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Abstract 
 
This thesis describes the development and implementation of a multisensor large 

scale autonomous mapping system for surveying tasks in underground mines. The 

hazardous nature of the underground mining industry has resulted in a push towards 

autonomous solutions to the most dangerous operations, including surveying tasks. 

Many existing autonomous mapping techniques rely on approaches to the 

Simultaneous Localization and Mapping (SLAM) problem which are not suited to 

the extreme characteristics of active underground mining environments. Our 

proposed multisensor system has been designed from the outset to address the unique 

challenges associated with underground SLAM. The robustness, self-containment 

and portability of the system maximize the potential applications. 

 

The multisensor mapping solution proposed as a result of this work is based on a 

fusion of omnidirectional bearing-only vision-based localization and 3D laser point 

cloud registration. By combining these two SLAM techniques it is possible to 

achieve some of the advantages of both approaches – the real-time attributes of 

vision-based SLAM and the dense, high precision maps obtained through 3D lasers. 

The result is a viable autonomous mapping solution suitable for application in 

challenging underground mining environments. 

 

A further improvement to the robustness of the proposed multisensor SLAM system 

is a consequence of incorporating colour information into vision-based localization. 

Underground mining environments are often dominated by dynamic sources of 

illumination which can cause inconsistent feature motion during localization. Colour 

information is utilized to identify and remove features resulting from illumination 

artefacts and to improve the monochrome based feature matching between frames. 

 

Finally, the proposed multisensor mapping system is implemented and evaluated in 

both above ground and underground scenarios. The resulting large scale maps 

contained a maximum offset error of ±30mm for mapping tasks with lengths over 

100m. 
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Glossary 
 

CBM ‘Colour Based Matching’. A technique developed in 

this work for the identification of incorrect visual 

feature matches. 

Chromaticity Distortion The difference between two colours, independent of 

their brightness, found using the chromaticity colour 

model. 

Colour Angles A colour model that plots RGB colours as vectors in 

RGB space for comparison. 

DoF ‘Degrees of Freedom’. Identifies the number of 

independent variables affecting the range of state in 

which a system may exist. 

EKF ‘Extended Kalman Filter’ A version of the standard 

Kalman Filter modified to approximate nonlinear 

systems. 

FAST Corner Detection ‘Features from Accelerated Segment Test Corner 

Detection’. An image corner detector used for the 

extraction of visual features.  

Fitness Score A measure of the quality of the alignment of two point 

clouds, often determined by finding the mean square 

error of the nearest neighbour offsets. 

Fps ‘Frames per second’. A measure of the image 

production rate of a camera, or the work rate of an 

image processing algorithm. 

Gaussian Referring to ‘Gaussian Distribution’. A theoretical 

distribution with known mean and variance represented 

as a symmetrical bell shaped graph. 

GNSS Global Navigational Satellite System. A global 

navigation system using positioning satellites and 

sometimes supplemented with inertial measurements. 
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GPS ‘Global Positioning System’. A series of space based 

satellites used for the communication of position and 

time. 

Ground Truth   The known trajectory of an object. 

HSV ‘Hue Saturation Value’. A cylindrical coordinate 

representation of RGB colour. It presents hue on a 

circular colour chart and then separately defines 

saturation and ‘darkness’ values.  

ICP ‘Iterative Closest Point’. A point cloud registration 

algorithm which performs iterative transformations to 

minimize nearest neighbour offset. 

IMU ‘Inertial Measurement Unit’. A device which uses a 

combination of accelerometers, gyroscopes and 

magnetometers to provide velocity and orientation 

information. 

Jacobian Referring to ‘Jacobain Matrix’. A matrix of the first 

order partial derivatives of one vector with respect to 

another. 

Kalman Filter An algorithm which operates recursively on streams of 

noisy input data to produce a statistically optimal 

estimate of the underlying system state 

MATLAB ‘Matrix Laboratory’. A programming language for 

numerical computing, with an emphasis on matrix 

mathematics. 

MCL ‘Monte Carlo Localization’. The implementation of a 

particle filter in a localization task. 

O ‘Big O Notation’. In computer science the notation is 

used to measure an algorithm’s response to changes in 

input size. 

Particle Filter A discrete estimation technique for the approximation 

of continuous Bayesian probabilities. 

PCL ‘Point Cloud Library’. An open source software project 

for the processing of 2D and 3D point clouds. 



 xix 

 

Point Cloud A set of points in a three dimensional coordinate 

system. 

Quaternion A technique for representing orientations and rotations 

in 3D space. 

RANSAC ‘Random Sample Consensus’. An iterative method for 

the approximation of a mathematical model when 

outlier data is present. 

RBPF ‘Rao-Blackwellized Particle Filter’. A particle filter 

which samples over a subset of the state variables, 

significantly reducing the number of particles required. 

Registration The process of correctly aligning and concatenating 

two point clouds. 

RGB ‘Red Green Blue’. A colour model which represents a 

colour via three 8-bit numbers, one each for red, green 

and blue. 

RGB-D Referring to ‘RGB-D camera’. A device which 

combines an RGB camera with a structured light or 

time of flight camera to produce per pixel depth 

information. 

SFM ‘Structure From Motion’. The process of finding the 

three dimensional structure of an object from motion 

based input. 

SFR ‘Shadow Feature Removal’. A technique developed in 

this work for the identification of visual features 

produced by shadows. 

SIFT ‘Scale Invariant Feature Transform’. An algorithm for 

the detection and description of visual features. 

SLAM ‘Simultaneous Localization and Mapping’. The task of 

simultaneously producing a map of an environment 

while localizing oneself within that map. 

TOF ‘Time of Flight’. A technique which measures the time 

required for a wave to travel through a medium. Often 

used to determine the distance to reflective objects.  
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Chapter 1  
 
Introduction 

Chapter 1 Introduction 

Despite recent advances in safety protocols, active underground mines are still one of 

the most dangerous environments frequented by humans. The Western Australian 

mining industry has the highest mortality rate of any industry in the state, with 50 

fatal workplace related incidents in above ground and underground operations 

reported in the last decade [1]. The inherent risk of underground mining has led to a 

significant drive towards the implementation of autonomous solutions to the most 

dangerous tasks. One such task is the surveying of new and existing tunnels to 

measure the progress of mining and to verify the mine’s structural integrity. This 

potential application has led to the development of our multisensor SLAM system for 

the autonomous mapping of large scale environments. 

 

The autonomous production of large scale maps in above ground applications is a 

research topic which has seen many successful implementations in recent years. 

However, underground environments contain unique and challenging characteristics 

that make the direct application of many existing above ground techniques 

impossible. These characteristics include complex geometry (requiring movement in 

six degrees of freedom), high levels of electromagnetic shielding (preventing 

transmission of data with the surface), harsh environmental conditions (requiring 

robust specialized and certified equipment) and poor lighting conditions (often 

produced entirely by dynamic sources).  
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Figure 1.1 – Fatalities from workplace related incidents in the underground mining industry of Western Australia [2]. 

 

Our proposed solution to autonomous large scale mapping in active underground 

mining environments is a hybrid fusion of omnidirectional bearing-only vision-based 

localization and 3D laser point cloud registration. Combining the high precision 

nature of laser mapping with the real-time, six degree of freedom localization ability 

of vision-based SLAM results in a system capable of overcoming the previously 

mentioned challenges. 

 

1.1 Self-Containment and Portability 

Large scale 3D mapping has been successfully accomplished by many research 

groups through the implementation of complex, specialized systems. A system may 

be deemed specialized due to a number of design decisions such as the use of 

externally instrumented localization systems (e.g. GPS), external physical odometry 

readings, a priori information or a simplified motion model that removes the 

comprehension of higher degrees of freedom. These design choices, while 

appropriate for the given domains, are not well suited to underground mining 

applications. 

 

The traditional commercial technique for registering multiple 3D laser scans uses 

artificial markers or targets placed throughout the scene. These markers are used in 
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post-processing to semi-automatically align the individual scans. There are many 

shortcomings to this approach: the scene must be artificially manipulated before 

scanning can commence, all registration must be completed in a post-processing 

phase and there is significant manual intervention required. The resulting process is 

slow and labour intensive. 

 

GNSS (Global Navigational Satellite System including GPS) is often used in outdoor 

mobile mapping systems to provide an initial pose estimate for fine scale registration 

[3]. However, GPS based systems are not suitable for indoor or underground 

applications and can suffer from reliability problems in dense urban areas due to 

obstruction of satellite signals. The primary application for our own work on large 

scale 3D mapping is the underground mining industry [4] where there is no access to 

GPS positioning. 

 

The typical response to the absence of a GPS signal in indoor environments is to 

make use of physical odometry readings to provide a rough pose estimate prior to 

fine scale registration [5]. These odometry readings are usually supplied by encoders 

attached to the wheels of the host platform and are prone to considerable error in 

environments with significant slip (e.g. gravel, sand or ice). Odometry can be used in 

conjunction with an Inertial Measurement Unit (IMU) or continuous scan registration 

to improve robustness to odometry errors and aid in the extrapolation of odometry 

readings to a six degree of freedom environment [6], [7]. Reliance on physical 

odometry precludes a truly portable and flexible mapping system due to dependence 

on the instrumentation of the vehicle itself. It is not possible to produce a single 

vehicle that is perfectly suited to all potential 3D mapping environments; therefore a 

self-contained solution is desirable. A specialized vehicle would also require unique 

certification upon every entry to an active mine site and would greatly increase 

deployment costs. A self-contained and portable mapping system can be deployed on 

any existing vehicle, including a mine site certified vehicle, without integration into 

the vehicle’s on-board systems.  

 

Inertial Measurement Units are self-contained; however, they rely on external 

odometry or magnetometers to prevent significant inherent drift. Magnetometers are 

unreliable underground due to the presence of large volumes of metallic ore that 
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interfere with the Earth’s magnetic field. As mentioned before, it is highly desirable 

to avoid physical odometry, so IMU drift cannot be compensated. The sensor is 

therefore rendered inappropriate for our application. 

 

One method to remove the dependency on physical odometry is to instead use a 

priori information. Früh and Zakhor [8] use aerial photographs or Digital Surface 

Models to correct 2D laser based localization over large distances. Again, this is only 

possible in uncluttered outdoor environments and would not be feasible for the 

continually evolving profile of an underground mine where a priori information may 

not be available or accurate. 

 

The mapping of indoor environments can often be simplified to a three degree of 

freedom problem due to the flat, level nature of many man-made environments. By 

removing roll, pitch and vertical translation, the six degree of freedom localization 

problem is reduced to three degrees of freedom. This allows localization to be 

produced by simple 2D laser scan registration where the reduced dimensionality 

considerably simplifies the computations required. The effectiveness of this approach 

is demonstrated by Thrun et al. [9] and Hähnel et al. [10]. We are interested in full 

six degree of freedom localization, so that the results can be extended to 

geometrically complex non-flat environments. 

 

There are several key motivations for producing a hybrid system that can overcome 

the unique challenges associated with underground mining environments without 

resorting to simplifications. Maintaining a six degree of freedom motion model 

allows the mapping of geometrically complex environments. Removing the 

dependency on external equipment such as global positioning system (GPS) satellites 

or targeting systems allows the device to be operated in electromagnetically shielded 

and unmonitored environments. Eliminating physical odometry measurements 

removes the dependence on specialized mobile platforms or vehicles which would 

require unique certification for every mine site application. And finally, avoiding the 

use of a priori information allows the mapping of completely unknown 

environments. The system should also be capable of operating in poor lighting to 

ensure the widest range of applicable environments. The production of survey quality 

results is essential, as the goal application for this system is surveying tasks. 
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Reflectorless surveying has an accuracy of ±6mm, therefore the highly accurate 

registration (alignment) of dense point clouds is desirable in order to approach these 

tolerances. 

 

1.2 Multisensor Solution 

Previous successfully implemented examples of large scale 3D mapping have relied 

on GPS, physical odometry, a priori information or a simplified approximation. The 

autonomous mapping solution presented in this work demonstrates a self-contained, 

portable multisensor SLAM system capable of large scale 3D mapping based on the 

use of a 3D laser and omnidirectional camera. Here, large scale mapping refers to the 

mapping of any environment requiring multiple 3D laser scans for satisfactory 

coverage. The fusion of real-time bearing-only vision-based localization and 

intermittent, single point of origin, 3D laser scans has resulted in a system that can 

accurately perform localization while building a detailed 3D map of the surrounding 

environment. Multiple 2D laser scanners could also be considered as an appropriate 

approach to localization; however, vision-based localization was selected due to the 

ability to provide real-time 3D information and long term feature tracking. 

 

The map building process begins with an initial stationary 3D laser scan. This is 

followed by motion tracking during transit to the next scan location performed 

through the implementation of a six degree of freedom bearing-only vision-based 

localization algorithm. The bearing-only localization is enhanced by the 

incorporation of range information at the discrete 3D scan positions. This enables 

correct scaling of the resulting feature map, and improves the general performance of 

the localization algorithm. Once the target location has been reached and the 

subsequent 3D scan produced, an iterative closest point (ICP) algorithm [11] is 

applied to register the new laser data to the existing map. The resulting 

transformation then compensates the trajectory estimate of the vehicle to accurately 

reflect the real world location. This process is repeated to iteratively build a large 

scale 3D map of the environment. 
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Vision-based localization is shown to be prone to drift caused by the dynamic 

sources of illumination frequently found in underground mining environments. A 

technique has therefore been developed to supplement the multisensor SLAM system 

by filtering visual features during the localization stage of map building. By 

removing the sources of drift caused by illumination artefacts, localization estimation 

is significantly improved. 

 

1.3 Chapter Summary 

The contents of the chapters comprising this thesis are as follows: 

 

Chapter 2 Background 

The background chapter begins with an overview of the history and development of 

the Simultaneous Localization and Mapping (SLAM) problem. The most popular 

solutions to the SLAM problem are then presented. Finally, vision-based bearing-

only SLAM is discussed including filter selection and feature extraction techniques.  

 

Chapter 3 SLAM Implementations 

Chapter 3 examines current implementations of SLAM systems categorized by the 

desired application. These applications range from basic 2D mapping to survey 

quality 3D mapping. 

 

Chapter 4 Implementing Bearing-Only SLAM for the Multisensor System 

Bearing-only SLAM is investigated as an approach to modular mapping using a 

single camera only. The associated camera models are discussed, ranging from 

pinhole to omnidirectional, and the techniques used for the measurement and 

tracking of visual features are discussed. The chapter finishes with a summary of the 

advantages of combining bearing-only SLAM with intermittent metric depth data, 

resulting in a hybrid system. 

 

Chapter 5 Large Scale Mapping from Point Clouds 

Here the acquisition and registration of laser point clouds is examined. A summary 

of existing sensors capable of point cloud capture is presented, followed by a detailed 
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analysis of the techniques used for registration and map building from point clouds. 

Finally, the benefits of the integration of real-time localization are investigated, 

resulting in the continued development of a multisensor system as well as a novel 

registration technique for laser scans with large offsets. 

 

Chapter 6 Hybrid Integration of Vision-Based SLAM and Point Clouds 

Chapter 6 formalizes the proposed multisensor SLAM system by investigating the 

beneficial interactions of the omnidirectional camera and 3D laser scanner. These 

benefits include localization scaling using depth information, the provision of initial 

pose estimates for registration and path correction via long distance cloud 

correlation. 

 

Chapter 7 Vision-Based SLAM under Dynamic Illumination 

This chapter introduces the use of colour information to reduce the detrimental 

effects of dynamic illumination on vision-based localization. Two novel techniques 

are derived to improve robustness – Shadow Feature Removal (SFR) and Colour 

Based Matching (CBM). The techniques are then investigated under a range of 

experimental scenarios. Testing begins with computer generated scenes and evolves 

to real world deployment. Finally, improvements to modularity are discussed and 

results are evaluated. 

 

Chapter 8 Multisensor SLAM Results 

The results chapter presents the performance of the multisensor system firstly in an 

above ground built environment, then in an active underground mining environment. 

In both scenarios large scale maps are successfully constructed and then carefully 

scrutinized. 

 

Chapter 9 Conclusions 

Here the work described in the thesis is summarized and conclusions are drawn. The 

main contributions of the thesis are then outlined and recommendations for the 

directions of future work are made. 
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The following publications on the work presented in this thesis are also available: 

 

Le Cras, J., Paxman, J., Saracik, B. 2013. Improving Robustness of Vision Based 

Localization under Dynamic Illumination. Recent Advances in Robotics and 

Automation, Springer series on Studies in Computational Intelligence. Vol. 480. 

 

Le Cras, J., Paxman, J. 2012. A Modular Hybrid SLAM for the 3D Mapping of 

Large Scale Environments. In Proceedings of the 12th International Conference on 

Control, Automation, Robotics and Vision (ICARCV). pp. 1036-1041. 

 

Le Cras, J., Paxman, J., & Saracik, B. 2011. Vision based localization under dynamic 

illumination. In Proceedings of the 5th International Conference on Automation, 

Robotics and Applications 2011 (ICARA2011). pp. 453-458. 

 

The following publication is based on related work: 

 

Le Cras, J., Paxman, J., Saracik, B. 2009. An Inspection and Surveying System for 

Vertical Shafts. In Proceedings of the Australasian Conference on Robotics and 

Automation 2009 (ACRA2009). 
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Chapter 2  
 
Background 

Chapter 2 Background 

2.1 Introduction 

The Simultaneous Localization and Mapping problem can be summarized as follows: 

Can an autonomous vehicle be placed in an environment with no a priori knowledge 

and incrementally build a map of that environment while simultaneously determining 

its current location within that map? Both the localization and mapping elements of 

SLAM can be successfully determined if the other is known.  It is possible to 

calculate localization if sensed landmarks can be associated with an a priori map and 

a map can be built from sensed landmarks if accurate pose is provided by an 

independent source. However, if neither the pose nor the map is known, the problem 

is considerably more complex. 

 

The joint solution of localization and mapping came to the forefront of robotics 

research at the International Conference on Robotics and Automation in 1986 

(ICRA86). Several researchers including Peter Cheeseman, Jim Crowley, Raja 

Chatila, Olivier Faugeras and Hugh Durrant-Whyte examined the application of 

estimation-theoretic methods to mapping and localization problems. In 1990, a paper 

by Smith, Self and Cheeseman demonstrated that estimates of landmarks observed 

by a mobile robot moving through an unknown environment were correlated with 

one another due to the common error in vehicle location estimation [12]. Therefore, a 
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solution could be formed by combining the vehicle pose with the recorded landmark 

positions in a single state. Unfortunately it also meant that any filter based estimator 

would require a computation time that scaled with the square of the number of 

landmarks. It was later shown that the SLAM problem was convergent [13]. 

Assuming landmarks are stationary; it can be shown that at the theoretical limit, 

relative localization accuracy becomes equal to the localization accuracy achievable 

with an a priori map. 

 

2.2 Localization and Mapping Techniques 

In the time since the definition and proof of convergence of SLAM, many techniques 

have been developed to solve real world SLAM problems. The following sections 

will summarize these techniques, starting with the earliest Bayesian estimation 

techniques and leading up to a review of the state of the art. For the full derivations 

of each of these techniques please see the comprehensive survey by Thrun et al. [14]. 

 

2.2.1 Bayesian Estimation 

Bayesian estimation is an approach to optimal state estimation involving the 

minimization of the posterior expected value of a cost function. The approach is 

therefore well suited to the probabilistic nature of the simultaneous localization and 

mapping problem. The goal of each step in the Bayesian estimation is to evaluate the 

current state of the system (x𝑘), based on all previous observations (z0:𝑘), i.e. 

 

  𝑝(x𝑘|𝑧0:𝑘). (1) 

 

The Bayesian estimation of the SLAM problem makes the assumption that the 

process being observed is Markovian. To be Markovian, the current measurement 

must be independent from previous measurements, given the current state, i.e. 

  

 𝑝(z𝑘|z0:𝑘−1, x𝑘) = 𝑝(z𝑘|x𝑘). (2) 
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For the Markov assumption to be valid in a SLAM problem, the environment must 

either be static, or the state of every moving object must be included in the estimator 

(such as in the work by Kundu et al. [15]). The current state distribution can then be 

determined as follows. 
  

 
𝑝(x𝑘|z0:𝑘) =

𝑝(z𝑘|x𝑘)𝑝(x𝑘|z0:𝑘−1)
𝑝(z𝑘|z0:𝑘−1)  

=
𝑝(z𝑘|x𝑘)∫ 𝑝(x𝑘|x𝑘−1)𝑝(x𝑘−1|z0:𝑘−1)𝑑x𝑘−1

𝑝(z𝑘|z0:𝑘−1)  

=
𝑝(z𝑘|x𝑘)∫ 𝑝(x𝑘|x𝑘−1)𝑝(x𝑘−1|z0:𝑘−1)𝑑x𝑘

∫𝑝(z𝑘|z0:𝑘−1, x𝑘)𝑝(x𝑘|z0:𝑘−1)𝑑x𝑘
 

= 𝜂𝑝(z𝑘|x𝑘)�𝑝(x𝑘|x𝑘−1)𝑝(x𝑘−1|z0:𝑘−1)𝑑x𝑘−1 

 

 

 

 

(3) 

 

Where η = 1
∫ 𝑝(z𝑘|z0:𝑘−1,x𝑘)𝑝(x𝑘|z0:𝑘−1)𝑑x𝑘

 is a normalization factor to ensure correct 

probability distribution. 

 

In SLAM problems, the current state is determined in a two stage process. Firstly the 

prediction step predicts the current state based on the dynamic model of the state (f). 

In SLAM the dynamic model takes the form of a motion model and uses the previous 

vehicle pose (𝑥𝑘−1) and input controls (u𝑘) to determine the current state prediction. 

The prediction stage of equation (3) is contained within the evaluation of the integral 

term. The second step updates the predicted current state by incorporating the current 

observations (measurements). The update stage of equation (3) is performed by 

weighting the predicted current state with the current observations using the 

normalization factor η. 

 

Bayesian estimation is limited in SLAM applications due to the need to integrate 

over the entire state space. The state space in a fully specified SLAM problem 

contains the vehicle (agent) pose history (𝑥0:𝑘−1) and all observed landmarks (m1:𝑁). 

In the following example state space, the current pose is predicted by the motion 

model (f). 
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x𝑘 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑓

(𝑥𝑘−1, u𝑘)
𝑥𝑘−1
⋮
𝑥0
m1
⋮

m𝑁 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 

 

(4) 

 

SLAM state spaces may contain hundreds or thousands of vehicle poses and 

landmarks, making the implementation of a Bayes filter impossible due to the 

prohibitive processing times. To overcome this issue, approximation techniques are 

used, examples of which are described in the following sections. 

 

2.2.2 Kalman Filtering 

The Kalman filter is an exact representation of the Bayesian estimation in equation 

(3). Kalman filters are effective as long as the system is linear and the noise is 

represented with a Gaussian distribution. The system process model is defined as: 

 

  x𝑘 = 𝐹x𝑘−1 + 𝐺u𝑘−1 + 𝜔𝑘−1. (5) 

 

Where F is the system transition matrix, G is the gain of the input control and 𝜔𝑘−1 

is the zero-mean Gaussian process noise vector with a covariance matrix Q. The 

observation model for the system is defined as: 

 

  z𝑘 = 𝐻x𝑘 + 𝑣𝑘 . (6) 

 

Where H is the observation matrix and 𝑣𝑘 is the zero-mean Gaussian observation 

noise with variance R. 

 

The prediction step of the Kalman filter uses the process model of the system. 

 

  x�𝑘 = 𝐹x𝑘−1 + 𝐺u𝑘−1 (7) 
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  𝑃�𝑘 = 𝐹𝑃𝑘−1𝐹𝑇 + 𝑄 (8) 

 

Where x�𝑘  and 𝑃�𝑘 are the state estimate and covariance respectively, after the kth 

prediction step but before the observation step. 

 

The update step then combines the prediction with the observation model. The 

covariance of the process model is denoted Pk. 

 

  x𝑘 = x�𝑘 + 𝐾(z𝑘 − 𝐻x�𝑘) (9) 

  𝑃𝑘 = 𝑃�𝑘 − 𝐾𝑆𝐾𝑇 (10) 

 

Where z𝑘 − 𝐻x�𝑘 is referred to as the innovation. The innovation covariance is 

denoted S and is defined below along with the Kalman filter gain (K). 

 

  𝑆 = 𝐻𝑃�𝑘𝐻𝑇 + 𝑅 (11) 

  𝐾 = 𝑃�𝑘𝐻𝑇𝑆−1 (12) 

 

2.2.3 Extended Kalman Filter 

The Extended Kalman Filter (EKF) has the ability to model nonlinear systems by 

using a linear approximation of the system. The approximation is determined by 

linearizing about an estimate of the current state and covariance. The nonlinear 

process model and observation model are denoted: 

 

  x𝑘 = 𝑓(x𝑘−1, u𝑘−1) + 𝜔𝑘−1 (13) 

  z𝑘 = h(x𝑘) + 𝑣𝑘. (14) 

 

The Extended Kalman Filter is similar to the standard Kalman filter in that the three 

main components are the states (x𝑘) which include vehicle pose and landmark 

locations, the controls (u0:𝑘) which contain the input to the system, and the 
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observations (z0:𝑘) consisting of the current landmark measurements. There is also 

zero-mean Gaussian process noise (𝜔𝑘−1) with covariance Q and observation noise 

(𝑣𝑘) with variance R.  

 

The basic EKF algorithm also consists of two steps. The first step updates the 

probability distribution function from step k–1 to step k based on the dynamic model 

of the system (f). This step is referred to as the prediction step and determines the 

predicted state estimation (x�) and covariance (𝑃�) of the system. 

 

  x�𝑘 = 𝑓(x𝑘−1, u𝑘−1) (15) 

  𝑃�𝑘 = 𝐹𝑃𝑘−1𝐹𝑇 + 𝑄 (16) 

 

Since the system is nonlinear, the function f used to predict the estimate of the 

current state cannot be directly applied to predict the covariance. Instead, a matrix F 

of the partial derivatives of the dynamic model with respect to the state vector is 

calculated (known as a Jacobian matrix). This Jacobian is calculated at every time 

step, therefore linearizing the system about the current estimate. 

 

The second step of the EKF algorithm updates the probability distribution function at 

step k based on the observations made at step k. This step is referred to as the update 

step and again determines the expected value (xk) and covariance (Pk) of the state x. 

 

  x𝑘 = x�𝑘 + 𝐾�𝑧𝑘 − h(x�𝑘)� (17) 

  𝑃𝑘 = 𝑃�𝑘 − 𝐾𝑆𝐾𝑇 (18) 

 

Here zk are the observations produced at step k. The function h defines the sensor 

measurement model. Since the system is nonlinear, the covariance update requires 

the Jacobian matrix Hk which contains the derivatives of the measurement function 

(h) with respect to the state vector. Finally, S is the covariance of the innovation term 

(𝑧𝑘 − h(x�𝑘)) and K is the Kalman filter gain: 

 



2.2 Localization and Mapping Techniques 15 

 

 𝑆 =  𝐻𝑃�𝑘𝐻𝑇 + 𝑅 (19) 

  𝐾𝑘 = 𝑃�𝑘𝐻𝑇𝑆−1. (20) 

 

Extended Kalman Filters are not the only solution to the modelling of nonlinear 

SLAM systems. However, they were the first solution and are still the most popular 

due to their relatively low computation costs. The following sections investigate the 

most popular alternative techniques. 

 

2.2.4 Particle Filters 

Particle filters such as Monte Carlo Localization (MCL) [16] attempt to model a 

continuous nonlinear state space by representing the probability 𝑝(x𝑘|𝑧0:𝑘), produced 

by Bayesian estimation, by a set of m weighted samples. 

