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1. Introduction 

In this work we present a novel system for autonomous mobile robot navigation. With only 
an omnidirectional camera as sensor, this system is able to build automatically and robust 
accurate topologically organised environment maps of a complex, natural environment. It 
can localise itself using that map at each moment, including both at startup (kidnapped 
robot) or using knowledge of former localisations. The topological nature of the map is 
similar to the intuitive maps humans use, is memory-efficient and enables fast and simple 
path planning towards a specified goal. We developed a real-time visual servoing technique 
to steer the system along the computed path. 
The key technology making this all possible is the novel fast wide baseline feature matching, 
which yields an efficient description of the scene, with a focus on man-made environments. 
 
1.1 Application 
 

 
Fig. 1. Left: the robotic wheelchair platform. Right: the omnidirectional camera, composed 
by a colour camera and an hyperbolic mirror.  
 
This chapter describes a total navigation solution for mobile robots. It enables a mobile robot 
to efficiently localise itself and navigate in a large man-made environment, which can be 
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indoor, outdoor or a combination of both. For instance, the inside of a house, an entire 
university campus or even a small city lie in the possibilities. 
Because of reliability problems of other sensors like e.g. GPS, why we aim at a vision-only 
solution to navigation. Vision is, in comparison with these other sensors, much more 
informative. Moreover, cameras are quite compact and increasingly cheap. We observe also 
that many biological species, in particular migratory birds, use mainly their visual sensors 
for navigation. We chose to use an omnidirectional camera as visual sensor, because of its 
wide field of view and thus rich information content of the images acquired with. For the 
time being, we added a range sensing device for obstacle detection, but this is to be replaced 
by an omnidirectional vision range estimator under development. 
Our method works with natural environments. That means that the environment does not 
have to be modified for navigation in any way. Indeed, adding artificial markers to every 
room in a house or to an entire city doesn’t seem feasible nor desirable. 
In contrast to classical navigation methods, we chose a topological representation of the 
environment, rather than a metrical one, because of its resemblance to the intuitive system 
humans use for navigation, its flexibility, wide usability, memory-efficiency and ease for 
map building and path planning. 
The targeted application of this research is the visual guidance of electric wheelchairs for 
severely disabled people. More in particular, the target group are people not able to give 
detailed steering commands to navigate around in their homes and local city 
neighbourhoods. If it is possible for them to perform complicated navigational tasks by only 
giving simple commands, their autonomy can be greatly enhanced. For most of them such 
an increase of mobility and independence from other people is very welcome. 
Our test platform and camera are shown in fig. 1.  

 
1.2 Method overview 
An overview of the navigation method presented is given in fig. 2. The system can be 
subdivided in three parts: map building, localisation and locomotion.  
 The map building stage has to be gone through only once, to train the system in a new 
environment. The mobile system is lead through all parts of the environment, while it takes 
images at a constant rate (in our set-up one per second). Later, this large set of 
omnidirectional images is automatically analysed and converted into a topological map of 
the environment, which is stored in the system’s memory and will be used when the system 
is actually in use. 
The next stage is localisation. When the system is powered up somewhere in the 
environment, it takes a new image with its camera. This image is rapidly compared with all 
the images in the environment map, and an hypothesis is formed about the present location 
of the mobile robot. This hypothesis is refined using Bayes’ rule as soon as the robot starts to 
move and new images come in. 
When the present location of the robot is known and a goal position is communicated by the 
user to the robot, a path can be planned towards that goal using the map. The planned route 
is specified as a sequence of training images, serving as a reference for what the robot 
should subsequently see if on course. This path is executed by means of a visual servoing 
algorithm: each time a visual homing procedure is executed towards the location where the 
next path image is taken. 

 
Fig. 2. Overview of the navigation method  
 
The remainder of this chapter is organised as follows. The next section gives an overview of 
the related work. In section 3, our core image analysis and matching technique is explained: 
fast wide baseline matching. The sections thereafter describe the different stages of our 
approach. Section 4 discusses the map building process, section 5 explains the localisation 
method, section 6 describes the path planning, and section 7 details the visual servoing 
algorithm. We conclude with an overview of experimental results (section 8) and a 
conclusion (section 9). 

 
2. Related Work 

2.1 Image comparison 
A good image comparison method is of utmost importance in a vision-based navigation 
approach. Global methods compute a measure using all the pixels of the entire image. 
Although these methods are fast, they cannot cope with e.g. occlusions and severe 
viewpoint changes. On the other hand, techniques that work at a local scale, extracting and 
recognising local features, can be made robust to these effects. The traditional disadvantage of 
these local techniques is time complexity. In our approach, we combine novel global and 
local approaches resulting in fast and accurate image comparison. 

 
2.1.1 Global techniques 
Many researchers use global image comparison techniques. Straightforward global methods 
like histogram-based matching, used by (Ulrich & Nourbakhsh, 2000) don’t seem distinctive 
enough for our application. Another popular technique is the use of an eigenspace 
decomposition of the training images (Jogan & Leonardis, 1999), which yields a compact 
database. However, these methods proved not useful in general situations because they are 
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indoor, outdoor or a combination of both. For instance, the inside of a house, an entire 
university campus or even a small city lie in the possibilities. 
Because of reliability problems of other sensors like e.g. GPS, why we aim at a vision-only 
solution to navigation. Vision is, in comparison with these other sensors, much more 
informative. Moreover, cameras are quite compact and increasingly cheap. We observe also 
that many biological species, in particular migratory birds, use mainly their visual sensors 
for navigation. We chose to use an omnidirectional camera as visual sensor, because of its 
wide field of view and thus rich information content of the images acquired with. For the 
time being, we added a range sensing device for obstacle detection, but this is to be replaced 
by an omnidirectional vision range estimator under development. 
Our method works with natural environments. That means that the environment does not 
have to be modified for navigation in any way. Indeed, adding artificial markers to every 
room in a house or to an entire city doesn’t seem feasible nor desirable. 
In contrast to classical navigation methods, we chose a topological representation of the 
environment, rather than a metrical one, because of its resemblance to the intuitive system 
humans use for navigation, its flexibility, wide usability, memory-efficiency and ease for 
map building and path planning. 
The targeted application of this research is the visual guidance of electric wheelchairs for 
severely disabled people. More in particular, the target group are people not able to give 
detailed steering commands to navigate around in their homes and local city 
neighbourhoods. If it is possible for them to perform complicated navigational tasks by only 
giving simple commands, their autonomy can be greatly enhanced. For most of them such 
an increase of mobility and independence from other people is very welcome. 
Our test platform and camera are shown in fig. 1.  

 
1.2 Method overview 
An overview of the navigation method presented is given in fig. 2. The system can be 
subdivided in three parts: map building, localisation and locomotion.  
 The map building stage has to be gone through only once, to train the system in a new 
environment. The mobile system is lead through all parts of the environment, while it takes 
images at a constant rate (in our set-up one per second). Later, this large set of 
omnidirectional images is automatically analysed and converted into a topological map of 
the environment, which is stored in the system’s memory and will be used when the system 
is actually in use. 
The next stage is localisation. When the system is powered up somewhere in the 
environment, it takes a new image with its camera. This image is rapidly compared with all 
the images in the environment map, and an hypothesis is formed about the present location 
of the mobile robot. This hypothesis is refined using Bayes’ rule as soon as the robot starts to 
move and new images come in. 
When the present location of the robot is known and a goal position is communicated by the 
user to the robot, a path can be planned towards that goal using the map. The planned route 
is specified as a sequence of training images, serving as a reference for what the robot 
should subsequently see if on course. This path is executed by means of a visual servoing 
algorithm: each time a visual homing procedure is executed towards the location where the 
next path image is taken. 

 
Fig. 2. Overview of the navigation method  
 
The remainder of this chapter is organised as follows. The next section gives an overview of 
the related work. In section 3, our core image analysis and matching technique is explained: 
fast wide baseline matching. The sections thereafter describe the different stages of our 
approach. Section 4 discusses the map building process, section 5 explains the localisation 
method, section 6 describes the path planning, and section 7 details the visual servoing 
algorithm. We conclude with an overview of experimental results (section 8) and a 
conclusion (section 9). 

 
2. Related Work 

2.1 Image comparison 
A good image comparison method is of utmost importance in a vision-based navigation 
approach. Global methods compute a measure using all the pixels of the entire image. 
Although these methods are fast, they cannot cope with e.g. occlusions and severe 
viewpoint changes. On the other hand, techniques that work at a local scale, extracting and 
recognising local features, can be made robust to these effects. The traditional disadvantage of 
these local techniques is time complexity. In our approach, we combine novel global and 
local approaches resulting in fast and accurate image comparison. 

 
2.1.1 Global techniques 
Many researchers use global image comparison techniques. Straightforward global methods 
like histogram-based matching, used by (Ulrich & Nourbakhsh, 2000) don’t seem distinctive 
enough for our application. Another popular technique is the use of an eigenspace 
decomposition of the training images (Jogan & Leonardis, 1999), which yields a compact 
database. However, these methods proved not useful in general situations because they are 
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not robust enough against occlusions and illumination changes. That is why (Bischof et al., 
2001) developed a PCA-based image comparison that is robust against partial occlusions, 
respectively varying illumination. 

