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Robustness and Accuracy of Feature-Based
Single Image 2-D–3-D Registration Without

Correspondences for Image-Guided Intervention
Xin Kang∗, Member, IEEE, Mehran Armand, Yoshito Otake, Wai-Pan Yau, Paul Y. S. Cheung, Senior Member, IEEE,

Yong Hu, Senior Member, IEEE, and Russell H. Taylor, Fellow, IEEE

Abstract—2-D-to-3-D registration is critical and fundamental in
image-guided interventions. It could be achieved from single im-
age using paired point correspondences between the object and the
image. The common assumption that such correspondences can
readily be established does not necessarily hold for image guided
interventions. Intraoperative image clutter and an imperfect fea-
ture extraction method may introduce false detection and, due to
the physics of X-ray imaging, the 2-D image point features may
be indistinguishable from each other and/or obscured by anatomy
causing false detection of the point features. These create difficul-
ties in establishing correspondences between image features and
3-D data points. In this paper, we propose an accurate, robust,
and fast method to accomplish 2-D–3-D registration using a single
image without the need for establishing paired correspondences
in the presence of false detection. We formulate 2-D–3-D registra-
tion as a maximum likelihood estimation problem, which is then
solved by coupling expectation maximization with particle swarm
optimization. The proposed method was evaluated in a phantom
and a cadaver study. In the phantom study, it achieved subdegree
rotation errors and submillimeter in-plane (X–Y plane) transla-
tion errors. In both studies, it outperformed the state-of-the-art
methods that do not use paired correspondences and achieved the
same accuracy as a state-of-the-art global optimal method that uses
correct paired correspondences.
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I. INTRODUCTION

R EGISTERING 2-D intraoperative images to 3-D pre- and
intraoperative data is an essential component and a cru-

cial step for all image-guided interventions (IGIs) [1], which is
called 2-D–3-D registration.1 2-D–3-D registration methods are
briefly categorized into three classes: feature-based, intensity-
based, and gradient-based [2]. In intensity- and gradient-based
methods, patient anatomy is generally used, and thus, a same-
patient preoperative CT is required. To reduce radiation expo-
sures to patient, we used custom-designed tracking fiducials
for intraoperative guidance. A tracking fiducial is much smaller
than the patient anatomy and, hence, it occupies a relatively
small space and overlaps with the patient anatomy in intra-
operative images. The tracking fiducial may hinder the use of
intensity-based methods (e.g., mutual information) because the
intensity distribution of the tracking fiducial is easy to be over-
whelmed by that of the anatomy. Moreover, the tracking fiducial
is generally designed using simple geometric entities such as
points and lines. This poses challenges to gradient-based meth-
ods in terms of accurate estimation of image gradient in noisy
image for small structures, especially for small point entities
(fiducial beads). Therefore, feature-based methods are compar-
atively more suitable when using tracking fiducials. In feature-
based methods, point features have been used in a wide range
of methods [3]–[10]. Practically, point features come from three
sources: anatomical points, fiducial markers, and image con-
tours (represented as a set of points).

2-D–3-D registration is a well-studied problem in cases where
paired correspondences between a subset of a model and fea-
ture points are known, and many solutions have been proposed
[11]–[14]. However, in clinical practice point correspondences
cannot be readily established because feature points may be
obscured and individually undistinguishable, and because clut-
tered image background and imperfect feature extraction may
cause false detection in the image.

1Note that 2-D–3-D is different from 2-D/3-D. The former means 2-D-to-3-D
registration that registers two sets of data in different dimensions, while the latter
means 2-D-to-2-D or 3-D-to-3-D registration that registers two sets of data in
the same dimension.

0018-9294 © 2013 IEEE
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Without known paired point correspondences, most existing
feature-based registration methods follow a common two-step
scheme, where paired correspondences are established in the
first step and the registration parameter is computed afterwards
using these pairs correspondences in the second step. The two
steps are iterated until some stop criterion is reached.

This paper presents a novel scheme that bypasses the paired
correspondence establishment step and goes directly to the regis-
tration parameter estimation, by formulating the 2-D–3-D reg-
istration as a maximum likelihood estimation (MLE) of the
transformation parameter. The estimation is solved efficiently
using an optimization method that couples the particle swarm
optimization (PSO) and the expectation maximization (EM) al-
gorithm. Instead of using PSO in the M-step of EM and re-
sulting in a local optimizer, we embed EM into PSO and make
our method potentially a global optimizer. We demonstrate in
the experiments that the proposed method, without establishing
paired correspondences, has the same accuracy as a state-of-the-
art global optimal method that uses correct paired correspon-
dences, from only one image.

This paper is a significant extension of our previous work
[15], including extended literature review, detailed rationale of
method design, a novel optimization method that embeds EM
into PSO, additional evaluations in an animal study, and thor-
ough comparisons with state-of-the-art methods.

This paper is organized as follows. Section II reviews related
work in the literature. Section III describes the proposed algo-
rithm in detail. In Section IV, the accuracy and robustness of
the method is evaluated and the comparison is performed using
100 X-ray images. Conclusions are drawn in Section VII with
some brief discussions of our future work.

II. RELATED WORK AND CONTRIBUTIONS

A. Problem Formulation

Given 3-D model points and 2-D image feature points with
paired (one-to-one) correspondences known between a subset
of these model and feature points, the 2-D–3-D registration
is commonly formulated as a least squares using these paired
correspondences to solve

min
θ∈SE (3)

N∑

n=1

∥∥un − T
(
Xη (n) ;θ

)∥∥2
(1)

where un , n = 1, . . . , N , represent 2-D image feature points,
Xη (n) represent 3-D model points that correspond to un , T :
R3 �→ R2 denotes a 3-D-to-2-D projection following a rigid
transformation with parameters θ = {R, t} including a rotation
R ∈ SO(3) and a translation t ∈ R3 , and η : {1, . . . , N} �→
{1, . . . , M} is a function that assigns an image feature point to
its model counterpart.

It is also known that (1) can be equivalently written as

min
θ∈SE (3)

N∑

n=1

M∑

m=1

ηmn ‖un − T (Xm ;θ)‖2 (2)

where Xm ,m = 1 . . . M , represent the 3-D model points. The
ηmn equals one if Xm corresponds to un and zero otherwise.