 

  𝑝(x𝑘|z0:𝑘) ≈ �𝑥𝑖,𝑤𝑖�
𝑖=1,…,𝑚 (21) 

 

Where each 𝑥𝑖 is a sample of the true state x𝑘 . The values of w are the importance 

factors, which provide weighting to each of the samples. The set of samples therefore 

define a discrete probability function approximating the true continuous probability. 

 

The initial set of samples is based on the knowledge of the vehicle’s initial pose. 

Generally in SLAM implementations the initial vehicle pose is assumed to be the 

global origin and is known with absolute certainty. Therefore, the single sample that 

represents the initial pose will have a weighting value of 1 and all other samples will 

have a weighting of 0. 

 

The iterative update of the particle filter has three stages. The first stage is to produce 

the weighted samples, distributed based on the probability of the vehicle pose 

determined in the previous iteration: 

 

  𝑥𝑘−1𝑖 ~𝑝(x𝑘−1|𝑧0:𝑘−1). (22) 
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The second stage predicts the new pose of each sample based on the expected motion 

inferred from input controls (u𝑘). The resulting distribution of samples is referred to 

as the proposal distribution (𝑞𝑘). 

 

  𝑥𝑘𝑖 ~𝑝�𝑥𝑘|𝑥𝑘−1𝑖 , u𝑘� (23) 

  𝑞𝑘 ≔ 𝑝(𝑥𝑘|𝑥𝑘−1, u𝑘)𝑝(x𝑘−1|𝑧0:𝑘−1) (24) 

 

The third and final stage is to update the proposal distribution by weighting the 

importance factor of each sample based on the current observations. This is then 

scaled by a constant normalization factor (η). 

 

  𝑤𝑖 = 𝜂𝑝�z𝑘|𝑥𝑘𝑖 � 

=
𝜂𝑝�z𝑘|𝑥𝑘𝑖 �𝑝�𝑥𝑘𝑖 |𝑥𝑘−1𝑖 , u𝑘�𝑝(x𝑘−1|𝑧0:𝑘−1)

𝑝�𝑥𝑘𝑖 |𝑥𝑘−1𝑖 , u𝑘�𝑝(x𝑘−1|𝑧0:𝑘−1)
 

 

(25) 

 

The importance factors are then normalized so that their sum is 1 such that they 

define a discrete probability distribution. 

 

Particle filters are a simple and efficient technique for approximating the nonlinear 

nature of SLAM problems. They can also overcome non-Gaussian noise, a known 

limitation of the EKF approach. However, there are problems associated with the 

implementation of the basic particle filter algorithm described here. Firstly, particle 

filters are unable to estimate posteriors for highly accurate observations. When a 

feature is observed precisely, none of the samples may be close enough to be 

correctly weighted. This results in the incorrect removal of the closest samples and 

subsequent localization degradation [17]. Secondly, large sample sizes with high 

computational cost are required for the effective approximation of state distributions, 

making real-time implementations difficult. And finally, basic particle filters do not 

recover well from unexpected large state changes due to their tendency to assign 

large importance factors to a small number of particles over extended periods of 

time. 
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Modifications to the basic particle filter algorithm have helped alleviate some of 

these issues, yet generally at the cost of simplicity and processing speed. Thrun and 

Fox et al. present a modified Monte Carlo Localization algorithm called Mixture-

MCL [17]. Their modifications to the basic particle filter algorithm improve the 

robustness to the susceptibilities mentioned earlier by combining a regular MCL with 

a ‘dual’ MCL which inverts the regular MCL sampling process. Sim and Griffin 

overcome the large number of particles needed to approximate large state by using a 

Rao-Blackwellized Particle Filter (RBPF) [18]. RBPFs only sample over a subset of 

the state variables, significantly reducing the number of particles required and 

improving processing speed, allowing large scale implementations. 

 

2.2.5 GraphSLAM 

GraphSLAM is a graphical network interpretation and solution to the SLAM 

problem originally reported by Thrun and Montermerlo [19]. An illustrative scheme 

demonstrating the graph-based approach to a 2D SLAM problem is shown in Figure 

2.1. Vehicle poses (x) and landmarks (m) are placed in the graphical environment as 

nodes. Arcs connecting nodes come in two types: motion arcs and measurement arcs. 

Motion arcs represent the motion of the vehicle and link any two consecutive vehicle 

poses. Measurement arcs represent sensor measurements and link vehicle poses to 

landmarks. Motion arcs can be thought of as ‘springs’ between two vehicle poses, the 

spring value is determined through the motion arc constraint: 

 

  [𝑥𝑘 − 𝑓(u𝑘, 𝑥𝑘−1)]𝑇𝑅𝑘−1[𝑥𝑘 − 𝑓(u𝑘, 𝑥𝑘−1)]. (26) 

 

Where f is the motion model of the vehicle and u𝑘 represents the input controls at the 

current step. The noise in the vehicle movement is represented by the residual 

uncertainty R. Measurement arcs are also considered to be springs. The spring value 

is determined through the measurement arc constraint: 

 

  �z𝑘𝑖 − ℎ�𝑥𝑘, m𝑗, 𝑖��
𝑇
𝑄𝑘−1�z𝑘𝑖 − ℎ�𝑥𝑘, m𝑗, 𝑖��. (27) 
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Where h is the sensor measurement model and z𝑘𝑖  is the observation measurement of 

the ith feature at step k. The covariance of the measurement noise is denoted as Q.  

 

 
Figure 2.1 – A 2D SLAM problem represented in the GraphSLAM graphical environment. Figure taken from Thrun and 

Montermerlo [19]. 

 

Once spring values are determined, they are used to update the information matrix Ω 

and the information vector ξ. The initial pose of the vehicle at k=0 is anchored as 

(0 0 0)𝑇 by using the anchoring constraint 𝑥0𝑇Ω0𝑥0. Figure 2.2 shows the 

addition of new elements to the information matrix. 

 

  
(a) Observation of landmark m1. (b) Robot motion from x1 to x2. 

 
(c) SLAM graph and information matrix after several steps. 

Figure 2.2 – The information matrix filling process. Each motion and measurement arc is entered into the matrix. Figure taken 

from Thrun and Montermerlo [19]. 

 



2.2 Localization and Mapping Techniques 19 

 

In order to recover the map and the path from the information matrix and information 

vector, the following equation is used to determine the map estimate: 

 

  𝜇 = Ω−1𝜉. (28) 

 

For real world implementations of GraphSLAM, the information matrix quickly 

becomes large and complex due to the likelihood of the same feature being observed 

in significantly different time steps. The complexity of the information matrix makes 

the matrix inversion step, required to recover the map, difficult and slow. To 

overcome this problem, a factorization step is used to remove landmarks from the 

information matrix and information vector. When a landmark is removed, any pose 

estimate pairs which are linked through common observations of the landmark have 

new arcs introduced to maintain the equivalent relationship between them, despite 

the removal of the landmark. This process is illustrated in Figure 2.3. Although the 

resultant information matrix (Ω�) and information vector (𝜉) are smaller, they are 

equivalent to their original forms, significantly simplifying the inversion process and 

allowing an optimization technique such as conjugate gradient to recover the vehicle 

path. 

 

The feature map can also be recovered through the production of a set of information 

matrices (Ωj) and vectors (ξj) each containing a single landmark (mj) removed from 

the original information matrix (Ω). Each new information matrix and vector 

contains a single landmark as well as every vehicle pose at which the landmark was 

observed. They also contain the original links between the landmark (mj) and each 

vehicle pose (xk). The vehicle poses are linked with the motion arcs calculated in the 

simplified information matrix (Ω�), without uncertainty. From this information, the 

location of the landmark can be easily determined via matrix inversion and an 

optimization technique such as conjugate gradient. The inversion is linear in the 

number of vehicle poses, keeping processing time down. 
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(a) Removing m1 changes the link between x1 and x2. (b) Removing m3 introduces a new link between x2 and x4. 

 
(c) The result after removing all map features. 

Figure 2.3 – The information matrix reduction process. Landmarks are removed, leaving only vehicle poses. Figure taken from 

Thrun and Montermerlo [19]. 

 

The primary benefits of GraphSLAM include its ability to generate maps from state 

spaces with a number of features up to 108 or more and its low computational costs 

due to the sparse nature of the information matrix and the ability to perform 

optimization at a frequency lower than frame rate. Unfortunately, the algorithm is 

only convergent when executed for short periods of time, therefore requiring longer 

mapping tasks to be broken into pieces so that SLAM can be performed in shortened 

segments. The SLAM results can then be reconstructed using a higher order 

algorithm. A detailed comparison of EKF and GraphSLAM can be found in [20].  

 

2.3 Bearing-Only Localization and Mapping 

Bearing only SLAM is a mapping and localization task with sensor information that 

provides the relative bearings to features, but not the corresponding distances. 

Bearing-only SLAM problems most often arise when a single camera is used for 

localization. The position of features in the camera image conveys bearing 

information, but no real world range information without using a priori knowledge 

of the environment or vehicle motion. Bearing-only SLAM with a single camera is 

often referred to as vision-based bearing-only SLAM or monocular SLAM. There are 
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several adjustments that must be made when shifting from range and bearing SLAM 

to bearing-only SLAM. These adjustments are discussed in the following section. 

 

2.3.1 The Approach to Bearing-Only SLAM 

The lack of real world scale in bearing-only sensor information requires some 

adjustments to the general approach to simultaneous localization and mapping in 

order to accommodate this information. Generally, to produce a map with only 

bearing information, the trajectory of the host sensor relative to environmental 

features must be estimated such that the motion satisfies the successive bearing-only 

sensor observations of those features. However, without a priori information about 

the environment or vehicle motion, the scale of the map cannot be recovered. This 

means that the first set of feature measurements are usually established with an 

arbitrary depth value and all future points will have their positions initialised with 

respect to those first points. Also, points that are observed only once will have a 

completely unknown depth estimate and so must be handled separately in the SLAM 

system unless a compensating algorithm is applied (such as inverse depth 

parameterization by Montiel et al. [21]). The approach implemented in our mapping 

system to handle these aspects of bearing-only SLAM are based on the work of 

Civera et al. [22] and is examined in detail in Section 4.2.3. 

 

Since the motion of the sensor cannot be directly measured in pure bearing-only 

SLAM, the motion must be approximated. A motion model is used to predict the 

next location of the sensor based on the previous location and some motion noise. 

These motion models can vary greatly depending on the known constraints or 

characteristics of the system. For example, a hand-held sensor would require a 

motion model that predicts movement in all six degrees of freedom; however the 

motion can be expected to be relatively smooth so a constant velocity model might 

be used. Alternatively, if the sensor is mounted on a vehicle, the motion model will 

be simplified to reflect the range of movements that the vehicle is capable of. The 

sensor used in our multisensor system will be mounted on a vehicle and so this is 

taken into account during the derivation of the motion model in Section 4.2.1. 
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The bearing-only SLAM system has to be able to ‘recognize’ a feature when it is 

measured multiple times in order to retrieve relevant mapping information. The 

approach to feature recognition varies depending on the sensor used for bearing-only 

SLAM; however, most systems use some form of camera. Camera data is analysed as 

a grid of pixel colours or intensities and theoretically every pixel could be mapped. 

Unfortunately, there is a large amount of repetition of pixel colours or intensities 

within camera images and so points with a more unique description are needed for 

mapping. Feature extraction algorithms are used to extract unique clusters of pixels 

that can be identified if the same scene is observed again. There are several powerful 

algorithms available for this task, each with a different approach to feature 

identification and description. Two popular examples will be discussed in Section 

2.3.3.  

 

Finally, extracted features must also be matched between images in order for 

localization to be possible. This process is known as the correspondence problem. 

Outlier correspondences must also be identified and rejected to prevent false matches 

from corrupting the localization result. The approaches to matching and two common 

techniques for outlier detection are discussed in Section 2.3.4. 

 

2.3.2 Filter Selection for Bearing-Only SLAM 

Vision-based bearing-only SLAM is similar to all other forms of SLAM in that the 

general problem is nonlinear and therefore requires a linearized approximation in 

order for a practical solution to be possible. In Section 2.2, three principal 

approaches to nonlinear SLAM problems were presented: Extended Kalman Filters 

(EKFs), particle filters and graph-based smoothing. Vision-based bearing-only 

SLAM can be implemented using any one of these techniques; however, each 

approach has unique characteristics which must be considered when selecting the 

appropriate solution for a specific application. 

 

Extended Kalman Filtering has historically been the most popular approach to 

vision-based bearing-only SLAM due to two key characteristics: real-time processing 

and long term performance. The processing time for an EKF is directly proportional 

to the size of the state vector squared. For many bearing-only SLAM problems, the 
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state vector contains only the most recent vehicle pose and all of the recently 

observed features. Since vision-based SLAM generally has low numbers of features 

(often less than 30 per frame) the state vector remains small, making EKF 

implementations highly efficient. However, if only recent features are maintained by 

the state vector, a higher order process will be required to search for loop closure 

opportunities. EKFs also have the ability to perform accurate localization over large 

sequences, a weakness of particle filters. Civera et al. report successful localization 

over trajectories of up to 650m with an average error of around 1% [23]. Although 

recent Graph-SLAM based techniques have demonstrated real-time performance [24] 

[25], they rely on high numbers of visual features, which cannot be guaranteed in the 

difficult underground mining environment. 

 

EKFs perform well on systems that are not severely nonlinear and non-Gaussian. In 

most SLAM implementations, EKFs will produce a quality result; however, the 

results produced by particle filters and graph-based smoothing can outperform those 

produced via EKF. Therefore, to improve the quality of the results obtained through 

EKF, modifications to the standard EKF SLAM approach must be made to reduce 

linearization error.  

 

Since many EKF based bearing-only SLAM implementations maintain only the 

recently observed features in the state vector to improve processing speed, there is no 

ability to perform loop closure. This means that the uncertainty in the camera 

location will always continue to grow, with respect to the world reference, as the 

camera moves away from the origin. Increasing uncertainty in vehicle pose quickly 

leads to linearization errors. To overcome this problem, Civera et al. present camera-

centred estimation which locks the frame of reference to the current camera location, 

significantly reducing linearization errors [23]. 

 

An improved measurement model is also proposed by Montiel, Civera and Davison 

which can handle distant features and features with only a single observation by 

encoding them using inverse depth [21]. A detailed examination of the inverse depth 

measurement model can be found in Section 4.2.3. The secondary advantage of this 

measurement model is that it linearizes well at low parallax, again reducing the 

linearization error common to EKF SLAM implementations. 
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Particle filters have also been successfully implemented for vision-based bearing-

only SLAM tasks. Particle filters are capable of producing high accuracy results due 

to accuracy ‘scalability’ being possible through variation in the number of particles 

estimating the continuous probabilities. By reducing the number of particles, real-

time performance is possible, as demonstrated by Eade and Drummond [26]. 

However, particle filter accuracy is limited to short sequences. During longer 

sequences, particle filters suffer from a problem known as ‘sample impoverishment’ 

where samples tend to converge to a confined region in the solution space, resulting 

in state estimations being trapped in local optima. 

 

Graph-based bearing-only SLAM has been demonstrated by Eade and Drummond as 

a technique for optimizing the localization path between groups of features known as 

‘nodes’ [27]. This higher order optimization of local mapping results allows the 

graph-based approach to perform localization over long sequences that would 

normally prohibit real-time processing. The use of feature clusters does not lend 

itself well to real world scaling via sensor fusion. The sparse layout of the nodes 

could easily result in the application of a scale that suits those few nodes, but does 

not accurately reflect the scale of the environment. Graph-based bearing-only SLAM 

has also been demonstrated by Klein and Murray [24] to perform high accuracy 

localization and mapping in a small desktop environment. 

 

2.3.3 Feature Extraction for Bearing-Only SLAM 

An important aspect of vision-based bearing-only SLAM is the technique used for 

the extraction of features from the incoming stream of images. Feature extraction 

must be robust and repeatable and also must be able to produce unique features that 

can be identified in subsequent images. Currently the most popular feature extraction 

techniques are Scale Invariant Feature Transform (SIFT) by Lowe [28], Speeded Up 

Robust Features (SURF) by Bay, Tuytelaars and Van Gool [29], and Features from 

Accelerated Segment Test (FAST) Corner Detection by Rosten and Drummond [30]. 

All of these existing techniques process monochrome images. SIFT and FAST corner 

detection will be examined in the following sections. SIFT has been selected due to 

its proven robustness for extracting and matching features across multiple images 

[31], whereas FAST corner detection has been selected due to its highly efficient 
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design, allowing integration with applications using real-time video frame rates. 

SURF is faster than SIFT but less robust and as such may be investigated in future 

work as an alternative to SIFT if reduction in processing times becomes important. 

However, at this stage the robustness of SIFT and speed of FAST corner detection 

incorporate a complete range of feature extraction characteristics upon which to 

evaluate our work. 

 

SIFT is a feature extraction algorithm designed by David Lowe [28] to produce 

features that are invariant to scale and rotation. Subsequent matching between these 

features is robust to affine distortion, change in 3D viewpoint, noise and slight 

change in illumination. To create a set of image features, a difference-of-Gaussians 

function is first used to produce incrementally down-scaled, convolved images 

separated by a constant factor k in scale space (Figure 2.4(a)). Maxima and minima 

keypoints are detected by comparing a pixel from a difference-of-Gaussians image to 

its nearest 26 neighbours at the current and adjacent scales (Figure 2.4(b)). The use 

of scale space produces maxima and minima that are invariant to scale. 

 

  
(a) Creating Difference of Gaussians Image. (b) Comparing a pixel to its 26 nearest neighbours. 

Figure 2.4 (a) For each octave of scale space, the initial image is repeatedly convolved with Gaussians which are subtracted to 

produce difference-of-Gaussian images. After each octave, the image is down-sampled by a factor of 2.  (b) Extrema are 

detected by comparing a pixel to its 26 nearest neighbours in 3x3 regions in the current and adjacent scales. Figure taken from 

Lowe [28]. 

 

Keypoints are then fitted with a 3D Taylor expansion quadratic function [32] to 

determine the interpolated location of the extrema. The function value at this extrema 

is then used to reject unstable extrema with low contrast. It is also used to reject 

keypoints along an edge that are poorly located and prone to noise. An edge based 
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keypoint will have a large principal curvature across the edge but a small one in the 

perpendicular direction. 

 

The gradient magnitude and orientation of each keypoint is then determined. The 

keypoint descriptor is represented relative to the orientation, achieving invariance to 

image rotation. The keypoint descriptor is designed to be partially robust to change 

in illumination and 3D viewpoint to complement the previously stated invariance to 

image scale and rotation. A descriptor is created by first computing the gradient 

magnitude and direction at each image sample point in a 16x16 region around the 

keypoint location. These are weighted using a Gaussian window and accumulated 

into histograms representing 4x4 subregions (Figure 2.5). Descriptors use 16 

histograms (4x4). Matches are identified by comparing the accumulative error 

between the vectors which describe the two features. 

 

 
Figure 2.5 - A keypoint descriptor is computed by accumulating the gradient magnitude and direction of each sample point in a 

region. The example shown here is an 8x8 region reduced to a 2x2 descriptor, the actual SIFT algorithm uses a 16x16 region 

reduced to a 4x4 descriptor. Figure taken from Lowe [28]. 

 

FAST corner detection is a corner extraction algorithm optimized through machine 

learning. Rosten and Drummond [30] designed the algorithm to be an effective 

feature extraction algorithm at real-time frame rates. Corner detection is initiated by 

considering a circle of 16 pixels around a corner candidate p. This basic step 

classifies p as a corner if there is a set of n contiguous pixels in the circle which are 

all brighter or darker than the intensity of the candidate pixel plus a threshold (Figure 

2.6). 
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Figure 2.6 – A corner is detected when a circle of 16 pixels about a corner candidate p are brighter or darker than a threshold 

above and below the intensity value of p. Figure taken from Rosten and Drummond [30]. 

 

Machine learning is then used to improve the classification by using a training 

dataset. The corners are detected using a slow algorithm which compares each of the 

16 circumference pixels to the corner candidate and assigns them a status of brighter, 

darker or similar based on a convenient threshold. Each pixel location 𝑥 ∈ {1. .16} is 

then assessed across the set P containing all detected corners.  The x that contributes 

the most information about whether the candidate pixel is a corner is determined 

using the entropy of a boolean representation of each p. The process is then applied 

recursively on all three subsets (Pd, Pb, Ps) to determine the x that produces the most 

information for each subset partition (Pd,d, Pd,b, Pd,s etc.). This produces a decision 

tree that can correctly classify all corners in the training dataset. The decision tree 

can then be hard coded to optimize processing times.  

 

2.3.4 Correspondences in Bearing-Only SLAM 

Features can only be used for localization if correspondences can be made between 

them in subsequent images. The correspondence problem is therefore integral to all 

vision-based SLAM systems. The correspondence process begins with an initial 

matching of visual features extracted by feature extraction algorithms. For example, 

SIFT produces a feature descriptor as part of the extraction process as described in 

Section 2.3.3. This descriptor uses bins containing normalized vectors to describe the 
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gradients present in the keypoint region of interest. A simple matching algorithm can 

compare bin vectors to determine a keypoint’s closest match in a subsequent image.  

 

Invariant descriptors such as those produced by SIFT can be computationally 

expensive to produce, so for real-time algorithms such as FAST corner detection, 

simple cross-correlation of small image patches around the keypoint can be used for 

matching. Improvements to the basic image patch matching approach have been 

suggested to improve invariance to point of view. Chekhlov et al. [33] generate 

patches at various scales when a keypoint is first initialized. The scale change in 

subsequent images is then predicted in order to select the appropriate patch for 

matching. Alternatively, Molton et al. [34] warp image patches according to 

predicted motion before the matching process begins. 

 

All visual correspondence techniques are prone to outlier matches due to visual 

similarities between images and repeated visual features. Outlier rejection is 

therefore vital to prevent correspondence corruption. Techniques such as Random 

Sample Consensus (RANSAC) and Joint Compatibility Branch and Bound (JCBB) 

have therefore been developed to improve the identification and removal of outlier 

matches. 

 

RANSAC categorizes outliers by firstly fitting a model to a random sample of data. 

This random sample is considered to consist entirely of inliers (although this may not 

be the case) and so the model is fitted to all points in the sample. The model is then 

tested against the entire dataset and the quality of the fit is determined. If the quality 

of the fit is reasonable, the model is used to reject outliers and is then recalculated 

based on the remaining inlier points. A fitness score is determined based on the 

quality of fit to the inlier points and the model with the lowest fitness score after the 

predetermined number of iterations is used for final outlier rejection. The RANSAC 

technique was first documented by Fischler and Bolles in 1981 [35]. Since then, 

much research has been focused on the early detection and elimination of bad model 

hypotheses to reduce computational cost [36] [37] [38] [39]. 

 

JCBB is an outlier detection algorithm by Neira and Tardos [40] which measures the 

joint compatibility of a set of pairings to reject spurious matches. It does this by 
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predicting the probability distribution over the measurements and then using a 

Branch and Bound search technique to identify the maximum set of pairings that is 

jointly compatible with the prediction. JCBB is more robust to noise than RANSAC 

but has exponential computational complexity in the number of matches. 
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SLAM Implementations 

Chapter 3 SLAM Implementations 

In recent years there have been many techniques and improvements developed in an 

attempt to solve the problem of large scale environmental mapping. This section will 

discuss the capabilities of some of the more successful implementations. These 

implementations will be grouped based on the type and quality of the resulting map. 

The review will begin with an examination of the initial 2D implementations of 

SLAM, followed by the first extensions to 3D map building based on 3DoF 

localization. Vision-based bearing-only SLAM will then be investigated as an 

approach to 3D mapping with 6DoF localization. Map construction for navigational 

purposes will be examined, followed by a review of systems designed for high 

accuracy, survey quality 3D mapping. 

 

3.1 2D SLAM Implementations 

The very first implementations of autonomous mapping systems were based on a 

simplified 2D approach to the navigation of 3D environments. These early systems 

were therefore limited to flat, level environments which generally included only 

building interiors and flat sealed roads. One of the first examples of successful 

localization and mapping were the results obtained by Dissanayake et al. using a 

combination of radar and wheel odometry mounted on a vehicle [41]. The vehicle 

repeatedly traversed a flat 160m loop in an outdoor environment, while building a 
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basic map from the observed radar features. The results from that experiment can be 

seen in Figure 3.1(a). The same vehicle was fitted with a 2D laser scanner in the 

work by Bailey and demonstrated the ability to produce dense 2D maps using a 

particle filter approach [42]. The results from a test in a mine tunnel can be seen in 

Figure 3.1(b). Dense 2D maps were also produced by Tardos et al. using a 

combination of sonar sensors and wheel odometry [43]. The large amounts of noise 

present in the sonar readings lead to some significant errors in map production as 

seen in the results in Figure 3.1(c) overlaid on the ground truth map. 

 

 

 

 
 

(a) Localization and mapping result by Dissanayake et al. [41]. (b) Localization and mapping result by Bailey [42]. 

 
(c) Localization and mapping result by Tardos et al. [43]. 

Figure 3.1 – Localization and mapping results from early implementations using (a) radar, (b) 2D laser and (c) sonar. 
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3.2 2D Localization for 3D Mapping 

The successful implementations of 2D mapping with 3DoF localization led to the 

first examples of basic 3D map building systems. Since many 3D mapping tasks are 

performed in environments that are flat and level and are recorded using vehicles 

with only three degrees of freedom (X-axis translation, Y-axis translation, yaw 

rotation), simplifications to the mapping process were possible. The 3D environment 

could be approximated as a 2D environment by removing Z-axis translation, roll 

rotation and pitch rotation. 3D sensor observations can therefore be localized using 

only a 3DoF approximation of motion.  

 

Thrun, Burgard and Fox were another research group to pioneer the use of 2D lasers 

and wheel odometry for 3DoF localization and 2D mapping [9]. For the production 

of a 3D map, a second laser was mounted vertically to the vehicle during a 

localization task to record a series of 2D cross sections. These cross sections could 

then be compiled using the 3DoF localization results to produce a 3D map. An 

example 3D mapping result can be seen in Figure 3.2(a). The idea of using two non-

parallel 2D laser scanners for 3D mapping was extended to an outdoor application by 

Howard, Wolf and Sukhatme [3]. The dependency on wheel odometry was 

exchanged for a dependency on GPS signals which were readily available in the 

outdoor environment and were far more practical for tasks such as loop closure. The 

3D map resulting from a 2km tour of the UCS campus can be seen in Figure 3.2(b). 

 

 

 
(a) The indoor 3D mapping results obtained by Thrun, Burgard and Fox [9]. 
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(b) The outdoor 3D mapping results obtained by Howard, Wolf and Sukhatme [3]. 

Figure 3.2 – Examples of 3D maps built on 3DoF localization results. 

 

Fruh and Zakhor use a priori information as an alternative to wheel odometry and 

GPS signals for drift correction during 3DoF localization [8]. This a priori 

information is in the form of aerial photographs and Digital Surface Models. The 

3DoF localization results are used to build a 3D map from a vertically mounted 2D 

laser scanner, without the need for 3D point cloud registration. A priori map 

information is also used by Oh et al. to improve 3DoF localization results by 

weighting map areas that are more likely to be traversed by a person or vehicle, e.g. a 

sidewalk in an urban environment [44]. Brenneke, Wulf and Wagner register low 

density 3D scans by projecting 3D features onto a 2D plane, producing a ‘levelled’ 

2D scan [45]. This ‘levelled’ 2D scan is then used for 2D registration, significantly 

reducing processing time. 2D scan registration is also applied by Biber et al. who 

model geometrically simple indoor spaces by the vertical projection and rendering of 

2D mapping results [46]. 

 

3.3 Bearing-Only 3D Mapping 

Bearing-only simultaneous localization and mapping using a single camera (also 

known as monocular SLAM) has been a popular avenue for research groups due to 

the ability of a single low cost, simple, passive sensor to provide real-time inferred 

3D information in a compact package [47]. Features extracted from the images are 

used to produce sparse 3D maps. Extended Kalman Filters [23], particle filters [48] 

[26] and graphical optimization [27] [24] have all been investigated as potential 



3.3 Bearing-Only 3D Mapping 35 

 

solutions to the monocular SLAM problem. Results from several research groups 

have shown that vision-based bearing-only SLAM can also produce high accuracy 

results when combined with some form of sensor fusion to provide real world scaling 

[23], [26], [27]. 