 
2.1.2 Local techniques 
A solution to be able to cope with partial occlusions is comparing local regions in the 
images. The big question is how to detect these local features, also known as visual 
landmarks. 
A simple solution to do this is by adding artificial markers to strategically chosen places in 
the world. In this project we use natural landmarks, extracted from the scene itself, without 
modifications. Moreover, the extraction of these landmarks must be automatic and robust 
against changes in viewpoint and illumination to ensure the detection of these landmarks 
under as many circumstances as possible. 
Many researchers proposed algorithms for natural landmark detection. Mostly, local regions 
are defined around interest points in the images. The characterisation of these local regions 
with descriptor vectors enables the regions to be compared across images. Differences 
between approaches lie in the way in which interest points, local image regions, and 
descriptor vectors are extracted. An early example is the work of (Schmid et al., 1997), where 
geometric invariance was still under image rotations only. Scaling was handled by using 
circular regions of several sizes. (Lowe, 1999) extended these ideas to real scale-invariance. 
More general affine invariance has been achieved in the work of Baumberg (Baumberg, 
2000°), Tuytelaars & Van Gool (Tuytelaars et al., 1999; Tuytelaars & Van Gool, 2000), Matas 
(Matas et al.,2002), and Mikolajczyk & Schmid (Mikolajczyk & Schmid, 2002). 
Although these methods are capable to find high quality correspondences, most of them are 
too slow to use in a real-time mobile robot algorithm. That is why we propose a much faster 
alternative, as explained in section 3. 

 
2.2 Map structure 
Many researchers proposed different ways to represent the environment perceived by 
vision sensors. We can order all possible map organisations by metrical detail: from dense 
3D over sparse 3D to topological maps. We believe that the outer topological end of this 
spectrum offers the top opportunities. 
One approach is building dense 3D models out of the incoming visual data (Pollefeys et al., 
2004; Nistér et al., 2004). Such approach has some disadvantages. It is computationally and 
memory demanding, and fails to model planar and less-textured parts of the environment 
such as walls. Nevertheless, these structures are omnipresent in our application, and 
collisions need to be avoided. 
One way to reduce the computational burden is to make abstraction of the visual data. 
Instead of modelling a dense 3D model containing billions of voxels, a sparse 3D model is 
built containing only special features, called visual landmarks. 
Examples of researchers solving the navigation problem with sparse 3D maps of natural 
landmarks are (Se et al., 2001) and (Davison, 2003). They position natural features in a 
metrical frame, which is as big as the entire mapped environment. Although less than the 
dense 3D variant, these methods are still computationally demanding for large 
environments since their complexity is quadratic in the number of features in the model. 

Also, for larger models the metric error accumulates, so that feature positions are drifting 
away. 
As a matter of fact, the need for explicit 3D maps in navigation is questionable. One step 
further in the abstraction of environment information is the introduction of topological 
maps. The psychological experiments of (Bülthoff et al., 1998) show that people rely more on 
a topological map than a metrical one for their navigation. In these topological maps, locally 
places are described as a configuration of natural landmarks. These places form the nodes of 
the graph-like map, and are interconnected by traversable paths. Other researchers (Vale & 
Ribeiro, 2003; Ulrich & Nourbakhsh, 2000; Kosecká & Yang, 2004) also chose for topological 
maps, mainly because they scale better to real-world applications than metrical, 
deterministic representations, given the complexity of unstructured environments. Other 
advantages are the ease of path planning in such a map and the absence of drift. 

 
2.3 Toplogical map building 
Vale (Vale & Ribeiro, 2003) developed a clustering-based method for automatic building of a 
topological environment map out of a set of images. Unfortunately, the latter method is only 
suited for image comparison techniques which are a metric function, and does not give 
correct results if self-similarities are present in the environment, i.e. places that are different 
but look similar. 
Very popular are various probabilistic approaches of the topological map building problem. 
(Ranganathan et al., 2005) for instance use Bayesian inference to find the topological 
structure that explains best a set of panoramic observations, while (Shatkay & Kaelbling, 
1997) fit hidden Markov models to the data. If the state transition model of this HMM is 
extended with robot action data, the latter can be modeled using a partially observable 
Markov decision process or POMDP, as in (Koenig & Simmons, 1996; Tapus & Siegwart, 
2005). (Zivkovic et al., 2005) solve the map building problem using graph cuts. 
In contrast to these global topology fitting approaches, an alternative way is detecting loop 
closings. During a ride through the environment, sensor data is recorded. Because it is 
known that the driven path is traversable, an initial topological representation consists of 
one long edge between start and end node. Now, extra links are created where a certain 
place is revisited, i.e. an equivalent sensor reading occurs twice in the sequence. This is 
called a loop closing. A correct topological map results if all loop closing links are added. 
Also in loop closing, probabilistic methods are introduced to cope with the uncertainty of 
link hypotheses and avoid links at self-similarities. (Chen & Wang, 2005), for instance, use 
Bayesian inference. (Beevers & Huang, 2005) recently introduced Dempster-Shafer 
probability theory into loop closing, which has the advantage that ignorance can be 
modelled and no prior knowledge is needed. Their approach is promising, but limited to 
simple sensors and environments. In this chapter, we present a new framework for loop 
closing using rich visual sensors in natural complex environments, which is also based on 
Dempster-Shafer mathematics but uses it differently. 

 
2.4 Visual Servoing 
As explained in section 2, the execution of a path using such a topological environment map 
boils down to a series of visual servoing operations between places defined by images. 
(Cartwright & Collett, 1987) proposed the so-called bearing-only ’snapshot’ model, inspired 
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not robust enough against occlusions and illumination changes. That is why (Bischof et al., 
2001) developed a PCA-based image comparison that is robust against partial occlusions, 
respectively varying illumination. 

 
2.1.2 Local techniques 
A solution to be able to cope with partial occlusions is comparing local regions in the 
images. The big question is how to detect these local features, also known as visual 
landmarks. 
A simple solution to do this is by adding artificial markers to strategically chosen places in 
the world. In this project we use natural landmarks, extracted from the scene itself, without 
modifications. Moreover, the extraction of these landmarks must be automatic and robust 
against changes in viewpoint and illumination to ensure the detection of these landmarks 
under as many circumstances as possible. 
Many researchers proposed algorithms for natural landmark detection. Mostly, local regions 
are defined around interest points in the images. The characterisation of these local regions 
with descriptor vectors enables the regions to be compared across images. Differences 
between approaches lie in the way in which interest points, local image regions, and 
descriptor vectors are extracted. An early example is the work of (Schmid et al., 1997), where 
geometric invariance was still under image rotations only. Scaling was handled by using 
circular regions of several sizes. (Lowe, 1999) extended these ideas to real scale-invariance. 
More general affine invariance has been achieved in the work of Baumberg (Baumberg, 
2000°), Tuytelaars & Van Gool (Tuytelaars et al., 1999; Tuytelaars & Van Gool, 2000), Matas 
(Matas et al.,2002), and Mikolajczyk & Schmid (Mikolajczyk & Schmid, 2002). 
Although these methods are capable to find high quality correspondences, most of them are 
too slow to use in a real-time mobile robot algorithm. That is why we propose a much faster 
alternative, as explained in section 3. 

 
2.2 Map structure 
Many researchers proposed different ways to represent the environment perceived by 
vision sensors. We can order all possible map organisations by metrical detail: from dense 
3D over sparse 3D to topological maps. We believe that the outer topological end of this 
spectrum offers the top opportunities. 
One approach is building dense 3D models out of the incoming visual data (Pollefeys et al., 
2004; Nistér et al., 2004). Such approach has some disadvantages. It is computationally and 
memory demanding, and fails to model planar and less-textured parts of the environment 
such as walls. Nevertheless, these structures are omnipresent in our application, and 
collisions need to be avoided. 
One way to reduce the computational burden is to make abstraction of the visual data. 
Instead of modelling a dense 3D model containing billions of voxels, a sparse 3D model is 
built containing only special features, called visual landmarks. 
Examples of researchers solving the navigation problem with sparse 3D maps of natural 
landmarks are (Se et al., 2001) and (Davison, 2003). They position natural features in a 
metrical frame, which is as big as the entire mapped environment. Although less than the 
dense 3D variant, these methods are still computationally demanding for large 
environments since their complexity is quadratic in the number of features in the model. 

Also, for larger models the metric error accumulates, so that feature positions are drifting 
away. 
As a matter of fact, the need for explicit 3D maps in navigation is questionable. One step 
further in the abstraction of environment information is the introduction of topological 
maps. The psychological experiments of (Bülthoff et al., 1998) show that people rely more on 
a topological map than a metrical one for their navigation. In these topological maps, locally 
places are described as a configuration of natural landmarks. These places form the nodes of 
the graph-like map, and are interconnected by traversable paths. Other researchers (Vale & 
Ribeiro, 2003; Ulrich & Nourbakhsh, 2000; Kosecká & Yang, 2004) also chose for topological 
maps, mainly because they scale better to real-world applications than metrical, 
deterministic representations, given the complexity of unstructured environments. Other 
advantages are the ease of path planning in such a map and the absence of drift. 