A 2-D–3-D registration method also needs to deal with out-
liers. Here “outliers” are defined as the false positive or irrel-
evant points detected in the image. This is different from the
commonly used outliers in pose estimation in computer vision,
which are defined as incorrect paired correspondences.

B. Related Work

The most critical part in the aforementioned formulation is
how to establish paired correspondences in un and Xm , i.e.,
how to obtain ηmn . According to the essential idea on estab-
lishing paired correspondences, the related methods in the lit-
erature can be categorized into ICP-like, hypothesis-test-based,
softassign-based, and correspondence-less methods.

1) ICP-Like Methods: A majority of methods [3]–[10] adapt
the well-known iterative closest point (ICP) algorithm [16], by
assigning paired correspondences to ηmn based on the closest
distance criterion. The basic ICP performs poorly if the data
include spurious data points (points without correspondences,
also called outliers). To deal with outliers, robust methods such
as M-estimators [3] and extended Kalman filters [5], are em-
ployed. Moreover, ICP can easily be trapped in local minima,
making it sensitive to initializations. Therefore, these methods
generally need an initialization in the neighborhood of the true
transformation.

Zheng et al. [6]–[10] adopted 2-D–3-D registration to address
the construction of patient-specific surface models from a few
X-ray images. Before estimating the global deformation using
point distribution models (PDMs) [17] and the local deformation
using TPSs, an affine transformation between the mean shape
of the PDM and the X-ray was determined using an adapted
ICP. To determine paired correspondences, the cross-matching
elimination [9] was used.

2) Hypothesis-Testing-Based Methods: Pose estimation in
computer vision (also called Perspective-n-Point, PnP) is a prob-
lem very close to the 2-D–3-D registration in this paper. To
solve PnP, many methods utilize the random sample consensus
(RANSAC) algorithm [18]. Their significant difference from
the 2-D–3-D registration is that a set of candidate paired cor-
respondences is first generated using feature descriptors. Then,
a “hypothesis-testing” procedure is performed to find the most
reliable subset of paired correspondences. Finally, the optimal
pose is estimated using these paired correspondences.

Enqvist et al. [19], [20] proposed a method to deal with incor-
rect matchings, and hence, obtaining optimal correspondences.
Applied to pose estimation [19], the method is used to find the
most consistent subset from a set of candidate paired correspon-
dences [20], while the candidate paired correspondences were
generated using scale-invariant feature transform (SIFT) [21].

In the 2-D–3-D registration in this paper, the local feature
descriptors used in computer vision for generating candidate
paired correspondences are not applicable. In addition, gener-
ating hypotheses using all the combinations of model points
and image feature points is very time consuming, while a fast
algorithm is need in clinical practice.

3) Softassign-Based Method: Chui and Rangarajan [22] pro-
posed to use softassign [23], [24] and deterministic annealing
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for nonrigid matching of two point sets, both in 2-D or in 3-D.
The nonrigid spatial mapping was formulated using the TPS.
For each point set, the outlier was modeled using a Gaussian
distribution with a very large variance and the mean placed at
the center of mass. This is not optimal to reliably set the ro-
bustness parameter, and setting the weight of the smoothness
term can be difficult [22]. Moreover, it implemented a simpler
form than (2) since including outliers in its formulation is very
cumbersome [22]. Last but not least, this method cannot be em-
ployed for 2-D–3-D registration since the perspective projection
is a nonlinear mapping from 3-D to 2-D, while TPS models a
nonrigid warp in 2-D or in 3-D.

For 2-D–3-D registration (pose estimation), David et al. [25]
combined the softassign and deterministic annealing to deter-
mine paired correspondences and the POSIT [13] to estimate
a 3-D transformation using these paired correspondences. This
method, called SoftPOSIT, is arguably the most computation-
ally effective method due to its accuracy and efficiency [26]. It
iteratively estimates paired correspondences and transformation
by minimizing the objective function

min
θ∈SE (3)

N∑

n=1

M∑

m=1

ηmn (‖un − T (Xm ;θ)‖2 − α) (3)

where α is a threshold that defines two points as unmatchable
if their distance is greater than α, and ηmn ∈ {0, 1} are binary
weights [13]. This method is sensitive to initializations, and is
not robust in the presence of a large number of outliers.

4) Correspondenceless Methods: Several correspondence-
less methods have been proposed. These methods either used
simplified camera models [27] or have special requirements
[28], [29]. In [28], it is assumed that the object consists of
planar surfaces with closed curves drawn on them. In [29], a
closed-form solution was proposed. However, the method has a
very strong constraint: the camera can only have in-plane trans-
lations and rotations (i.e., moving in the X–Y plane and rotating
around the optical axis parallel to the Z-axis). In [5], bitangent
lines and bitangent planes were employed to find an initial pose
under projective projection. However, this method is not suit-
able for the registration of point sets that do not form curves or
surfaces.

5) Related Methods in Point Set Registration: Our method
adopts the Gaussian mixture model (GMM) [30] and EM [31].
These methods have been employed for 2-D–2-D and 3-D–3-D
point set registration [32]–[34], but to our knowledge not been
used for 2-D–3-D registration.

For 2-D–2-D/3-D–3-D point set registration, Myronenko
et al. [32] proposed the coherent point drift (CPD) method.
They considered the problem as a probability density estima-
tion, where one point set represents the GMM centroids and
the other represents the data points. An EM algorithm was de-
rived to solve the problem. However, CPD cannot be extended to
2-D–3-D registration since, unlike in point set registration where
the rotational and translational parameters can be decomposed,
the perspective projection is nonlinear and the two parameters
cannot be decomposed.

For 3-D–3-D surface registration, Granger et al. [33] pro-
posed the EM-ICP method. The scene points were modeled as
noisy measurements of the model points. It models the local-
ization error using a Gaussian. The variance of the Gaussian
(called “scale”) is monotonically decreased by dividing it with
a predefined value. However, doing so can sometimes lead to
an increase of the criterion value in consecutive iterations [33].
This method anneals the variance rather than considering it as a
parameter to be estimated. The initial value of the scale depends
heavily on the initialization of registration. To handle outliers,
a distance threshold was used rather than modeling outliers ex-
plicitly.

