visual Odometry (VO) algorithms have been proposed in the past decade, often restricted to the type of camera optics, or the underlying motion manifold observed. We envision robots to be able to learn and perform these tasks, in a minimally supervised setting, as they gain more experience. To this end, we propose a fully trainable solution to visual ego-motion estimation for varied camera optics. We propose a visual ego-motion learning architecture that maps observed optical flow vectors to an ego-motion density estimate via a Mixture Density Network (MDN). By modeling the architecture as a Conditional Variational Autoencoder (C-VAE), our model is able to provide introspective reasoning and prediction for ego-motion induced scene-flow. Additionally, our proposed model is especially amenable to bootstrapped ego-motion learning in robots where the supervision in ego-motion estimation for a particular camera sensor can be obtained from standard navigation-based sensor fusion strategies (GPS/INS and wheel-odometry fusion). Through experiments, we show the utility of our proposed approach in enabling the concept of self-supervised learning for visual ego-motion estimation in autonomous robots.Comment: Conference paper; Submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2017, Vancouver CA; 8 pages, 8 figures, 2 table

    A Novel Millimeter-Wave Channel Simulator and Applications for 5G Wireless Communications

    Full text link
    This paper presents details and applications of a novel channel simulation software named NYUSIM, which can be used to generate realistic temporal and spatial channel responses to support realistic physical- and link-layer simulations and design for fifth-generation (5G) cellular communications. NYUSIM is built upon the statistical spatial channel model for broadband millimeter-wave (mmWave) wireless communication systems developed by researchers at New York University (NYU). The simulator is applicable for a wide range of carrier frequencies (500 MHz to 100 GHz), radio frequency (RF) bandwidths (0 to 800 MHz), antenna beamwidths (7 to 360 degrees for azimuth and 7 to 45 degrees for elevation), and operating scenarios (urban microcell, urban macrocell, and rural macrocell), and also incorporates multiple-input multiple-output (MIMO) antenna arrays at the transmitter and receiver. This paper also provides examples to demonstrate how to use NYUSIM for analyzing MIMO channel conditions and spectral efficiencies, which show that NYUSIM is an alternative and more realistic channel model compared to the 3rd Generation Partnership Project (3GPP) and other channel models for mmWave bands.Comment: 7 pages, 8 figures, in 2017 IEEE International Conference on Communications (ICC), Paris, May 201

    A modular hybrid SLAM for the 3D mapping of large scale environments

    Get PDF
    Underground mining environments pose many unique challenges to the task of creating extensive, survey quality 3D maps. The extreme characteristics of such environments require a modular mapping solution which has no dependency on Global Positioning Systems (GPS), physical odometry, a priori information or motion model simplification. These restrictions rule out many existing 3D mapping approaches. This work examines a hybrid approach to mapping, fusing omnidirectional vision and 3D range data to produce an automatically registered, accurate and dense 3D map. A series of discrete 3D laser scans are registered through a combination of vision based bearing-only localization and scan matching with the Iterative Closest Point (ICP) algorithm. Depth information provided by the laser scans is used to correctly scale the bearing-only feature map, which in turn supplies an initial pose estimate for a registration algorithm to build the 3D map and correct localization drift. The resulting extensive maps require no external instrumentation or a priori information. Preliminary testing demonstrated the ability of the hybrid system to produce a highly accurate 3D map of an extensive indoor space
    corecore