 
2.3 Toplogical map building 
Vale (Vale & Ribeiro, 2003) developed a clustering-based method for automatic building of a 
topological environment map out of a set of images. Unfortunately, the latter method is only 
suited for image comparison techniques which are a metric function, and does not give 
correct results if self-similarities are present in the environment, i.e. places that are different 
but look similar. 
Very popular are various probabilistic approaches of the topological map building problem. 
(Ranganathan et al., 2005) for instance use Bayesian inference to find the topological 
structure that explains best a set of panoramic observations, while (Shatkay & Kaelbling, 
1997) fit hidden Markov models to the data. If the state transition model of this HMM is 
extended with robot action data, the latter can be modeled using a partially observable 
Markov decision process or POMDP, as in (Koenig & Simmons, 1996; Tapus & Siegwart, 
2005). (Zivkovic et al., 2005) solve the map building problem using graph cuts. 
In contrast to these global topology fitting approaches, an alternative way is detecting loop 
closings. During a ride through the environment, sensor data is recorded. Because it is 
known that the driven path is traversable, an initial topological representation consists of 
one long edge between start and end node. Now, extra links are created where a certain 
place is revisited, i.e. an equivalent sensor reading occurs twice in the sequence. This is 
called a loop closing. A correct topological map results if all loop closing links are added. 
Also in loop closing, probabilistic methods are introduced to cope with the uncertainty of 
link hypotheses and avoid links at self-similarities. (Chen & Wang, 2005), for instance, use 
Bayesian inference. (Beevers & Huang, 2005) recently introduced Dempster-Shafer 
probability theory into loop closing, which has the advantage that ignorance can be 
modelled and no prior knowledge is needed. Their approach is promising, but limited to 
simple sensors and environments. In this chapter, we present a new framework for loop 
closing using rich visual sensors in natural complex environments, which is also based on 
Dempster-Shafer mathematics but uses it differently. 

 
2.4 Visual Servoing 
As explained in section 2, the execution of a path using such a topological environment map 
boils down to a series of visual servoing operations between places defined by images. 
(Cartwright & Collett, 1987) proposed the so-called bearing-only ’snapshot’ model, inspired 
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by the visual homing behaviour of insects such as bees and ants. Their proposed algorithm 
consists of the construction of a home vector, computed as the average of landmark 
displacement vectors. (Franz et al., 1998) analysed the computational foundations of this 
method and derived its error and convergence properties. They conclude that every visual 
homing method based solely on bearing angles of landmarks like this one, inevitably 
depends on basic assumptions such as equal landmark distances, isotropic landmark 
distribution or the availability of an external compass reference. Unfortunately, because 
none of these assumptions generally hold in our targeted application we propose an 
alternative approach. 
If both image dimensions are taken into account, not limiting the available information to 
the bearing angle, the most obvious choice is working via epipolar geometry estimation (e.g. 
Tuytelaars et al., 1999; Basri et al., 1993). Unfortunately, in many cases this problem is ill 
conditioned. A workaround for planar scenes is presented by (Sagüés et al., 2005), who 
opted for the estimation of homographies. (Svoboda et al., 1998) proved that motion 
estimation with omnidirectional images is much better conditioned compared to perspective 
cameras. That is why we chose a method based on omnidirectional epipolar geometry. 
Other work in this field is the research of (Mariottini et al., 2005), who split the homing 
procedure in a rotation phase and a translation phase, which can not be used in our 
application because of the non-smooth robot motion. 

 
3. Fast wide baseline matching 
 

The novel technique we use for image comparison is fast wide baseline matching. This key 
technique enables extraction of natural landmarks and image comparison for our map 
building, localisation and visual servoing algorithms. 
We use a combination of two different kinds of wide baseline features, namely a rotation 
reduced and colour enhanced form of Lowe’s SIFT features (Lowe, 1999), and the invariant 
column segments we developed (Goedemé et al., 2004). These techniques extract local regions 
in each image, and describe these regions with a vector of measures which are invariant to 
image deformations and illumination changes. Across different images, similar regions can 
be found by comparing these descriptors. This makes it possible to find correspondences 
between images taken from very different positions, or under different lighting conditions. 
The crux of the matter is that the extraction of these regions can be done beforehand on each 
image separately, rather than during the matching. Database images can be processed off-
line, so that the images themselves do not have to be available at the time of matching with 
another image. 

 
3.1 Camera motion constraint 
The camera we use is a catadioptric system, consisting of an upward looking camera with a 
hyperboloidal mirror mounted above it. The result is a field of view of 360° in horizontal 
direction and more than 180° in vertical direction. The disadvantage is that these images 
contain severe distortions, as seen for instance in fig. 4. 
We presume the robot to move on one horizontal plane. The optical axis of the camera is 
oriented vertically. In other words, allowed movements consist of translations in the plane 
and rotation around a vertical axis. Figure 3 shows an illustration on this. 

 
Fig. 3. Illustration of the allowed movements of the camera. 

 
3.2 Rotation reduced and colour enhanced SIFT 
David Lowe presented the Scale Invariant Feature Transform (Lowe, 1999), which finds 
interest points around local extrema in a scale-space of difference-of-Gaussian (DoG) 
images. The latter tend to correspond to blobs which contrast with their background. A 
dominant gradient orientation and scale factor define an image patch around each interest 
point so that a local image descriptor can be found as a histogram of normalised gradient 
orientations. SIFT features are invariant to rotation and scaling, and robust to other 
transformations. 
A reduced form of these SIFT features for use on mobile robots is proposed by (Ledwich & 
Williams, 2004). They used the fact that rotational invariance is not needed for a camera 
with a motion constraint as in fig. 3. Elimination of the rotational normalisation and 
rotational part of the descriptor yields a somewhat less complex feature extraction and more 
robust feature matching performance. 
Because the original SIFT algorithm works on greyscale images, some mismatches occur at 
similar objects in different colours. That is why we propose an outlier filtering stage using a 
colour descriptor of the feature patch based on global colour moments, introduced by 
Mindru et al.. We chose three colour descriptors: CRB, CRG and CGB, with  

                          
where P,Q{R,G,B}, i.e. the red, green, and blue colour bands, centralised around their 
means. After matching, the correspondences with Euclidean distance between the colour 
description vectors above a fixed threshold are discarded. 
We tested these algorithms on the image pair in fig. 5. With the original SIFT algorithm, the 
first 13 matches are correct. Using our rotation reduced and colour enhanced algorithm, we 
see that up to 25 correct matches are found without including erroneous ones. 

 
3.3 Invariant column segments 
We developed wide baseline features which are specially suited for mobile robot navigation. 
There we exploited the special camera motion and the fact that man-made environments 
contain many vertical structures. Examples are walls, doors, and furniture. These don’t have 
to be planar, so cylindrical elements like pillars do comply too. Vertical lines in the world 
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by the visual homing behaviour of insects such as bees and ants. Their proposed algorithm 
consists of the construction of a home vector, computed as the average of landmark 
displacement vectors. (Franz et al., 1998) analysed the computational foundations of this 
method and derived its error and convergence properties. They conclude that every visual 
homing method based solely on bearing angles of landmarks like this one, inevitably 
depends on basic assumptions such as equal landmark distances, isotropic landmark 
distribution or the availability of an external compass reference. Unfortunately, because 
none of these assumptions generally hold in our targeted application we propose an 
alternative approach. 
If both image dimensions are taken into account, not limiting the available information to 
the bearing angle, the most obvious choice is working via epipolar geometry estimation (e.g. 
Tuytelaars et al., 1999; Basri et al., 1993). Unfortunately, in many cases this problem is ill 
conditioned. A workaround for planar scenes is presented by (Sagüés et al., 2005), who 
opted for the estimation of homographies. (Svoboda et al., 1998) proved that motion 
estimation with omnidirectional images is much better conditioned compared to perspective 
cameras. That is why we chose a method based on omnidirectional epipolar geometry. 
Other work in this field is the research of (Mariottini et al., 2005), who split the homing 
procedure in a rotation phase and a translation phase, which can not be used in our 
application because of the non-smooth robot motion. 

 
3. Fast wide baseline matching 
 

The novel technique we use for image comparison is fast wide baseline matching. This key 
technique enables extraction of natural landmarks and image comparison for our map 
building, localisation and visual servoing algorithms. 
We use a combination of two different kinds of wide baseline features, namely a rotation 
reduced and colour enhanced form of Lowe’s SIFT features (Lowe, 1999), and the invariant 
column segments we developed (Goedemé et al., 2004). These techniques extract local regions 
in each image, and describe these regions with a vector of measures which are invariant to 
image deformations and illumination changes. Across different images, similar regions can 
be found by comparing these descriptors. This makes it possible to find correspondences 
between images taken from very different positions, or under different lighting conditions. 
The crux of the matter is that the extraction of these regions can be done beforehand on each 
image separately, rather than during the matching. Database images can be processed off-
line, so that the images themselves do not have to be available at the time of matching with 
another image. 

 
3.1 Camera motion constraint 
The camera we use is a catadioptric system, consisting of an upward looking camera with a 
hyperboloidal mirror mounted above it. The result is a field of view of 360° in horizontal 
direction and more than 180° in vertical direction. The disadvantage is that these images 
contain severe distortions, as seen for instance in fig. 4. 
We presume the robot to move on one horizontal plane. The optical axis of the camera is 
oriented vertically. In other words, allowed movements consist of translations in the plane 
and rotation around a vertical axis. Figure 3 shows an illustration on this. 

 
Fig. 3. Illustration of the allowed movements of the camera. 