For 3-D–3-D rigid and articulated point set registration,
Horaud et al. [34] have proposed the expectation conditional
maximization for point registration (ECMPR) method using
GMM and expectation conditional maximization [35]. Differ-
ent from the CPD method [32], ECMPR uses general covari-
ance matrices for the GMM components and it estimates the
rotational and translational parameters using a method based on
semidefinite positive relaxation. However, the ECMPR method
cannot be extended to 2-D–3-D registration due to the nonlin-
ear perspective projection involved. The nonlinearity of per-
spective projection complicates the estimation of the rotational
parameter.

In summary, the existing literature shows that GMM and EM
methods are well suited for 2-D–2D/3-D–3-D point set regis-
tration. However, these methods cannot be extended directly to
2-D–3-D registration. We propose to combine GMM and EM
methods with the global optimizer PSO for solving the 2-D–3-D
registration robustly and effectively.

C. Contributions

To the best of our knowledge, this study is the first time that
these methodologies are used for 2-D–3-D registration with-
out using paired correspondences. This paper has the following
original contributions.

1) Given a set of 3-D and 2-D unmatched points, the proposed
method bypasses the paired correspondence establishing step
and goes directly to the registration parameter estimation; it
neither requires nor establishes paired correspondences. The
method estimates the registration parameter solely based on
geometry without considering the appearance of the feature
points, which can become an unreliable measure when the scene
contains many similar and easily confused fiducials. In addition,
the method is able to achieve accurate 2-D–3-D registration
from one image, although it may also be adapted readily to
cases where more than one image is available.

2) The method couples PSO with EM to solve the optimal
estimation of the registration parameter. The intuitive manner
of combining PSO and EM is to use POS as a numerical solver
in the M-step since there is no closed-form solution. However,
we integrate the E-step into the PSO.

First, PSO is a global optimizer, while EM is a local one. If
we use PSO in the M-step, EM will dominate the optimization
procedure. This leads to a local optimizer, making the method
sensitive to initializations. On the contrary, PSO ensures that



152 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 61, NO. 1, JANUARY 2014

the optimization is over the original parameter space and not
over some subspace. Most importantly, PSO has advantages on
solving the problems that are partially irregular and noisy, and
change over time, as the 2-D–3-D registration formulated in
this paper, for which other commonly used methods are not
suitable. Benefiting from making PSO govern the optimization
procedure, the proposed method is robust to initializations and
outliers, and is as accurate as a state-of-the-art global optimal
method that uses correct paired correspondences, as illustrated
in the experiments.

Second, the direct use of PSO is hampered by the unknown
paired correspondences and the variance of the GMM compo-
nents, called nuisance parameters. A nuisance parameter is a
parameter which is not of immediate interest but which must
be accounted for in the analysis of the parameters of interest.
When only PSO is used, these nuisance parameters have to be
put into the parameters to be optimized. So doing increases the
dimension of the problem, make the optimization more diffi-
cult and more computational intensive. Most importantly, these
nuisance parameters are not free parameters; they are related
to the transformation parameters. In the proposed method, the
nuisance parameters are estimated by their closed-form MLEs
derived using the EM, ensuring that the estimates are optimal
in statistical meaning. The closed-form solutions also accelerate
the optimization. Therefore, EM deals with the nuisance param-
eters, allowing the transformation parameters be optimized via
the global optimizer PSO.

3) Extensive experiments were performed with the proposed
2-D–3-D registration method using real images. We thoroughly
study the behavior of the method with respect to the initial
parameter values and the presence of outliers. The proposed
method is also compared with several state-of-the-art methods.

III. REGISTRATION WITHOUT CORRESPONDENCES

A. 2-D–3-D Registration as MLE

We trace back the 2-D–3-D registration problem to the statis-
tical inference solution of the transformation parameters, with-
out establishing paired correspondences. We briefly derive the
2-D–3-D problem in the EM framework to make exposition of
our method clearer and to introduce consistent notation. Similar
derivation can be found in [32] and [34].

Without knowing the “true” paired correspondences, we as-
sume that the nth 2-D point, un , has a certain probability, pmn ,
to correspond to the mth 3-D point, Xm . We consider the
2-D–3-D registration as an MLE of the transformation param-
eters θ, where the projected 3-D points are represented by a
mixture model, whereas the 2-D points are observations drawn
from this model.

The EM algorithm is a generic mathematical framework for
solving incomplete-data problems by formulating a complete-
data problem through augmenting the missing data. To form
complete data, an unknown paired correspondence between a
2-D point, un , and a 3-D point, Xm , is modeled using a normal
distribution p(un |m) = Nm (T (Xm ;θ), σ2). This models the
a priori probability of the mth 3-D point being the correspon-
dence of the nth 2-D point. To account for outliers a dummy

point, XM +1 , is introduced, which allows multiple points to be
matched to its projection. Further, the probability of an image
point being an outlier is modeled using a uniform distribution,
p(un |M + 1) = U(0, N), since without a priori knowledge of
the outlier it could be anywhere in the image. Consequently, the
observed-data log-likelihood is

�obs(θ, σ2 |un ) = −
N∑

n=1

log

(
M +1∑

m=1

p(un |m)P (m)

)
(4)

where P (m) is the prior probability that the projection of Xm

is one of the 2-D feature points detected in image. Generally,
a prior knowledge on P (m) is not available. Thus, without
loss generality, we define p(M + 1) = w and P (m) = U(0, 1 −
w),m = 1, . . . , M , where 0 < w < 1 is constant.