 

A popular sensor choice when implementing sensor fusion is an Inertial 

Measurement Unit (IMU). Roussillon et al. [49] and Nutzi et al. [50] both 

demonstrate the ability to recover scale using IMU data. Other fusion options include 

GPS signals [51], laser data [52] and wheel odometry [51]. Strasdat et al. [53] have 

shown that map scale also tends to drift over time and so scale compensation during 

loop closure is required during longer localization paths. Scale drift in the 

localization path requires scene recognition for loop closure as the pose estimate 

cannot reliably predict loop closure environments [54]. 

 

Maps comprising of sparse point features are useful for localization but pose 

difficulties for navigation tasks where high density maps are required. To address 

this issue many research groups have turned to the extraction of features other than 

points (see Figure 3.3). Line features are used by Zhang and Sun [55] to produce a 

traversable map of indoor environments. A combination of point features and plane 

features are used to similar effect by Martinez-Carranza and Calway [56]. Hwang 

and Song use visual corners and light sources with an upwards facing camera [57]. 

Finally, Civera et al. combine monocular SLAM, Structure from Motion (SFM) and 

object recognition to produce a map containing both feature points and recognizable 

objects, hence improving the semantics of SLAM [58]. 

 

 
(a) Monocular SLAM map built from line features. Figure taken from Zhang and Sun [55]. 
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(b) Monocular SLAM map built from plane and point features. Figure taken from Martinez-Carranze and Calway [56]. 

 
(c) Monocular SLAM map built from point features and recognized objects. Figure taken from Civera et al. [58]. 

Figure 3.3 – Example of the various features used to build maps from bearing-only visual data. 

 

3.4 3D Mapping and Localization for Navigation 

Autonomous vehicular navigation in outdoor environments cannot be robustly 

approximated using 3DoF localization as there is usually significant movement in all 

six spatial degrees of freedom. Maps produced for robust autonomous navigation 

must therefore be compatible with movement in six degrees of freedom, while still 

maintaining real-time processing ability. To achieve these goals, simplifications must 

sometimes be made to the mapping process. These simplifications can take many 

forms, including the use of lower density maps created by tracking only a small 

number of key environmental features, geometrically simplified maps reconstructed 
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from sensor data, or even traversability maps created by categorizing dense sensor 

information. 

 

Sensors used for robust outdoor navigation generally require the ability to provide 

3D bearing information. The 3D bearings can then be supplied with depth 

information from the same sensor or a complementary sensor in order to localize 

both the vehicle and the landmarks in a complex 3D environment. Stereo vision is 

often used for navigation tasks due to the ability to extract adequate range 

information from the camera images for obstacle avoidance and basic mapping while 

maintaining real-time processing. Konolige, Agrawal and Sola apply stereo vision 

fused with an Inertial Measurement Unit (IMU) to a large scale outdoor navigation 

and mapping task [59]. By tracking key features in the stereo images and filtering the 

localization using the IMU, they report a localization error of only 0.1% over 

distances of up to 10km. Pinies, Tardos and Neira also apply stereo vision to a 

mapping task, but with no sensor fusion [60]. Their system can produce accurate low 

density maps over distances up to 220m while maintaining near real-time processing.  

 

Automated mapping from a series of images produced by a single monocular camera 

has been a long term goal of the computer vision community. This problem has 

become known as Structure from Motion (SFM). The objective of SFM is to 

automatically detect salient features within an image and produce a set of feature 

correspondences to the other images in the series. Projective geometry is then used to 

determine the geometric relationship between feature correspondences, these 

relationships are analysed in order to produce a relative transformation between pairs 

of images [61]. The transformation solution is often refined via a non-linear 

optimization stage known as Bundle Adjustment [62]. Feature tracking in SFM can 

also be extended to produce a simple geometric representation of the environment as 

seen in the reconstruction of architectural structures by Xiao et al. [63]. Sinha et al. 

have produced a similar system with improved geometric complexity, at the cost of 

autonomy [64]. Example results from both of these approaches can be seen in Figure 

3.4(a) and (b). 

 

The reconstruction of environmental structure through the use of RGB cameras with 

per pixel depth information (known as RGB-D cameras) has also been investigated 
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by Henry et al. [65]. RGB-D cameras provide depth information that is more 

accurate than the measurements inferred by stereovision and SFM, but it is also 

significantly less accurate than laser scanners. Henry et al. designed a system that 

combines sparse visual feature mapping and dense point cloud registration to 

correctly align frames from the camera [65]. The resulting localization is high 

quality; however, the accuracy of the 3D map is inconsistent when compared to 

results achieved using laser scanners. Results from an example indoor mapping task 

can be seen in Figure 3.4(c). 

 

 
(a) Environmental geometry reconstruction by Xiao et al. [63]. 

 
(b) Environmental geometry reconstruction by Sinha et al. [64]. 

 
(c) Example 3D mapping results using an RGB-D camera, produced by Henry et al. [65]. 

Figure 3.4 – Medium accuracy 3D mapping resulting from (a) autonomous SFM, (b) semi-autonomous SFM, (c) localization 

and mapping using an RGB-D camera. 
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Laser scanners can be used for real-time navigation tasks through the construction of 

traversability maps rather than dense maps. Traversability maps are 2.5D 

representations of a 3D environment which exclude complex 3D information and 

retain only data relevant to vehicular movement in three primary degrees of freedom. 

The maps are divided into regions that are classified as traversable or non-traversable 

based on laser range finder data. Whitty et al. use rotating 2D SICK laser scanners to 

produce a large scale indoor and outdoor traversability map in real-time [66]. An 

example map from the navigation system is shown in Figure 3.5(a). Montemerlo et 

al. also produce real-time traversability maps in their vehicle ‘Junior’ which was 

entered in the 2007 DARPA Urban Challenge [67]. The vehicle uses a Velodyne 3D 

laser to produce the real-time traversability map required for the various autonomous 

driving challenges in the competition. An example of their mapping results can be 

seen in Figure 3.5(b). 

 

  
(a) Real-time map produced by Whitty et al. [66]. (b) Real-time map produced by Montemerlo [67]. 

Figure 3.5 – The real-time maps produced by two research groups demonstrate that while laser based mapping is possible in 

real-time, the results must be simplified to a traversability map. 

 

3.5 Survey Quality 3D Mapping 

Survey quality 3D mapping is currently only possible through the use of 3D laser 

scanners. 3D lasers have high angular resolution (up to 0.06°), a large field of view 

(360° horizontal and 270° vertical), long range (300m) and high accuracy (±6mm), 

making them perfectly suited to 3D surveying tasks. Consequently, they also have 

scan times of up to 30 minutes depending on the desired resolution. A comparison of 

3D laser scanners to other available 3D sensors is presented in Table 5.1. 
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To apply 3D lasers to localization and mapping problems, sacrifices to system self-

containment and portability must usually be made. A common technique for the 

registration of dense 3D laser scans is the use of wheel odometry as an initial pose 

estimate for a registration algorithm. Surmann, Nuchter and Hertzberg use odometry 

in this way and also include next best view estimation and path planning during the 

digitalization of 3D environments [5]. Cole and Newman use odometry, but also 

include registration uncertainty in an Extended Kalman Filter (EKF) to allow the 

back-propagation of registration correction upon loop closure [68]. Wheel odometry 

is again applied by Nuchter et al. as an initial pose estimate for a high speed octree 

based coarse registration step [6]. When combined with low density 3D laser scans, 

mapping time is significantly reduced. 

 

Wheel odometry is the overwhelming choice for current survey quality 3D mapping 

solutions. However, there are notable limitations to the use of this form of 

measurement as detailed in Section 1.1. Therefore, a suitable alternative needs to be 

found in order to robustly produce survey quality 3D maps of complex environments 

such as active underground mines. 

 

3.6 Existing Underground Mapping Solutions 

Underground mining environments have many characteristics that pose significant 

challenges to localization and mapping. These challenges go beyond the difficulties 

associated with indoor and outdoor mapping. Problems include the tendency for 

underground vehicles to experience wheel slip therefore limiting the effectiveness of 

wheel based odometry, the absence of static illumination causing difficulties for 

uncompensated vision-based localization, the isolation of the environment preventing 

the communication with external sensory equipment such as GPS, the presence of 

large quantities of metallic ore that interfere with the Earth’s magnetic field 

preventing IMU drift compensation, and the continually changing level of the tunnels 

requiring full six degree of freedom compensation. Despite these difficulties, 

mapping systems have been documented by several research groups as potential 

solutions to the underground SLAM problem. 
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Underground mapping in its simplest form is reported by Artan, Marshall and 

Lavigne where the combination of a 2D laser scanner and wheel odometry is used to 

produce a 2D map of a mine tunnel [69]. This approach is obviously extremely 

limited due to a lack of 3D information and the inability to handle movement in six 

degrees of freedom, despite the frequent occurrence of complex movement in mining 

environments. An extension of this approach to three dimensions and six degrees of 

freedom is detailed by Nuchter et al. [7]. They rely on accurate wheel odometry for 

an initial pose estimate for the registration of discrete laser scans collected by a 

‘nodding’ 2D laser scanner. The scans are collected in a stop-and-go fashion and are 

registered using a customized implementation of ICP. The system is capable of 

mapping complex environments which require movement in six degrees of freedom 

by the extrapolation of 2D odometry data to 3D via the transformations resulting 

from ICP registration. However, the maps produced are not of survey quality and the 

need for a specialized vehicle limits the applications to decommissioned mines. 

 

Alternatively, if the underground mining environment is known to be relatively level, 

motion model simplification may allow 2D scan registration to be used for 

localization, as seen in some mapping examples in the previous section. Thrun et al. 

apply this approach by using a vehicle with horizontal and vertical lasers to map an 

abandoned mine tunnel [70]. The horizontal laser is used for real-time localization 

and does not require any additional odometry information. The vertical laser is used 

to build the 3D map of the environment based on the localization results from the 

horizontal laser. The ability to perform loop closure further improves the mapping 

results. 

 

To maintain 3D localization and 6DoF movement without resorting to wheel 

odometry, Huber and Vandapel detail a system which does not require an initial pose 

estimate for point cloud registration [71]. Instead, a large number of small, low 

density scans are collected and then registration is performed between every possible 

scan pair. The map building step is approached as an optimization problem across all 

possible registrations simultaneously. The use of simplified surfaces for registration 

rather than individual laser points reduces processing time to a level that makes this 

technique plausible. Quality mapping results are reported, but are limited in size to 
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the area covered by 50 small scans before the O(N2) processing time becomes 

prohibitive. 

 

It can be seen that although there have been several specialized implementations of 

underground mapping systems, currently there is no comprehensive solution to this 

problem. Each implementation requires some level of compromise which reduces the 

robustness and prevents application to a wide range of mining environments. 
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Chapter 4 Implementing Bearing-Only SLAM for the Multisensor System 

4.1 Introduction 

Bearing-only SLAM performed on a stream of images from a single camera is an 

effective technique for producing six degree of freedom localization in real-time. 

Single cameras are inexpensive, compact, self-contained and require little 

calibration, making them a desirable sensor for a self-contained, portable mapping 

system. However, there are shortcomings which limit the use of monocular SLAM 

for mapping applications; these include the inability to recover scale and the sparse 

maps produced. Sensor fusion with a 3D laser scanner is therefore implemented to 

overcome these issues. The integration of bearing-only SLAM with high precision 

laser point clouds is proposed in Chapter 6. Prior to the presentation of sensor fusion 

for large scale mapping, this chapter examines the implementation of a purely 

bearing-only vision-based SLAM system using an omnidirectional camera. 
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4.2 Omnidirectional Bearing-Only SLAM 

The mathematical foundations of the Simultaneous Localization and Mapping 

(SLAM) problem were examined in Section 2.2 and the adaptation of the SLAM 

solution to a bearing-only vision-based localization problem was then discussed in 

Section 2.3. The platform selected for the implementation of the mathematical 

solution to vision-based localization was the Matlab software package produced by 

MathWorks. Matlab (Matrix Laboratory) is a numerical computing environment 

designed for the effective execution of matrix based computations. Its ability to 

implement algorithms, plotting functions and user interfaces makes it perfectly suited 

to the coding of vision-based localization. Matlab is the primary software package 

for image processing in academia and is well supported by the image processing 

community. Matlab’s proficiency with matrix based mathematics allows it to 

efficiently handle the large scale matrices used during vision-based localization for 

the storage of image data, state vectors, feature properties, covariance values and 

mapping results. Matlab was also the platform selected for the implementation of 

Civera’s monocular SLAM algorithm [51], upon which our modified algorithm is 

based. 

 

The monocular SLAM algorithm by Civera et al. is the basis for our own 

implementation of omnidirectional vision-based localization. Civera’s algorithm uses 

an Extended Kalman Filter (EKF) to store and update state information and is based 

on a constant velocity motion model and a pinhole camera model. An example of the 

results produced in the Matlab environment can be seen in Figure 4.1. The left results 

window contains the current image with red, blue and magenta dots representing the 

locations of matched features, unmatched features and rejected outlier features 

respectively. The red, blue and magenta ellipsoids represent the uncertainty of their 

associated feature types and the green crosses mark the predicted locations of 

previously matched features. The right results window contains a 2D projection of 

the 3D mapping results with a triangle representing the current vehicle pose and a 

line from the origin (at coordinates (0,0,0)), to the current pose, representing the 

localization path. The red dots represent established feature positions and the red 

ellipsoids represent their locational uncertainty. 
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Figure 4.1 – An example of the results screen produced by the Matlab implementation of Civera’s monocular SLAM algorithm. 

 

Feature identification and recognition is a significant component of bearing-only 

SLAM systems and is often the aspect that is most susceptible to failure in 

environments with poor visual feature quality such as underground mines. The type 

of camera used for vision-based implementations of bearing-only SLAM can 

considerably influence the ability of the system to identify and track features. 

Cameras with low resolution will produce low feature numbers and low feature 

quality, while cameras with a diminished field of view will have difficulty tracking 

features over extended periods of time. To improve robustness in environments with 

poor feature quality, high resolution cameras with large fields of view are highly 

desirable. Therefore, high resolution omnidirectional cameras were selected as the 

sensor about which our bearing-only SLAM algorithm would be written. 

 

There are three main types of camera which can be classified as spherical or 

panoramic. Mirror based panoramic cameras produce a panoramic image by using a 

single camera to observe an environment which has been reflected by the surface of a 

parabolic or hyperbolic mirror. Fisheye lenses can also be used to capture panoramic 

images by capturing light in a field of view often greater than 180°. Finally, multi-

camera omnidirectional cameras can produce panoramic images via the stitching of 

several standard field of view cameras. This type of omnidirectional camera benefits 

from the least amount of distortion and the greatest spherical coverage but requires 

the calibration of multiple cameras. Examples of each camera type and their resulting 

images can be seen in Figure 4.2. The Point Grey Ladybug 2 omnidirectional camera 

was selected for our vision-based SLAM task as it has the highest spherical 
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coverage, allowing the tracking of a greater range of visual features. The Ladybug 2 

also produces images that are fully rectified based on high quality camera calibration 

performed during the construction of the camera by Point Grey. 

 

 

 

 

 

 
(a) Mirror based panoramic lens and images. Figure taken from Rituerto et al. [72]. 

 

 

 

 

 

 
(b) Fisheye lens and images. Figure taken from Roda et al. [73]. 
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(c) Omnidirectional camera and images. 

Figure 4.2 – The three major spherical imaging camera types. (a) The Kaidan 360 VR  mirror based panoramic camera lens 

with example original raw image and undistorted panoramic image. (b) The Canon EF 8-15mm f/4 L USM fisheye lens with 

example original raw fisheye image and panoramic image. (c) The Point Grey Ladybug 2 omnidirectional camera with raw 

unstitched images and resulting panoramic image. Each panoramic image represents the full visual sphere (180° vertical, 360° 

horizontal) and demonstrates the coverage of each camera type. 

 

The goal of the EKF vision-based, bearing-only SLAM algorithm is to produce a 

map of features observed within the stream of images supplied by the 

omnidirectional camera and to localize the sensor within that map. The movement of 

features across the image sphere is simultaneously used to produce a map and 

localize the camera. The state of the system is stored in standard EKF form, with the 

state vector (x) containing the current camera pose (x) and all of the observed 

features (y1…n). 

 

  x = (𝑥𝑇 , y1𝑇 , y2𝑇 , … , y𝑛𝑇)𝑇 (29) 

 

In order for the system to pass through the prediction and update steps of the 

Extended Kalman Filter, several definitions must first be made. These definitions 

include the motion model, the sensor model, the feature initialization process and the 

correspondence process. These definitions will be described in the following 

subsections. 
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4.2.1 Camera Motion Model 

The camera motion model is a mathematical representation of the expected 

movement of the camera through its environment. The motion model is used to 

predict the location of the camera at the next time step, which in turn is used to 

predict the visual feature locations and then to finally compare the feature predictions 

to the feature measurements. The camera motion model developed for our 

multisensor SLAM system is based on a constant velocity model but has been 

modified by combining it with a vehicle motion model. This hybrid motion model 

best represents the expected motion of our camera in its environment: we expect 

movement in all six degrees of freedom, but we also expect the movement to be 

limited to the physical characteristics of vehicle. 

 

A constant velocity model represents the camera state (xv) as a vector containing the 

pose term for the camera’s optical centre position (rWC), the quaternion defining the 

orientation (qWC), and the linear and angular velocity (vW and ωC) relative to the 

world frame of reference (W) and camera frame of reference (C) respectively. 

Constant velocity motion models assume that the linear and angular velocity of the 

camera in the next time step will be equal to the current time step, with the only 

addition being a velocity ‘impulse’ representing the uncertainty of the future state. 

The velocity impulse is represented via linear and angular accelerations aW and αC, 

with zero mean and known Gaussian distribution, at each time step Δt. The velocity 

impulses are therefore defined as follows: linear velocity 𝑉𝑊 = a𝑊∆𝑡 and angular 

velocity Ω𝐶 = 𝛼𝐶∆𝑡. 

 

The state update for the camera motion is then defined as: 
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(30) 

 

Where q �(𝜔𝑘
𝐶 + Ω𝐶)∆𝑡� is the quaternion defined by the rotation vector (𝜔𝑘

𝐶 +

Ω𝐶)∆𝑡. 
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A vehicle motion model is very similar to a constant velocity model, except that it 

keeps the z-axis translation, roll rotation and pitch rotation at zero. This vehicular 

motion assumption is too limiting for an underground mine environment, so rather 

than setting those parameters to zero, they are given a weighting in order to balance 

the motion model between vehicular and full six degree of freedom. The weighting 

matrices η1 and η2 can be used to adjust the predicted pose and orientation of the 

camera’s optical centre to accommodate this expected vehicular motion as follows: 

 

  𝑉𝑊 = η1a𝑊∆𝑡 (31) 

 

  Ω𝐶 = η2𝑎𝐶∆𝑡. (32) 

 

For our motion model implementation, weightings of η1 = diag(1,1,0.1) and 

η2 = diag(0.1,0.1,1) were applied, reflecting the approximate expected uncertainty 

in each of the degrees of freedom. These weights performed well in the range of 

SLAM testing performed on the motion model. 

 

To produce the covariance update step for the system, the derivatives of the dynamic 

motion model with respect to the state (F) and with respect to the Gaussian noise of 

the model (G) are required. These derivatives are defined as: 

 

  
𝐹 =

𝜕𝑓𝑣
𝜕x𝑣

 
(33) 

  
𝐺 =

𝜕𝑓𝑣
𝜕n . 

(34) 

 

The full expansion of these terms can be found in Appendix A. 

 

4.2.2 Sensor Model 

Civera’s original monocular SLAM algorithm was based on a pinhole camera model. 

The pinhole camera model is characterized by a flat, 2D image plane upon which an 

image is projected. By supplying the focal length of the camera to the pinhole model, 

the locational bearings of features on the image plane can be determined (see Figure 
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4.3). The movement of tracked features across the image plane can be interpreted by 

the motion model as equivalent camera movement 

 

 
Figure 4.3 – The pinhole camera model. The location of the object (bearing only) can be determined from the image plane if the 

focal length is known. 

 

The omnidirectional camera required for our system is not compatible with the 

pinhole camera model and instead requires the use of a spherical camera model. 

Civera’s monocular SLAM Matlab implementation was converted by Rituerto, Puig 

and Guerrero to incorporate a spherical camera model in place of the pinhole model 

in order to be used with a mirror based omnidirectional camera [72]. The major 

change to the software was in the interpretation of feature locations in the world 

relative to the imaging plane. The projection method used for the omnidirectional 

camera can be seen in Figure 4.4. This technique is significantly different to the 

pinhole model shown in Figure 4.3. A feature (x") in the image supplied by the 

mirror based omnidirectional camera (see example image in Figure 4.5) is 

transformed to a new location in a rectified image (x') through the use of HC which 

compensates for the distortions caused by the camera and the mirror. The rectified 

image location is then aligned with the virtual projection centre (CP) to determine the 

point at which the feature projection intersects the surface of the unit sphere (x+). 

This intersection point contains the bearings of the true feature location in space (X) 

relative to the centre of the sphere (O). 
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Figure 4.4 – The spherical camera model. Feature locations in the original image are rectified, then projected onto the unit 

sphere. Figure taken from Rituerto et al. [72]. 

 

 
Figure 4.5 – An example image produced by a mirror based omnidirectional camera. Figure taken from Rituerto et al. [72]. 

 

The Ladybug omnidirectional camera is not a mirror based omnidirectional camera 

and therefore the spherical camera model of Rituerto et al. needs some modification. 

The images streamed by the Ladybug camera are fully rectified and cover the entire 
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visual sphere (the portion of the sphere not covered by cameras is masked, see Figure 

4.7). Therefore, the projection technique is simplified to the equation below. 
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(35) 

The unit sphere is still used to project the features into space and to predict the 

location of existing features in newly acquired images. Each feature encoded by the 

Extended Kalman Filter (yi) is recorded as a ray from the camera position at which 

the feature was first observed (see Figure 4.6).  

 

 
Figure 4.6 – A feature first observed at (xi, yi, zi) is observed again at the current time step. The location of the feature relative to 

the current camera pose is defined as the sum of the vector representing the pose where the first observation occurred (xi, yi, zi) 

and the vector representing the angular location and depth of the feature at the first observation ( 1
𝜌𝑖

m(𝜃𝑖,𝜙𝑖)). Figure taken from 

Civera et al. [22]. 

 

In order to encode the 3D location of the feature in the state vector, the feature’s 

image based coordinates ((𝑢𝑖 𝑣𝑖)𝑇) must first be converted to an elevation and 

azimuth angle with respect to the current camera location. The conversion is 

straightforward as the image produced by the Point Grey Ladybug 2 omnidirectional 

camera is a fully rectified panoramic image containing the entire visual sphere. 
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(37) 

 

The image resolution (𝑢𝑚𝑎𝑥 × 𝑣𝑚𝑎𝑥) contains the entire visual sphere; However, the 

cameras in the Ladybug 2  do not cover the entire visual sphere due to a horizontal 

field of view of 360° and a vertical field of view of 145° (-55° to +90°). Therefore, 

the bottom section of the image, not covered by the cameras, is masked (see Figure 

4.7). 

 

 
Figure 4.7 – Example panoramic image produced by the Point Grey Ladybug 2 omnidirectional camera. Note the masked 

section at the bottom of the image due to the cameras not covering the entire visual sphere. 

 

The azimuth and elevation angles are currently in the camera frame of reference and 

so must be converted to the world frame of reference before being stored in the state 

vector. The conversion is produced using the quaternion representing the current 

camera orientation (qWC). 
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The resulting azimuth and elevation angles are encoded in the state vector. At the 

next time step, these stored feature coordinates will need to be converted back to 

image based coordinates in order to predict the location of each feature in the newly 

acquired image. The conversion for the stored feature points is 

 

  

h𝐶 = R𝐶𝑊 �𝜌𝑖 ��
𝑥𝑖
𝑦𝑖
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(39) 

 

where RCW is the rotation matrix based on the camera orientation qWC and where 

m = [cos𝜙𝑖 sin𝜃𝑖 − sin𝜙𝑖 cos𝜙𝑖 cos 𝜃𝑖]𝑇. 

 

The vector hC is a non-unit directional vector. The angles representing this 

directional vector (azimuth and elevation) are calculated as: 
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(40) 

 

The azimuth and elevation angles can then be used to find the position of the 

predicted feature in the image at the current camera location. Again, this conversion 

is straightforward due to the Ladybug 2 image being fully rectified and containing 

the entire visual sphere. Note that Equation (41) is the inverse of Equation (35). 
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(41) 

 

4.2.3 Feature Initialization and Normalization 

The defining difference between bearing-only SLAM and bearing-and-range SLAM 

is the lack of a depth measurement in feature observations. One consequence is that 

the resulting maps and localization are dimensionless – the real world scale is not 
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determined unless other information is incorporated. To represent observed features 

without range information, the feature locations are initialized with an infinite range 

value defined using a six dimensional state vector. This vector encodes the feature 

location based on the ray from the camera pose at which the feature was first 

observed. This concept is depicted in Figure 4.6. 

 

The six dimensional vector describing the location of the observed feature is 

 

  y𝑖𝑊 = (𝑥𝑖 𝑦𝑖 𝑧𝑖 𝜃𝑖 𝜙𝑖 𝜌𝑖)𝑇. (42) 

 

This vector describes a point located at 
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(43) 

 

where: 

 

  m(𝜃𝑖,𝜙𝑖) = [cos𝜙𝑖 sin𝜃𝑖 − sin𝜙𝑖 cos𝜙𝑖 cos 𝜃𝑖]𝑇. (44) 

 

The y𝑖𝑊 vector contains the camera position at which the feature was first observed 

(xi, yi, zi) as well as the azimuth and elevation angles which define the unit directional 

vector m(𝜃𝑖 ,𝜙𝑖). The range to the feature (di) is stored as the inverse depth ρi = 1/di, 

this allows the encoding of features at an infinite depth, i.e. di = ∞, ρi = 0. The ability 

to encode features with an infinite range allows a feature to be added to the filter as 

soon as it is observed and without any specialized initialization technique. As the 

estimate of the feature position improves during camera motion, the inverse depth 

value is refined to reflect the increased positional information. However, this depth 

value is arbitrary and only reflects the depth of the feature relative to the depth of 

other observed features; the overall map has no known scale. For more information 

on encoding feature range as inverse depth and the proof that inverse depth 

parameterization can be linearized for use in an Extended Kalman Filter, see [22]. 
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In order to initialize a new feature in the filter, the real world elevation and azimuth 

angles must first be extracted from the image produced by the camera. This 

conversion from image coordinates to a world reference azimuth and elevation angle 

is examined in Section 4.2.2. The position of the optical centre is also required for 

feature initialization and is extracted directly from the current camera position. 

 

  
�
𝑥𝑖
𝑦𝑖
𝑧𝑖
� = r𝑊𝐶  (45) 

 

This information, along with an infinite initial depth estimate, is used to encode the 

new feature in the following format: 

 

  y𝑁𝐸𝑊 = (𝑥𝑖 𝑦𝑖 𝑧𝑖 𝜃 𝜙 𝜌0)𝑇. (46) 

 

The new feature is then added to the state vector. 

 

  x𝑁𝐸𝑊 = � x𝑂𝐿𝐷
y𝑁𝐸𝑊� (47) 

 

The state covariance is updated after feature initialization using: 
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Where R is the image noise covariance and J is the Jacobian of the initialization 

function: 
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The full expansion of the terms used in the Jacobian can be found in Appendix A. 
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Finally, the state vector must undergo quaternion normalization to ensure that its 

normal is equal to one, i.e. 𝑞02 + 𝑞12 + 𝑞22 + 𝑞32 = 1. To accomplish this, the state 

vector is updated as follows: 
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(50) 

 

The covariance should also be updated with the Jacobian of the transformation. 