 
3.2 Rotation reduced and colour enhanced SIFT 
David Lowe presented the Scale Invariant Feature Transform (Lowe, 1999), which finds 
interest points around local extrema in a scale-space of difference-of-Gaussian (DoG) 
images. The latter tend to correspond to blobs which contrast with their background. A 
dominant gradient orientation and scale factor define an image patch around each interest 
point so that a local image descriptor can be found as a histogram of normalised gradient 
orientations. SIFT features are invariant to rotation and scaling, and robust to other 
transformations. 
A reduced form of these SIFT features for use on mobile robots is proposed by (Ledwich & 
Williams, 2004). They used the fact that rotational invariance is not needed for a camera 
with a motion constraint as in fig. 3. Elimination of the rotational normalisation and 
rotational part of the descriptor yields a somewhat less complex feature extraction and more 
robust feature matching performance. 
Because the original SIFT algorithm works on greyscale images, some mismatches occur at 
similar objects in different colours. That is why we propose an outlier filtering stage using a 
colour descriptor of the feature patch based on global colour moments, introduced by 
Mindru et al.. We chose three colour descriptors: CRB, CRG and CGB, with  

                          
where P,Q{R,G,B}, i.e. the red, green, and blue colour bands, centralised around their 
means. After matching, the correspondences with Euclidean distance between the colour 
description vectors above a fixed threshold are discarded. 
We tested these algorithms on the image pair in fig. 5. With the original SIFT algorithm, the 
first 13 matches are correct. Using our rotation reduced and colour enhanced algorithm, we 
see that up to 25 correct matches are found without including erroneous ones. 

 
3.3 Invariant column segments 
We developed wide baseline features which are specially suited for mobile robot navigation. 
There we exploited the special camera motion and the fact that man-made environments 
contain many vertical structures. Examples are walls, doors, and furniture. These don’t have 
to be planar, so cylindrical elements like pillars do comply too. Vertical lines in the world 

www.intechopen.com



Mobile Robots Navigation178

always project to radial lines in the omnidirectional image for the constrained camera 
motions. 
Here, these new wide baseline features are described for the use on omnidirectional images. 
More details and how they can be used on perspective camera images are described in 
(Goedemé et al, 2004). The extraction process of the wide baseline features starts as 
illustrated in figure 4. We stress that every step is invariant to changes in viewpoint and 
illumination. Along every line through the centre of the original image (left), we look for 
points having a local maximum gradient value (centre). Every consecutive pair of gradient 
maxima along the line defines the begin and end of a new invariant column segment (right). 
 

 
Fig. 4. Illustration of the invariant column segment extraction algorithm: (left) part of the 
original image, the white cross identifies the projection centre, (centre) local maxima of the 
gradient for one radius, (right) one pair of maxima defines a column segment. 
 
We characterise the extracted column segments with a descriptor that holds information 
about colour and intensity properties of the segment. This 10-element vector includes: 
- Three colour invariants. To include colour information in the descriptor vector, we compute 
the colour invariants, based on generalised colour moments (equation 1), over the column 
segment. To include information about the close neighbourhood of the segment, the line 
segment is expanded on both sides with a constant fraction of the segment length (in our 
experiments 0.2). Figure 4 (right) shows this. 
- Seven intensity invariants. To characterise the intensity profile along the column segment, 
the best features to use are those obtained through the Karhunen-Lòeve transform (PCA). 
But because all the data is not known beforehand this is not practical. As is well known, the 
Fourier coefficients can sometimes offer a close approximation of the KL coefficients. In our 
method, because it is computationally less intensive and gives real output values, we choose 
to use the seven first coefficients of the discrete cosine transform (DCT), instead of Fourier.  
In many cases there are horizontally constant elements in the scene. This leads to many very 
resembling column segments next to each other. To avoid matching over and over again 
very similar line segments, we first do a clustering of the line segments in each image. As a 
clustering measure we use the Mahalanobis distance of the descriptor vectors, extended 
with the horizontal distance between the line segments. In each cluster a prototype segment 
is chosen for use in the matching procedure. 

 

3.4 Matching 
These two kinds of local wide baseline features are very suited to quickly find 
correspondences between two widely separated images. A correspondence pair is 
established if for both features the other is the closest to it in the feature space, for the entire 
data set. Also, this match must be at least a fixed ratio better than the second best match. To 
be able to cope with different ranges of the elements of the descriptor vectors, distances are 
computed using the Mahalanobis measure (where we assume the cross-correlations to be 
zero): 

                    
To speed up the matching, a Kd-tree of the reference image data is built.  
Fig. 5 shows the matching results on a pair of omnidirectional images. As seen in these 
examples, the SIFT features and the column segments are complementary, which pleads for 
the combined use of the two. The computing time required to extract features in two 
320x240 images and find correspondences between them is about 800 ms for the enhanced 
SIFT features and only 300 ms for the vertical column segments (on a 800 MHz laptop). 
Typically 30 to 50 correspondences are found.  
  

 
Fig. 5. A pair of omnidirectional images with colour-coded corresponding column segments 
(radial lines) and SIFT features (circles with tail). 
 
For the description of a feature only the descriptors are used in the end, and not the 
underlying pixel data. As a result, the memory requirements for storing the reference 
images of entire environments can be kept limited. 

 
4. Map Building 
 

The navigation approach proposed is able to automatically construct a topological world 
representation out of a sequence of training images. During a training tour through the 
entire environment, omnidirectional images are taken at regular time intervals. The order of 
the training images is known. Section 4.1 describes the map structure targeted. In section 
4.2, the image comparison technique based on fast wide baseline features is described which 
is used by the actual map building algorithm, presented in section 4.3. 
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illumination. Along every line through the centre of the original image (left), we look for 
points having a local maximum gradient value (centre). Every consecutive pair of gradient 
maxima along the line defines the begin and end of a new invariant column segment (right). 
 

 
Fig. 4. Illustration of the invariant column segment extraction algorithm: (left) part of the 
original image, the white cross identifies the projection centre, (centre) local maxima of the 
gradient for one radius, (right) one pair of maxima defines a column segment. 
 
We characterise the extracted column segments with a descriptor that holds information 
about colour and intensity properties of the segment. This 10-element vector includes: 
- Three colour invariants. To include colour information in the descriptor vector, we compute 
the colour invariants, based on generalised colour moments (equation 1), over the column 
segment. To include information about the close neighbourhood of the segment, the line 
segment is expanded on both sides with a constant fraction of the segment length (in our 
experiments 0.2). Figure 4 (right) shows this. 
- Seven intensity invariants. To characterise the intensity profile along the column segment, 
the best features to use are those obtained through the Karhunen-Lòeve transform (PCA). 
But because all the data is not known beforehand this is not practical. As is well known, the 
Fourier coefficients can sometimes offer a close approximation of the KL coefficients. In our 
method, because it is computationally less intensive and gives real output values, we choose 
to use the seven first coefficients of the discrete cosine transform (DCT), instead of Fourier.  
In many cases there are horizontally constant elements in the scene. This leads to many very 
resembling column segments next to each other. To avoid matching over and over again 
very similar line segments, we first do a clustering of the line segments in each image. As a 
clustering measure we use the Mahalanobis distance of the descriptor vectors, extended 
with the horizontal distance between the line segments. In each cluster a prototype segment 
is chosen for use in the matching procedure. 

 

3.4 Matching 
These two kinds of local wide baseline features are very suited to quickly find 
correspondences between two widely separated images. A correspondence pair is 
established if for both features the other is the closest to it in the feature space, for the entire 
data set. Also, this match must be at least a fixed ratio better than the second best match. To 
be able to cope with different ranges of the elements of the descriptor vectors, distances are 
computed using the Mahalanobis measure (where we assume the cross-correlations to be 
zero): 

                    
To speed up the matching, a Kd-tree of the reference image data is built.  
Fig. 5 shows the matching results on a pair of omnidirectional images. As seen in these 
examples, the SIFT features and the column segments are complementary, which pleads for 
the combined use of the two. The computing time required to extract features in two 
320x240 images and find correspondences between them is about 800 ms for the enhanced 
SIFT features and only 300 ms for the vertical column segments (on a 800 MHz laptop). 
Typically 30 to 50 correspondences are found.  
  

 
Fig. 5. A pair of omnidirectional images with colour-coded corresponding column segments 
(radial lines) and SIFT features (circles with tail). 
 
For the description of a feature only the descriptors are used in the end, and not the 
underlying pixel data. As a result, the memory requirements for storing the reference 
images of entire environments can be kept limited. 

 
4. Map Building 
 

The navigation approach proposed is able to automatically construct a topological world 
representation out of a sequence of training images. During a training tour through the 
entire environment, omnidirectional images are taken at regular time intervals. The order of 
the training images is known. Section 4.1 describes the map structure targeted. In section 
4.2, the image comparison technique based on fast wide baseline features is described which 
is used by the actual map building algorithm, presented in section 4.3. 
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4.1 Topological Maps 
To be of use in the following parts of the navigation method, the topological map must 
describe all ‘places’ in the environment and the possible connections between these places. 
The topology of the world, being the maze of streets in a city or the structure of a house, 
must be reflected in the world model. The question remains what exactly is meant with such 
a place and how to delimit it. In a building, a place can be defined as a separate room. But 
then, what to do with long corridors, and outdoors with city streets?  
That is why we define a place with regard to the needs of the localisation and locomotion 
algorithms. To be able to get a sufficiently detailed localisation output, the sampling of 
places must be dense enough. For the locomotion algorithm, which performs visual homing 
between two places at a time, the distance between these places must be not too big to 
ensure errorless motion. On the other hand, a compact topological map with fewer places 
requires less memory and enables faster localisation and path planning. 
We discuss the image comparison method used in the map building algorithm before 
deciding on this place definition, as this comparison will lie at its basis. 

 
4.2 Image Comparison Measure 
The main goal of this section is to determine for each arbitrary pair of images a certain 
similarity measure, which tells how visually similar the two images are. Our image 
comparison approach consists of two levels, a global and a local comparison of the images. 
We first compare two images with a coarse but fast global technique. After that, a relatively 
slower comparison with more precision based on local features only has to be carried out on 
the survivours of the first stage. 