Directly solving the MLE of θ and σ2 from (4) is extremely
difficult since 1) the correspondence probabilities p(un |m) are
constrained by the registration parameters; 2) the nonlinearity
of perspective projection complicates the estimation of rota-
tion matrix; 3) the estimate of θ further depends on σ2 ; and 4)
the summation inside the logarithms makes the computation of
(4) intractable. By augmenting the unknown paired correspon-
dences the complete-data log-likelihood is simplified as

�com(θ, σ2 |un ,m) =
N∑

n=1

log (p(un |m)P (m)) . (5)

Accordingly, the target is to minimize the objective function

Q =
1

2σ2

N∑

n=1

M∑

M =1

pmn ‖un − T (Xm ;θ)‖2 + C log σ2 (6)

where C =
∑M

m=1
∑N

n=1 pmn and pmn = P (m|un ) denotes
the posterior of a correspondence, which is calculated via Bayes’
formula (pmn = p(un |m)P (m)/p(un )) as

pmn =
exp

(
−‖un −T (Xm ;θ)‖2

2σ 2

)

∑M
m=1 exp

(
−‖un −T (Xm ;θ)‖2

2σ 2

)
+ 2πσ 2 wM

(1−w )N

. (7)

Furthermore, one can easily obtain the MLE of σ2 as

σ̂2 =
1

2C

M∑

m=1

N∑

n=1

pmn ‖un − T (Xm ;θ)‖2 . (8)

B. Optimal Transformation Estimation Using PSO

Obviously minimizing (6) over θ does not lead to a closed-
form solution because T is a nonlinear perspective projection.
To deal with this, one can estimate θ using some numerical
optimization approach. However, the EM algorithm is a local
optimization method. To a local method, good initial parameter
estimates are essential. In our method, PSO [36] is adopted to
estimate the global optimum of the objective function (6) be-
cause it combines a broader region search and a locally oriented
search to obtain closer to an global optimum [37].

In PSO, the optimal solution is achieved by having a swarm
of particles (candidate solutions) moving around in the search
space S. The movements of the particles are guided by their



KANG et al.: ROBUSTNESS AND ACCURACY OF FEATURE-BASED SINGLE IMAGE 2-D–3-D REGISTRATION 153

own best known position θi,best and the entire swarm’s best
known position θbest . At beginning, each particle’s position
and velocity are initialized as uniformly distributed random
vectors θi ∼ U(θ0 − r/2,θ0 + r/2) and vi ∼ U(−r, r), re-
spectively, where θ0 and r are the center and the range of S.
And each particle’s best known position is set to its initial posi-
tion (i.e., θi,best = θi). Then, each particle updates its position
and velocity according to the following equations:

vi = ωvi + cprp(θi,best − θi) + cg rg (θbest − θi) (9)

θi = θi + vi (10)

where rp , rg ∼ U(0, 1), ω is the inertia weight, and cp and cg

are the “cognitive” and “social” parameters. This process is iter-
ated until a minimum error criterion or a predefined maximum
iteration is attained.

The coupling of the PSO and the EM allows us to solve 2-D–
3-D registration problems robustly, accurately, and efficiently,
as we will demonstrate in our experiments.

C. Implementation

The proposed method is as follows.
1) Set σ(0) =

√
(image size)/2, the search space center θ0 ,

the search space range r and the outlier prior w
2) Initialize K random particles by generating θi ∼ U(θ0 −

r/2,θ0 + r/2) and vi ∼ U(−r, r), i = 1, . . . , K.
3) Compute the posterior modes p

(t)
mn,i using (7) with θi .

4) Obtain θi,best and θbest by evaluating the objective func-

tion (6), and set θ(t) = θbest and p
(t)
mn = p

(t)
mn,best .

5) Compute
(
σ2

)(t+1)
by (8) using θ(t) and p

(t)
mn .

6) Update each particle’s position and velocity using (9) and
(10)

7) Iterate Step 3 to 6 until meeting the stop criteria
8) (Optional) Compute the maximum a posteriori (MAP)

paired correspondence of un as

X̂n ≡ Xm̂ , m̂ = arg max
m∈{1,...,M +1}

pmn . (11)

and the set of valid MAP paired correspondences

L = {X̂n ≡ Xm̂ |m̂ 	= (M + 1)}. (12)

If |L| > cL (a predefined constant), reinitialize K = 2K
particles and go to Step 10.

9) (Optional) Compute the root mean square (RMS) error

e =

√√√√
1
|L|

∑

X̂n ∈L

‖un − T (X̂n ;θbest)‖2 (13)

If e > ε (a predefined threshold), reinitialize K = 2K.
10) (Optional) Check whether the maximum re-initialization

is attained, otherwise go to Step 2.
There are three common ways to set a stop criterion in

Step 7: 1) defining a maximum number of iterations, 2) check-
ing the change of the objective function values and/or the trans-
formation parameters between two consecutive iterations, and
3) checking the number of inactive particles [38]. In both phan-
tom and cadaver studies, we used the threshold on the change

of objective function values of 10−6 , the maximum iteration
of 250, the initial number of particles K = 200, the maximum
reinitialization of 3 and the outlier priori w = 0.01.

The Steps 8–10 intend to accelerate the method. Using a
larger amount of particles could benefit PSO as more function
values can be evaluated in one iteration. However, this leads
to a higher computational load. More importantly, a sufficient
number is application dependent. We design to start from a
small number of particles and increase the number if the result
is not desirable, avoiding using a large number of particles and
handling the possibility of obtaining poor result using a small
number of particles.

The Steps 8 and 9 are used to measure the plausibility of a
result. A minimal set of three noncollinear point pairs can give
a 2-D–3-D registration result (with ambiguities), but at least
five noncollinear, noncoplanar pairs are preferred in practice for
a stable and accurate result. In our application, we set cL = 5.
This is also a tradeoff for allowing occlusions and false negatives
in feature detection. In our case, nine 3-D model points were
used for registration, but their counterparts in the image were
occluded by other strong features or other model points, or too
weak to detect. Thus, some model points may not have their
MAP paired correspondence. In other applications, this number
can be defined as desired.

In our experiments, the threshold of the RMS error was em-
pirically set to ε =

√
2 pixels as the projected model points are

expected to be within the eight neighborhood of the detected
image points. If the maximum reinitialization is attained, the
result with the minimal RMS error e is given as the final result.

Steps 8–10 are optional for the proposed method and the
relevant thresholds are application dependent, but the scheme is
effective in our application as illustrated in the experiments.