 

  P𝑛𝑜𝑟𝑚 = J𝑛𝑜𝑟𝑚PJ𝑛𝑜𝑟𝑚𝑇  (51) 
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The full expansion of the terms used in the Jacobian can be found in Appendix A. 

 

4.2.4 Correspondence Estimation 

Determining correspondences in Civera’s EKF monocular SLAM algorithm is a two 

stage process. The first stage occurs during the prediction step of EKF and uses the 

motion model to predict the location of existing features in the next observation. 

Every feature in the current state vector is predicted to narrow the search region 

during matching and improve real-time processing.  

 

In the second stage, visual feature matching is achieved by comparing image patches 

around existing and new features within the search region. Image patches with a high 

level of cross-correlation are identified as initial matches and are added to the set of 

individually compatible matches (z) for processing by a correspondence rejection 

algorithm. In the case of Civera’s monocular SLAM, correspondence rejection is 

handled by a 1-point RANSAC algorithm [51]. The name of this algorithm refers to 
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the single match pair required to generate a hypothesis for evaluation. The location 

of the matched feature is used to perform an update of the state vector alone (not the 

covariance matrix) which is then used to predict the match locations for the other 

features in the set z. Matches in the set z that are within the 99% probability region 

of the prediction are classified as low innovation inliers and support the current 

hypothesis. Once the most supported hypothesis is determined, the inliers are used to 

recalculate the state vector update and also determine the appropriate covariance 

matrix update. The updated covariance matrix is then used to identify high 

innovation inliers that were initially classified as outliers. The set of high and low 

innovation inliers are retained and used to perform the update step of the system. 

 

4.3 EKF Bearing-Only SLAM Algorithm 

The mathematical definitions required to perform EKF based bearing-only SLAM 

were outlined in the previous section. Now that these definitions have been made, the 

Extended Kalman Filter algorithm can be presented. This algorithm is based on the 

omnidirectional monocular SLAM algorithm by Rituerto, Puig and Guerrero [72] 

which is a modified version of the original pinhole algorithm by Civera et al. [51]. 

 
Input:  camera_images 

Output: camera_pose 

        feature_map 

 

image = get_next_image 

filter = initialize_features(filter, image) 

 

For i=1 to (num_images – 1) 

    image = get_next_image 

    filter = ekf_prediction(filter) 

    features = extract_features(image) 

    matches = match_features(filter, features) 

    filter = ekf_update(filter, matches) 
End For 

 

camera_pose = filter.camera_pose 

feature_map = filter.feature_map    
Algorithm 4.1 – The EKF bearing-only vision-based SLAM algorithm. 
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The EKF based algorithm requires only a stream of images from a camera as the 

input. The output from the algorithm is a vector containing the camera pose at each 

time step and another vector containing the position of each of the observed features 

in the feature map. The algorithm begins by extracting a set of features from the first 

image in the sequence. The technique used for feature extraction is the Scale 

Invariant Feature Transform (SIFT) by Lowe [28], which is discussed in detail in 

Section 2.3.3. The image is divided into a user defined grid space and only one 

feature from each grid square on the image is stored in the state vector to reduce 

computation times (see Figure 4.8). A numerical description of each feature is stored 

along with the position of the feature. The feature initialization process is described 

in detail in Section 4.2.3. The initialization process must occur once before the main 

loop in the program begins so that there are existing features in the state vector to 

predict locations for, and match with, during the first iteration of the loop. 

 

 
Figure 4.8 – The Ladybug image is covered by a user defined grid allowing only one feature per grid square to be stored in the 

state vector. The green crosses are the feature position predictions. The red dots are the matched feature locations. Each red dot 

is surrounded by a red ellipsoid representing the uncertainty of the feature location. Note that only the top half of the image is 

used for feature extraction as the bottom half contains parts of the mobile platform which would conflict with the static 

environment in the filter. 

 

The program then enters the main loop. The first step in the main loop is to acquire 

the next image from the camera stream. The EKF prediction step is then performed. 

The prediction step predicts the new camera position and orientation based on the 

motion model defined in Section 4.2.1. The features already stored within the state 

vector can then have their locations in the camera’s predicted visual sphere 

calculated. This calculation is based on the process described in Section 4.2.2. 
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Features are then extracted from the current image using SIFT. The entire set of 

extracted features is then matched with the existing features in the state vector using 

the numerical descriptors. A set of matched features is produced. Features in the state 

vector which are not matched for a user defined number of consecutive time steps are 

replaced with a new feature from the current image located in the same grid square. 

 

Finally, the algorithm enters the update step. In this step the location of predicted 

features and matched features are compared. If the offset between the two falls 

outside a user defined threshold, the match is rejected and not used for the state 

update (see Figure 4.9). The features passing the discrepancy test are then used to 

update the camera pose and feature map. 

 

 
Figure 4.9 – An offset between predicted and observed pose results in an offset in the feature projection in the visual sphere. 

The feature projection offset can be used to reject outlier feature matches. 

 

An example of the results produced in the Matlab environment can be seen in Figure 

4.10. The left window contains the current image supplied by the Ladybug camera. 

The green grid represents the division of the image into ‘windows’ which allow only 

one tracked feature each. The window based feature limitations are implemented to 

maintain an even spread of features across the image when there is a low maximum 

number of maintained features. The green crosses are the predicted feature locations 

and the red dots are the measured feature positions. The red ellipsoid around each red 
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dot represents the uncertainty of the feature location. The right window displays a 2D 

projection of the resulting 3D map. The vehicle pose is represented by a black 

triangle. The vehicle always begins at the origin coordinates (0,0,0). The blue line 

from the origin to the current vehicle pose represents the localization path. The 

position and uncertainty of older established features that are no longer being 

predicted are shown in magenta. Features currently being observed are shown in red. 

The red lines represent features that have been observed in only a single image frame 

and therefore have no depth estimate. The scale of the right side window is purely 

arbitrary as there is no depth information supplied by other sources at this stage. 

 

 
Figure 4.10 – An example of the results screen produced by the Matlab implementation of vision-based localization modified to 

work with the Ladybug omnidirectional camera. 

 

4.4 Sensor Fusion and Multisensor SLAM 

The major issue with bearing-only SLAM is that only feature bearing information 

can be measured, it is therefore impossible to retrieve real world scale without 

utilizing additional information. Although the vehicle and each feature in the state 

vector are positioned relative to other features, the scale is arbitrary. The scaling 

factor between the map and the real world is unknown, and therefore the information 

is incomplete for surveying applications. 

 

To provide scaling information to the state vector and to also provide the high 

accuracy, dense, large scale maps required for surveying applications in underground 

mines, 3D depth information from a 3D laser scanner is fused with the vision-based 

bearing-only SLAM. Chapter 5 discusses the use of a 3D laser for producing 

extensive, dense, survey quality maps and Chapter 6 examines the sensor fusion 
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relationships between vision-based bearing-only localization and large scale mapping 

from point clouds. 
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Chapter 5  
 
Large Scale Mapping 
from Point Clouds 

Chapter 5 Large Scale Mapping from Point Clouds 

5.1 Introduction 

Building survey quality three dimensional maps is a task that is most commonly 

performed through the use of a scanning laser system. The resulting sets of laser data 

points, or ‘point clouds’, are combined to form large scale environmental maps. 

However, the alignment and concatenation of two point clouds (hereafter referred to 

as registration) is not a trivial task, even with significant manual input. Survey 

quality maps are accurate to ±2mm for reflector-based surveying and ±6mm for 

reflectorless surveying. Therefore, to build a large scale survey quality map, accurate 

alignment of point clouds is required to maintain the quality of the registered map. 

 

The discussion of large scale mapping from point clouds will begin with a break-

down of the current technologies and techniques being applied to the task of 3D 

mapping. The advantages and disadvantages of competing approaches are examined 

in detail to ensure that the appropriate approach is selected for the task of large scale 

3D mapping in underground mining environments. 
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The need for an autonomous solution to the alignment of point clouds is also 

examined and compared to the current industry standard semi-autonomous 

techniques. This is followed by an in-depth discussion of the Iterative Closest Point 

(ICP) registration technique implemented in our own mapping system. Algorithms 

related to registration and data reduction processes are discussed, along with an 

approach that allows an extension to the maximum point cloud origin offset during 

registration. 

 

Finally, the requirement for an initial point cloud location (pose) estimate from an 

external source is investigated. A brief overview of the solution to the autonomous 

production of this initial pose estimate is provided prior to a full discussion of the 

proposed multisensor technique in the following chapter. 

 

5.2 Acquisition of Depth Information 

The production of accurate three dimensional maps of large scale environments is a 

task with applications in many disciplines. These applications include, but are not 

limited to, the mapping of underground mine tunnels (both new and abandoned), 

dense urban areas, archaeological excavations, forensic crime scenes and natural 

disaster areas.  There are many ways to approach this task, as demonstrated by the 

extensive literature on unique mapping systems. There are also several distinctive 

sensor types that can be used for the purpose of mapping. These include stereo vision 

cameras, time of flight cameras, structured light cameras, 2D laser scanners and 3D 

laser scanners. There are many implementations of each sensor type produced by a 

variety of manufacturers. Table 5.1 contains a summary of example characteristics 

for each ranging sensor type. It can be seen that only laser scanners provide the range 

and accuracy required for the survey quality mapping of large scale environments. 
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Sensor Range Precision Angular 

Resolution 

Field of 

View 

Freq. 

Stereo Vision 

Point Grey 

Bumblebee 2 

Infinite Variable H = 0.15° 

V = 0.15° 

H = 97° 

V = 73° 

48Hz 

Time of Flight 

SwissRanger 

SR4000 

0.8-5.0m ±10mm H = 4.09° 

V = 4.24° 

H = 43° 

V = 34° 

50Hz 

Structured Light 

Microsoft 

Kinect 

0.6-4.6m ±25mm H = 0.09° 

V = 0.09° 

H = 58° 

V = 44° 

30Hz 

2D Laser 

SICK 

LMS511 

0-80m ±40mm H = 0.25° 

V = n/a 

H = 190° 

V = n/a 

35Hz 

Multi 2D Laser 

Velodyne 

HDL-64E 

0.1-120m ±20mm H = 0.09° 

V = 0.4° 

H = 360° 

V = 26° 

15Hz 

3D Laser 

Leica  

ScanStation C10 

0.1-300m ±6mm H = 0.06° 

V = 0.06° 

H = 360° 

V = 270° 

0.0018Hz 

Table 5.1 – Comparison of ranging sensor types. Average error values are provided for precision; however, these values are 

dependent on the depth of the scene. 

 

The range and accuracy advantages of laser scanners are offset by some significant 

disadvantages. The most notable of which is the lack of real-time information from 

3D laser scanners and the limitations of 2D laser scanners to a single sensing plane. 

All of the range sensing alternatives mentioned in Table 5.1 aim to address these 

shortcomings by providing 3D range information in real-time; however, the resulting 

loss of range and accuracy makes large scale 3D mapping unproductive. The solution 

then is to minimize the limiting effects of laser scanners. 

 

The underlying technology in most 2D laser systems, multiple 2D laser systems and 

3D laser systems is practically identical. All three systems are based on the rotation 

of a single laser beam in a 2D plane. The emitted laser beam is reflected by the 
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environment and the reflected light is captured by a photodiode receiver and the time 

of flight is calculated (see Figure 5.1). Since the speed of light is known, time of 

flight can be used to determine the distance to the sensed environmental object. 

 

 
Figure 5.1 – The technology behind 2D laser scanners. 

 

The technology used in 2D laser scanners is limited to a two dimensional plane. 

Multiple 2D laser scanner systems and 3D laser scanner systems provide two 

alternative approaches for adapting 2D laser scanning technology to 3D applications. 

Multiple 2D laser scanner systems such as Velodyne’s HDL-64E model scanner use 

a large number of 2D laser scanners (64 for the HDL-64E) to cover a portion of the 

vertical field of view (see Figure 5.2). The whole system is then rotated to cover the 

horizontal field of view as well. This approach can produce real-time 3D sensing, but 

has a strictly limited vertical field of view and poor vertical angular resolution (see 

Table 5.1). 3D laser scanners such as Leica’s ScanStation produce a 3D scan by 

rotating the scan plane through a perpendicular axis. This allows the laser to 

periodically scan the majority of the 3D field of view. This approach is limited by a 

poor scan rate (see Table 5.1) and therefore the sensor must remain stationary for 

extended periods of time while a scan is completed. For this reason, such 3D 

scanners are not suitable for highly dynamic environments. 
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Figure 5.2 – (Left) Multiple 2D laser scanners are used to cover a portion of the vertical field of view. (Right) A single 2D laser 

is rotated about a secondary perpendicular axis to allow scanning of the majority of the 3D field of view. 

 

5.3 3D Registration for Large Scale Mapping 

Section 5.2 concluded that 3D laser scanners were the only sensor capable of 

providing the range and accuracy required for survey quality map building 

applications. However, the resulting latency limits the sensor to the stationary 

scanning of mostly static environments. Therefore, to produce a large scale 3D map, 

discrete scans must be obtained at a sparse interval to reduce overall mapping time to 

be within acceptable limits. These discrete scans must then be co-registered to form 

the overall map.  

 

The distance separating the discrete scan locations is an important variable that 

strongly influences several key mapping characteristics. The scan spacing should 

therefore be selected based on the parameters of the large scale mapping task. The 

point density of the final map is directly related to the discrete scan spacing. By 

increasing the distance between scans, the overlap between scans will be reduced and 

this in turn will reduce the likelihood of successful registration. Increasing scan 

spacing also increases the impact of occlusions on the final map. The advantage of 

increasing scan spacing is found in the reduction in scan time and the fewer number 

of registration steps required to complete the map (assuming successful registration). 

These factors are examined in Figure 5.3. 
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Figure 5.3 – The characteristics caused by the spacing of discrete laser scans. Large spacing (top) results in low point density, 

reduced overlap and problems with occlusions, yet benefits from a significant reduction in scanning and processing time 

(assuming successful registration). Smaller spacing (bottom) results in higher point density, increased overlap, and robustness 

to occlusions, yet suffers from a significant increase in scanning and processing time. 

 

The difficult task of accurately co-registering discrete 3D laser scans has seen many 

techniques put forward by various research groups. However, it is the most basic 

technique that still dominates industrial use of 3D laser scanners. The simplest way 

to align 3D laser point clouds is to insert key markers into the scene before the scan 

is performed and then manually (or semi-automatically) align these markers in post-

processing. This basic technique has grown over the years so that most commercial 

registration software packages now perform semi-autonomous alignment; however, 

there is still the need to manually place markers in the scene and tag the markers in 

post-processing. The resulting process is slow and labour intensive. 

 

The alternative to the commercial registration process is a fully autonomous 

registration system. If the environment to be mapped is outdoors and free from major 

occlusions, Global Positioning System (GPS) satellites may be used to provide the 

global position of each scan location, eliminating the use of manually placed 

markers. Unfortunately, GPS positioning produces an average error of around 20 

metres without the use of external ground based equipment or expensive 

subscription-based commercial systems. To achieve the accuracy necessary for scan 

registration, external instrumentation techniques such as static baseline surveying or 
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differential GPS are required. Successful registration of a 3D point cloud to an 

existing Digital Terrain Model (DTM) was achieved by Du and Teng through the use 

of static baseline surveying to calculate the earthwork volume of a landslide [74]. 

The required external instrumentation may improve global consistency; however the 

process is still only semi-autonomous and therefore contains limitations that should 

be avoided when designing a fully autonomous, modular mapping system. 

 

Indoor and underground environments usually do not have access to a reliable GPS 

signal resulting in alternative techniques being developed for point cloud registration. 

Wulf et al. use Inertial Measurement Unit (IMU) data combined with wheel 

odometry readings and 2D localization to register 3D laser scans that are produced 

on the move [75]. Again, the simplification of a six degree of freedom localization 

task to a three degree of freedom localization task does not translate well to complex 

environments such as those found underground. IMU and odometry data is prone to 

error and drift and prevents the system being self-contained and portable. 

 

The most effective way to combine 3D point clouds is through the use of a fine scale 

registration algorithm such as Iterative Closest Point (ICP) by Besl and McKay [11] 

(discussed in detail in Section 5.4) or 3D Normal Distribution Transform (3D NDT) 

by Magnusson and Ducket [76]. These registration algorithms require an 

approximate initial scan pose estimate to produce an accurate alignment result. The 

multisensor SLAM system detailed in our own work uses ICP for final registration. 

The technique for providing initial scan pose estimates without resorting to the use of 

external equipment is discussed in Section 5.5.4. 

 

5.4 Registration Techniques 

5.4.1 Iterative Closest Point 

The Iterative Closest Point (ICP) algorithm was first published by Paul Besl and Neil 

McKay in 1992 [11]. The algorithm is designed to first determine the distance 

between each point in a set of data and a ‘model shape’. The mean squared distances 

between the nearest neighbouring points in the data set and the model shape are 

determined, then the optimum transformation is calculated to minimize these 
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distances. The optimum transformation is applied to the data set and the new nearest 

neighbours are then determined. The process is repeated until the average mean 

squared nearest neighbour distance falls below a selected threshold. Each step of this 

process will now be examined in detail. 

 

A data set (P) and a model shape (X) are supplied to the algorithm. If the data set and 

model shape are not supplied in point cloud format, they must be converted. If curves 

or surfaces are supplied, they must first be converted to a line set or triangle set 

respectively using a simplex-based approximation. For a parametric space curve 

𝐶 = {𝑟(𝑢)}, the equivalent polyline can be computed 𝐿(𝐶,𝛿) such that the piece-

wise linear approximation never deviates from the space curve by more than a 

specified distance δ. Similarly, for a parametric surface 𝑆 = {𝑟(𝑢, 𝑣)}, the equivalent 

triangular set can be computed 𝑇(𝑆, 𝛿) such that the piece-wise triangular 

approximation never deviates from the surface by more than a specified distance δ. 

Finally, the resultant polyline or triangular set is converted to point cloud form. 

Polylines are converted to point clouds using their endpoints and triangle sets are 

converted to point clouds using their vertices. 

 

The minimum distance d between a single point 𝑝 from the data set P and a point 𝑥⃗ 

from the model shape X is determined by: 

 

  
𝑑(𝑝,𝑋) = 𝑚𝑖𝑛

𝑥⃗ ∈ 𝑋
‖𝑥⃗ − 𝑝‖. (53) 

 

The closest point in X that yields the minimum distance is denoted 𝑦⃗ such that 

𝑑(𝑝, 𝑦⃗) = 𝑑(𝑝,𝑋), where 𝑦⃗ ∈ 𝑋. The resulting set of closest points is denoted Y. To 

determine the rotation (as a unit quaternion 𝑞⃗𝑅 = [𝑞0𝑞1𝑞2𝑞3]𝑡) and translation 

(𝑞⃗𝑇 = [𝑞4𝑞5𝑞6]𝑡) that minimize the distance between the data set P and the 

corresponding closest points Y, a least squares registration step is performed. The 

mean square objective function to be minimized is: 
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𝑓(𝑞⃗) =

1
𝑁𝑝

�‖𝑥⃗𝑖 − 𝑹(𝑞⃗𝑅)𝑝𝑖 − 𝑞⃗𝑇‖2
𝑁𝑝

𝑖=1

, 
 

(54) 

 

  
where, 𝑹 = �

𝑞02+𝑞12 − 𝑞22 − 𝑞32 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)
2(𝑞1𝑞2 + 𝑞0𝑞3) 𝑞02 + 𝑞22 − 𝑞12 − 𝑞32 2(𝑞2𝑞3 − 𝑞0𝑞1)
2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 + 𝑞0𝑞1) 𝑞02 + 𝑞32 − 𝑞12 − 𝑞22

�. 
 

(55) 

 

The mean values of set P and X are given by 

 

  
𝜇⃗𝑝 =

1
𝑁𝑝

�𝑝𝑖

𝑁𝑝

𝑖=1

 
 

and 𝜇⃗𝑥 =
1
𝑁𝑥

�𝑥⃗𝑖.
𝑁𝑥

𝑖=1

 
 

(56) 

 

The cross-covariance matrix Σpx of the sets P and X is given by 

 

  
Σ𝑝𝑥 =

1
𝑁𝑝

���𝑝𝑖 − 𝑢�⃗ 𝑝�(𝑥⃗𝑖 − 𝜇⃗𝑥)𝑡� =
1
𝑁𝑝

�[𝑝𝑖𝑥⃗𝑖𝑡] − 𝜇⃗𝑝𝜇⃗𝑥𝑡 .

𝑁𝑝

𝑖=1

𝑁𝑝

𝑖=1

 (57) 

 

The cyclic components of the anti-symmetric matrix 𝐴𝑖𝑗 = �Σ𝑝𝑥 − Σ𝑝𝑥𝑇 �
𝑖𝑗

 are used to 

form the column vector ∆= [𝐴23 𝐴31 𝐴12]𝑇. This vector is then used to form the 

symmetric 4x4 matrix 𝑄�Σ𝑝𝑥� where I3 is the 3x3 identity matrix and tr (trace) is the 

sum of the matrix diagonal. 

 

  
𝑄�Σ𝑝𝑥� = �

𝑡𝑟�Σ𝑝𝑥� ∆𝑇

∆ Σ𝑝𝑥 + Σ𝑝𝑥𝑇 − 𝑡𝑟�Σ𝑝𝑥�𝑰3
� (58) 

 

The unit eigenvector 𝑞⃗𝑅 = [𝑞0 𝑞1 𝑞2 𝑞3]𝑡 corresponding to the maximum 

eigenvalue of the matrix 𝑄�Σ𝑝𝑥� is selected as the optimal rotation. The optimal 

translation vector is given by 

 

  𝑞⃗𝑇 = 𝜇⃗𝑥 − 𝑹(𝑞⃗𝑅)𝜇⃗𝑝. (59) 
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The optimal translation and rotation is then applied to the point set P. If the mean 

square error falls below a predetermined threshold, the iteration is terminated, 

otherwise the process is repeated. The overall iterative closest point process is 

summarized in the following algorithm: 

 
INPUT:  P (Initial data set) 

        X (Model shape) 

OUTPUT: P(k) (Aligned data set) 

 

k = 0 

P(k) = P 

 

While Error < T (Tolerance) 

    Y = find_nearest_points(P(k), X) 

    (Trans, Rotn, Error) = mean_square_error(P(k), Y) 

    P(k+1) = transform(P(k), Trans, Rotn) 

End While 

Algorithm 5.1 – The Iterative Closest Point (ICP) algorithm [11]. 

 

5.4.2 Voxel Based Reduction 

The processing cost for the Iterative Closest Point (ICP) algorithm is 𝑂�𝑁𝑝 log𝑁𝑥� 

for the closest point association step and 𝑂�𝑁𝑝� for both the computation and 

application of the resultant transformation. Therefore, the most effective way to 

reduce processing time in order to improve performance in field deployment is to 

reduce the number of points used for ICP. An effective technique for the reduction of 

point cloud density without the sacrifice of shape complexity can be found in voxel 

based reduction. 

 

Voxels are unit squares (in the case of 2D applications) or unit cubes (in 3D 

applications) with a user defined scale. Voxel based reduction has its roots in volume 

graphics where geometric objects were converted from their continuous geometric 

representation into a set of voxels that provided the best approximation of the 

continuous object [77]. This set of voxels did not simply contain all voxels that were 

intersected by the continuous object body, as this would often result in an 

unsatisfactorily coarse result as seen in the 2D representation in Figure 5.4(a). The 
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2D solution is to rasterise (convert to pixels) the continuous line while maintaining 

separation. Here separation refers to the maintained independence of the two sides of 

the line as seen in Figure 5.4(b). 

 

  
(a) Voxel reduction using all intersections. (b) Voxel reduction after being rasterized. 

Figure 5.4(a) The voxel reduction result when using all voxels containing part of the continuous object. (b) The voxel reduction 

result after being rasterized. Note the continued separation of the two sides of the voxel approximation of the continuous line. 

 

The 2D voxel solution does not translate to 3D applications as the 2D definition of 

separation cannot be applied to 3D surfaces. The reason for needing a different 

definition for 3D separation is that voxel based surfaces cannot be defined as an 

ordered sequence of voxels and there is also no specific number of adjacent voxels 

for each surface voxel (see Figure 5.5). To alleviate the shortcomings of the 2D 

definition, 3D discrete topology is used to define 3D separation. 3D discrete 

topology uses a set of 3D Euclidean grid points known as 3D discrete space. A voxel 

is a unit cubic which is centred at each grid point. Voxels containing part of the 

continuous 3D surface model are said to be ‘black’ while all others are said to be 

‘white’. The adjacent relations of the black voxels are then classified into one of 

three categories: 6-adjacent, 18-adjacent or 26-adjacent. Two voxels are 26-adjacent 

if they share a vertex, edge or face, they are further classified as 18-adjacent if they 

share only an edge or a face, and finally they are still further classified as 6-adjacent 

if they share only a face (see Figure 5.5).  

 

It can then be said that a sequence of black or white voxels having the same 

adjacency (N-adjacent) are an N-path if all consecutive voxel pairs are N-adjacent. A 

set of voxels is defined as N-connected if an N-path exists between every voxel pair. 

To determine if 3D separation is occurring, assume there is a voxel space denoted Σ 

which includes a single subset of black voxels denoted S. If the complementary set of 
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white voxels (Σ – S) is not N-connected, i.e. there are two or more white N-

connected components, then S is N-separating in Σ. The voxel approximation can 

then be simplified (by converting black voxels to white) and retested to confirm 

continued separation. This approach allows for the successful reduction of the voxel 

grid approximation while maintaining 3D separation. 

 

 
Figure 5.5 – From left to right, voxels that are 26-adjacent to the centre voxel, voxels that are 18-adjacent to the centre voxel 

and voxels that are 6-adjacent to the centre voxel. 

 

For 3D point clouds the voxel reduction process is often simplified as there is less 

dependency on successful separation. Implementations may simply replace a set of 

points occurring within the same voxel cube by a single point representing their 

average position. The algorithm below is an example approach to this simplistic 

point cloud voxel reduction. 

 
INPUT:  voxel_size (Size of voxel unit length) 

        P (Point cloud) 

OUTPUT: Q (Voxel reduced point cloud) 

 

For i=1 to size(P) 

    vox_pos = find_current_voxel(P(i),voxel_size) 

    voxel_grid(vox_pos).values += P(i) 

    voxel_grid(vox_pos).count += 1 

End For 

 

Q = voxel_grid(:).values/voxel_grid(:).count 

Algorithm 5.2 – Simple voxel based reduction of a point cloud. 
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This approach is crude yet has benefits in processing cost. This style of voxel based 

reduction is implemented in the Point Cloud Library (PCL) open source project 

which was utilized in our own work and is discussed further in Section 5.4.3. 

 

5.4.3 Point Cloud Library 

The Point Cloud Library (PCL) Project is an open source, standalone project for the 

processing of 3D point clouds [78]. The PCL framework contains leading edge 

algorithms for filtering, feature estimation, surface reconstruction, registration, 

model fitting and segmentation. These are combined to form higher order tools for 

tasks such as mapping and object recognition. PCL is released under the terms of the 

Berkeley Software Distribution (BSD) license and can be accessed at 

http://pointclouds.org. 

 

The PCL voxel grid reduction and iterative closest point algorithms were 

incorporated into our own mapping software. Voxel grid reduction is detailed in 

Section 5.4.2 and iterative closest point is detailed in Section 5.4.1.  