 
4.2.1 Global colour similarity measure 
To achieve a fast global image similarity measure between two images, we compute the 
same moments we used for the local features (equation 1) over the entire image. These 
moments are invariant to illumination changes, i.e. offset and scaling in each colour band. 
The Euclidean distance between two sets of these image colour descriptors gives a visual 
dissimilarity measure between two images. 
With this dissimilarity measure, we can clearly see for instance the difference of images 
taken in different rooms. Because images taken in the same room but at different positions 
have approximately the same colour scheme, a second dissimilarity measure based on local 
features is needed to distinguish them. 

 
4.2.2 Local measure based on matches 
First, we search for feature matches between the two images, using the techniques described 
in section 3. The dissimilarity measure is taken to be inversely proportional to the number of 
matches, relative to the average number of features found in the images. Also the difference 
in relative configuration of the matches is taken into account. Therefore, we first compute a 
global angular alignment of the images by computing the average angle difference of the 
matches. The dissimilarity measure Dm is now also made proportional to the average angle 
difference of the features after this global alignment:  

           
,where N corresponds to the number of matches found, ni the number of extracted features 
in image i, and  the angle difference for one match after global alignment. 

 
4.2.3 Combined dissimilarity measure 
We combine these two measures: only those pairs of images who have a colour dissimilarity 
under a predefined threshold are candidates for computing a matching dissimilarity. 
This combined visual distance between two images is related to the physical distance 
between the corresponding viewpoints, but is certainly not a linear measure for it. As a 
matter of fact, the disparity and appearance difference of features is also related to the 
distance of the corresponding natural landmark to the cameras. Therefore, in large spaces 
(halls, market squares), a certain visual distance will be corresponding to a much larger 
physical distance, compared to the same visual distance between two images in a small 
space. 
With this visual distance, the place definition problem can be addressed on the basis of a 
constant visual distance between places instead of a constant physical distance. 

 
4.3 Map Building Algorithm 
We apply the mathematical theory of Demster and Shafer (Dempster, 1967; Shafer, 1976) on 
the topological map building problem posed. Out of a series of omnidirectional images, 
acquired at constant rate during a tour through the environment. Firstly, these images are 
clustered into places. Then, loop closing hypotheses are formulated between visually similar 
places of which evidence is collected using Dempster-Shafer theory. Once decisions are 
made about these hypotheses, the correct topology of the world is known. 
This technique makes it possible to cope with self-similar environments. Places that look 
alike but are different will more likely get their link hypothesis rejected. 

 
4.3.1 Image clustering 
The dots in the sketch of figure 6 denote places where images are taken. Because they were 
taken at constant time intervals and the robot did not drive at a constant speed, they are not 
evenly spread. We perform agglomerative clustering with complete linkage based on the 
combined visual distance on all the images, yielding the ellipse shaped clusters in fig. 6. The 
black line shows the exploration path as driven by the robot.  
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must be reflected in the world model. The question remains what exactly is meant with such 
a place and how to delimit it. In a building, a place can be defined as a separate room. But 
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That is why we define a place with regard to the needs of the localisation and locomotion 
algorithms. To be able to get a sufficiently detailed localisation output, the sampling of 
places must be dense enough. For the locomotion algorithm, which performs visual homing 
between two places at a time, the distance between these places must be not too big to 
ensure errorless motion. On the other hand, a compact topological map with fewer places 
requires less memory and enables faster localisation and path planning. 
We discuss the image comparison method used in the map building algorithm before 
deciding on this place definition, as this comparison will lie at its basis. 

 
4.2 Image Comparison Measure 
The main goal of this section is to determine for each arbitrary pair of images a certain 
similarity measure, which tells how visually similar the two images are. Our image 
comparison approach consists of two levels, a global and a local comparison of the images. 
We first compare two images with a coarse but fast global technique. After that, a relatively 
slower comparison with more precision based on local features only has to be carried out on 
the survivours of the first stage. 

 
4.2.1 Global colour similarity measure 
To achieve a fast global image similarity measure between two images, we compute the 
same moments we used for the local features (equation 1) over the entire image. These 
moments are invariant to illumination changes, i.e. offset and scaling in each colour band. 
The Euclidean distance between two sets of these image colour descriptors gives a visual 
dissimilarity measure between two images. 
With this dissimilarity measure, we can clearly see for instance the difference of images 
taken in different rooms. Because images taken in the same room but at different positions 
have approximately the same colour scheme, a second dissimilarity measure based on local 
features is needed to distinguish them. 

 
4.2.2 Local measure based on matches 
First, we search for feature matches between the two images, using the techniques described 
in section 3. The dissimilarity measure is taken to be inversely proportional to the number of 
matches, relative to the average number of features found in the images. Also the difference 
in relative configuration of the matches is taken into account. Therefore, we first compute a 
global angular alignment of the images by computing the average angle difference of the 
matches. The dissimilarity measure Dm is now also made proportional to the average angle 
difference of the features after this global alignment:  

           
,where N corresponds to the number of matches found, ni the number of extracted features 
in image i, and  the angle difference for one match after global alignment. 

 
4.2.3 Combined dissimilarity measure 
We combine these two measures: only those pairs of images who have a colour dissimilarity 
under a predefined threshold are candidates for computing a matching dissimilarity. 
This combined visual distance between two images is related to the physical distance 
between the corresponding viewpoints, but is certainly not a linear measure for it. As a 
matter of fact, the disparity and appearance difference of features is also related to the 
distance of the corresponding natural landmark to the cameras. Therefore, in large spaces 
(halls, market squares), a certain visual distance will be corresponding to a much larger 
physical distance, compared to the same visual distance between two images in a small 
space. 
With this visual distance, the place definition problem can be addressed on the basis of a 
constant visual distance between places instead of a constant physical distance. 

 
4.3 Map Building Algorithm 
We apply the mathematical theory of Demster and Shafer (Dempster, 1967; Shafer, 1976) on 
the topological map building problem posed. Out of a series of omnidirectional images, 
acquired at constant rate during a tour through the environment. Firstly, these images are 
clustered into places. Then, loop closing hypotheses are formulated between visually similar 
places of which evidence is collected using Dempster-Shafer theory. Once decisions are 
made about these hypotheses, the correct topology of the world is known. 
This technique makes it possible to cope with self-similar environments. Places that look 
alike but are different will more likely get their link hypothesis rejected. 

 
4.3.1 Image clustering 
The dots in the sketch of figure 6 denote places where images are taken. Because they were 
taken at constant time intervals and the robot did not drive at a constant speed, they are not 
evenly spread. We perform agglomerative clustering with complete linkage based on the 
combined visual distance on all the images, yielding the ellipse shaped clusters in fig. 6. The 
black line shows the exploration path as driven by the robot.  
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Fig. 6. Example for the image clustering and hypothesis formulation algorithms. Dots are 
image positions, black is exploration path, clusters are visualised with ellipses, prototypes of 
(sub)clusters with a star. Hypotheses are denoted by a dotted red line. 

 
4.3.2 Hypothesis formulation 
As can be seen in the lower part of fig. 6, not all image groups nicely cover one distinct 
place. This is due to self-similarities, or distinct places in the environment that are different 
but look alike and thus yield a small visual distance between them. 
For each of the clusters, we can define one or more subclusters. Images within one cluster 
which are linked by exploration path connections are grouped together. For each of these 
subclusters a prototype image is chosen as the medoid1 based on the visual distance, denoted 
as a star in the figure. 
For each pair of these subclusters within the same cluster, we define a loop closing hypothesis 
H, which states that if H=true, the two subclusters describe the same physical place and 
must be merged together. We will use Dempster-Shafer theory to collect evidence about 
each of these hypotheses. 

 
4.3.3 Dempster-Shafer evidence collection 
For each of the hypotheses defined in the previous step, a decision must be made if it was 
correct or wrong. Figure 7 illustrates four possibilities for one hypothesis. We observe that a 
hypothesis has more chance to be true if there are more hypotheses in the neighbourhood, 
like in case a and b. If no neighbouring hypotheses are present (c,d), no more evidence can be 
found and no decision can be made based on this data. 

 
Fig. 7. Four topological possibilities for one hypothesis. 
We conclude that for a certain hypothesis, a neighbouring hypothesis adds evidence to it. It 

                                                                 
1The medoid of a cluster is computed analogous to the centroid, but using the median 
instead of the average. 

is clear that, the further away this neighbour is from the hypothesis, the less certain the 
given evidence is. We chose to model this subjective uncertainty by means of the ignorance 
notion in Dempster-Shafer theory. That is why we define an ignorance function  containing 
the distance between two hypotheses Ha and Hb: 
 

       
 

where dth is a distance threshold and dH is the sum of the distances between the two pairs of 
prototypes of both hypotheses, measured in number of exploration images. 
To gather aleatory evidence, we look at the visual similarity of both subcluster prototypes, 
normalised by the standard deviation of the intra-subcluster visual similarities. The visual 
similarity  is the inverse of the visual distance, defined in equation 4. 
Each neighbouring hypothesis Hb yields the following set of Dempster-Shafer masses, to be 
combined with the masses of the hypothesis Ha itself:  
 

          
 

Hypothesis masses are initialised with the visual similarity of its subcluster prototypes and 
an initial ignorance value (0.25 in our experiments), which models its influenceability by 
neighbours. 