IV. EXPERIMENTS

The experiments aim to evaluate the performance of the pro-
posed algorithm. For this purpose, we have chosen femoroplasty
(injection of bone cement into the proximal femur) as a specific
example application. Femoroplasty is an effective countermea-
sure to reduce the risk of fracture in an osteoporotic hip. An
image-guided, robotic-assisted system [39] has been proposed
to facilitate the femoroplasty surgery of hip fractures in at-
risk patients. The workflow of the system is described in detail
in [39]. This paper focuses on the critical step of estimating the
pose of the C-arm via 2-D–3-D registration from a single X-ray
image.

A hybrid fiducial called “FTRAC” [40] is used in the system
for C-arm pose estimation. The FTRAC is a mathematically
optimized fluoroscope tracking fiducial initially developed for
prostate brachytherapy [40] and extended to a hybrid fiducial for
femoroplasty [39]. It comprises nine stainless steel beads and
four straight lines and two ellipses made of stainless steel wires.
The size of the FTRAC used in this experiment is 18 × 18 × 72
mm. It was designed for estimating the 6-DOF pose of the C-arm
from its projection in the X-ray image.

Our method was evaluated in a phantom and a cadaver study.
In both studies, only the nine beads were used for the 2-D–3-D
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Fig. 1. (Left) Plastic femur phantom with the fiducial affixed on it and (right)
a typical X-ray image of them taken by the bench system. The Z -axis of the
image points out of the paper. The nine beads on the fiducial were used in the
experiments, whereas the larger beads affixed on the femur phantom were not
used and they were outliers in our experiments.

registration. In all experiments, the image points were automat-
ically detected from the X-ray images, and exactly the same
points detected were used in all the methods. Our detection
method is based on a multiscale voting scheme utilizing both im-
age intensity and gradient. A detailed description of the method
will be the subject of another publication. But it is worth not-
ing that the detection method is generic and does not favor any
particular registration method.

In both studies, the proposed method were compared with
SoftPOSIT, which is arguably the most computationally effec-
tive method due to its accuracy and efficiency [26], and a global
optimal PnP solver [41] (referred to as “gOp”). In the cadaver
study, we further compare the proposed method with a newly
proposed multiview intensity-based method [39].

A. Phantom Study

The experiments were performed using X-ray images of the
FTRAC attached on a plastic bone phantom (Sawbone, Pacific
Research Laboratories, WA, USA) (see Fig. 1) acquired by a
cone-beam CT (CBCT) imaging bench [42]. The flat-panel de-
tector (FPD) was a PaxScan 4030CB (Varian Imaging Products,
Palo Alto, CA, USA) that provide distortionless images. Geo-
metric calibration was performed using the method proposed by
Cho et al. [43] with submillimeter and subdegree accuracy. In
total 100 images were acquired from different viewpoints. The
nine radio-opaque metal beads with known configuration on the
FTRAC were used to evaluate our method.

In the X-ray images, the fiducial occupies a relatively small
portion and overlaps with the sawbone, due to its structure and
size. In addition, there were some metal beads affixed on the
sawbone. Furthermore, the metal beads on the fiducial (and
the phantom) are not distinguishable from each other in the
X-ray images. These conditions pose challenges in intensity-
based registration methods. Our method achieved the 2-D–3-D
registration using the nine small beads on the fiducial without
knowing the correspondences between the beads on the model
and the points detected in the X-ray images. The larger beads
affixed on the phantom (see Fig. 1) were not used for registration.

1) Ground-Truth Transformations: The ground-truth trans-
formations (rgt , tgt) was obtained from high-resolution CBCT

images. Each bead in the CBCT data was manually segmented
and fit with a sphere so that a surface model of each bead was
created. Then, a point-to-point rigid registration between the
surface model and the CAD model was carried out, using the
centers of the fitted spheres. The fiducial registration error of
this procedure for all the beads is 0.14 ± 0.06 mm.

2) Robustness to Initializations: The proposed method was
evaluated using 100 X-ray images taken from different view-
points. For each image, 50 trials were conducted using 50 dif-
ferent initializations generated using the ground-truth rotation
rgt and the C-arm source-to-detector distance dSD .

Each initialization (r, t) represents a 6-DOF transformation
using a 3-vector for translation and Euler angles for rotation.
The initial translations were independent from tgt ; they were
set to t = (0, 0, dSD/2) since practically the imaged object is
oftentimes around the middle of C-arm. In the phantom study,
dSD = 1184 mm. The rotations were initialized as uniformly
distributed random vectors r ∼ U(rgt − 20◦, rgt + 20◦).

For each image, 50 random independent initializations were
generated without duplicate. Using these initializations, the pro-
jected FTRAC beads were outside the image in some cases.

The search range of the PSO, r, was set to 40◦ in rotations
and 200 mm in translations. These ranges are much larger than
the ranges used in literature.

3) Robustness to a Large Amount of Outliers: In the pro-
posed method, the fiducial beads were automatically localized
as feature points in the X-ray images and directly used for
2-D–3-D registration. In practice, automatic feature point de-
tection is preferable, requiring that the method is robust to out-
liers. As mentioned before, there were also seven beads affixed
on the femur phantom for calculating ground-truth transforma-
tions. These beads were automatically detected and they were
outliers.

To evaluate the robustness of our method to a large amount of
outliers, we added 80 uniformly generated random false detec-
tions in the image. Thus, together with the seven beads on the
phantom, there were in total 87 outliers in each testing image.
Still, only the nine beads on FTRAC were used for registration.

The proposed method was carried out on these 100 images
without providing any paired point correspondences. The same
initializations and search range in Section IV-A2 were used.

4) Comparison With a Global Optimal PnP Method: To fur-
ther demonstrate the accuracy of our method, it is compared with
a global optimal PnP solver [41] (referred to as “gOp”).

Note that, as a PnP solver the gOp requires correct paired
correspondences. In this comparison, the ground-truth paired
correspondences were used in gOp, whereas no paired corre-
spondences were used in our method. The results of the gOp
were compared with the results obtained in Section IV-A2.