 

5.5 Multisensor SLAM registration 

The reliable registration of point clouds using the Iterative Closest Point (ICP) 

algorithm is only possible if an initial pose estimate is supplied. Without a 

sufficiently accurate initial pose estimate, the optimization step of ICP is likely to 

reach a local, rather than global, minimum. The algorithm may even fail completely 

if there are not enough points within the user defined point association radius (the 

maximum distance allowed for a nearest neighbour search). Our approach to 

providing an initial pose estimate is introduced in Section 5.5.4 and is explored in 

detail in Chapter 6. Our implementation of point cloud registration is examined in 

Sections 5.5.1 through 5.5.3. These sections include the optimization of the 

algorithm with respect to reliability, precision and processing time. 

 



76 Large Scale Mapping from Point Clouds 

5.5.1 Implementation 

The standard Iterative Closest Point (ICP) algorithm is single cycle, is applied to 

every point and has hard coded values for parameters such as point association 

radius, convergence threshold and maximum number of iterations in the optimization 

step. This rigid approach requires precise tuning for every new application and is 

therefore not well suited to autonomous implementation. To improve the 

applicability and robustness of our own implementation of ICP, several 

modifications were made. 

 

The first modification to the ICP implementation was the introduction of a two stage 

registration process. During initial experimentation it was found that the parameters 

required to reliably align two point clouds had to be relaxed in order to accommodate 

the possibility of notable error in the initial pose estimate. This mainly involved 

increasing the point association radius (used as a threshold for nearest neighbour 

searches) and the RANSAC rejection threshold (discussed later in this section). The 

result of relaxing these parameters was reliable ‘rough’ point cloud alignment, but 

poor fine scale alignment. To produce a survey quality map, this result was not 

acceptable. A two stage registration process was therefore introduced to address the 

lack of fine scale precision.  

 

A suitable point association radius for coarse alignment in the initial ICP stage was 

found through experimentation using laser data collected form the interior of Curtin 

University’s architecture building.  It was found that a point association radius that 

was about 25% of the size of the estimated distance between scan locations worked 

well. This value was reduced to about 1.5% for the fine registration stage. These 

values were used throughout the experimental results reported in Chapter 8. The pose 

estimate supplied by the coarse registration stage is of sufficient accuracy to allow a 

reliable fine registration result despite the significantly reduced point association 

radius. The registration results in Figure 5.6 and Figure 5.7 demonstrate the 

effectiveness of the two stage registration technique. The results show the alignment 

using only the initial pose estimate (left), then coarse registration (middle) and finally 

fine registration (right). The alignment results are scored based on the average mean 

squared nearest neighbour offset between the two point clouds. The fitness scores for 

each of the results are 0.675m2, 0.178m2 and 0.165m2 respectively (i.e. an average 
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neighbour offset of 0.822m, 0.422m and 0.406m respectively). It is worth noting that 

these fitness scores are averaged across all point pairs and as such are only useful for 

comparing subsequent registration results for the same point cloud.  The average is 

heavily influenced by scan specific outliers and is therefore not an accurate indicator 

of the quality of the fit compared to other point cloud results. 

 

 
Figure 5.6 – Alignment of scans 1 (light blue) and 2 (dark blue) from the architecture building dataset. (Left) Scan alignment 

based on initial pose estimate, fitness score of 0.675m2. (Middle) Scan alignment after coarse registration, fitness score of 

0.178m2. (Right) Scan alignment after fine registration, fitness score of 0.165m2. 
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Figure 5.7 – Detailed look at the comparison between coarse and fine registration results from Figure 5.6. 

 

Another improvement to the generic ICP algorithm is the inclusion of Random 

Sample Consensus (RANSAC) point rejection. The RANSAC algorithm in its 

generic form was proposed by Fischer and Bolles [35]. This point filtering technique 

is included as part of the Point Cloud Library default implementation of ICP and is 

used to reject points that are considered to be outliers. A point is considered to be an 

outlier if the distance between the point and its associated point in the existing map is 

greater than a set threshold after a transformation has occurred (as opposed to the 

point association radius which filters before a transformation). Again, through 

experimentation, it was found that an effective RANSAC rejection threshold value is 

generally around half the size of the point association radius. This rejection threshold 

was used throughout the experimental results in Chapter 8. 

 

To further improve the robustness of our ICP implementation, random seeding was 

introduced to reduce the accuracy constraints on the initial pose estimate. The coarse 

registration step is executed 20 times and each execution is provided with a variation 

of the initial pose estimate. The pose variation is provided by a random number 

generator that produces a scaling factor between -30% and +30%. A different scaling 

factor is applied to the pose estimate for each of the six degrees of freedom. 

Registration is performed and the process is repeated 20 times. The result with the 
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lowest fitness score (the mean squared nearest neighbour distance) is passed to the 

fine registration step. 

 

Finally, to improve processing time so that it was feasible to run 20 iterations of ICP 

in a real world deployment, voxel based reduction was also implemented (see 

Section 5.4.2). The size of the voxel reduction is larger for the coarse registration 

than for the fine registration. For a dataset collected within the Curtin University 

architecture building with an average point depth of ~10m (see Figure 5.9), it was 

found that a voxel grid of 30cm worked well during coarse registration (i.e. a grid of 

about 3% of the average point depth). This reduces the number of points in an 

average point cloud by about 99.4%, yet still provides sufficient structure for 

consistent registration. For the fine registration step, a voxel grid of 5cm is used, 

reducing the number of points by about 88.4% while maintaining the cloud density 

required for fine registration. These voxel grid sizes represented the optimum 

compromise between processing speed, robustness and accuracy during 

experimentation on the first three point clouds. The values were used throughout the 

experimental results reported in Chapter 8. The reductions occur on both the newly 

acquired data and the existing map. However, the final transformation is performed 

on the full point cloud which is then concatenated to the full existing map, this 

maintains data integrity. 

 

The result of voxel grid reduction is a significant reduction in processing time. The 

cost of each iteration during ICP is: 

 

  𝑂�𝑁𝑝 log𝑁𝑥 + 2𝑁𝑝�, (60) 

where Np is the number of points in the new data and Nx is the number of points in 

the existing map. The use of the previously mentioned voxel grid dimensions results 

in a reduction in processing time of 99.5% for coarse registration and 89.7% for fine 

registration. 

 

5.5.2 Algorithm 

The implementation of the modifications to generic ICP detailed in the previous 

section can be seen in the following algorithm. The algorithm is supplied with a new 
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point cloud, an existing map and a pose estimate. The voxel grid reduction is then 

performed on the new data and existing map to reduce processing time during the 

subsequent steps. A randomly generated pose based on the initial pose estimate is 

used to transform the new data before coarse registration is performed. This step is 

repeated 20 times with different random poses. The registration result with the lowest 

fitness score is passed to the fine registration step. Upon registration convergence, 

the transformations produced during the execution of the algorithm (random pose, 

coarse registration and fine registration) are all applied to the full data point cloud 

(i.e. without any voxel reduction). This transformed data is then concatenated with 

the full existing map (also with no voxel reduction). 

 
INPUT:  P_data (New data point cloud) 

        P_map (Existing map point cloud) 

        Trans_pose (Pose estimate transformation) 

OUTPUT: Q (Updated map) 

 

P_data_30cm = voxel_reduction(P_data, size_30cm) 

P_data_5cm = voxel_reduction(P_data, size_5cm) 

P_map_5cm = voxel_reduction(P_map, size_5cm) 

 

For i=1 to 20 

   rand = random_number(-1, +1) 

   Rand_pose = Trans_pose * rand * 0.3 

   P_data_pose = transform(P_data_30cm, Rand_pose) 

   (Fit, Trans_coarse) = ICP_coarse(P_data_pose, P_map_5cm) 

   If Fit < Min_fit 

      Trans_rand = Rand_pose 

   End If 

End For 

 

P_data_5cm = transform(P_data_5cm, Trans_rand, Trans_coarse) 

Trans_fine = ICP_fine(P_data_5cm, P_map_5cm) 

 

Q = P_map 

Q += transform(P_data, Trans_rand, Trans_coarse, Trans_fine) 

 Algorithm 5.3 – Modified ICP algorithm. 
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5.5.3 Registration of Datasets with Large Offset 

The iterative closest point (ICP) registration of two point clouds which are offset by 

a large distance (in rotation and/or translation) is susceptible to error due to the high 

probability of ICP convergence to a local minimum. Common environments for large 

scale 3D mapping are elongated or corridor-like in shape, resulting in point clouds 

containing non-uniform data point distribution (as seen in Figure 5.8). A large offset 

between point cloud origins results in a reduced overlap between the model shape 

and the newly acquired dataset. This reduced overlap, combined with non-uniform 

point density distribution, produces the phenomenon seen in Figure 5.8 where the 

sparse section of the newly acquired dataset overlaps the dense section of the model 

shape. The sparse section of the model shape, in turn, overlaps with the dense section 

of the dataset. 

 
Figure 5.8 – Two point clouds from the Curtin University Architecture building with an offset of ~40 metres. Alignment before 

registration based on an average pose estimate. Note the sparse section of the data set (green) overlapping the dense section of 

the existing model shape (orange) and the sparse section of the model shape overlapping the dense section of the data set. 

 

During the ICP registration process, the dense section of the dataset carries 

significantly more weight than the sparse section due to the quantity based 

preference of mean square optimization. This weighting is applied despite the fact 

that the sparse section (usually containing less than 20% of the points) contains about 

half of the scanned surfaces (see Figure 5.9). The overlap produced by large point 

cloud origin offset causes the ICP algorithm to focus on the alignment of the dense 

section of the dataset with the poorly distinguished sparse section of the existing 

model shape. The low number of target points during alignment with the model 

shape causes many dataset points to be associated with the same model shape point. 

This sharing of target points reduces the efficiency of the registration and makes it 

more prone to falling into local minima that satisfy a small, dense section of the 

dataset (see Figure 5.10). This phenomenon was experienced during our own work 

with ICP and point clouds with large offsets (greater than 20 metres point of origin 

separation).  
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Figure 5.9 – The distribution of points across a range of depths for the five point clouds (voxel reduced) of the Architecture 

building dataset. Depth values are in reference to the location of each scan (i.e. not global coordinates). Note the number of 

points that occur in the 2 – 20 meter range, despite the 100 meter length of the building. 

 

 

 
Figure 5.10 – Comparison of registering a dense point cloud onto a sparse point cloud (left) and a sparse point cloud onto a 

dense point cloud (right). The registration of dense point clouds onto sparse point clouds is prone to reaching local optima. 
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For scans recorded at a distance of up to 20 metres apart, a two stage registration 

process was sufficient to successfully reach the global minimum, as described in 

detail in Section 5.5.1. However, to correctly register point clouds with a large offset 

between scan origins, a revised technique was required. The newly acquired dataset 

is segmented into a dense section and a sparse section. The sparse section of the 

dataset is then used for registration onto the overlapping dense section of the existing 

model shape, significantly improving the result. The process is repeated to segment 

the existing model shape into a sparse section and a dense section so that the sparse 

section of the model shape can be registered onto the dense section of the newly 

acquired dataset. This process ensures that the registration process is always a sparse 

cloud onto a dense cloud, maximizing the opportunity to find the global optimum 

alignment. The processing time is also significantly reduced since the sparse segment 

is now used for Np and the ICP registration step cost is 𝑂�𝑁𝑝 log𝑁𝑥 + 2𝑁𝑝�. 

 

To successfully segregate the dense and sparse sections of a point cloud, a dividing 

plane called the density transition plane is used. This plane is located at the midpoint 

of the straight line distance between the points of origin of the most recent two scans 

(see Figure 5.11). The plane is perpendicular to the straight line path and roughly 

represents the point at which the newly acquired laser data becomes more dense than 

the existing model. The algorithm below details the segregation process. 

 
INPUT:  Orig1 (Position of most recent model origin) 

        Orig2 (Position estimate of data origin) 

        P (Point cloud) 

OUTPUT: Q (Sparse segment of point cloud) 

 

norm = Orig2 – Orig1 

m = Orig2 + (norm / 2) 

 

For i=1 to size(P) 

    If norm•(P(i)-m)<0 (Point in sparse segment) 

        Count += 1 

        Q(count) = P(i) 

    End If 

End For 

Algorithm 5.4 – Segmentation of the sparse section of new point cloud data. 
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The sparse segment of the new data is then used for coarse registration onto the 

existing dense model. Upon coarse registration convergence, a fine ICP algorithm is 

run to provide the final alignment. The reverse process (sparse model onto dense 

data) is also implemented to confirm the results. The process can also be combined 

with random seeding to improve robustness to error in initial pose estimate. Superior 

results are obtained via this cropping technique and processing time is also 

significantly reduced. The improved registration robustness led to the application of 

this technique for all registration tasks, not just for datasets with a large offset. 

 

 
Figure 5.11 – The density transition plane, pictured here as a black rectangle, is located halfway between, and perpendicular to, 

the points of origin estimates of the two scans, pictured here as black circles. The plane segregates the newly acquired data into 

a sparse section (dark green) and a dense section (light green). The sparse section is then used for registration onto the existing 

map (orange). 

 

Occasionally a new dataset will be difficult to register due to the shape of the data 

itself. In these cases the registration algorithm will experience difficulties regardless 

of the quality of the initial pose estimate. A modified version of the segmentation 

technique can be applied in these cases to improve the likelihood of successful 

registration. The modified technique further segments the sparse sections of both the 

model and data, resulting in multiple segments and multiple registration attempts. 

Registration is then performed between each of the sparse segments and the entirety 

of the other scan. If multiple segments produce the same final transformations during 

registration, that transformation is considered the correct alignment and is applied to 

the entire dataset. If this does not occur, the segment with the lowest fitness score is 

considered the correct alignment and the resulting transformation is applied to the 

entire dataset. This technique was highly effective for the registration of the 

underground dataset discussed in Section 8.2. This modified technique can also be 

combined with random seeding to further improve robustness at the cost of increased 

processing times. 
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5.5.4 Bearing-only SLAM for Initial Pose Estimate 

It has been demonstrated that an Iterative Closest Point (ICP) algorithm can 

successfully co-register two point clouds, even with a significant offset between their 

points of origin (see Section 5.5.3). However, successful registration is only possible 

if the algorithm is supplied with a sufficiently accurate initial pose estimate, 

otherwise finding a local minimum or complete failure of the registration is likely. 

 

To investigate the effect that initial pose estimate quality has on the ability of ICP to 

find the global minimum solution, a series of tests was run to examine the limits of 

successful registration. The test started with two correctly aligned point clouds from 

the architecture building dataset, one representing the existing map and one 

representing newly acquired data. The new data point cloud was then transformed 

through a series of specified translation and rotation combinations in order to 

investigate whether a correct match could be found under the prescribed conditions. 

The range of translation tested was 0 to 10 meters in 1 meter increments and the 

range of rotation tested was 0 to 60 degrees in 5 degree increments. Each translation 

and rotation was positive and applied to all three axes equally in order to visualize 

the results in a two dimensional plot. The results were then categorized based on 

fitness score into one of three categories: global minimum (white), local minimum 

(grey) and algorithm failure (black). These results are shown in Figure 5.12.  

 

To produce a fully automated mapping system, the production of initial pose 

estimates must also be autonomous and of sufficient accuracy to ensure the correct 

optimization during co-registration. Figure 5.12(e) overlays the results from the four 

ICP tests (Figure 5.12(a)-(b)) and demonstrates the range of translation and rotation 

error allowable in the initial pose estimate for consistent successful registration. 

 



86 Large Scale Mapping from Point Clouds 

  
(a) Heat map of cloud 2 ICP Registration with cloud 1. (b) Heat map of cloud 3 ICP Registration with cloud 2. 

  
(c) Heat map of cloud 4 ICP Registration with cloud 3. (d) Heat map of cloud 5 ICP Registration with cloud 4. 

 

 

(e) Combination of architecture building dataset heat maps.  

Figure 5.12 – Heat maps showing error in initial pose translation and rotation. White areas are correct registration (global 

minimum), grey areas are local minimum and black areas are failures. Individual registration results are shown for point clouds 

(a) 1 and 2, (b) 2 and 3, (c) 3 and 4, (d) 4 and 5. (e) A combination of all heat maps shows the required accuracy for initial pose 

estimates when registering an entire dataset. 
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Our approach to obtain the initial pose estimate is based on vision-based localization 

augmented by information from the discrete range-and-bearing laser scans. This 

technique is examined in detail in the following chapter. Bearing-only localization 

produces localization results in a dimensionless coordinate system, so associated 

ranges from the 3D laser scans are used to produce a correctly scaled localization 

result. The combination of two sensors and two approaches to map building and 

localization has resulted in a hybrid Simultaneous Localization and Mapping 

(SLAM) system. The initial pose estimates supplied by the hybrid SLAM system are 

prone to drift due to errors in bearing-only localization, yet they still provide the ICP 

algorithm with enough information to correctly perform co-registration. 
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Chapter 6 Hybrid Integration of Vision-Based SLAM and Point Clouds 

6.1 Introduction 

Producing high quality 3D maps of large scale environments is a task which cannot 

currently be completed autonomously through the use of a single sensor. Laser range 

finders can provide high accuracy, dense 3D information about large scale 

environments, yet the inability to robustly and autonomously combine multiple laser 

scan point clouds without additional information (e.g. pose estimation) has prevented 

the development of a 3D laser-only mapping system. Our solution to this problem is 

the combination of two sensors – a 3D laser range finder and an omnidirectional 

camera. 

 

Simultaneous Localization and Mapping (SLAM) is a task performed by an 

autonomous agent to produce a map of the environment while simultaneously 

localizing its pose within that map. The mathematical background of SLAM was 

discussed in Chapter 2. Monocular SLAM is a mapping and localization problem 

where a single camera is the only source of information about the environment. The 
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task is also referred to as bearing-only localization due to the nature of a single 

camera only being able to supply bearing information about visual features and not 

range information. Monocular SLAM has the ability to perform six degree of 

freedom localization and mapping in real-time, yet is limited by the inability to 

recover real world scale and the production of sparse mapping results. There are 

examples of dense scene reconstruction in real-time for small scale scenes [79], 

although the scale still cannot be recovered and the results are prone to failure under 

dynamic lighting conditions (common in underground mining environments). Dense 

large scale scenes can also be reconstructed [80], but with excessive processing times 

and the same problems with illumination change and scale recovery. 

 

The requirements for survey quality mapping results in underground environments 

can therefore only be achieved through the use of laser scanners as explained in 

Chapter 5. Our solution to the large scale 3D mapping problem is to combine the 

dense data of laser mapping with the speed and flexibility of vision-based bearing-

only localization. The result is a hybrid SLAM system capable of producing survey 

quality maps in difficult environments such as underground mines. Although 

monocular SLAM can handle minor dynamic elements in an environment, dynamic 

elements will corrupt the discrete 3D laser scans rendering them inappropriate for 

survey use. Therefore, the effect of dynamic environments is considered outside of 

the scope of this work and only primarily static environments will be considered. 

 

This chapter will investigate the implementation of the proposed multisensor 

mapping system. The interaction between the two sensors will be examined, 

including the use of the 3D laser for localization scale and the omnidirectional 

camera for initial pose estimate. The processing times will then be determined and 

compared to the requirements for a productive real world deployment. Finally, the 

suitability of the system for underground mining environments will be discussed. 

 

6.2 Localization Scaling from Depth Information 

Vision-based bearing-only localization and mapping algorithms have the ability to 

produce a three dimensional map of landmarks and provide pose estimates for the 
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current and previous camera positions. Although this technique is capable of 

producing reasonable mapping results, there is an inability to recover real world scale 

as discussed in Chapter 4. To meet the specifications for self-containment and 

portability listed in Section 1.1, a series of sensors capable of supplying range 

information were evaluated in Section 5.2. 3D laser scanners were determined to be 

the only sensor capable of producing the dense, large scale, survey quality mapping 

results required for our application. A 3D laser scanner can also provide the range 

information required to improve localization accuracy. 

 

To produce a correctly scaled localization result, information from the 3D laser 

scanner has to be integrated into the vision-based localization algorithm. Since the 

3D laser scanning process requires significant time (refer to Table 5.1), the sensor 

must be stationary during the scanning process to prevent scan distortion. Therefore, 

depth information is not available to the localization algorithm while the camera is 

moving. There will only be depth information at the localization path origin and 

destination. 

 

There are two possible approaches to integrate the discrete depth information 

provided by the 3D laser into the localization algorithm. The first approach is to 

establish some visual features observed from the origin with known depth values. 

These features can then be adjusted in the state vector to have a certain 3D position 

provided by the laser. The covariance matrix can also be edited to reflect the high 

accuracy range data provided for these features. As the camera begins to move and 

new features are observed, their positional information will be encoded in the state 

vector and covariance matrix relative to the highly accurate original features and so 

overall accuracy will be improved. The depth information provided at the destination 

can also be incorporated and back propagated to improve the accuracy of the 

localization path leading up to the destination. 

 

The problem with this approach is that features established at the origin, before 

camera movement begins, were not well maintained by the feature extraction and 

matching algorithms. Within an average of only 10 – 20 frames (of a 400 frame 

sequence) virtually all of the original features were dropped. Since the features were 

held for such a brief period of time, their high accuracy location information was not 
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effectively passed during the process of establishing new features. Without the direct 

influence of real world scale, the localization results quickly revert to an arbitrary 

scale based on the acceleration noise of the motion model [81]. The localization 

results were distorted accordingly. An example of this problem is shown in Figure 

6.1. The left image shows the initial frame from the video sequence with the 

approximate outline of the corridor shown by the feature locations which were 

established using laser range information. The right image shows the video sequence 

at frame 400 (of 464). Note that the original features were not well established and so 

are no longer present on the map (established features are marked with magenta 

dots). Instead the algorithm has reverted to an arbitrary scale shown by the 

significantly reduced width of the corridor. An investigation into the possibility of 

scaling acceleration noise based on the laser data to reduce the impact of this effect is 

included in the future work discussion in Section 9.2. 

 

 
Figure 6.1 – Frames 1 (left) and 400 (right) from a 464 frame video sequence where features were initialised using laser based 

depth information. The depth information decays quickly, reverting to an arbitrary scale, resulting in the apparent reduction in 

the size of the main corridor being mapped. The units of all axes are meters. 

 

The second approach is to allow the vision-based localization algorithm to run to 

completion without any integration of depth information from the 3D laser scanner. 

It has been shown that the inverse depth based monocular SLAM algorithm does not 

require any dimensioned information for successful execution [82]. The initial scale 

of the localization result is based on the acceleration noise in the motion model [81], 

so even when there is a low number of maintained features, the constant velocity 



6.2 Localization Scaling from Depth Information 93 

 

motion model maintains a reasonably consistent scale (although there will always be 

some level of scale drift [53]). When the camera has reached the destination, a 

combination of the scales from the laser scans at the origin and destination are used 

to scale the overall localization result. The two scales are combined based on the 

number of established features at the origin and destination using the following 

algorithm: 

 
INPUT:  orig_feats (Established origin features) 

        dest_feats (Established destination features) 

        orig_depth (Depth image produced at origin) 

        dest_depth (Depth image produced at destination) 

OUTPUT: scale 

 

For i=1 to size(orig_feats) 

   meas_depth = get_depth(orig_feats(i).uv, orig_depth) 

   scale_list_orig(i) = meas_depth/orig_feats.depth 

End For 

 

For j=1 to size(dest_feats) 

   meas_depth = get_depth(dest_feats(i).uv, dest_depth) 

   scale_list_dest(i) = meas_depth/dest_feats.depth 

End For 

 

scale_orig = mean(scale_list_orig) 

scale_dest = mean(scale_list_dest) 

 

combo_feat = size(orig_feats) * size(dest_feats) 

 

scale = (scale_orig * size(orig_feats) / combo_feat) 

        + (scale_dest * size(dest_feats) / combo_feat) 

Algorithm 6.1 – Calculation of scale from laser scan data at origin and destination. 

 

The algorithm calculates the scale by first determining the average scale at the origin 

and destination, based on the well-established features (observed in at least 10 

frames) at each location. The arbitrary depth of each feature is compared to the depth 

value assigned to the feature from the laser data and the average is calculated. The 

average scales from the origin and destination are then combined through a 

weighting based on the number of well-established features at each location. 
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This approach works well and provides a consistently accurate localization result. 

The requirements for localization accuracy are examined in Section 6.3. This 

algorithm was implemented within our vision-based localization algorithm and was 

used during the production of all of the final results reported in Chapter 8. 

 

To allow the vision-based localization algorithm to scale the results effectively, the 

depth information from the 3D laser scan must be supplied in a format which can be 

associated with an image from the omnidirectional camera. The solution to this 

compatibility problem is to produce an omnidirectional depth image from the laser 

data. A depth image is a matrix with the same dimensions as an image from the 

Ladybug camera; however, instead of containing 8 bit RGB values, it contains 16 bit 

scaled depth values. The density of the 3D laser scan allows every pixel in the 

Ladybug image to have an associated depth value. The depth image can therefore be 

used as a look-up table for determining the depth values of visual features. The 

image is produced using the following algorithm: 

 
INPUT:  laser_data (Laser point cloud) 

        image_dim  (Final image dimensions) 

OUTPUT: depth_image 

 

For i=1 to size(laser_data) 

   theta = get_theta(laser_data(i)) 

   phi = get_phi(laser_data(i)) 

 

   [u, v] = convert_coords(theta, phi, image_dim) 

   depth_image(u,v) = laser_data(i).depth/max_depth*2^16 

End For 

Algorithm 6.2 – Algorithm used to produce a depth image from a laser point cloud. 

 

The algorithm converts a laser point cloud to a depth image by determining the 

bearings of each point. These bearings then provide the point with a (u, v) coordinate 

within the output image dimensions. The distance from the point to the origin (its 

depth) is then scaled to a 16 bit number based on the maximum depth found in the 

point cloud and is stored in the depth image at the calculated (u, v) coordinates. An 
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example depth image compared to the equivalent image from the Ladybug camera 

can be seen in Figure 6.2. This process can be performed during the laser scanning 

process since only one new laser point at a time is required. The 16 bit number can 

quickly be produced at the end of the scanning process by scaling all of the pixels in 

the depth image based on the maximum depth value found in the depth image. 

Calibration is currently handled manually due to variable alignment during data 

collection in the architecture building. However, once an appropriate mounting 

platform for the camera and laser is fabricated, a full spherical mapping will be 

undertaken to optimize alignment between the camera and laser data. 

 

 
Figure 6.2 – Comparison of the image produced by the Ladybug omnidirectional camera (top) and the equivalent depth image 

produced from the associated laser point cloud. 
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6.3 ICP with Pose Estimate 

For the successful registration of two point clouds, a sufficiently accurate initial pose 

estimate is required. The need for this pose estimate is discussed in detail in Section 

5.5.4. Without a high quality initial pose estimate, the optimization step of 

registration algorithms such as Iterative Closest Point (ICP) will likely find a local 

minimum or fail completely rather than finding the desired global minimum. 

 

The initial pose estimates supplied by the scaled localization results from vision-

based localization in the Curtin University architecture building were tested to 

determine if they were of sufficient accuracy to allow successful localization. The 

four localization results from the architecture building provided four initial pose 

estimates for the registration of four laser scans (scans 2 – 5) with the existing map 

(scan 1). Using the ICP technique described in Section 5.5.1, the initial pose 

estimates were of sufficient accuracy to produce successful ICP registration. The 

detailed results from the architecture building can be found in Section 8.1.  