 
4.4 Hypothesis decision 
After combination of each hypothesis’s mass set with the evidence given by neighbouring 
hypotheses (up to a maximum distance dth), a decision must be made if this hypothesis was 
correct and thus if the subclusters must be united into one place or not. 
Unfortunately, as stated above, only positive evidence can be collected, because we can not 
gather more information about totally isolated hypotheses (like c and d in fig. 7). This is not 
too bad, because of different reasons. Firstly, the chance for correct, but isolated hypothesis 
(case c) is low in typical cases. Also, adding erroneous loop closings (c and d) will yield an 
incorrect topological map, whereas leaving them out will keep the map useful for 
navigation, but a bit less complete. Of course, new data about these places can be aqcuired 
later, during navigation. 
It is important to remind oneself that the computed Dempster-Shafer masses can not 
directly be interpreted as probabilities. That is why we compute the support and plausibility 
of each hypothesis after evidence collection. Because these values define a confidence 
interval for the real probability, a hypothesis can be accepted if the lower bound (the 
support) is greater than a threshold. 
After this decision, a final topological map can be built. Subclusters connected with accepted 
hypotheses are merged into one place, and a new medoid is computed as prototype of it. 
For hypotheses that are not accepted, two distinct places should be constructed. 
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Fig. 6. Example for the image clustering and hypothesis formulation algorithms. Dots are 
image positions, black is exploration path, clusters are visualised with ellipses, prototypes of 
(sub)clusters with a star. Hypotheses are denoted by a dotted red line. 
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but look alike and thus yield a small visual distance between them. 
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which are linked by exploration path connections are grouped together. For each of these 
subclusters a prototype image is chosen as the medoid1 based on the visual distance, denoted 
as a star in the figure. 
For each pair of these subclusters within the same cluster, we define a loop closing hypothesis 
H, which states that if H=true, the two subclusters describe the same physical place and 
must be merged together. We will use Dempster-Shafer theory to collect evidence about 
each of these hypotheses. 

 
4.3.3 Dempster-Shafer evidence collection 
For each of the hypotheses defined in the previous step, a decision must be made if it was 
correct or wrong. Figure 7 illustrates four possibilities for one hypothesis. We observe that a 
hypothesis has more chance to be true if there are more hypotheses in the neighbourhood, 
like in case a and b. If no neighbouring hypotheses are present (c,d), no more evidence can be 
found and no decision can be made based on this data. 

 
Fig. 7. Four topological possibilities for one hypothesis. 
We conclude that for a certain hypothesis, a neighbouring hypothesis adds evidence to it. It 
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is clear that, the further away this neighbour is from the hypothesis, the less certain the 
given evidence is. We chose to model this subjective uncertainty by means of the ignorance 
notion in Dempster-Shafer theory. That is why we define an ignorance function  containing 
the distance between two hypotheses Ha and Hb: 
 

       
 

where dth is a distance threshold and dH is the sum of the distances between the two pairs of 
prototypes of both hypotheses, measured in number of exploration images. 
To gather aleatory evidence, we look at the visual similarity of both subcluster prototypes, 
normalised by the standard deviation of the intra-subcluster visual similarities. The visual 
similarity  is the inverse of the visual distance, defined in equation 4. 
Each neighbouring hypothesis Hb yields the following set of Dempster-Shafer masses, to be 
combined with the masses of the hypothesis Ha itself:  
 

          
 

Hypothesis masses are initialised with the visual similarity of its subcluster prototypes and 
an initial ignorance value (0.25 in our experiments), which models its influenceability by 
neighbours. 

 
4.4 Hypothesis decision 
After combination of each hypothesis’s mass set with the evidence given by neighbouring 
hypotheses (up to a maximum distance dth), a decision must be made if this hypothesis was 
correct and thus if the subclusters must be united into one place or not. 
Unfortunately, as stated above, only positive evidence can be collected, because we can not 
gather more information about totally isolated hypotheses (like c and d in fig. 7). This is not 
too bad, because of different reasons. Firstly, the chance for correct, but isolated hypothesis 
(case c) is low in typical cases. Also, adding erroneous loop closings (c and d) will yield an 
incorrect topological map, whereas leaving them out will keep the map useful for 
navigation, but a bit less complete. Of course, new data about these places can be aqcuired 
later, during navigation. 
It is important to remind oneself that the computed Dempster-Shafer masses can not 
directly be interpreted as probabilities. That is why we compute the support and plausibility 
of each hypothesis after evidence collection. Because these values define a confidence 
interval for the real probability, a hypothesis can be accepted if the lower bound (the 
support) is greater than a threshold. 
After this decision, a final topological map can be built. Subclusters connected with accepted 
hypotheses are merged into one place, and a new medoid is computed as prototype of it. 
For hypotheses that are not accepted, two distinct places should be constructed. 
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5. Localisation 

When the system has learnt a topological map of an environment, this map can be used for a 
variety of navigational tasks, firstly localisation. For each arbitrary new position in the 
known environment, the system can find out where it is. The output of this localisation 
algorithm is a location, which is—opposed to other methods like GPS—not expressed as a 
metric coordinate, but as one of the topological places defined earlier in the formerly 
explained map building stage. 
The training set doesn’t need to cover every imaginable position in the environment. A 
relatively sparse coverage is sufficient to localise every possible position. That is because the 
image comparison method we developed is based on wide baseline techniques and hence 
can recognise scene items from substantially different viewpoints. 
Actually, two localisation modes exist. When starting up the system, there is no a priori 
information on the location. Every location is equally probable. This is called global 
localisation, alias the kidnapped robot problem. Traditionally, this is known to be a hard 
problem in robot localisation. In contrast, if there is knowledge about a former localisation 
not too long ago, the locations in the proximity of that former location have a higher 
probability than others further away. This is called location updating. 
We propose a system that is able to cope with both localisation modes. A probabilistic 
approach is taken. Instead of making a hard decision about the location, a probability value 
is given to each location at each time instant. The Bayesian approach we follow is explained 
in the next subsection. 

 
5.1 Bayesian Filtering 
Define xX a place of the topological map. Z is the collection of all omnidirectional images 
z, so that z(x) corresponds to the training observation at place x. At a certain time instant t, 
the system acquires a new image zt. The goal of the localisation algorithm is to reveal the 
place xt where this image was taken. 
We define the Belief function Bel(x,t) as the probability of being at place x at time t, given all 
previous observations. So,  

          
for all xX. In the kidnapped robot case, there is no knowledge about previous observations 
hence Bel(x,t0) is initialised equal for all x. 
Using Bayes’ rule, we find:  

 
Because the denominator of this fraction is not dependent on x, we replace it by the 
normalising constant . If we know the current location of the system, we assume that 
future locations do not depend on past locations. This property is called the Markov 
Assumption. Using it, together with the probabilistic sum rule, equation 11 yields:  
 

 

This allows us to calculate the belief recursively based on two variables: the next state density 
or motion model P(xt|xt-1) and the sensor model P(zt|xt-1). 

 
5.2 Motion Model 
The motion model P(xt|xt-1) explicits the probability of a transition from one place xt-1 to 
another xt. It seems logical to assume that a transition in one time instant between places 
that are far from each other is less probable than between places close to each other. We 
model this effect with a Gaussian:  

                        
In this equation, the function dist(x1,x2) corresponds to a measurement of the distance 
between the two places. We approximate it as the minimum number of place transitions 
needed to go from x1 to x2 on the topological map, computed with the Dijkstra algorithm 
(Dijkstra, 1959). In equation 13, x is a normalisation constant, and x2 is the variance of the 
distances, measured on the map data. Once the topological map is known, the complete 
motion model can be computed off-line for usage during localisation. 

 
5.3 Sensor Model 
The entity P(zt|xt-1), called the sensor model, is the probability of acquiring a certain 
observation zt if the location xt-1 is known. This is related to the visual dissimilarity of that 
observation  and the training observation  at location . The probability of acquiring an image 
at a certain place that differs much from the training image taken at that place has a low 
probability. We model this sensor model also by a Gaussian: 

                       
This time, the function diss(z1,z2) refers to the visual dissimilarity explained in section 4. 
Unlike the motion model, the sensor model cannot be computed beforehand. It depends on 
the newly incoming query image data. Every location update step the visual dissimilarities 
of the query image with many database images must be computed. This validates our efforts 
to make the computation of the visual dissimilarity measure as fast as possible. 

 
6. Path planning 

With the method of the previous section, at each time instant the most probable location of 
the robot can be found, from which a path to a goal can be determined. How the user of the 
system, for instance the wheelchair patient, gives the instruction to go towards a certain goal 
is highly dependent on the situation. For every disabled person, for instance, an individual 
interface must be designed adapted to his/her possibilities. 
We assume a certain goal is expressed as a certain place of the topological map, e.g. as a 
voice command <<Kitchen! >>. From the present pose, computed by the localisation 
algorithm, a path can be easily found towards it using Dijkstra’s algorithm (Dijkstra, 1959). 
This path is expressed as a series of topological places which are traversed. 
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5. Localisation 
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at a certain place that differs much from the training image taken at that place has a low 
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the robot can be found, from which a path to a goal can be determined. How the user of the 
system, for instance the wheelchair patient, gives the instruction to go towards a certain goal 
is highly dependent on the situation. For every disabled person, for instance, an individual 
interface must be designed adapted to his/her possibilities. 
We assume a certain goal is expressed as a certain place of the topological map, e.g. as a 
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7. Visual servoing 

The algorithm described in this section makes the robot move along a path, computed by 
the previous section. Such a path is given as a sparse set of prototype images of places. The 
physical distance between two consecutive path images is variable (1 to 5 metres in our 
tests), but the visual distance is constant, such that there are enough local feature matches as 
needed by this algorithm. 
It is easy to see that following such a sparse visual path boils down to a succession of visual 
homing operations. First, the robot is driven towards the place where the first image on the 
path is taken. When arrived, it is driven towards the next path image, and so on. Because a 
smooth path is desired for the application, the motion must be continuous without stops at 
path image positions. 
We tackle this problem by estimating locally the spatial structure of the wide baseline 
features using epipolar geometry. Hence, at this point we bring in some 3D information. 
This may seem at odds with our topological approach, but the depth maps are very sparse 
and only calculated locally so that errors are kept local, don’t suffer from error build-up, and 
are efficient to compute. 
 