B. Cadaver Study

We also evaluate our method in a cadaver study containing
27 images taken from different viewpoints. The experimental
setup and an example image is shown in Fig. 2. The images
were acquired using a prototype mobile C-arm [44] from a
cadaver hip with the FTRAC affixed on the femur shaft. Images
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Fig. 2. Setup of the cadaver study in a well-calibrated environment, and an
example X-ray image. The FRAC fiducial was affixed firmly on the cadaver hip
on the right femur shaft. The flat-panel C-arm was used to acquire X-ray images
by rotating approximately around the long axis of the right femur.

without distortion were acquired by rotating the scanner about
the long axis of the femur.

1) Comparison With a Multiview Intensity-Based Method:
We compared our method with a multiview mutual information-
based 2-D–3-D registration method [39] (referred to as MV-MI)
for C-arm pose estimation.

In MV-MI, an initial pose is obtained by performing POSIT
[13] using manually established paired correspondences. Start-
ing from this initial pose, the C-arm pose is iteratively updated
by maximizing the mutual information [45] between a DRR of
the CAD model generated at the estimated pose and the original
X-ray image. The Downhill Simplex algorithm [46] was used
to maximize the objective function. Finally, a multiview refine-
ment is carried out to improve the accuracy. For details, readers
are referred to [39].

In the comparison, six images were used in MV-MI for pose
estimation, whereas only one image was used in our method.

For initialization, MV-MI used four paired correspondences
obtained by manually selecting four nonplanar fiducial beads
in the image and their counterparts on FTRAC, whereas our
method took the same initialization procedure and search range
used in Section IV-A2. The source-to-detector distance is dSD =
1330 mm. Since there is no ground truth, the initial rotations
were generated using the results of MV-MI. However, to ensure
a “poor” initialization, the estimated rotation of the image three
apart from the current one in order was used. That is, when
performing registration on the #1 image, the estimated rotation
of the MV-MI on the #4 image was used.

2) Comparison With SoftPOSIT and gOp: Our method was
also compared with SoftPOSIT [25] and gOp [41]. SoftPOSIT
used the same initializations in Section IV-B1 and ran until
convergence without setting a maximum iteration. For gOp, the
ground-truth paired correspondences were used.

Note that the comparison between the MV-MI and the pro-
posed method is a comparison between a multiview intensity-
based method and a single-view feature-based method, while

Fig. 3. Means and standard deviations of the registration errors in (top) rota-
tions in degrees and in (bottom) translations in millimeter, respectively, on each
of the 100 X-ray images over 50 trials. The solid, dash-dot and dotted lines are
the mean values, and the shadow regions show the standard deviations.

the comparison between the proposed method and SoftPOSIT
is a comparison between two feature-based methods.

V. EXPERIMENTAL RESULTS

A. Phantom Study

1) Robustness to Initializations: For each image, the mean
and standard deviation of the errors between the estimated and
ground-truth transformation parameters are shown in Fig. 3. The
means are plotted using the solid, dash-dot and dotted lines, and
the standard deviations are shown using the regions in light
colors accordingly. The overall mean errors and standard de-
viations of each individual parameters over the 5000 exper-
iments were (−0.26◦ ± 0.22◦, 0.16◦ ± 0.12◦,−0.15◦ ± 0.22◦)
in rotations around X-, Y-, and Z-axes, and (0.32 ± 0.11, 0.08 ±
0.10, 1.65 ± 1.00) mm in translations along X-, Y-, and Z-axes,
respectively.

The aforementioned errors for each individual images over
50 trials are also shown using box-and-whisker plots in Fig. 4.
Compared with the plots using means and standard deviations,
a box-and-whisker plot give a less biased visualization of the
data spread as it shows the registration errors of each individual
trials. The area between the upper and lower boundaries of
the box, called the interquartile range, shows the spread of the
middle 50% of the registration errors. It is a more robust range
for interpretation because the middle 50% is not affected by
outliers or extreme values.
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Fig. 4. Registration errors of our method in rotations and translations. In the left column, from top to bottom, the plots show the registration errors (in degrees)
around the X -, Y -, and Z -axes over 50 trials on 100 images. In the right column, from top to bottom the plots show the registration errors (in millimeter) along
the X -, Y -, and Z -axis. All rotation errors around X -, Y -, and Z -axis were less than 1◦ (indicated by the horizontal dashed lines), and all translation errors along
X - and Y -axes were less than 1 mm, whereas the translation errors along Z -axis were relative larger.

The proposed method estimated rotations and in-plane trans-
lations (along the X- and Y -axes) accurately with subdegrees
and submillimeter accuracy (see Fig. 4). All rotation errors were
less than 1◦, and all in-plane translation errors were less than
1 mm. The errors in the projection direction Z-axis (i.e., the
depth) were relatively large since the depth can be difficult to
accurately estimate from only single image.

2) Dynamic Behavior of the Proposed Method: To depict
the dynamic procedure of our method, Fig. 5 shows one typical
trial of the experiments. It also displays correspondence maps
of iterations #0, #5, #10 and #50. A correspondence map is a
visualization of the correspondence probabilities pmn , with the
horizontal axis the order of image points and the vertical axis
the order of model points. In a correspondence map, a block
in the bottom row represents the probability of an image point
being an outlier, while a block in the nth column and the mth
row above the bottom row represents the probability between
the nth image point and the mth model point. A higher block
value indicates a higher correspondence probability.

At initialization (iteration #0), there was no dominant cor-
respondence as the bottom line shows the highest values for
all points. In iteration #5, multiple correspondences with low
probabilities were established for several points, indicated by
light blue color. In iteration #10, correspondences with high
probabilities were found. In iteration #50, the correspondences
with high certainty were established. A side product of the pro-
posed method is that, paired correspondences can be obtained
using the maximum a posteriori (MAP) of the correspondence
probabilities. Though our method does not intend to establish
them, after the 2-D–3-D registration, an image point that has the
largest probability to a model point could be considered as the
correspondence of that model point.

3) Robustness to Outliers: The registration errors for each
individual images are shown in Fig. 6. Although there were
a large amount of outliers and the initializations were large,
the proposed method produced subdegree rotation errors and
submillimeter in-plane translation errors. Comparing the re-
sults with that in Fig. 3, it can be seen that the registration
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Fig. 5. Behavior of the proposed method. The detected beads, initialization,
and final estimate are shown using blue plus signs (“+”), red asterisks (“*”),
and red circles (“o”), respectively. Four correspondence maps below the image
illustrate the behavior of our method at iterations #0 (initialization), #5, #10,
and #50. The correspondence map is a visualization of the correspondence
probabilities pm n with the horizontal axis the order of image points and the
vertical axis the order of model points. The higher the value of a block in the
map, the higher the correspondence probability is. Two enlarged regions give
close-up displays of the final estimate (b) and an outlier (a large bead on the
femur phantom) that is very close to a FTRAC bead (c).

errors were at the same level as that obtained with much less
outliers.