 

 Localization Result ICP Correction Final Position 

Dataset Trans. Rotation Trans. Rotation Trans. Rotation 

 

1 

x,ϕ 

y,θ 

z,ψ 

-2.193m 2.704° 1.512m -2.693° -0.752m 0.009° 

16.88m 0.362° 1.954m -0.327° 18.80m 0.047° 

-0.160m 0.278° -0.549m 0.246° -1.514m 0.539° 

 

2 

x,ϕ 

y,θ 

z,ψ 

-2.989m 3.312° 0.497m -3.294° -4.603m 0.111° 

19.34m -1.031° 0.976m 1.071° 19.83m 0.408° 

-0.182m -5.487° -1.009m 6.314° -2.181m 0.753° 

 

3 

x,ϕ 

y,θ 

z,ψ 

-4.453m 2.777° -1.144m -2.859° -10.20m 0.014° 

17.46m -0.740° 0.452m 0.516° 16.01m 0.056° 

-0.107m -16.09° -0.880m 15.88° -1.682m -0.255° 

 

4 

x,ϕ 

y,θ 

z,ψ 

-1.681m 3.534° -0.047m -3.512° -2.832m 0.054° 

17.96m -0.634° 1.301m 0.596° 19.08m 0.179° 

-0.181m -3.811° -1.159m 3.529° -2.402m -0.326° 
Table 6.1 – The localization result, ICP correction and adjusted scan location for each of the four datasets from the Curtin 

University architecture building. 
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Table 6.1 shows each localization result, the ICP correction and the final scan 

location for each of the four localization datasets. The unusual z-axis displacement is 

caused by a small uncompensated angular offset (~5°) between the camera and laser. 

This will be resolved in future deployments when a proper mounting platform will be 

fabricated for the camera and laser, and a high accuracy calibration procedure is 

performed. 

 

To determine the robustness of the multisensor SLAM system, a test needed to be 

formulated which would provide some form of measurement for the ‘quality’ of the 

initial pose estimate. A measurement for quality can be determined if the initial pose 

estimate supplied by vision-based localization is compared to the failure conditions 

for ICP (i.e. where the optimization step finds a local minimum or fails completely). 

The failure conditions for ICP had been roughly determined in the testing performed 

in Section 5.5.4. ‘Heat maps’ were produced, showing the offset values for 

translation and rotation that resulted in ICP failure (results in Figure 5.12). The initial 

pose estimates supplied by vision-based localization can be plotted on these heat 

maps by using the largest translation and rotation offset corrected for by ICP. The 

offset errors are used as the coordinates for the initial pose estimate on the heat map. 

The plots for each of the datasets from the architecture building with the initial pose 

estimate overlayed can be seen in Figure 6.3. 

 

  
(a) Heat map of cloud 2 ICP registration with cloud 1. (b) Heat map of cloud 3 ICP registration with cloud 2. 
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(c) Heat map of cloud 4 ICP registration with cloud 3. (d) Heat map of cloud 5 ICP registration with cloud 4. 

Figure 6.3 – Heat maps showing error in initial pose translation and rotation. White areas are correct registration (global 

minimum), grey areas are local minimum and black areas are failures. Individual registration results are shown for point clouds 

(a) 2, (b) 3, (c) 4, and (d) 5. Each heat map contains an indicator representing the maximum offset error in the initial pose 

estimate provided by vision-based localization. 

 

All of the heat maps demonstrate that the initial pose estimate supplied by the scaled 

vision-based bearing-only SLAM algorithm falls easily within the region of 

successful global optimization. However, the heat maps also demonstrate that there 

are limitations to the robustness of the ICP algorithm to pose offset error. The 

additions to the ICP registration process discussed in Section 5.5 significantly 

improve the robustness to offset error. Random seeding has the effect of moving the 

pose estimate within the heat map, increasing the chance of it falling within the 

successful global optimization region. The segmentation technique also improves 

robustness by producing multiple registration scenarios, again improving the chance 

of the pose estimate falling within the successful global optimization region. 

 

To further improve the long term localization results produced by the scaled vision-

based bearing-only SLAM algorithm, a technique referred to as ‘localization path 

refinement’ is implemented. The technique is possible due to the long distance 

measurements provided by the 3D laser scanner. The system begins by taking an 

initial stationary 3D scan. The vehicle then moves to the subsequent scan location 

while tracking its motion using vision-based localization. Vision-based localization, 

like all forms of SLAM, is prone to drift and so features further from the origin 

increase in locational uncertainty. Upon reaching the destination, a second 3D laser 

scan is performed and the rough position of this scan is supplied by the localization 
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result. The rough initial pose estimate is used as the starting point for ICP, resulting 

in convergence and producing a highly correlated point cloud registration. After 

registration, the position of the second scan relative to the first scan is known to be 

accurate to a matter of millimetres. This accuracy is a vast improvement over the 

initial pose estimate which can vary by as much as 4.5 meters and 16° over a 20 

meter traverse. The ICP registration accuracy can therefore be passed to the vision-

based localization to improve the current position estimate significantly, resulting in 

the effect we refer to as ‘localization path refinement’. 

 

 

 
Figure 6.4 – The localization result (blue) from vision-based localization without ICP path refinement (top) and with 

localization path refinement (bottom). The approximated ground truth is also shown (green) and triangles represent the expected 

and actual scan locations. 

 

The effects of localization path refinement in the multisensor SLAM system can be 

seen in Figure 6.4. The top image shows the measured localization path relative to 

the ground truth when no refinement is performed. The ground truth was determined 

from survey results of the scan locations and the approximately straight line 

trajectory of the vehicle between scans. The bottom image shows the effect that 

passing the positional information produced by registration to the localization 
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algorithm has on the localization result. There is a significant improvement when 

compared to the ground truth. The most significant deviation occurs between scans 3 

and 4. This area of ground was paved in exposed brickwork and the vehicle used to 

transport the sensors had no suspension, resulting in image blur due to the vibration 

of the vehicle as it traversed this area. The image blur degraded the quality of the 

localization result, yet the quality of the pose estimate was still sufficient to perform 

successful registration. 

 

 

 
Figure 6.5 – A cross section of the registered architecture building dataset without any rendering (top) and with rendering from 

the omnidirectional camera (bottom). 
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Another advantage of the fusion of 3D laser scanner and omnidirectional camera for 

map building is the ability to render the point cloud using information from the 

omnidirectional image. Since every scan location has an omnidirectional image 

recorded at the same point, the bearing information of each point in the point cloud 

can be used to find the associated RGB pixel colour from the image. Rendering a 

point cloud can provide a host of additional information during the map building 

process and makes the resulting large scale map look familiar to an observer. An 

example of a point cloud with and without rendering can be seen in Figure 6.5. 

 

6.4 Processing Time 

For the proposed multisensor SLAM system to be a genuine option for the large 

scale mapping of underground mining systems, there are constraints on the execution 

times which must be adhered to. If the system is to be competitive with the currently 

available semi-autonomous techniques for laser based 3D mapping, the processing 

time for data collection and map building must be similar or even faster. This section 

will therefore examine the amount of time required for the full mapping process to 

take place, from initial environment preparation, to final scan alignment. An 

approximate value will be produced for the amount of time per scan; this will allow 

time calculations for projects of any size. 

 

The conventional map registration technique will be examined first and used as a 

baseline comparison for the results obtained later in the section for the fully 

autonomous multisensor SLAM system. The semi-autonomous conventional process 

begins with the initial preparation of the environment to be scanned, this includes 

setting up the targets used during scan alignment and mounting and levelling the 

laser scanner. Targets may be reused in multiple scans; however, the laser levelling 

process must occur for every individual scan. An estimate of four minutes per scan 

will be used to cover time needed for laser levelling, transport to the next scan 

location and part of the overall target setup time. 

 

The scan times for the 3D laser itself will be based upon the times required for a 

Leica C10 to perform a full 3D scan. Table 6.2 shows the scan times based on the 
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density of the resulting point cloud. For the following calculations it will be assumed 

that a medium density scan is performed, requiring a scanning time of 9.8 minutes. 

Finally, the scans must be registered. The registration process begins with the manual 

identification and scanning of the targets within the environment, this process 

requires approximately two minutes per target. On average, three targets are required 

to perform alignment, so the target identification and scanning time totals about six 

minutes per scan. The time taken for the actual registration step in the accompanying 

Leica Cyclone software is negligible due to the extremely accurate initial pose 

supplied by the targets. Therefore, the total time required to semi-autonomously 

acquire and register a scan is approximately 20 minutes. 

 

 

Density 

Horizontal 

Angular Res. 

Vertical 

Angular Res. 

Maximum 

Scan Rate 

 

Time 

Low 0.115° 0.115° 50,000 points/s 2.4 min 

Medium 0.057° 0.057° 50,000 points/s 9.8 min 

High 0.029° 0.029° 50,000 points/s 39.2 min 

Highest 0.012° 0.012° 50,000 points/s 245.0 min 
Table 6.2 – Scan times for the Leica C10 3D laser scanner. 

 

The generation of a large scale 3D map of an underground mining environment using 

our multisensor mapping system is a different process to that required for the 

conventional mapping technique. There is no environment preparation required and 

so no time is lost prior to laser scanning commencement. The time required for a 

single full 3D scan will again be based on the Leica C10 medium density scan 

processing time, i.e. 9.8 minutes. The time required to move between scan locations 

is based on the speed of the vehicle carrying the equipment. Assuming a vehicle 

speed of approximately 5km/h (around walking speed) the time taken to traverse a 

scan offset distance of 20 meters would be 14.4 seconds. 

 

The monocular SLAM algorithm by Civera et al. is designed to work in real-time 

and has a reported processing time of 21ms per frame when tracking 12 features at 

30 frames per second (fps) and with a state vector containing 300 elements on a 

1.8GHz Pentium laptop [83]. Our own implementation of Civera’s algorithm has not 
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yet been optimized for real world deployment. However, based on Civera’s 

processing time calculations, a predicted processing time for our own algorithm may 

be approximated. Our vision-based localization algorithm tracks 50 features on 

average, at 15 fps and has a state vector containing 550 elements. Using Civera’s 

calculations, the approximate expected times would be: image acquisition and feature 

extraction: 7ms, EKF prediction: 4ms, feature matching: 17ms, EKF update: 31ms. 

The total processing time per frame would therefore be 59ms which is the equivalent 

of about 17 fps. The use of SIFT for feature extraction and the spherical camera 

model conversion by Rituerto et al. will slow processing times, but on a more 

powerful modern PC running at 2.8GHz, an optimized version of our algorithm 

should run in real-time using a camera recording at 15 fps. This means that no 

additional time would be required to perform localization apart from the time already 

required to traverse the distance between scan locations. 

 

To correctly scale the localization result, a depth image must be produced, as 

described in Section 6.2. The current Matlab implementation of the depth image 

production algorithm can compute and store cloud data at up to 90,000 points per 

second. This means that if the algorithm could have access to the laser points as the 

scan is occurring, the depth image could be produced during the acquisition of the 

laser data. Since the laser scan rate is only 50,000 points per second, no additional 

time would be required for the production of the depth image. 

 

The final stage of the multisensor SLAM system process is the registration of the 

newly acquired data to the existing map. Since path planning is not an aspect of this 

SLAM system, registration does not need to be performed as soon as the new laser 

data is collected. The registration step can therefore be performed with a one scan 

lag: the registration of a new scan will occur while the next scan is being recorded by 

the 3D laser. The average time required to register a new point cloud from the 

architecture dataset, based on the ICP implementation mentioned in Section 5.5.1, is 

5.5 minutes. Since the registration time is less than the laser scanning time of 9.8 

minutes, no additional processing time is required. The total time required to 

autonomously acquire and register a point cloud is equal to the scan time plus the 

travel time to the next scan location. Since the scan time and travel time are fixed, 

the SLAM system can operate as fast as possible with current sensor limitations. This 
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is a notable improvement over the conventional registration technique which requires 

the same scan and travel times plus an additional 10 minutes to register each new 

scan. 

 

6.5 The Mining Environment and Dynamic Shadows 

The target application for our multisensor SLAM system is the autonomous mapping 

of underground environments. There are unique characteristics of underground 

environments that greatly increase the difficulty of performing robust vision-based 

localization. The detrimental effects experienced when collecting an underground 

dataset for the evaluation of the multisensor SLAM system included large amounts 

of visual occlusion, large regions of complete darkness and oversaturated brightness, 

lens flares from vehicle lighting and many dynamic shadows. These issues can be 

traced back to two main problems: visual occlusion or dynamic lighting. 

 

Visual occlusion can be addressed simply by an alteration in hardware as discussed 

in Section 8.2. However, poor lighting is a serious and common problem in 

underground environments. Regions of complete darkness and oversaturation reduce 

the useful portion of the visual sphere, yet have no other detrimental effect on the 

vision-based localization process. Conversely, lens flares and dynamic shadows can 

cause major problems due to the feature detection algorithms identifying features on 

dynamic illumination artefacts, including shadows and lens flares. The motion of 

these features can contradict the tracking of the scene, resulting in the corruption of 

the localization path. In order to perform robust vision-based localization in these 

situations, a technique is required to remove the negative influence of these lighting 

conditions. 

 

Colour information is available in most vision-based localization tasks, yet is rarely 

utilized due to the use of monochrome images by popular feature extraction 

algorithms. Chapter 7 investigates the incorporation of colour information for the 

detection and removal of harmful dynamic lighting effects and then applies the 

derived techniques in vision-based localization scenarios. 
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Chapter 7 Vision-Based SLAM under Dynamic Illumination 

7.1 Introduction 

The use of supplementary information in feature extraction and matching is an 

important addition to vision-based SLAM in environments with poor lighting 

conditions. Underground mining tunnels are prone to illumination artefacts such as 

lens flares and dynamic shadows caused by the regular use of dynamic light sources 

(see Figure 7.1). These lighting characteristics are vastly different to the conditions 

used for the evaluation of most feature extraction algorithms [32], [28], [30], [29]. To 

overcome the detrimental effects of these lighting conditions, additional information 

is required to distinguish reliable visual features from illumination artefacts.  

 

There is currently no complete solution to the problem of vision-based localization 

under dynamic illumination; however, many research groups have attempted to 

improve robustness. To improve illumination robustness in a vision-based object 

recognition task, Burghouts and Geusebroek integrate the Gaussian opponent colour 

model into SIFT [84]. The model consists of intensity, red-green and yellow-blue 
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channels. The separation of intensity enhances illumination invariance and results in 

improved matching when compared to standard SIFT over a range of lighting 

conditions. This work was aimed at a general object recognition problem where the 

constraints on computation time are less strict than those involved in real-time 

applications such as the real-time localization in our multisensor SLAM system. 

 

 
Figure 7.1 – An example of the lighting conditions in an underground mining environment. This image is from the sequence 

used for evaluation in Chapter 8. 

 

Another approach to improving illumination robustness in localization is 

demonstrated by the promising results achieved by Silveira and Malis by modelling 

illumination change as a surface that can evolve over time [85] [86]. The model is 

combined with projective geometry to produce basic planar visual tracking. This 

approach requires no a priori knowledge about the light source(s) or the subject 

surface materials. A planar feature in an image is ‘warped’ to match the same feature 

seen from a different viewpoint in a subsequent image. The ‘warp’ required to match 

the features is then used to perform basic localization. The need for high quality 

planar features is the limiting factor of this technique, preventing application in 

underground mining environments despite its illumination robustness.  

 

Visual sensors can also be supplemented with information from other external 

sensors to reduce the impact of dynamic illumination. Sunghwan et al. fuse stereo 

vision with sonar to produce a hybrid indoor SLAM system that is partially invariant 

to lighting conditions [87] [88]. Errors in vision-only localization occur when 



7.2 Monochrome Localization 107 

 

stationary features appear to ‘move’ due to a change in lighting conditions. EKF 

based slam compensates for this movement by unnecessarily adjusting the location 

estimation of the feature. The fusion with depth data negates this compensation by 

keeping an accurate depth estimate of the feature, resulting in the apparent feature 

movement being ignored. This is an effective approach to illumination invariance, 

but is limited by the poor range and accuracy of sonar, as well as the need for a 

secondary sensor and sensor fusion algorithms. 

 

Finally, a priori information can be used to improve localization robustness to 

changing lighting conditions. Bischof et al. [89] use an illumination insensitive 

eigenspace approach to robustly recognize objects under varying lighting conditions. 

The recognition algorithm is trained using multiple images of an object under various 

lighting conditions, resulting in an eigenspace representation that is combined with a 

randomized voting algorithm. Steinbauer and Bischof used this approach on images 

from an omnidirectional camera to improve localization [90]. A set of training 

images with known locations were combined with robot orientation odometry data to 

aid matching and localization. Since our applications involve unstructured and 

unknown environments, it is not appropriate to depend on a priori information. 

 

The lack of a robust vision-based localization technique for dynamically illuminated 

underground environments led to the development of our own technique. This 

chapter will begin with a report on the difficulties of using monochrome images for 

vision-based localization in environments with dynamic illumination. This is 

followed by an investigation into the use of colour information to improve robustness 

to dynamic illumination in localization tasks. The development of two novel 

techniques to improve illumination robustness based on Horprasert’s chromaticity 

colour model [91] is then discussed. Finally, the performance of the two techniques 

is examined through a series of computer generated and real world evaluations. 

 

7.2 Monochrome Localization 

The feature detection approaches used by both SIFT and FAST corner detection (as 

discussed in Section 2.3.3) are highly unreliable when implemented on datasets with 
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significant illumination variation. The difference of Gaussian approach used by SIFT 

to extract scale invariant features cannot differentiate between object based features 

and illumination based artefacts. A shadow boundary will produce a difference of 

Gaussian feature similar to that produced by the edge of an object. This is 

highlighted in Figure 7.2(b) where the stalk of the apple produces a response similar 

to that produced by an intersection of shadows projected on the background (see 

Figure 7.2(a) for original reference image). FAST corner detection uses the 

monochrome version of the image and encounters the same difficulties as SIFT when 

differentiating shadow based artefacts from object features. The features shown in 

Figure 7.2(c) both contain strong instances of FAST corners yet are the same 

example features noted in the SIFT image, one feature represents an object corner 

and the other an intersection of shadows. 

 

 
(a) The unaltered reference image. 

 
(b) Features on the Difference of Gaussians image used by SIFT. 
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(c) Features on the monochrome image used by FAST corner detection. 

 
Figure 7.2 (a) The original unaltered image containing a dominant object and shadow used for feature extraction by SIFT and 

FAST corner detection. (b) Two potential features identified from the Difference of Gaussians image, both contain strong 

criteria for feature detection; however, one is object based and one is shadow based. (c) The same two features identified in the 

Difference of Gaussians image are shown here to also produce strong selection criteria during FAST corner detection. 

 

The inability to differentiate object features from shadow features results in 

erroneous localization in environments with dynamic illumination. In monocular 

vision-based localization, a stream of images from a single camera is the only 

information used for localization. Features are extracted from each image, matched 

between frames and tracked while within the camera’s field of view. Feature 

movement that is contradictory to the actual movement of the camera will impair the 

resulting localization. Inconsistent feature movement occurs when shadow features 

move independently to object features due to a dynamic source of light.  

 

The effect that dynamic illumination has on localization can be seen in Figure 7.3. A 

camera moving in a straight line, from left to right, observes a computer generated 

scene containing a chess set that is lit via a dynamic light source. The use of 

computer generated scenes for evaluation is discussed in Section 7.4.2. Two images 

from the computer generated sequence can be seen in Figure 7.3(a) and (b). The light 

source moves from behind the scene to directly overhead while casting dynamic 

shadows as illustrated in Figure 7.3(c). The ground truth for the camera movement 

can be seen in Figure 7.3(d). The resulting localization path contains significant 

distortion due to the movement of the primary light source (Figure 7.3(e)). The result 

is significantly different to the localization path produced under static lighting 
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conditions which can be seen in Figure 7.3(f). The scale in Figure 7.3 (d) – (f) is 

dimensionless as the scene is computer generated. Consistent scaling was achieved 

by identifying common features (represented as ellipsoids) within each localization 

result. 

 

  
(a) First image from the computer generated sequence. (b) Last image from the computer generated sequence. 

 

 

 

 

(c) Depiction of scene. (d) Camera movement ground truth. 

  
(e) Dynamic illumination localization path. (f) Static illumination localization path. 

  

Figure 7.3 (a) The first image from the computer generated sequence. (b) Last image from the sequence. (c) A depiction of the 

scene, including the camera motion path and the path of the moving primary light source. (d) The ground truth of the camera 

motion. (e) The localization path produced when the scene has dynamic illumination. (f) The localization path produced when 

the scene has static illumination. 
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The erroneous localization seen in Figure 7.3(e) is a result of the monocular SLAM 

algorithm assuming that it is operating within a primarily static environment. The 

algorithm uses a RANSAC based filter to remove features that it considers to be 

based on a dynamic source. However, dynamic features created by a moving light 

source are uniformly distributed across the scene and move in a consistent manner, 

making them impossible to isolate using traditional motion model based filtering. 

The algorithm resolves the two types of motion by combining them into the curved 

path seen in Figure 7.3(e). To correct the localization, an alternative approach that 

differentiates object based features from illumination artefacts is required. 

 

7.3 Colour Information for Shadow Detection 

Colour information is readily available and can be easily integrated into feature 

descriptors to increase the constraints on feature extraction and matching to improve 

robustness to dynamic illumination. Colour information can be utilized to determine 

if a feature is based on a variation in illumination or the edge of an object. A feature 

that is extracted from the edge of a shadow is likely to have a variation in perceived 

intensity only, that is, the colour difference between pixels on either side of the 

feature ‘edge’ are separated by a shift in intensity only. Alternatively, features 

extracted from the edges of objects will contain a variation in true colour – a colour 

change that is independent of intensity levels. Therefore, in order to correctly 

distinguish between physical features and illumination artifacts, it is desirable to 

measure the true colour of the features.  

 

Swain and Ballard were the first to use a three dimensional RGB histogram to 

describe pixel colour values for recognition, known as ‘colour indexing’ [92]. 

Finlayson, Chatterjee and Funt expanded upon this approach to produce basic, 

lighting invariant, object recognition using ‘colour angles’ [93]. They demonstrated 

improved efficiency over colour indexing, at the cost of number of correct 

recognitions. An alternative approach trialled by Geusebroek et al. estimated the 

original colour of an object mathematically given known lighting conditions [94]. 

This technique was robust to viewing direction, surface orientation, highlights, 

illumination direction, illumination intensity, illumination colour and inter-reflection, 
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but was limited to a range of known materials and strictly controlled lighting 

conditions.  

 

Successful shadow detection in a dynamic environment was achieved by Horprasert, 

Hardwood and Davis to detect moving objects against a static background [91]. An 

RGB histogram compared successive pixel colours between frames to produce a 

colour model based on two components: brightness and chromaticity. These two 

components were used to examine a change in pixel colour over time such that a 

differentiation could be made between static background, shadow, and dynamic 

foreground. The concept behind the technique is that a shadow cast on an object will 

result in a large change in brightness, whereas the chromaticity difference between 

pixels will remain small. Figure 7.4 demonstrates that shadow and object features 

extracted from an image can have similar monochrome responses, yet the shadow 

feature can be easily distinguished as being a variation in colour intensity alone. 

 

 
Figure 7.4 – Two features are extracted from the image, one based on the edge of a shadow and the other on the edge of an 

object. The response in monochrome looks similar, however the colour image clearly shows that the shadow based feature has a 

variation in colour intensity only. The object based feature contains a variety of different colours. 

 

The chromaticity model proposed by Horprasert et al. [91] compares the distortion 

between two pixel colours in RGB space to determine the difference in ‘true’ colour. 

A line OE passing through the origin and the first pixel colour (E = [ER, EG, EB]) is 

called the expected chromaticity line and is used to determine the distortion in 

chromaticity and brightness. If the second pixel colour (I = [IR, IG, IB]) is on this line, 

then there is a distortion in brightness only (α), otherwise there is also a distortion in 

chromaticity (CD), see Figure 7.5. 
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Figure 7.5 – Determining the brightness and chromaticity distortion between two colours (E, I) [91]. 

 

The brightness distortion (α) is a scalar value which represents the point on the 

expected chromaticity line that is closest to the comparative colour (I). It is defined 

as: 

  ( ) EIIE αα α −= minarg:, . (61) 

 

Brightness distortion will be equal to 1 if the comparative colour has the same 

brightness, less than 1 if it is darker and greater than 1 if it is brighter. Chromaticity 

distortion (CD) is the orthogonal distance between the expected chromaticity line and 

the comparative colour (I). The chromaticity distortion of the second pixel is given 

by: 

  EIEICD ααα −=−= min: . (62) 

 

Our approach applies this colour model to features extracted from images rather than 

individual pixels. To make the technique compatible with multiple feature extraction 

algorithms such as SIFT and FAST corner detection, a 3x3 grid is used to represent 

the colour information of extracted features. The 3x3 grid is scaled to the magnitude 

of the extracted feature, allowing for the use of scale invariant features such as those 

produced by SIFT. The feature is divided into 9 grid squares (3x3) and the mean 

colour of all of the pixels contained within the grid square is stored as a single RGB 

representative. Figure 7.6 demonstrates this process. 
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Figure 7.6 – Extracted features are broken into a 3x3 grid; the pixel colours within each grid square are then averaged to 

produce a 3x3 colour representation of the feature. 

 

The colour of a feature (E) is represented by the mean RGB values of the 3x3 grid: 
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The mean colour of the feature is characterized by: 
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The standard deviation of the RGB values for each feature is given by finding the 

standard deviation of each row of E. 
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Dividing each pixel value by the standard deviation of the entire feature produces an 

output scaling that emphasizes the difference between changes in brightness and 

changes in chromaticity. This emphasis simplifies the thresholding process. 
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7.3.1 Shadow Feature Removal 

The chromaticity distortion colour model can be used to differentiate between object 

based features and illumination artefacts. This information can be applied to 

localization tasks to improve robustness by identifying and removing features that 

are the result of illumination alone. Dynamically illuminated environments contain 

dynamic shadows. The tracking of dynamic shadows will lead to erroneous 

localization; therefore, the removal of features based on dynamic lighting artefacts 

will improve the robustness of the localization system.  

 

Both SIFT and FAST corner detection extract features from the ‘edges’ of objects in 

the image. These edges are therefore the focus of identifying a feature as shadow-

based or object-based. To determine the likelihood of a feature being extracted from 

a shadow, the chromaticity distortion of the feature is calculated. The RGB value of 

each square in the 3x3 grid representing feature colour is compared to the mean 

colour of the entire feature. The greatest chromaticity distortion is then compared to 

a threshold to identify the feature as shadow-based or object-based. A feature 

extracted from the edge of a shadow will have a low chromaticity distortion due to 

the ‘edge’ containing a variation in illumination only. A feature extracted from the 

edge of an object will usually have a higher chromaticity distortion due to the edge 

containing a variation in colour, as seen in Figure 7.7. 

 

 
Figure 7.7 – The 9 squares from the 3x3 grids representing 2 different features are compared to the mean colour of each feature. 

The chromaticity distortion between each pixel and the mean feature colour is then compared to a threshold (shown in blue). If 

the feature has pixel values above the threshold, the magnitude of the chromaticity distortion suggests that the feature is object 

based. 
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Brightness and chromaticity distortion are determined by comparing each of the 9 

squares in the 3x3 feature grid (Ei) to the mean colour value of the overall feature. 
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The standard deviation of the feature is used here to emphasize small changes in 

colour across the feature. Even a minor colour deviation in a feature with only a 

small range of colour will produce a large chromaticity distortion vector. Therefore, 

only features that are truly illumination artefacts will have a chromaticity distortion 

range below a selected threshold (τSFR). These features are removed as they are not 

considered to be robust to changes in illumination. The remaining features can then 

be used for matching, increasing the probability of illumination robustness during 

localization. 

 

7.3.2 Colour Based Matching 

Colour information can also be used to improve the robustness of feature matching 

between images. Both SIFT and FAST corner detection use monochrome images for 

feature matching and therefore can be misled by lighting conditions that cause 

different objects to look similar in grey scale, as in Figure 7.8. A correctly matched 

feature will exhibit a small difference in average true colour, as opposed to an 

incorrectly matched feature which will have a significant difference in average true 

colour.  

 

Through the use of the chromaticity distortion model to determine the true colour of 

a feature, mismatches can be identified and removed. The feature filtering occurs 

after the monochrome feature matching algorithm has finished producing matches; 

since the filtering is a post-processing task and not directly integrated into the 
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matching algorithm, the technique can be easily applied to any matching algorithm 

with little modification. 