 
Fig. 8. Flowchart of the proposed algorithm for visual servoing along a path.  
 
Fig. 8 offers an overview of the proposed method. Each of the visual homing operations is 
performed in two phases, an initialisation phase (section 7.1) and an iterated motion (section 
7.2) phase. 

 
7.1 Initialisation phase 
From each position within the reach of the next path image (the target image), a visual 
homing procedure can be started. Our approach first establishes wide baseline local feature 
correspondences between the present and the target image, as described in section 3. That 
information is used to compute the epipolar geometry, which enables us to construct a local 
map containing the feature world positions, and to compute the initial homing vector. 

 

7.1.1 Epipolar geometry estimation 
Our calibrated single-viewpoint omnidirectional camera is composed of a hyperbolic mirror 
and a perspective camera. As imaging model, we use the model proposed by (Svoboda & 
Pajdla, 1998). This enables the computation of the epipolar geometry based on 8 point 
correspondences. In (Svoboda, 1999), Svoboda describes a way to robustly estimate the 
essential matrix E, when there are outliers in the correspondence set. The essential matrix is 
the equivalent of the fundamental matrix in the case of known internal camera calibration, . 
Svoboda’s so-called generate-and-select algorithm to estimate E is based on repeatedly solving 
an overdetermined system built from the correspondences that have a low ‘outlierness’ and 
evaluating the quality measure of the resulting essential matrix. Because our tests with this 
method did not yield satisfactory results, we implemented an alternative method based on 
the well-known Random Sample Consensus (RANSAC (Fischler & Bolles, 1981)) paradigm.  
 

 
Fig. 9. Projection model for a pair of omnidirectional images.  
 
The set-up is sketched in fig. 9. One visual feature with world coordinates X is projected via 
point u on the first mirror to point p in the image plane of the first camera. In the second 
camera, the mirror point is called v and the image plane point q. For each of the 
correspondences, the mirror points u and v can be computed as  
 

            
 

with tC=[0,0,-2e]T and  

           
 

In these equations K is the internal calibration matrix of the camera, and a, b and e are the 
parameters of the hyperbolic mirror. 
If E is the essential matrix, for all correspondences vTEu=0. This yields for each 
correspondence pair one linear equation in the coefficients of E=[eij]. 
For each random sample of 8 correspondences, an E matrix can be calculated. This is 
repeatedly done and for each E matrix candidate the inliers are counted. A correspondence 
is regarded an inlier if the second image point q lies within a predefined distance from the 
epipolar ellipse, defined by the first image point q. This epipolar ellipse B with equation 
xTBx=0 is computed with B=  
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7. Visual servoing 
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This may seem at odds with our topological approach, but the depth maps are very sparse 
and only calculated locally so that errors are kept local, don’t suffer from error build-up, and 
are efficient to compute. 
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performed in two phases, an initialisation phase (section 7.1) and an iterated motion (section 
7.2) phase. 
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From each position within the reach of the next path image (the target image), a visual 
homing procedure can be started. Our approach first establishes wide baseline local feature 
correspondences between the present and the target image, as described in section 3. That 
information is used to compute the epipolar geometry, which enables us to construct a local 
map containing the feature world positions, and to compute the initial homing vector. 

 

7.1.1 Epipolar geometry estimation 
Our calibrated single-viewpoint omnidirectional camera is composed of a hyperbolic mirror 
and a perspective camera. As imaging model, we use the model proposed by (Svoboda & 
Pajdla, 1998). This enables the computation of the epipolar geometry based on 8 point 
correspondences. In (Svoboda, 1999), Svoboda describes a way to robustly estimate the 
essential matrix E, when there are outliers in the correspondence set. The essential matrix is 
the equivalent of the fundamental matrix in the case of known internal camera calibration, . 
Svoboda’s so-called generate-and-select algorithm to estimate E is based on repeatedly solving 
an overdetermined system built from the correspondences that have a low ‘outlierness’ and 
evaluating the quality measure of the resulting essential matrix. Because our tests with this 
method did not yield satisfactory results, we implemented an alternative method based on 
the well-known Random Sample Consensus (RANSAC (Fischler & Bolles, 1981)) paradigm.  
 

 
Fig. 9. Projection model for a pair of omnidirectional images.  
 
The set-up is sketched in fig. 9. One visual feature with world coordinates X is projected via 
point u on the first mirror to point p in the image plane of the first camera. In the second 
camera, the mirror point is called v and the image plane point q. For each of the 
correspondences, the mirror points u and v can be computed as  
 

            
 

with tC=[0,0,-2e]T and  

           
 

In these equations K is the internal calibration matrix of the camera, and a, b and e are the 
parameters of the hyperbolic mirror. 
If E is the essential matrix, for all correspondences vTEu=0. This yields for each 
correspondence pair one linear equation in the coefficients of E=[eij]. 
For each random sample of 8 correspondences, an E matrix can be calculated. This is 
repeatedly done and for each E matrix candidate the inliers are counted. A correspondence 
is regarded an inlier if the second image point q lies within a predefined distance from the 
epipolar ellipse, defined by the first image point q. This epipolar ellipse B with equation 
xTBx=0 is computed with B=  
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From the one essential matrix E with the maximal number of inliers the motion between the 
cameras can be computed using the SVD based method proposed by (Hartley,1992). If more 
than one E-matrix is found with the same maximum number of inliers, the one is chosen 
with the best (i.e. smallest) quality measure , where  is the ith singular value of the matrix E. 
Out of this relative camera motion, a first estimate of the homing vector is derived. During 
the motion phase this homing vector is refined. 

 
7.1.2 Local feature map estimation 
In order to start up the succession of tracking iterations, an estimate of the local map must 
be made. In our approach the local feature map contains the 3D world positions of the visual 
features, centred at the starting position of the visual homing operation. These 3D positions 
are easily computed by triangulation. 
We only use two images, the first and the target image, for this triangulation. This has two 
reasons. Firstly, these two have the widest baseline and therefore triangulation is best 
conditioned. Our wide baseline matches between these two images are also more plentiful 
and less influenced by noise than the tracked features. 

 
7.2 Motion phase 
Then, the robot is put into motion in the direction of the homing vector and an image 
sequence is recorded. We rely on lower-level collision detection, obstacle avoidance and 
trajectory planning algorithms to drive safely (Demeester et al., 2003). In each new incoming 
image the visual features are tracked. Robustness to tracking errors (caused by e.g. 
occlusions) is achieved by reprojecting lost features from their 3D positions back into the 
image. These tracking results enable the calculation of the present location and from that the 
homing vector towards which the robot is steered. 
When the (relative) distance to the target is small enough, the entire homing procedure is 
repeated with the next image on the sparse visual path as target. If the path ends, the robot 
is stopped at a position close to the position where the last path image was taken. This 
yields a smooth trajectory along a sparsely defined visual path. 

 
7.2.1 Feature tracking 
The corresponding features found between the first image and the target image in the 
previous step, also have to be found in the incoming images during driving. This can be 
done very reliably performing every time wide baseline matching with the first or target 
image, or both. Although our methods are relatively fast this is still too time-consuming for 
a driving robot. 
Because the incoming images are part of a smooth continuous sequence, a better solution is 
tracking. In the image sequence, visual features move only a little from one image to the 
next, which enables to find the new feature position in a small search space. 
A widely used tracker is the KLT tracker of (Shi & Tomasi, 1994). KLT starts by identifying 
interest points (corners), which then are tracked in a series of images. The basic principle of 

KLT is that the definition of corners to be tracked is exactly the one that guarantees optimal 
tracking. A point is selected if the matrix  
 

                                    
 

containing the partial derivatives of the image intensity function over an NN 
neighbourhood, has large eigenvalues. Tracking is then based on a Newton-Raphson style 
minimisation procedure using a purely translational model. This algorithm works 
surprisingly fast: we were able to track 100 feature points at 10 frames per second in 320240 
images on a 1 GHz laptop. 
Because the well trackable points are not necessarily coinciding with the anchor points of 
the wide baseline features to be tracked, the best trackable point in a small window around 
such an anchor point is selected. In the assumption of local planarity we can always find 
back the corresponding point in the target image via the relative reference system offered by 
the wide baseline feature. 

 
7.2.2 Recovering lost features 
The main advantage of working with this calibrated system is that we can recover features 
that were lost during tracking. This avoids the problem of losing all features by the end of 
the homing manoeuvre, a weakness of our previous approach (Goedemé et al., 2005). This 
feature recovery technique is inspired by the work of (Davison, 2003), but is faster because 
we do not work with probability ellipses. 
In the initialisation phase, all features are described by a local intensity histogram, so that 
they can be recognised after being lost during tracking. Each time a feature is successfully 
tracked, this histogram is updated. 
When tracking, some features are lost due to invisibility because of e.g. occlusion. Because 
our local map contains the 3D positions of each feature, and the last robot position in that 
map is known, we can reproject the 3D feature in the image. Svoboda shows that the world 
point XC (i.e. the point X expressed in the camera reference frame) is projected on point p in 
the image:  

                                        
 

wherein  is the largest solution of  
 

                                
 

Based on the histogram descriptor, all trackable features in a window around the 
reprojected point p are compared to the original feature. When the histogram distance is 
under a fixed threshold, the feature is found back and tracked further in the next steps. 

