1,500 research outputs found

    Intensity based image registration of satellite images using evolutionary techniques

    Get PDF
    Image registration is the fundamental image processing technique to determine geometrical transformation that gives the most accurate match between reference and floating images. Its main aim is to align two images. Satellite images to be fused for numerous applications must be registered before use. The main challenges in satellite image registration are finding out the optimum transformation parameters. Here in this work the non-alignment parameters are considered to be rigid and affine transformation. An intensity based satellite image registration technique is being used to register the floating image to the native co-ordinate system where the normalized mutual information (NMI) is taken as the similarity metric for optimizing and updating transform parameters. Because of no assumptions are made regarding the nature of the relationship between the image intensities in both modalities NMI is very general and powerful and can be applied automatically without prior segmentation on a large variety of data and as well works better for overlapped images as compared to mutual information(MI). In order to get maximum accuracy of registration the NMI is optimized using Genetic algorithm, particle swarm optimization and hybrid GA-PSO. The random initialization and computational complexity makes GA oppressive, whereas weak local search ability with a premature convergence is the main drawback of PSO. Hybrid GA-PSO makes a trade-off between the local and global search in order to achieve a better balance between convergence speed and computational complexity. The above registration algorithm is being validated with several satellite data sets. The hybrid GA-PSO outperforms in terms of optimized NMI value and percentage of mis-registration error

    Motion correction of PET/CT images

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The advances in health care technology help physicians make more accurate diagnoses about the health conditions of their patients. Positron Emission Tomography/Computed Tomography (PET/CT) is one of the many tools currently used to diagnose health and disease in patients. PET/CT explorations are typically used to detect: cancer, heart diseases, disorders in the central nervous system. Since PET/CT studies can take up to 60 minutes or more, it is impossible for patients to remain motionless throughout the scanning process. This movements create motion-related artifacts which alter the quantitative and qualitative results produced by the scanning process. The patient's motion results in image blurring, reduction in the image signal to noise ratio, and reduced image contrast, which could lead to misdiagnoses. In the literature, software and hardware-based techniques have been studied to implement motion correction over medical files. Techniques based on the use of an external motion tracking system are preferred by researchers because they present a better accuracy. This thesis proposes a motion correction system that uses 3D affine registrations using particle swarm optimization and an off-the-shelf Microsoft Kinect camera to eliminate or reduce errors caused by the patient's motion during a medical imaging study

    Robustness and Accuracy of Feature-Based Single Image 2-D–3-D Registration Without Correspondences for Image-Guided Intervention

    Get PDF
    published_or_final_versio

    Effect of optimization framework on rigid and non-rigid multimodal image registration

    Get PDF
    The process of transforming or aligning two images is known as image registration. In the present era, image registration is one of the most popular transformation tools in case of, for example, satellite as well as medical imaging analysis. Images captured by difference devices that can be processed under same registration model are called multimodal images. In this work, we present a multimodal image registration framework, upon which ant colony optimization (ACO) and flower pollination algorithms (FPA), which are two meta heuristics algorithms, are applied in order to improve the performance of a proposed rigid and non-rigid multimodal registration framework and decrease its processing time. The results of the ACO and FPA based framework were compared against particle swarm optimization and Genetic algorithm-based framework's results and seem to be promising

    Nature Inspired Evolutionary Swarm Optimizers for Biomedical Image and Signal Processing -- A Systematic Review

    Full text link
    The challenge of finding a global optimum in a solution search space with limited resources and higher accuracy has given rise to several optimization algorithms. Generally, the gradient-based optimizers converge to the global solution very accurately, but they often require a large number of iterations to find the solution. Researchers took inspiration from different natural phenomena and behaviours of many living organisms to develop algorithms that can solve optimization problems much quicker with high accuracy. These algorithms are called nature-inspired meta-heuristic optimization algorithms. These can be used for denoising signals, updating weights in a deep neural network, and many other cases. In the state-of-the-art, there are no systematic reviews available that have discussed the applications of nature-inspired algorithms on biomedical signal processing. The paper solves that gap by discussing the applications of such algorithms in biomedical signal processing and also provides an updated survey of the application of these algorithms in biomedical image processing. The paper reviews 28 latest peer-reviewed relevant articles and 26 nature-inspired algorithms and segregates them into thoroughly explored, lesser explored and unexplored categories intending to help readers understand the reliability and exploration stage of each of these algorithms
    corecore