
MOTION CORRECTION OF PET/CT IMAGES

A Thesis

Submitted to the Faculty

of

Purdue University

by

Juan Antonio Kim Hoo Chong Chie

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

May 2017

Purdue University

Indianapolis, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. Paul Salama, Co-Chair

Department of Electrical and Computer Engineering

Dr. Paul Territo, Co-Chair

Department of Radiology and Imaging Sciences, School of Medicine

Dr. Brian King

Department of Electrical and Computer Engineering

Dr. Maher Rizkalla

Department of Electrical and Computer Engineering

Approved by:

Dr. Brian King

Head of the Department Graduate Program

iii

For my parents,

Santiago Chong and Mayra Chie,

And my brother,

Juan Santi Chong

iv

ACKNOWLEDGMENTS

First, I want to thank my father Santiago Chong, my mother Mayra Chie, and

my brother Juan Santi Chong, for the unconditional support and love.

To Dr. Paul Salama and Dr. Paul Territo for all the help and guidance during

the development of this project. Without their help and knowledge, the completion

of this project could not have been possible.

To Dr. Brian King for his help and support during my master’s coursework.

To Dr. Maher Rizkalla for being part of my master’s thesis committee.

To Sherrie Tucker for all her help and time since the admission process.

Last, but not least, I want to thank my friends Marcos Ramos and Pedro Hernan-

dez for all the encouragement and support they gave me during my studies.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

SYMBOLS . x

ABBREVIATIONS . xi

ABSTRACT . xii

1 INTRODUCTION . 1

2 LITERATURE REVIEW . 4

2.1 Related Works . 4

2.2 Kinect and Depth Data used for Tracking 7

3 APPROACH . 9

3.1 Overview . 9

3.2 Background . 11

3.2.1 Image Registration . 11

3.2.2 Affine Transformations . 13

3.2.3 Affine Registration . 21

3.2.4 Non-linear Registration . 22

3.2.5 Features Detection, Extraction and Matching 23

3.2.6 Particle Swarm Optimization Background 36

3.2.7 Microsoft Kinect . 55

3.3 System Workflow . 63

3.3.1 Microsoft Kinect Stage . 65

3.3.2 Consecutive Frames Registration Stage 67

3.3.3 3D Model Registration Algorithm 81

3.3.4 Motion Correction Step . 83

vi

Page

3.4 Graphical User Interface . 89

4 RESULTS AND DISCUSSION . 96

5 CONCLUSIONS AND FUTURE WORK 106

5.1 Conclusion . 106

5.2 Future work . 107

REFERENCES . 109

vii

LIST OF TABLES

Table Page

4.1 Length of the arrows in the quiver plots between the matched features. . 105

4.2 Length of the arrows in the quiver plots of the corrected matches. 105

viii

LIST OF FIGURES

Figure Page

3.1 Example of a translation in 2D . 14

3.2 Example of a rotation about the origin in 2D. 16

3.3 Example of a reflection about the origin in 2D 18

3.4 Example of a reflection about the x-axis in 2D 19

3.5 Example of a reflection about the y-axis in 2D 19

3.6 Example of a scaling about the origin in 2D 20

3.7 Example of shearing in both axis. 21

3.8 Difference of Gaussian . 26

3.9 Marked Keypoint . 27

3.10 Example of neighborhood topologies . 44

3.11 Microsoft Kinect Sensor. 56

3.12 Components of the Microsoft Kinect Sensor. 57

3.13 Field of view of the color camera. 58

3.14 Field of view of the IR Emitter/IR Sensor. 59

3.15 Example of an infrared image. 60

3.16 Example of a depth map. 61

3.17 Example of a point cloud. 62

3.18 Block Diagram of the proposed system. 64

3.19 Microsoft Kinect Stage. 65

3.20 Consecutive Frames Registration Stage. 68

3.21 Kinect File Reader Step. 70

3.22 Features Extraction and Features Matching Step. 72

3.23 Obtained average distance and standard deviation of the matches at the
output of the system while varying the kernel size. 74