Fig. 5(c) also illustrates the robustness of our method to out-
liers. In the image, the 3-D structure of FTRAC is degraded and
one outlier (a bead on the femur phantom) is very close to the
projection of a FTRAC bead. In this case, our proposed method
still achieved the registration with errors of (−0.47◦, 0.03◦,
−0.25◦, 0.33 mm, −0.12 mm, 1.84 mm). As can be seen in
Fig. 5(b), the projected registered FTRAC beads well fit the
detected beads.

4) Comparison With gOp and SoftPOSIT: Using the ground-
truth paired correspondences, gOp was performed on the 100
images. The registration errors are shown in Table I and Fig. 7,
along with the mean errors of our method for comparison. The
average errors of the proposed method were the same as that of
gOp for most images, and they were smaller than that of gOp
for some images. Also seen from Table I is that the depth is hard
to estimate accurately from single image.

The registration errors of SoftPOSIT were larger than 1◦ and
1 mm in almost all cases, and hence, were not plotted in Fig. 7.
To show the accuracy of SoftPOSIT, we performed another
experiment using “good” initializations that were very close to

Fig. 6. Robustness of the proposed method to a large amount of outliers (87
outliers versus 9 correct feature points). The rotation errors for all images were
within ±0.5◦. The translation errors along X- and Y-axes were less than 1 mm,
and the errors along Z-axis were relative large. Notably, the registration errors
were at the same levels as that when there were much less outliers, by comparing
with Fig. 3.

TABLE I
REGISTRATION ERRORS OF OUR METHOD, gOp [41] AND SOFTPOSIT [25]

IN THE PHANTOM STUDY

The errors are the difference between the estimated and ground-truth transformation.

the ground-truth (within 1◦ and 1 mm). The best registration
results in the 50 trials per image, named as SoftPOSIT (best),
were used to calculate the statistics for comparison in Table I.

B. Cadaver Study

To measure the accuracy of the proposed method, the RMS
projection error was used because there is no accurate ground
truth for the cadaver data. The RMS projection errors of the
proposed method, MV-MI, SoftPOSIT, and gOp are shown in
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Fig. 7. Comparison of the registration errors between the proposed method
with gOp [41]. For most images, the average errors of the proposed method
were the same as that of gOp, and they were smaller than that of gOp for some
images. Note that gOp requires correct paired point correspondences, while no
paired correspondences were used in the proposed method.

TABLE II
RMS ERRORS (IN PIXELS) OF DIFFERENT METHODS IN THE CADAVER STUDY

Table II and Fig. 8, associated with a visual comparison using
#14 image. Only the errors no more than 5 pixels are shown in
the figure for a better comparison since the errors of SoftPOSIT
in some failed cases were more than 100 pixels.

As shown in Table II, our method had the smallest RMS
projection error of approximately 0.5 pixels (0.49 ± 0.08). The
gOp produced the same accuracy (0.48 ± 0.09) as the proposed
method. MV-MI had intermediate accuracy of approximately
1.3 pixels (1.29 ± 0.21). While SoftPOSIT produced the largest
errors of 26.16 ± 45.46 pixels.

As a typical example, the registration results of the four meth-
ods for the #14 image is also shown in Fig. 8. Using the estimate
of the proposed method, the projections of the beads on the
FTRAC model (yellow asterisks) are very close to the centers
of the fiducial beads (green points). The projections obtained
using the estimate of gOp coincide with those of the proposed
method. While using the estimate of MV-MI, the projections are
a little bit further from the centers of the beads, and using the
estimate of SoftPOSIT, some projections are quite far. As for

Fig. 8. RMS projection errors and an example registration results of different
methods. In the image, the green points are extracted feature points, and the
cyan crosses, the red plus signs, the white circles and the yellow asterisks are
the projections using the estimate of SoftPOSIT [25], MV-MI [39], gOp [41],
and the proposed method, respectively. The yellow asterisks overlapped the
white circles, indicating the proposed method had the same accuracy as gOp.

the automatically detected centers of the fiducial beads, they are
very close to the centers of the beads in the image [see Fig. 8(b)
and (d)].

C. Computational Time

We used a laptop with 2.53 GHz Intel Core 2 Duo CPU and
4 GB memory for this project. The approximate computation
time of SoftPOSIT and gOp was 1.8 and 1.3 s, respectively. The
approximate computation time for the MATLAB implementa-
tion of our method was 2 s. This computation time included the
automatic extraction of the fiducial beads, and can be improved
using an C++ implementation.
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VI. DISCUSSION

A. Comparison With SoftPOSIT

The proposed method has three essential differences from
SoftPOSIT. First, pmn ∈ [0, 1] is the posterior probability of
paired correspondences. Whereas, ηmn ∈ {0, 1} in SoftPOSIT
is a binary assignment. Although softassign is used, it ends up
with a “zero-one assignment matrix” that specifies the paired
correspondences between image and model points.

Second, a predefined distance threshold α in (3) is used to
penalize mismatching when ‖un − T (Xm ;θ)‖2 > α. In our
method, the correspondence is modeled using a Gaussian dis-
tribution. Although σ2 can be interpreted as a “distance penal-
ization” parameter, the use of Gaussian makes the penalization
adaptive. More importantly, the penalization is driven by the
data and optimized. In our method, σ2 is initially set to a relaxed
state (the half of image size), allowing the search of optimal so-
lutions with a large tolerance, and subsequently tightened up,
forcing the final solution to approach a minimum projection er-
ror. When σ2 is large, our method loses precise local alignment
and focuses on a more global geometry. When σ2 decreases,
the local geometry contributes more and drags the projections
toward a better alignment.