 

 
Figure 7.8 – Two different features can look similar in monochrome, leading to mismatches being produced by the standard 

matching algorithms employed by SIFT and Fast corner detection. Comparing the colour information of matched features can 

reduce the number of mismatches. 

 

To identify a match as being of similar average true colour, the chromaticity 

distortion between the matched features is calculated and compared to a threshold. 

The distortion value should be low, regardless of lighting conditions, if a correct 

match has been made. A standard feature matching algorithm is used to produce a set 

of matched features. The brightness and chromaticity distortion is determined by 

comparing the colour of one feature (E) to the colour of the matched feature (I). 
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The standard deviation of colour across each of the features is again used to 

emphasize minor differences in colour. This is particularly powerful in scenes with 

recurring similar features as even slight differences in colour result in large 
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chromaticity distortion vectors. Conversely, matched features that have a 

chromaticity distortion above a selected threshold (τCBM) are discarded as they are 

considered likely to be a false match due to lighting conditions. 

 

7.3.3 Comparison of Colour Models 

The chromaticity distortion model has never before been applied to a localization 

task. To confirm that it was an appropriate choice of colour model, it was compared 

to two other models which separate colour from intensity – HSV and colour angles. 

Hue Saturation Value (HSV) is a cylindrical coordinate representation of RGB 

colour. It presents hue on a circular colour chart and then separately defines 

saturation and ‘darkness’ values. Alternatively, colour angles describe the difference 

between two colours in RGB space as the angle between the two RGB vectors. The 

colour models are evaluated based on their ability to distinguish shadow based 

features and object based features. The image of a handle casting a shadow on a door 

(Figure 7.9(a)) was used to compare the three techniques. 

 

To commence the evaluation, SIFT is used to identify about 3000 features in the 

image. Each colour model is then tuned to reject around 1000 features based on a 

comparison of each square in the 3x3 grid to the mean feature colour, as described in 

Section 7.3.1. The results in Figure 7.9(b-d) show that the chromaticity distortion 

model is the only colour model to correctly reject the features on the edge of the 

shadow and on the highlight. HSV and colour angles produced similar results, both 

poorly identifying the shadow and highlight. The chromaticity distortion technique 

was trialed on other images to test the repeatability of the results and similar 

outcomes were achieved.  

 

Without the addition of the standard deviation seen in Equation (66) and (67) 

chromaticity distortion produced similar results to colour angles and HSV. The 

reason for standard deviation being applied to chromaticity distortion rather than 

either of the other models came down to processing time. On average chromaticity 

distortion was processing three times faster than colour angles. The conversion of the 

RGB image to HSV using a lookup table significantly exceeded the chromaticity 

distortion processing time before any calculations using HSV values could be 
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produced. Since the focus of this work was on real-time applications for localization, 

chromaticity distortion was the obvious choice. 

 

  
(a) Original Image. (b) Chromaticity based classification. 

  
(c) HSV based classification. (d) Colour angles based classification. 

Figure 7.9 (a) An image with a shadow and highlight used for colour model comparison. Around 3000 SIFT features were 

extracted from the image, then 1000 of those features were removed that were identified as a distortion in illumination alone 

based on (b) the chromaticity distortion colour model, (c) the HSV colour model and (d) the colour angles colour model. 

 

7.4 Initial Technique Evaluation 

The chromaticity distortion colour model proved to be an ideal choice for the 

identification of features caused by illumination artefacts. The next stage of the 

evaluation is to apply the two techniques derived in Sections 7.3.1 and 7.3.2 to a 

simple feature extraction and matching task. Shadow Feature Removal (SFR) and 

Colour Based Matching (CBM) are first applied individually and then in tangent to 

fully assess the performance of both techniques. 
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7.4.1 Evaluating Shadow Feature Removal 

The first level of testing for Shadow Feature Removal (SFR) is the removal of 

shadow based features from a single image. The chromaticity distortion between 

each square in the 3x3 feature colour grid and the mean feature colour was 

determined and compared to a threshold, as detailed in Section 7.3.1. Features with a 

chromaticity distortion below the threshold were removed. Figure 7.10(a) contains 

all of the features extracted by SIFT while Figure 7.10(b) shows the SIFT features 

retained based on their chromaticity distortion values. Features are mainly retained 

on the edges and patterning of the main object (the apple), whereas features are 

mainly removed from the edges and body of the shadows. 

 

  
(a) All features identified by SIFT. (b) Features retained by chromaticity distortion filter. 

Figure 7.10 (a) SIFT is used to extract features from the image, the feature centres are shown on the image while magnitude and 

orientation are hidden to reduce clutter. (b) Features that pass through the chromaticity distortion filter and are classified as 

object based. 

 

7.4.2 Evaluating Colour Based Matching 

To analyze the use of colour information to improve the robustness of standard 

monochrome feature matching algorithms, a computer generated dynamic 

illumination scenario was developed in POV-Ray (the Persistence of Vision 

Raytracer http://www.povray.org). This allowed explicit control over the light source 

properties and position. By controlling the camera and light source, two scenes could 

be produced that were identical apart from lighting conditions (see Figure 7.11). This 

could be used to assess the effectiveness of the technique, as correct feature matches 

would occur at the same x and y coordinates in both images.  
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Figure 7.11 – The two images produced by POV-Ray used to assess colour based matching. The only difference between the 

images is the position of the light source. 

 

SIFT features were extracted from both images. The standard matching algorithm 

was executed first to produce a benchmark for testing. Colour Based Matching 

(CBM) was then employed to determine the true colour difference between matched 

features. If the difference was above a threshold the features were reclassified as 

mismatches. This technique does not produce any additional matches; rather it only 

removes false positives produced by standard matching algorithms. This post-

processing characteristic makes the technique applicable to any matching algorithm 

that produces a list of matched features. 

 

Threshold Total Matches Mismatches % Error 

No Threshold 954 168 17.6 

τCBM = 0.1 373 24 6.4 

τCBM = 0.05 250 6 2.4 
Table 7.1 – Matched features that have a chromaticity distortion below the threshold τCBM are retained. Tighter thresholds 

reduce the total number of matches but also reduce the percentage error. 

 

The results in Table 7.1 demonstrate that despite the reduction in the number of total 

matches, the percentage error is greatly reduced. This evidence shows that standard 

monochrome feature matching algorithms can often be misled by colours that appear 

similar in grey scale. In fact, 96% of the mismatches between the two images seen in 

Figure 7.11 can be correctly identified through the use of colour information. The 

total number of feature matches remaining after the filtering is still significant and 

would actually need to be reduced further for real-time localization applications. 
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7.4.3 Combining Both Techniques 

Shadow feature removal and colour based matching can work together to further 

improve the effectiveness of feature matching between images with variations in 

illumination. To test the effect that a combination of both techniques has on the 

feature matching accuracy, POV-Ray was again used to produce a series of identical 

images with variations in lighting (see Figure 7.12). SIFT was used to extract 

features from the images which were then filtered using SFR to remove shadow 

based features. The remaining features were then matched using the standard feature 

matching algorithm. The list of feature matches was then analyzed using CBM to 

further reduce the number of mismatches. The results from combining both 

techniques can be seen in Table 7.2. 

 

 
Figure 7.12 – The four images used to assess a combination of both chromaticity distortion based techniques. Each image is 

identical apart from variations in illumination. Correctly matched features will therefore occur in the same x and y coordinates 

in each image. 
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Images Threshold Total Matches Mismatches % Error 

A – B No Threshold 954 168 17.6 

 τSFR=1.4, τCBM=0.1 105 6 5.7 

 τSFR=1.4, τCBM=0.05 71 1 1.4 

A – C No Threshold 657 147 22.4 

 τSFR=1.4, τCBM=0.1 75 5 6.7 

 τSFR=1.4, τCBM=0.05 58 0 0 

A – D No Threshold 484 145 29.9 

 τSFR=1.4, τCBM=0.1 48 3 6.2 

 τSFR=1.4, τCBM=0.05 33 1 3.0 
Table 7.2 – Features are removed initially if they are below the shadow feature removal threshold (τSFR). After initial matching 

features are also removed if they have a difference in chromaticity above the colour based matching threshold (τCBM). 

 

The results show a dual improvement: a reduction in the percentage of incorrect 

matches and an output containing a small number of high quality matches rather than 

a large number of low quality matches. The percentage of mismatches dropped from 

17.6% to 1.4% for the images with the smallest change in lighting (A – B) and from 

29.9% to 3.0% for the images with the largest change in lighting (A – D). The 

number of total matches also dropped from 954 to 71 for the images A – B and from 

484 down to 33 for images A – D. These numbers of features are far more suited to 

real-time applications than the total number of matches without filtering. Figure 7.13 

contains a plot of percentage error throughout the experiment. 

 

 
Figure 7.13 – A plot of percentage error across all experiments. The effects of shadow feature removal and colour based 

matching are analysed individually as well as in unison. The ‘No Threshold’ results represent the unfiltered percentage error. 
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7.5 Simulated Performance 

The ability of shadow feature removal and colour based matching to improve feature 

matching accuracy was demonstrated in Section 7.4. However, the two techniques 

were designed for a localization task based on a series of monocular images. To 

adequately assess the two techniques, they must be proven to be effective in a 

dynamically illuminated localization task. POV-Ray was again used to produce a 

series of evaluation sequences containing different combinations of camera 

movement and environmental lighting conditions. These sequences were used to 

assess the performance of shadow feature removal and colour based matching in a 

range of localization tasks. 

 

7.5.1 Static Camera with Dynamic Illumination 

The simplest way to examine the effect that dynamic illumination has on localization 

is to test a static scene with a stationary camera and dynamic illumination. The 

correct localization path is for the camera not to move, despite the movement of 

shadows within the scene. FAST Corner Detection is used to extract features for the 

localization applications, so the chromaticity distortion technique will be applied to 

the features extracted by this algorithm. The SLAM implementation for this 

experiment was based on the six degree of freedom monocular EKF SLAM 

algorithm written by Civera et al. [51]. The algorithm was only modified by the 

addition of the shadow feature removal and colour based matching algorithms. The 

scene analyzed in simulation contains the same chess board as Figure 7.11. The 

camera remains stationary while the single light source moves from slightly behind 

the board to directly overhead, casting the dynamic shadows seen in Figure 7.14(b). 

 

The results shown in Figure 7.14 are a top view representation of the 3D localization 

produced by the monocular SLAM algorithm. Each image shows the localization 

path as a line starting at the origin (0, 0) and finishing in the center of the triangle 

representing the final orientation of the camera. The ellipsoids in each image center 

on a tracked feature and represent the locational uncertainty of that feature. The 

depth values are dimensionless as the scene is computer generated; however, the 

results are scaled uniformly to allow for comparison. 
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(a) Depiction of scene. (b) View from camera. 

  
(c) Localization path of standard SLAM algorithm. (d) Localization path of compensated SLAM algorithm. 

Figure 7.14 (a) Layout of the scene used to analyse the performance of the algorithms using a static camera under dynamic 

lighting. The light source moved from behind and slightly above the scene, to directly overhead. (b) The view of the scene from 

the static camera . (c) The localization path of the standard SLAM algorithm. The lack of features is due to the combination of 

tracked static object features and tracked dynamic shadow features causing feature depth estimates to erroneously drift off 

screen. (d) The localization path produced by the SLAM algorithm incorporating shadow feature removal and colour based 

matching. 

 

The results of running the uncompensated SLAM algorithm on the scene can be seen 

in Figure 7.14(c). As the shadows move towards the back of the scene, the camera 

localization assumes that they are stationary and therefore produces an erroneous 

localization path which moves the camera away from the features. This behavior 

resulted in the majority of the features drifting off the screen completely as their 

depth estimates are continually distorted. The localization path resulting from the 

addition of the chromaticity distortion based algorithms to the SLAM algorithm can 

be seen in Figure 7.14(d). Since the moving shadow features are adequately filtered 

during localization, the camera does not move from the origin. The long uncertainty 
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ellipsoids are due to the scene only being viewed from a single position, so no depth 

estimate of the features in the scene is possible. 

 

7.5.2 Dynamic Camera with Dynamic Illumination 

To fully assess the effect that chromaticity distortion filtering was having on 

localization, a dynamic scene with dynamic lighting needed to be evaluated. To 

complete the assessment accurately, a series of computer generated images was 

produced (using POV-Ray) to allow full control of camera movement and lighting 

conditions. The scenario was again based around the chess board in Figure 7.11. The 

camera moved with a constant velocity in a straight line parallel to the edge of the 

chess board, while the single light source moved from slightly behind the chess 

board to directly overhead, causing dynamic shadows.  

 

The plots seen in Figure 7.15 and Figure 7.16 are a top view representation of the 3D 

localization produced by the test algorithms. Each image is in the same format as the 

results in Section 7.5.1, showing the localization path, feature uncertainty ellipsoids 

and final camera orientation. The remaining lines point to features that have only 

been identified in a single image and therefore do not have a depth estimate.  

 

 

 

 

(a) Depiction of scene. (b) Baseline localization under static illumination. 

Figure 7.15 (a) Layout of the scene used to assess the performance of the two algorithms in a localization task with dynamic 

camera movement. The camera moves from the left of the chess board to the right. Meanwhile, the light source moves from 

behind and slightly above the board to directly overhead. (b) The localization path used as a baseline for comparison. The path 

was generated using the standard SLAM algorithm under static illumination. 
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(a) Uncompensated localization path. (b) Localization path with shadow features removed. 

  
(c) Localization path with colour based matching. (d) Localization path with both techniques implemented. 

Figure 7.16 (a) The localization path produced by running the uncompensated SLAM algorithm on the dynamically illuminated 

scene. (b) The localization path with shadow features removed before feature matching. (c) The localization path when feature 

matching is filtered using colour information. (d) The localization path resulting from a combination of both filtering 

techniques. 

 

The first test was conducted with a fixed light source to establish a baseline for 

comparison. The localization path shown in Figure 7.15(b) was in a straight line and 

there was no change in camera orientation. This was the expected localization path 

based on the earlier description of the camera movement through the scene. The 

second test introduced the dynamic light source and was run using the unfiltered 

SLAM algorithm. The dynamic shadows have a significant influence on the 

effectiveness of the localization, resulting in the unreliable path seen in Figure 

7.16(a).  

 

The third test removed shadow features identified by their chromaticity distortion. 

This approach produced a significant improvement in localization, yet still contained 

evidence of the error caused by the dynamic light source as seen in Figure 7.16(b). 

The fourth test used colour information to filter feature matches based on their 

chromaticity distortion. The localization path produced by this approach significantly 

reduced the error caused by the dynamic light source. The consequence of this 

improvement was a large reduction in the number of maintained matches, resulting in 

the discrimination between the displacement of this path and the baseline path 
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(compare Figure 7.16(c) and Figure 7.15(b)). The final test combined both filtering 

techniques. The resulting localization path seen in Figure 7.16(d) demonstrates the 

effectiveness of the approach. The distortion produced by the dynamic light source 

was completely removed and the high level of maintained features produced the 

correct displacement. These results demonstrate the effectiveness of the two novel 

techniques as approaches to overcoming the challenges of localization in 

dynamically illuminated environments. 

 

7.5.3 Noise 

Computer generated images are a useful way to quickly assess the performance of 

filtering based on chromaticity distortion; however, to completely assess the 

competence of the algorithm, camera defects need to be included that would be 

found in real world datasets. Images taken by an actual camera contain noise such as 

lens distortion, unfocused features, lens flare, graininess and poor contrast. These 

five types of noise were all added to the simulated dataset used in Section 7.5.2 to 

test the algorithm’s robustness. Figure 7.17 compares an image from the dataset 

before and after the addition of camera defects.  

 

  
Figure 7.17 – A comparison of an image with no noise (left) and an image with lens distortion, unfocused features, lens flare, 

graininess and poor contrast (right). 

 

The standard SLAM algorithm was first used to assess the effect that noise had on 

the uncompensated localization path. The results in Figure 7.18(a) show that the 

addition of noise has further deteriorated the original uncompensated localization 

path seen in Figure 7.16(a). However, the addition of noise has only a minor 

influence on the localization path resulting from the implementation of shadow 
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feature removal and colour based matching. A comparison of the noisy localization 

path in Figure 7.18(b) to the noiseless path in Figure 7.16(d) demonstrates the 

robustness of the two derived compensation algorithms. The next stage of assessment 

was to trial the algorithms on real world datasets with dynamic illumination. 

 

  
(a) Noisy localization from standard SLAM algorithm. (b) Noisy localization from compensated SLAM algorithm. 

Figure 7.18 (a) The localization path of the uncompensated SLAM algorithm on the noisy data sequence. It is substantially 

different to the data sequence without noise. (b) The localization path of the SLAM algorithm with shadow features removed 

and colour based matching on the noisy dataset. There is little difference when compared to the sequence without noise, 

demonstrating the robustness of the two techniques. 

 

7.6 Real World Performance 

Shadow feature removal and colour based matching were shown, through the use of 

simulation, to be highly robust to dynamic illumination during a localization task. 

The addition of simulated noise also did not impede the quality of the localization 

results. However, there is no substitute for real world environments, so the next level 

of testing was based on actual images recorded by a single camera from a Point Grey 

Ladybug 2. The images were heavily distorted and contained significant noise, 

allowing the full assessment of the robustness of the two techniques. 

 

7.6.1 Dynamic Camera with Dynamic Illumination 

To analyze real world performance, a dataset was recorded of movement through a 

scene with dynamic lighting as seen in Figure 7.19(b). The camera moves through 

the scene sideways in controlled laboratory conditions so that the ground truth could 

be accurately measured. The camera moves five meters to the left in a straight line, 

while the light source moves parallel to the camera yet at a slower speed producing 

shadows that drift away from the direction of camera movement (Figure 7.19(a)). 
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(a) The ground truth path of the camera and the primary light. (b) An image from the dynamic camera dataset. 

  
(c) Localization path from standard SLAM algorithm. (d) Localization path from compensated SLAM algorithm. 

Figure 7.19 (a) The ground truth for the scenario, the triangle represents the camera (with the orientation representing the 

camera orientation) which travels from the origin (0,0), 5 meters to the left (-5,0). The circle represents the light source which 

moves from half a meter to the left (-0.5,0) to 3 meters to the left (-3,0). (b) An example image from the test dataset of dynamic 

camera movement through a real world scene with dynamic illumination. (c) The localization path of the standard SLAM 

algorithm shows significant drift. (d) The localization path of the SLAM algorithm using shadow feature removal and colour 

based matching has minor drift. 

 

This dataset was first run through the uncompensated monocular SLAM algorithm 

and then the compensated algorithm. The localization results are again presented in 

the same format as previous results. Applying the uncompensated SLAM algorithm 

to the dataset produced accurate localization for a brief window of time, as expected 

by the slight illumination invariance characteristic of most feature extraction 

techniques. As the dataset continues, however, the tracking of dynamic shadow 

features leads to the incorrect localization path seen in Figure 7.19(c). Far superior 

results are produced by the algorithm incorporating shadow feature removal and 
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colour based matching (Figure 7.19(d)) where the localization path is highly 

correlated to the ground truth. The resulting map was manually scaled based on the 

real world distances of well-established visual features to enable a clear metric 

comparison with the ground truth. 

 

7.7 Algorithm Features 

Throughout the testing of shadow feature removal and colour based matching, many 

improvements were made to optimize performance. Automatically scaling thresholds 

were included to improve localization results and the code structure was optimized to 

increase real-time performance. An additional feature yet to be investigated is the 

ability to localize the primary light source(s) based on the positions and movement of 

shadow based features. This feature will be relinquished as future work as discussed 

in Section 9.2. 

 

7.7.1 Automatically Scaling Thresholds 

The thresholds required for improved localization using either shadow feature 

removal or colour based matching are dependent upon the colour range of the image. 

Images that are low in colour contrast need to have the shadow feature removal 

threshold relaxed, or else the majority of genuine features may be classified as 

shadows. Conversely, the colour based matching threshold must be stringent 

otherwise the colour difference between mismatched features may pass through the 

chromaticity distortion filter. To overcome this discrimination, automatically scaling 

thresholds were implemented based on the colour content of an image. The 

chromaticity distortion colour model was again utilized to determine the colour range 

of an image. The chromaticity distortion of a sample of random pixels was compared 

to the mean colour of the entire image. The standard deviation of the sample 

correlated with the colour range present in each image and was used to scale the 

threshold.  
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(a) Standard deviation of random pixel chromaticity 

distortions. 

(b) Path from standard SLAM. 

  
(c) Path from compensated SLAM with set threshold. (d) Path from compensated SLAM with auto-scaling 

threshold. 

Figure 7.20 (a) The colour range of each image in a sequence is determined by finding the standard deviation of the 

chromaticity distortion value of a random sample of pixels. (b) The localization path produced by the standard SLAM 

algorithm. (c) The localization path produced by the compensated SLAM algorithm with a set threshold. (d) The localization 

path produced by the compensated SLAM algorithm with an auto-scaling threshold. 

 

The standard deviation of 400 random pixels per image over a 100 image sequence 

can be seen in Figure 7.20(a). The five lines in the plot represent five executions of 

the random sampling algorithm to check for consistency. The localization path of the 

100 image dataset without any compensation can be seen in Figure 7.20(b), this is 

the same dataset as used in Section 7.6.1. The localization path of the sequence with 

a fixed shadow feature removal threshold of 1.0 can be seen in Figure 7.20(c). The 

fixed threshold cannot adapt to the range of colour contrast experienced during the 

sequence (illustrated in Figure 7.20(a)) and fails to robustly filter the shadow based 
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features. To improve this result, an automatically scaling threshold was applied to the 

dataset based on the standard deviation range seen in Figure 7.20(a). The standard 

deviation of each frame was scaled such that the resultant threshold was always 

between 0.5 and 1.5. These vales represent the extreme operating conditions of the 

filter. Below this limit, the majority of features are passed, making the filter 

redundant. Above the limit, a substantial number of features are classified as shadow 

features and are rejected, significantly increasing the processing time or even 

arresting the localization altogether. The localization path resulting from 

automatically scaling the threshold can be seen in Figure 7.20(d). The same approach 

can be applied to the colour based matching threshold, also improving localization 

precision. The thresholds required for the chromaticity distortion based filter can 

therefore be determined in real-time without prior knowledge of the dataset or 

lighting conditions. 

 

7.7.2 Real-time performance 

Vision-based localization is a task that must be capable of real-time implementation, 

otherwise it becomes redundant. In order to demonstrate the capabilities of the two 

chromaticity distortion techniques as genuine approaches to improve vision-based 

localization, they too had to be executable in real-time. The implementation of the 

two techniques was coded in Matlab. Since Matlab is designed for research and not 

for real-time deployment, significant improvements could be made to the execution 

times of the algorithms by converting them to C code. 

 

The results from the processing time tests can be seen in Table 7.3. Initially, the 

series of operations were executed in an unoptimized for-loop resulting in large 

processing times. The code was then modified so that all of the repetitive math work 

was completed using matrix operations. This significantly improved the resulting 

processing times. The total time required to run both shadow feature removal, colour 

based matching and to determine the scaling factor for automatically scaling 

thresholds is 0.00778s per frame. This accounts for 23.34% of the available 

processing time available when operating at real-time frame rates of 30Hz. The 

processing time is also consistent, as shown by the plot in Figure 7.21 where the 

optimized shadow feature removal algorithm was executed over 100 iterations. 
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Although there are some spikes in processing time, the variance is low and the spikes 

may be accounted for by running the test on a non-dedicated laptop. The laptop used 

for the evaluation had a 2.67GHz dual core processor. 

 

Code Processed Time Frequency %Resources @30Hz 

Unoptimized     

SFR 2873 Features 5.873s 0.17Hz 17619% 

CBM 506 Matches 0.2299s 4.35Hz 690% 

Optimized     

SFR 2873 Features 0.00641s 156Hz 19.23% 

CBM 506 Matches 0.00025s 3986Hz 0.75% 

Auto Threshold 400 Samples 0.00112s 890Hz 3.37% 

Combined All 0.00778s 128Hz 23.34% 
Table 7.3 – The processing time for both of the chromaticity distortion based filtering techniques. Both the optimized and 

unoptimized execution times are recorded. Shadow feature removal was executed on the 2873 features extracted from a 

standard test image. Colour based matching was executed on the 506 matches produced between two test images. The final 

column shows the percentage of processing resources consumed while running at 30Hz. 

 

 
Figure 7.21 – The processing time for the optimized shadow feature removal algorithm over 100 iterations. 
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Chapter 8  
 
Multisensor SLAM 
Results 

Chapter 8 Multisensor SLAM Results 

8.1 Large Scale Indoor Results 

For an initial evaluation of the effectiveness of our large scale 3D mapping system, a 

dataset was collected within the architecture building on the Curtin University 

Bentley campus. A Leica ScanStation 3D laser scanner was used to record a total of 

five 3D scans along the internal length of the building, approximately 20 meters 

apart. A cross-sectional view of each of the scans is shown in Figure 8.1. A Point 

Grey Ladybug 2 omnidirectional camera was also used to record a continuous stream 

of images as the sensor payload was moved between laser scan locations. 

 

This first test of our multisensor SLAM system was to successfully co-register the 

five laser scans from the architecture building, producing a cohesive large scale map. 

Initially, the laser scans have no known position or orientation information. The 

scans are provided with an approximate initial pose generated by the monocular 

SLAM algorithm described in Section 4.3 and scaled using the technique in Section 

6.2. The individual scans are then registered and rendered using the approach in 

Section 6.3 to produce a large scale 3D map. 
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Figure 8.1 – The five 3D laser scans recorded in the architecture building. The order of scans is 1 (top) to 5 (bottom). 

 

 

  
(a) Raw localization result of scan 1 → 2. (b) Raw localization result of scan 2 → 3. 

  
(c) Raw localization result of scan 3 → 4. (d) Raw localization result of scan 4 → 5. 

Figure 8.2 – The raw localization results from the four datasets collected by the Ladybug camera. The results have no scale at 

this stage as they are yet to be combined with the depth data recorded by the laser. 
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The position of the first scan is considered the global origin point for both the map of 

the building and the localization. The stream of images provided by the Ladybug 

camera during transit between scans is used for localization. Initially the localization 

result has no scale due to the dimensionless nature of bearing-only SLAM. The four 

dimensionless localization results can be seen in Figure 8.2. 

 

The laser information is then used to scale the localization results based on the depth 

measurements of well-established features, as described in Section 6.2. The correctly 

scaled localization results are shown in Figure 8.3. The final position and orientation 

information produced by the vision-based localization can be found in Table 6.1 in 

Section 6.3. 

 

  
(a) Scaled localization 1 → 2 (blue) vs ground truth (green). (b) Scaled localization 2 → 3 (blue) vs ground truth (green). 

  
(c) Scaled localization 3 → 4 (blue) vs ground truth (green). (d) Scaled localization 4 → 5 (blue) vs ground truth (green). 

Figure 8.3 – The localization results from Figure 8.2 after scaling based on the laser range data of well-established features. The 

ground truth is an approximately straight line path between surveyed scan locations. 
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The position and orientation information supplied by vision-based localization is 

used as the initial pose estimate for the Iterative Closest Point (ICP) algorithm, as 

described in Section 6.3. The resulting fitness scores for each of the five laser scans 

in recorded in Table 8.1. The fitness scores are the mean squared error of the nearest 

neighbour distance between point clouds. As such, the scores can only be compared 

between subsequent results from the same two point clouds. The large fitness score 

for scan 4 is due to a significant number of outliers with no correct alignment points 

in the other scans (primarily produced by trees scanned through windows in the 

building). These points could have been discarded; however we decided to include 

every point in every scan to maintain consistency. 