 
7.2.3 Motion computation 
When in a new image the feature positions are computed by tracking or backprojection, the 
camera position (and thus the robot position) in the general coordinate system can be found 
based on these measurements. 
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interest points (corners), which then are tracked in a series of images. The basic principle of 
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minimisation procedure using a purely translational model. This algorithm works 
surprisingly fast: we were able to track 100 feature points at 10 frames per second in 320240 
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Because the well trackable points are not necessarily coinciding with the anchor points of 
the wide baseline features to be tracked, the best trackable point in a small window around 
such an anchor point is selected. In the assumption of local planarity we can always find 
back the corresponding point in the target image via the relative reference system offered by 
the wide baseline feature. 

 
7.2.2 Recovering lost features 
The main advantage of working with this calibrated system is that we can recover features 
that were lost during tracking. This avoids the problem of losing all features by the end of 
the homing manoeuvre, a weakness of our previous approach (Goedemé et al., 2005). This 
feature recovery technique is inspired by the work of (Davison, 2003), but is faster because 
we do not work with probability ellipses. 
In the initialisation phase, all features are described by a local intensity histogram, so that 
they can be recognised after being lost during tracking. Each time a feature is successfully 
tracked, this histogram is updated. 
When tracking, some features are lost due to invisibility because of e.g. occlusion. Because 
our local map contains the 3D positions of each feature, and the last robot position in that 
map is known, we can reproject the 3D feature in the image. Svoboda shows that the world 
point XC (i.e. the point X expressed in the camera reference frame) is projected on point p in 
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Based on the histogram descriptor, all trackable features in a window around the 
reprojected point p are compared to the original feature. When the histogram distance is 
under a fixed threshold, the feature is found back and tracked further in the next steps. 

 
7.2.3 Motion computation 
When in a new image the feature positions are computed by tracking or backprojection, the 
camera position (and thus the robot position) in the general coordinate system can be found 
based on these measurements. 
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It is shown that the position of a camera can be computed when for three points the 3D 
positions and the image coordinates are known. This problem is know as the three point 
perspective pose estimation problem. An overview of the proposed algorithms to solve it is 
given by (Haralick et al., 1994). We chose the method of Grunert, and adapted it for our 
omnidirectional case. 
Also in this part of the algorithm we use RANSAC to obtain a robust estimation of the 
camera position. Repeatedly the inliers belonging to the motion computed on a three-point 
sample are counted, and the motion with the greatest number of inliers is kept. 

 
7.2.4 Robot motion 
In the subsections above, it is explained how the position and orientation of the target can be 
extracted from the computed epipolar geometry. Together with the present pose results of 
the last subsection, a homing vector can easily be computed. This command is 
communicated to the locomotion subsystem. When the homing is towards the last image in 
a path, also the relative distance and the target orientation w.r.t. the present orientation is 
given, so that the locomotion subsystem can steer the robot to stop at the desired position. 
This is needed for e.g. docking at a table. 

 
8. Experiments 
 

8.1 Test platform 
We have implemented the proposed algorithm, using our modified electric wheelchair 
‘Sharioto’. A picture of it is shown in the left of fig. 1. It is a standard electric wheelchair that 
has been equipped with an omnidirectional vision sensor (consisting of a Sony firewire 
colour camera and a Neovision hyperbolic mirror, right in fig. 1). The image processing is 
performed on a 1 GHz laptop.  

 
8.2 Map building 
The wheelchair was guided around in a large environment, while taking images. The 
environment was a large part of our office floor, containing both indoor and outdoor 
locations. This experiment yielded a database of 545 colour images with a resolution of 
320240 pixels. The total distance travelled was approximately 450 m. During a second run 
123 images were recorded to test the localisation. A map and some of these images are 
shown in fig. 10.  
 
After place clustering with a fixed place size threshold (in our experiments 0.5), this resulted 
in a set of 53 clusters. Using the Dempster-Shafer based evidence collection, 6 of 41 link 
hypotheses were rejected, as shown in fig. 10. Fig. 11 shows the resulting 59 place 
prototypes along with the accepted interconnections.  

 
Fig. 10. A map of the test environment with image positions and some of the images. 
 

        
Fig. 11. (left) and 12. (right): Left: topological loop closing, accepted hypotheses are shown in 
thick black lines, rejected in dashed thin black lines. Right: the resulting topological map, 
locations of the place prototypes with interconnections. 
 
Instead of keeping all the images in memory, the database is now reduced to only the 
descriptor sets of each prototype image. In our experiment, the memory needed for the 
database was reduced from 275 MB to 1.68 MB. 

 
8.3 Localisation 
From this map, the motion model is computed offline. Now, for the separate test set, the 
accuracy of the localisation algorithm is tested. A typical experiment is illustrated in fig. 13.  
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environment was a large part of our office floor, containing both indoor and outdoor 
locations. This experiment yielded a database of 545 colour images with a resolution of 
320240 pixels. The total distance travelled was approximately 450 m. During a second run 
123 images were recorded to test the localisation. A map and some of these images are 
shown in fig. 10.  
 
After place clustering with a fixed place size threshold (in our experiments 0.5), this resulted 
in a set of 53 clusters. Using the Dempster-Shafer based evidence collection, 6 of 41 link 
hypotheses were rejected, as shown in fig. 10. Fig. 11 shows the resulting 59 place 
prototypes along with the accepted interconnections.  

 
Fig. 10. A map of the test environment with image positions and some of the images. 
 

        
Fig. 11. (left) and 12. (right): Left: topological loop closing, accepted hypotheses are shown in 
thick black lines, rejected in dashed thin black lines. Right: the resulting topological map, 
locations of the place prototypes with interconnections. 
 
Instead of keeping all the images in memory, the database is now reduced to only the 
descriptor sets of each prototype image. In our experiment, the memory needed for the 
database was reduced from 275 MB to 1.68 MB. 

 
8.3 Localisation 
From this map, the motion model is computed offline. Now, for the separate test set, the 
accuracy of the localisation algorithm is tested. A typical experiment is illustrated in fig. 13.  
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Fig. 13. Three belief update cycles in a typical localisation experiment. The black x denotes 
the location of the new image. Place prototypes with a higher belief value are visualised as 
larger black circles. 
 
In total, for 78% of the trials the maximum of the belief function was located at the closest 
place at the first iteration, after the second and third belief update this percentage raised to 
89% and 97%. 

 
8.4 Visual servoing 
 

8.4.1 Initialisation phase 
During the initialisation phase of one visual homing step, correspondences between the 
present and target image are found and the epipolar geometry is computed. This is shown 
in fig. 14.  
 

 
Fig. 14. Results of the initialisation phase. Top row: target, bottom row: start. From left to 
right, the robot position, omnidirectional image, visual correspondences and epipolar 
geometry are shown.  
 
To test the correctness of the initial homing vector, we took images with the robot 
positioned at a grid with a cell size of 1 meter. The resulting homing vectors towards one of 
these images (taken at (6,3)) are shown in fig. 15. This proves the fact that even if the images 
are situated more than 6 metres apart the algorithm works thanks to the use of wide baseline 
correspondences.  

 
Fig. 15. Homing vectors from 1-meter-grid positions and some of the images.  
 

 
Fig. 16. Three snapshots during the motion phase: in the beginning (left), half (centre) and at 
the end (right) of the homing motion. The first row shows the external camera image with 
tracked robot position. The second row shows the computed world robot positions [cm]. 
The third row shows the colour-coded feature tracks. The bottom row shows the sparse 3D 
feature map (encircled features are not lost).  
 
8.4.2 Motion phase 
We present a typical experiment in fig. 16. During the motion, the top of the camera system 
was tracked in a video sequence from a fixed camera. This video sequence, along with the 
homography computed from some images taken with the robot at reference positions, 
permits calculation of metrical robot position ground truth data. 
Repeated similar experiments showed an average homing accuracy of 11 cm, with a 
standard deviation of 5 cm, after a homing distance of around 3 m. 
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8.4.3 Timing results 
The algorithm runs surprisingly fast on the rather slow hardware we used: the initialisation 
for a new target lasts only 958 ms, while afterwards every 387 ms a new homing vector is 
computed. For a wheelchair driving at a cautious speed, it is possible to keep on driving 
while initialising a new target. This resulted in a smooth trajectory without stops or sudden 
velocity changes. 

 
9. Conclusion 

This chapter describes and demonstrates a novel approach for a service robot to navigate 
autonomously in a large, natural complex environment. The only sensor is an 
omnidirectional colour camera. As environment representation, a topological map is chosen. 
This is more flexible and less memory demanding than metric 3D maps. Moreover, it does 
not show error build-up and enables fast path planning. As natural landmarks, we use two 
kinds of fast wide baseline features which we developed and adapted for this task. Because 
these features can be recognised even if the viewpoint is substantially different, a limited 
number of images suffice to describe a large environment. 
Experiments show that our system is able to build autonomously a map of a natural 
environment it drives through. The localisation ability, with and without knowledge of 
previous locations, is demonstrated. With this map, a path towards each desired location 
can be computed efficiently. Experiments with a robotic wheelchair show the feasibility of 
executing such a path as a succession of visual servoing steps. 
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