Third, in the annealing scheme, the temperature β is simply
increased monotonically. This has three shortcomings: 1) the
optimal update ratio can be difficult to determine beforehand;
2) it is image- and initialization-related, i.e., a particular value
of the update ratio (e.g., 1.05 in [25]) may not be optimal for
different images or initializations; and 3) the optimal initial
and stop values of β (0.0004 and 0.5 in [25]) are also difficult
to determine in advance, which may potentially cause large
registration errors. In our experiments, when the initialization
was not good, SoftPOSIT produced large errors (see Table II).
This is because that the search of SoftPOSIT is local, and there
is no guarantee of finding the global optimum given a single
initial guess [25]. For our method, σ2 is optimized during each
iteration, making our method robust to the initialization. In all
experiments, we simply set σ2 to the half of image size without
influencing the registration accuracy. Since our method is a
global optimizer, it produced accurate results.

B. Comparison With gOp

In both phantom and cadaver studies, our method and gOp
produced essentially identical accuracy. But gOp requires cor-
rect paired correspondences, which is a common requirement
for any PnP solver. Our method does not have this requirement.
In the scenarios where the C-arm pose needs to be continu-
ously estimated, manually establishing paired correspondences
is time consuming and interrupts the procedure. In this case, our
method is preferable because of its fully automatic fashion.

Our method can also be used when rough or partial paired cor-
respondences are available. In this case, it can start with initial
correspondence probabilities or a σ2 that reflects the certainty
of the available paired correspondences.

The gOp can always produce a global solution given correct
paired correspondences due to its use of convex optimization.

Our method cannot theoretically guarantee to always produce
a global solution, but PSO has demonstrated its capability of
finding global solutions in many different applications, which
is also shown in the intensive evaluations in this paper.

C. Comparison With MV-MI

Compared with MV-MI, our method has three advantages.
First, MV-MI uses multiple images, requiring accurate spatial
interrelationship of the images. This means the C-arm has to
be tracked, and MV-MI is used to refine the tracking data.
Our method uses only one image, leading to a pure image-
guided scheme. Second, MV-MI needs to manually identify the
beads in images and select their corresponding points on the 3-D
model, while our method runs in an automatic manner. Third,
our method has better accuracy than MV-MI.

D. Estimation Along Projection Direction

As shown in the experiments, the estimates had relatively
large errors in the projection direction along the Z-axis (i.e., the
depth). However, the depth can be difficult to accurately estimate
for a 2-D–3-D registration method using only one image because
the image does not contain distance information in the projection
direction, and depth typically remains ambiguous given only
local image features [47]. The movement of an object along the
projection direction results in a scale change only in its 2-D
projection, and it is difficult to accurately solve the ambiguity
between the scale and depth using only one image. The limited
accuracy in depth is an issue of the proposed method that need
to be improved. One solution is to use two or more images if
their relative poses are known.

E. Extension to Multiple Views

In general, the use of two or more images taken from dif-
ferent viewpoints will decrease the registration error along the
projection direction. In this study, we did not implement mul-
tiview 2-D–3-D registration because the C-arm is not tracked
in our system due to the large movement range of the C-arm
compared with the high-precision tracking volume [39] and the
interference of the line-of-sight. Similar setups were also used
in other image-guided systems [48]–[50]. In such systems, the
C-arm pose has to be accurately and robustly estimated from
one image.

The propose method can be easily extended to multiview
scenario if accurate spatial interrelationship between images
are available. Having I views associated with the transformation
θi

1 from the ith view to the first view, the multiview 2-D–3-D
registration is formulated as

1
2σ2

I∑

i=1

N∑

n=1

M∑

M =1

pimn

∥∥un − T (Xm ;θ,θi
1)

∥∥2
+ C log σ2

where θ1
1 = I is the identity matrix. Theoretically, any view

can be chosen as the first view. After convergence, we can, as
most multiview methods do in computer vision, further refine
the registration using bundle adjustment [51]. This is one of our
ongoing work.
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F. Extension to Contour-Based 3-D–2-D Registration

The proposed method is not limited to fiducial-based 2-D–3-D
registration. It can be readily adapted for contour-based 2-D–
3-D registration. Representing image contours using oriented
points and a 3-D object using a triangulated surface mesh, the
proposed method can be extended to a contour-based 2-D–3-D
registration method [52].

The contour-based method can also incorporate image gra-
dient information in our probabilistic representations of image
features. Finally, the 2-D–3-D registration is achieved by obtain-
ing the optimal registration parameters using the same method
that couples PSO and EM. Some preliminary studies along this
direction have been reported in [53] and [52].

VII. CONCLUSION AND FUTURE WORK

We propose a 2-D–3-D registration method without the need
for known paired correspondences. Unlike the methods that find
the “best” correspondences from a set of candidate matchings,
and then, estimate the registration from them, directly or iter-
atively, in the proposed method, every 3-D point has certain
correspondence probabilities to all the 2-D points. Though this
formulation in its nature is a combinatory explosion problem, it
is solved in the proposed method by making use of a global op-
timization method coupled with statistical inference effectively.
The correspondence probabilities are modeled using a mixture
model, and then, the 2-D–3-D registration is solved using our
method that couples PSO with EM, without the need for paired
correspondences.

Compared with a global optimal method that uses correct
paired correspondence, both the phantom and cadaver studies
have showed that the proposed method is accurate, in terms of
producing estimates with the same accuracy as a state-of-the-art
global optimal method.

The experiments also illustrated the robustness of the pro-
posed method to initializations and the presence of a large
amount of outliers (false detections in the image). Presenting a
large amount outliers (87 false detections versus 9 correct ones),
and starting from a poor initialization, the proposed method also
produced accurate estimates. Furthermore, the estimation accu-
racy was at the same level as the global optimal method that
uses correct paired correspondences.

Although the evaluations were performed on one phantom
and one cadaver, we believe the promising results on 27 images
of the cadaver and 5000 trials on 100 images of the phantom
demonstrate the efficacy of our method. This method will be fur-
ther validated and verified in more cadaver and clinical studies
in future.

In addition to extending the propose method to multiview and
2-D–3-D rigid registration, another important future work is to
extend it to a contour-based 2-D–3-D deformable registration.
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