 

Registration 2 → 1 3 → 1/2 4 → 1/2/3 5 → 1/2/3/4 

Fitness Score (m2) 0.5746 1.0888 226.95 3.2754 

Avg. Neighbour Offset (m) 0.7580 1.0435 15.064 1.8098 
Table 8.1 – Fitness scores and average nearest neighbour offset distances for each of the four registration results from the 

architecture building dataset. 

 

The transformation resulting from the ICP algorithm is then applied to the 

localization result to reduce the impact of long term drift. A visual representation of 

the improvement to the localization result is available in Figure 6.4 in Section 6.3. To 

provide an estimated measurement of the localization improvement, the area 

enclosed between the approximated ground truth and the localization result is 

estimated before and after ICP based correction, as shown in Figure 8.4. The ground 

truth is known to be an approximately straight line path between surveyed scan 

locations. The offset error for each localization result is recorded in Table 8.2. The 

large offset errors before ICP correction are caused by a gradual z-axis drift not 

observable in the 2D (x-y) representation of the results in Figure 8.3. 
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Figure 8.4 – To determine the offset error before (blue) and after (red) ICP correction, the area between each localization path 

and the ground truth is found. 

 

Dataset 1 → 2 2 → 3 3 → 4 4 → 5 

Original Offset (m2) 32.12 21.72 30.43 19.57 

Corrected Offset (m2) 4.76 7.34 18.69 2.48 
Table 8.2 – Offset error for each localization dataset before and after ICP based correction. 

 

The final large scale mapping result is shown in detail in Figure 8.5, Figure 8.6 and 

Figure 8.7. A cross section of the rendered map is available in Figure 6.5 in Section 

6.3. The final map has an average nearest neighbour offset distance of 1.49cm when 

compared to the full map produced by the semi-autonomous commercial technique 

described in Section 6.4. This does not necessarily mean that the map produced by 

our multisensor SLAM system has an average error of 1.49cm, as there are many 

possible sources of error in the conventional technique and it therefore cannot be 

guaranteed to be an inerrant ground truth. However, the average offset does 

demonstrate that the map produced by our multisensor SLAM system is highly 

correlated to the map produced by conventional techniques and can therefore be 

considered as a convincing alternative. 
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Figure 8.5 – Close up of the architecture building showing the alignment of scans 1 (orange), 2 (green), 3 (blue) and 4 (red). 



8.1 Large Scale Indoor Results 141 

 

 
Figure 8.6 – Side, top and end view of the completed map of the architecture building without rendering. 
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Figure 8.7 – Side, top and end view of the completed map of the architecture building with rendering. 
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8.2 Large Scale Underground Tunnel Results 

To assess the robustness of the hybrid large scale map building system and its 

applicability to underground environments, another dataset was collected in an active 

spiral decline tunnel at the Kalgoorlie Consolidated Gold Mines (KCGM) Mt 

Charlotte Mine in Kalgoorlie, Western Australia. The dataset was collected by a 

mine surveyor acting on instructions and is therefore a realistic representation of 

typical data that the system would have to process in an industrial deployment. It also 

allows evaluation of the robustness of the technique as many degrading conditions 

were experienced. The majority of these conditions are unique to active underground 

mines and will be discussed later in the section. A Leica C10 was used to collect four 

laser scans at roughly 25-30m intervals, often barely line-of-sight, covering a large 

portion of a single loop of the spiral decline (see Figure 8.8). A stream of images was 

again recorded by a Point Grey Ladybug 2 omnidirectional camera between scan 

locations. 

 

 
Figure 8.8 – The ground truth for the four laser scans in the spiral decline. Positions were recorded using survey equipment. 
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The laser and camera were mounted on a mine site certified vehicle for the data 

collection process (Figure 8.9). The laser was removed during transit as the 

temporary fixture was deemed inadequate for handling the stresses caused by 

movement over uneven terrain. This will not be an issue for future deployments, as a 

high quality fixture will be designed to handle these additional stresses. Once again, 

the goal of this test is to successfully combine the laser scans into a single large scale 

3D map of the environment. 

 

 
Figure 8.9 – The omnidirectional camera, 3D laser scanner and lighting mounted on a mine site certified vehicle. 

 

There are several factors that make datasets collected in underground mining 

environments far more difficult for autonomous processing than those collected in 

above-ground or structured environments. The first of these factors is the poor 

quality images returned by the Ladybug omnidirectional camera. The underground 

images contain large areas of occlusion due to the host vehicle, lens flare from 

vehicle lights, sensor saturation from the additional mounted lights and areas of 

complete darkness. These factors are shown in Figure 8.10. Figure 8.11 compares the 

useful image area from an above ground dataset and from an underground dataset. 

 



8.2 Large Scale Underground Tunnel Results 145 

 

 
Figure 8.10 – Image factors that degrade autonomous processing performance. 

 

 
Figure 8.11 – Comparison of useful image region size in the indoor dataset (top) and the underground dataset (bottom). The 

images represent the entire visual sphere but have the areas that are not useful for vision-based localization masked. 
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The dataset collected in the underground environment by the omnidirectional camera 

also experienced full six degree of freedom movement within the spiral decline, as 

well as rough terrain and uneven road surfaces. By comparison, the indoor test only 

experienced three degrees of freedom and relatively smooth terrain. The localization 

algorithm can handle six degrees of freedom; however, the increased movement 

complexity does reduce the accuracy of the constant velocity motion model. 

 

  
(a) Localization path (blue) and estimated trajectory (green) 

for P1 → P2. 

(b) Localization path (blue) and estimated trajectory (green) 

for P2 → P3. 

 
(c) Localization path (blue) and estimated trajectory (green) for P3 → P4. 

Figure 8.12 – Plots of the localization results from vision-based SLAM compared to the estimated trajectory interpolated from 

surveyed scan locations and the curvature of the spiral decline. Distances in meters. 
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Despite the reduction in quality of the images supplied by the omnidirectional 

camera, sufficient results were still obtained by the vision-based localization 

algorithm. The results shown in Figure 8.12 have been scaled using the laser based 

technique described in Section 6.2. The ground truth for the origin and destination 

positions was surveyed and is therefore highly accurate. The estimated trajectory 

between the origin and destination is based on the curvature of the spiral decline and 

is not of the same accuracy. 

 

The scale for the localization results is based on the laser depth information of 

features that have been matched at least five times and are therefore considered well-

established. The scaling is performed at step 25 of the sequence and again at the final 

step. Table 8.3 contains the scaling information used for each of the three sequences. 

 

 Sequence 1 

(P1→P2) 

Sequence 2 

(P2→P3) 

Sequence 3 

(P3→P4) 

Established features at step 25 3 9 8 

Average scale at step 25 1.1756 0.8324 1.2335 

Established features at final step 7 6 0 

Average scale at final step 1.4846 2.2118 0 

Combined Scale 1.3919 1.3842 1.2335 
Table 8.3 – Scale calculation for underground spiral decline localization results. 

 

The results in Figure 8.12 show that the vision-based localization paths suffer from 

inaccurate initial yaw estimation, resulting in the final estimation of the destination 

scan location having a significant offset from the estimated trajectory. This offset 

occurs despite the reasonable quality tracking during the remainder of the sequence. 

The likely cause of the poor yaw tracking is the high level of visual occlusion in the 

panoramic images supplied by the Ladybug camera. Quality yaw features generally 

occur in a central horizontal band across the entire width of the panoramic image, 

however, this region of the image is filled with the visual occlusions shown in Figure 

8.11 and so is masked during vision-based localization. Yaw tracking would likely 

be improved in future deployments by the omnidirectional camera being mounted in 

a higher position, reducing the visual occlusion caused by the host vehicle. 
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It can also be seen from Figure 8.12 and Table 8.3 that the vision-based localization 

result in sequence 3 is of lower quality than the results from sequence 1 and 2. 

Difficult lighting conditions hinder the performance of all underground vision-based 

localization, so Shadow Feature Removal (SFR) was applied to the dataset as 

addressed in Section 7.3.1. Unfortunately, since SFR and CBM (Colour Based 

Matching) are both elimination techniques, they can only be applied mildly to the 

underground dataset due to the already low number of features available. Figure 8.13 

demonstrates the slight improvement produced by the application of SFR. The 

localization path more accurately reflects the shape of the estimated trajectory. 

However, it still suffers from the same initial yaw inaccuracy as the other sequences 

and poor scaling. 

 

 
Figure 8.13 – The initial vision-based localization path (blue) compared to the path resulting from the application of SFR 

(orange). The estimated trajectory can be seen in green. 

 

Laser data collected underground also has characteristics that increase the difficulty 

of autonomous registration. A factor unique to the spiral decline is the significantly 

reduced overlap due to the cylindrical nature of the environment. All of the scans 

from the indoor dataset contained the basic structure of the entire environment due to 

the open layout of the Architecture building (see Figure 8.1). This resulted in large 

areas of overlap, improving the robustness of scan registration. The underground 
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dataset has only small areas of overlap as shown in Figure 8.14. This means that the 

registration step is actually only performed between the current scan and previous 

scan, rather than the current scan and the entire existing map. The reduced overlap 

noticeably degrades the robustness of the registration step of the SLAM system. 

 

 
Figure 8.14 – The overlap regions of the underground laser dataset. The lightest red represents regions with no overlap, medium 

red is regions with overlap only between the most recent two scans and dark red shows overlap between the current scan and 

earlier scans (the existing map). 

 

Occlusions are a significant problem in less structured underground environments 

such as the spiral decline. The jagged surface of the tunnels reduces the fine scale 

overlap between laser scans. The surfaces are covered in peaks and valleys, which 

would normally improve registration due to their irregular, unique shapes. However, 

the large offset of the scan origins in the spiral decline dataset causes the 

phenomenon seen in Figure 8.15. Opposing sides of the peaks and valleys are 

scanned from each origin, resulting in very little overlap in the point clouds. The goal 

of the ICP algorithm used in our multisensor SLAM system is to minimize the 

nearest neighbour offset of the two scans; this can easily result in an incorrect 
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alignment which would actually produce a lower fitness score than the correct 

alignment. An example of this phenomenon from the underground decline dataset is 

shown in Figure 8.16. 

 
Figure 8.15 – A jagged surface is scanned from two origins with a large offset, resulting in the red and blue point clouds (top). 

The correct alignment would not produce the lowest average nearest neighbour offset (middle). An incorrect alignment is 

actually optimum (bottom). 

 

 
Figure 8.16 – An example of poor fine scale overlap where the two point clouds contain opposite faces of the same surface. 
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To improve the robustness of the registration step, the technique described in Section 

5.5.3 was implemented. The overlapping region between the previous scan origin 

and the current pose estimate is segmented into six sections and registration is 

performed on each section. Six separate attempts at registration improves the 

robustness in a similar way to random seeding, reducing the likelihood of finding a 

local minimum rather than the desired global minimum. The registration result with 

the lowest fitness score has its transformation applied to the entire new data cloud, 

producing an updated map. This approach is well suited to environments where there 

may be minimal point cloud overlap as it reduces the influence of outlier points 

through the iterative registration and comparison of point cloud segments. 

 

This approach proved robust for the registration of scans 1, 2 and 3 from the 

underground spiral decline dataset. Unfortunately, the low quality localization result 

for the initial pose estimate of scan 4 meant that the technique had to be combined 

with extensive random seeding for successful registration. To robustly produce the 

correct registration, approximately 1000 iterations would be required to guarantee a 

pose close enough to the ground truth for successful alignment to occur. This number 

of iterations requires a prohibitive amount of processing time and therefore 

demonstrates the importance of a sufficiently accurate localization result for the 

system to be effective. A summary of the transformations produced by the 

registration algorithm is available in Table 8.4. 

 

 Localization Result ICP Correction Final Position 

Dataset Trans. Rotation Trans. Rotation Trans. Rotation 

 

1 

x,ϕ 

y,θ 

z,ψ 

1.328m -1.037° -2.663m 1.593° 9.743m 0.014° 

22.80m -1.369° -0.546m 0.653° 18.63m 0.029° 

-0.033m -17.04° -3.437m -29.57° -3.079m -46.59° 

 

2 

x,ϕ 

y,θ 

z,ψ 

7.538m 0.527° 3.504m 1.501° 11.93m 0.050° 

19.42m -2.108° 0.452m 1.662° 19.51m 0.042° 

-0.068m -53.24° -3.888m -2.647° -3.702m 55.85° 

 

3 

x,ϕ 

y,θ 

z,ψ 

2.986m -0.028° 4.456m 0.951° 13.50m 0.020° 

12.62m -1.071° 9.259m 0.470° 18.56m 0.018° 

-0.020m -32.70° -3.368m -30.88° -3.307m -63.58° 
Table 8.4 – Transformations resulting from initial pose estimate and ICP registration. 
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The transformation produced by the registration step is also applied to the vision-

based localization result to reduce the impact of long term drift. The resulting 

localization paths can be seen in Figure 8.17 and are compared to the expected 

ground truth of the host vehicle. Again, only the scan locations were accurately 

surveyed so the ground truth between these points is an extrapolation based on the 

curvature of the spiral decline. Table 8.5 contains the scan locations as determined by 

our multisensor SLAM system compared to the surveyed positions. The results show 

that there is an average offset error of less than 3cm for the entire large scale map. 

 

 
Figure 8.17 – The corrected localization path resulting from scan registration (blue) and the estimated trajectory (green). 
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  P1 P2 P3 P4 

Surveyed 
Result 

x 0.0m 20.082m 39.289m 38.157m 

y 0.0m 6.276m -6.042m -28.978m 

z 0.0m -3.104m -6.807m -10.114m 

Multisensor 
SLAM 
Result 

x 0.0m 20.066m 39.311m 38.179m 

y 0.0m 6.270m -6.072m -28.997m 

z 0.0m -3.079m -6.781m -10.088m 

Offset 
Error 

x 0.0m 0.016m 0.022m 0.022m 

y 0.0m 0.006m 0.030m 0.019m 

z 0.0m 0.025m 0.026m 0.026m 
Table 8.5 – Comparison of scan locations resulting from the survey and the multisensor SLAM system. 

 

The four laser scans requiring registration can be seen individually in Figure 8.18. 

The final large scale fully registered map is shown in Figure 8.19 and a rendered 

version of this map is in Figure 8.20. Rendering an underground map using our 

current technique is not particularly effective due to only using images taken at the 

discrete laser scan locations. This results in large sections of the map lacking 

sufficient illumination. The rendering results could be improved by using images 

from the duration of the vehicle motion. However, an improved rendering technique 

is outside the scope of this work and will be noted in Section 9.2 as future work. 

 
Figure 8.18 – The four laser scans comprising the spiral decline dataset. Alignment has been customized to give an idea of final 

fit. 
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Figure 8.19 – Final registration of all four laser scans overlayed with the surveyed map of the area. 

 
Figure 8.20 – Final registration of all four scans with rendering. 
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Chapter 9  
 
Conclusions 

Chapter 9 Conclusions 

This thesis has described the development and implementation of an autonomous 

large scale mapping system designed for the surveying of underground mines and 

other extensive spaces. Unlike many existing autonomous mapping techniques which 

rely on specialized approaches to the SLAM problem in order to provide a viable 

solution, our proposed system is self-contained, portable and robust, making it 

applicable to a wide range of environments, particularly underground mines. 

 

Our autonomous mapping solution is based on a hybrid fusion of omnidirectional 

bearing-only vision-based localization and 3D laser point cloud registration. The 

fusion of these two techniques combines the real-time, six degree of freedom 

localization attributes of vision-based SLAM with the high precision and dense data 

of 3D laser scanners to produce a viable solution to autonomous mapping in the 

difficult active underground mining environment. 

 

To further improve the robustness of our proposed multisensor SLAM system, colour 

information is utilized in the vision-based localization to improve robustness to the 

effects of dynamic illumination. Visual features are filtered by identifying and 

removing features caused by dynamic shadows. Colour information is further used to 
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supplement the feature matching process through the addition of colour matching to 

the existing monochrome descriptor matching. 

Finally, the multisensor system is implemented and evaluated on both indoor and 

underground datasets. Large scale survey quality maps were successfully constructed 

in both environments demonstrating the effectiveness of our proposed system. 

 

9.1 Contributions 

The novel contributions of our work are summarized below on a per chapter basis. 

These contributions are unique to this work and have not been documented by any 

other source at the time of writing. 

 

Chapter 5 Large Scale Mapping from Point Clouds 

The first contribution of this chapter is a unique implementation of the Iterative 

Closest Point (ICP) algorithm which is customized to suit the registration of dense 

point clouds with significant offset using an initial pose estimate from vision-based 

localization. The algorithm includes voxel based reduction to improve processing 

times and random seeding to improve robustness to poor localization results. 

 

A technique for the registration of point clouds with significant offset is also 

presented. This technique is designed to successfully register point clouds which 

would fail when using the standard registration approach. The newly acquired data is 

divided into dense and sparse sections using the ‘density transition plane’. The sparse 

section is then used for registration with the existing map, reducing erroneous 

registration and improving processing time. The sparse sections can be further 

segmented and individually registered to further improve robustness to difficult point 

cloud shapes with large offsets. 

 

Finally, a method for the visualization of ICP registration capabilities is presented. 

The two dimensional ‘heat maps’ plot ICP results over a range of translations and 

rotations. The results are classified as global minimum obtained (successful 

registration), local minimum obtained or registration failure. 
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Chapter 6 Hybrid Integration of Vision-Based SLAM and Point Clouds 

In this chapter a technique is presented for the real world scaling of a dimensionless 

bearing-only localization result. The laser data obtained at the origin and destination 

of a localization path is used to provide depth measurements for well-established 

features. The scale is calculated as the average ratio between the arbitrary depth 

value assigned to each feature by the localization algorithm and the actual depth 

information provided by the laser. The number of features with depth estimates at the 

origin and destination is used as a weighting factor to determine the overall scale 

applied to the localization result.  

 

An approach to localization path refinement is also presented to reduce drift over 

long distances. The transformation resulting from successful ICP point cloud 

registration is applied to the localization result, significantly improving positional 

accuracy. The localization correction improves future pose estimates and therefore 

increases the likelihood of successful future point cloud registrations. 

 

Chapter 7 Vision-Based SLAM under Dynamic Illumination 

Two novel techniques are presented in this chapter as approaches to improve the 

robustness of vision-based localization to environments with dynamic illumination. 

The first technique applies the chromaticity distortion colour model to a visual 

feature to determine if the range of pixel colours present within the feature identifies 

it as part of an object or part of a shadow. Features that are considered to be part of a 

shadow are discarded before the feature matching step to prevent their dynamic 

nature from affecting the localization result. 

 

The chromaticity distortion model is applied again in a second technique to improve 

the robustness of vision-based localization during the feature matching stage. The 

colour ranges present in the pixels of two features are compared if they are matched 

by the monochrome based feature matching algorithm. A significant difference in 

colour range between the two matched features indicates a likely mismatch, so the 

feature match is rejected. The removal of mismatched features further improves the 

localization result. 
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The two novel techniques are then evaluated in simulated and real world scenarios 

with static and dynamic camera motion. A technique for automatically selecting 

thresholds for the Shadow Feature Removal and Colour Based Matching methods is 

also presented, enabling fully autonomous implementation. 

 

Chapter 8 Multisensor SLAM Results 

The final contributions of this thesis are the in-depth performance evaluation of the 

multisensor large scale mapping system which incorporates all of the developed 

techniques. The system is evaluated in an above ground built environment and an 

active underground mining environment. 

 

9.2 Future Work 

The design and implementation of our multisensor mapping system has opened 

several areas of possible research which were considered outside the scope of this 

thesis. These directions for possible future research work could further improve the 

robustness and modularity of our mapping system. 

 

Monocular SLAM Acceleration Noise Scaling from Laser Data 

Section 6.2 discussed the issue of monocular SLAM with well-established laser 

based initial features reverting to an arbitrary scale due to insufficient feature 

correlation. The arbitrary scale is based on the acceleration noise in the motion 

model. To reduce the impact of poor feature correlation, the acceleration noise could 

be scaled so that the resulting localization scale generated by the acceleration noise is 

close in size to the localization scale generated by using features with known depth 

estimates from laser data. Extensive simulation would likely be required to 

effectively determine the relationship between the scaled features and the required 

characteristics of the motion model. 

 

Sliding ICP Optimization 

A significant portion of large scale environments which require survey quality 

mapping consist of ‘tunnel’ or ‘corridor’ like structures. The resulting point clouds 

collected during the mapping process can be difficult to align due to the presence of a 
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large region parallel to the length of the tunnel where nearest neighbour distances of 

the overlapping point clouds are consistently small (see Figure 9.1). ICP will often 

converge at the first alignment that falls within this region rather than exploring 

possible higher quality alignments within the extents of the region. To improve 

registration results, a ‘sliding’ optimization technique could be developed which 

refines the initial ICP solution by searching for globally optimum alignments within 

this region. The implementation could be limited to a one or two degrees of freedom 

optimization problem, which would not require significant processing time. 

Evaluation could be performed on the datasets collected during testing of the 

multisensor SLAM system. 

 

 
Figure 9.1 – The correct ICP alignment (bottom) falls inside a region of consistently small fitness scores (grey box). 

 

Improved Rendering using Multiple Locations for Omnidirectional Images 

The rendered map seen in Figure 8.20 demonstrates the shortfalls of only using 

images at the scan origins for rendering in underground environments. The short 

illumination range causes large sections of the map to be rendered using complete 

darkness. To overcome this problem, a series of images from the duration of camera 

motion could be stitched together to form a single cohesive image to be used for 

rendering. 

 

Motion Tracking for Dynamic Illumination Sources 

Currently, features caused by dynamic illumination in our vision-based localization 

algorithm are discarded as their motion is inconsistent with the motion of the camera. 

Robustness to dynamic illumination could be further improved if these features were 

instead used to estimate the location of dynamic light sources, which can be 
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explicitly modelled and included in the EKF state. Assuming the presence of only a 

small number of dynamic light sources, each source could be tracked independently 

and their effect on the estimation of camera motion could be more effectively 

determined. Their motion could even be used to predict the appearance of 

illumination artefacts in future images. 

 

9.3 Discussion 

This thesis has described in detail the design and implementation of a multisensor 

SLAM system for the dense large scale mapping of underground mines. With the 

completion of a working system it is appropriate to briefly discuss the consequences 

of this research and the future directions of the field. Although the system developed 

in this work successfully demonstrated the ability to autonomously combine point 

clouds to produce large scale underground mapping results, robustness is an issue 

that is at the heart of all mining operations and, as such, is the area of this research 

that would require the most attention in future development. Therefore, thorough 

testing on a more comprehensive underground dataset would be the first 

recommendation in the process to optimize the multisensor SLAM system. 

 

Despite recent improvements in the accuracy and density of maps produced by 

monocular or stereo vision, 3D lasers are still the only option for the survey quality 

3D mapping of underground mines. And since the registration of large point clouds 

with small numbers of overlapping points currently still requires some form of pose 

estimate, the autonomous production of underground maps will require a multisensor 

approach for some time to come. 

 

The long term solution to survey quality underground mapping is most likely the 

development of real-time 3D scanning sensors which would maintain the accuracy of 

3D laser scanning, but also allow highly accurate real-time localization to be 

performed. Until sensor technology reaches that point, the multisensor approach 

must continue to be refined into a robust, yet somewhat slow (due to scan times) 

alternative. 
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Improving localization is the key to improving robustness. Even difficult point 

clouds will autonomously align quickly and accurately if provided with a high 

accuracy pose estimate. Localization results can benefit from improvements in 

feature quality, feature number and correspondence accuracy. There is no shortage of 

textured surfaces in underground mining environments; however, poor lighting 

conditions dynamically affect the appearance of features to the camera. Although the 

work in this thesis towards improving robustness of vision-based localization under 

dynamic illumination has enhanced the identification of quality features in poor 

lighting conditions, there is still room for further refinement.  

 

The lack of long distance illumination also prevents the long term tracking of 

features, as they quickly disappear into the darkness as the host vehicle moves 

through the tunnel. The lack of long term features prevents the application of 

keyframe-based localization algorithms and increases the likelihood of significant 

long term drift. The useful image area in underground mines is also significantly 

reduced due to these lighting distances as well as occlusions. It is therefore vital to 

maximize the number of features extracted from the scene in order to maintain 

quality localization. Future improvements in efficiency and processing power will 

allow future filtering algorithms to track more features in each frame and this will 

inevitably improve localization.  

 

Finally, correspondence estimation can be improved to increase the number of 

correctly tracked features. The work in this thesis has shown the advantage that 

including colour information in the correspondence process can have on localization. 

Further improvements may be possible by implementing the light source tracking 

concept outlined as future work in section 9.2. 
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Appendix A  
 
Mathematical Definitions 
Chapter 10 Mathematical Definitions 

1 Motion Model Derivative Expansion 

The covariance update step of the camera motion model requires the derivatives of 

the dynamic motion model with respect to the state (F) and with respect to the 

Gaussian noise of the model (G). These derivatives are defined as: 
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The partial derivative 𝜕q𝑘+1
𝑊𝐶

𝜕q𝑘
𝑊𝐶   is defined as: 
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Where q1, q2 and q3 represent the following quaternions: q1 = q �(𝜔𝑘
𝐶 + Ω𝐶)∆𝑡�, 

q2 = q𝑘𝑊𝐶 , q3 = q𝑘+1𝑊𝐶 . 
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The partial derivative 𝜕q𝑘+1
𝑊𝐶

𝜕𝜔𝑘+1
𝐶  is decomposed using the chain rule: 
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Where: 
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2 Feature Initialization Derivative Expansion 

The covariance update of the feature initialization step requires the derivatives of the 

feature (y) with respect to the camera state (xcam) and the detected image point (h). 

The derivative with respect to the camera state is defined as: 

 

  𝜕y
𝜕x𝑐𝑎𝑚

=
𝜕y
𝜕r𝑊𝐶

𝜕y
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(75) 

 

The Jacobian with respect to the camera position (r𝑊𝐶) is: 

 

  𝜕y
𝜕r𝑊𝐶 = (I 0). (76) 

 

The derivatives with respect to the camera orientation (q𝑊𝐶) are: 
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Where: 
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Where the derivatives for the rotation matrix (𝑅𝑊𝐶) with respect to each quaternion 

component (q𝑖𝑊𝐶) are: 
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The derivative for the feature with respect to the detected image point is: 

 

  𝜕y
𝜕h = �

∂y′
𝜕h 0
0 1

�. (88) 

 

Where 𝑦′ = (𝑥𝑖 𝑦𝑖 𝑧𝑖 𝜃𝑖 𝜙𝑖), which includes all of the feature parameters 

except the inverse depth (𝜌0). The derivative 𝜕y′
𝜕h

 is expanded as: 

 

  𝜕y′
𝜕h =

𝜕y′
𝜕h𝑊

𝜕h𝑊

𝜕h . (89) 

Where: 

  𝜕y′
𝜕h𝑊 = �0

𝜕𝜃
𝜕h𝑊

𝜕𝜙
𝜕h𝑊

�. (90) 

 

With 𝜕𝜃
𝜕h𝑊

 and 𝜕𝜙
𝜕h𝑊

 previously defined in Equations (80) and (81) respectively. 

 

  𝜕h𝑊

𝜕h = 𝑅𝑊𝐶  (91) 
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3 Quaternion Normalization Derivative Expansion 

The covariance update of the quaternion normalization step requires the derivative of 

the normalized quaternion (q𝑛𝑜𝑟𝑚) with respect to the non-normalized quaternion 

(q). 

 

  𝜕q𝑛𝑜𝑟𝑚

𝜕q = (q02 + q12 + q22 + q32)−
2
3𝒬 

(92) 

 

Where: 𝒬 =

⎝

⎜
⎛

q12 + q22 + q32 −q0q1 −q0q2 −q0q3
−q1q0 q02 + q22 + q32 −q1q2 −q1q3
−q2q0 −q2q1 q02 + q12 + q32 −q2q3
−q3q0 −q3q1 −q3q2 q02 + q12 + q22⎠

⎟
⎞

. 
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