ix

Figure Page

3.24 Particle Swarm Optimization Step. 75

3.25 Comparison of the Normalized Runtime and Fitness Value vs the Number
of Particles in the Swarm.. 79

3.26 Comparison of the Normalized Runtime and Fitness Value vs the Neigh-
borhood Size. 79

3.27 Neighborhood of size a for particle i. 80

3.28 Infrared Images and Point Clouds Flow Chart. 82

3.29 Ideal Registration Process. 82

3.30 Windowing Algorithm Flow Chart. 84

3.31 Motion Correction Stage. 85

3.32 Pixel spacing example. 87

3.33 Process of generating a 3D model using the image slices. 88

3.34 Initial view of the camera tab. 90

3.35 View of the ’Enter Study ID’ dialog box. 91

3.36 View of the tab when the system is ready to start the image acquisition. . 91

3.37 View of the tab during the images acquisition task. 92

3.38 View of the tab while the image acquisition is paused. 92

3.39 Motion Correction Views . 94

3.40 DICOM Receiver View . 95

3.41 DICOM Sender View . 95

4.1 Raw IR Images and Depth Maps Acquired using the Microsoft Kinect. . . 98

4.2 Results obtained from two consecutive frames. 99

4.3 Original Point Clouds, Infrared Matches and Quiver Plots of the Matches
for Frames 0 to 3. 100

4.4 Original Point Clouds, Infrared Matches and Quiver Plots of the Matches
for Frames 3 to 6. 101

4.5 Corrected Point Clouds, Quiver Plots of the Corrected Matches for Frames
0 to 3. 102

4.6 Corrected Point Clouds, Quiver Plots of the Corrected Matches for Frames
3 to 6. 103

x

SYMBOLS

xi,j(t) Position of the i-th particle in j dimension at time t

vi,j(t) Velocity of the i-th particle in j dimension at time t

c1 Cognitive Acceleration Coefficient

c2 Social Acceleration Coefficient

pbest,ij Local best position of particle i for dimension j

sbest,j Swarm best position for dimension j

w Inertia Weight

fpsACQ Acquisition Frame Rate

Nsize Neighborhood Size

Ii Infrared Frame i

Tij Affine Transformation Matrix between Frames i and j

Pi Point Cloud i

F ij
i Matched Point Cloud i using matches between IR frames i and j

xi

ABBREVIATIONS

API Application Program Interface

CT Computed Tomography

DCMTK DICOM Toolkit

DICOM Digital Imaging and Communications in Medicine

FLANN Fast Library for Approximate Nearest Neighbors

GPU Graphics Processing Unit

GUI Graphical User Interface

HOG Histogram of Oriented Gradients

ICP Iterative Closest Point

IR Infrared

MRI Magnetic Resonance Imaging

NNS Nearest Neighbors Search

OpenCV Open Source Computer Vision

OpenGL Open Graphics Library

PET Positron Emission Tomography

PSO Particle Swarm Optimization

SDK Software Development Kit

SIFT Scale-Invariant Features Transform

SURF Speeded-Up Robust Features

TOF Time-of-Flight

xii

ABSTRACT

Author: Chong Chie, Juan Antonio Kim Hoo. MSECE
Institution: Purdue University
Degree Received: May 2017
Title: Motion Correction of PET/CT Images
Major Professors: Paul Salama and Paul Territo

The advances in health care technology help physicians make more accurate di-

agnoses about the health conditions of their patients. Positron Emission Tomogra-

phy/Computed Tomography (PET/CT) is one of the many tools currently used to

diagnose health and disease in patients. PET/CT explorations are typically used

to detect: cancer, heart diseases, disorders in the central nervous system. Since

PET/CT studies can take up to 60 minutes or more, it is impossible for patients to

remain motionless throughout the scanning process. This movements create motion-

related artifacts which alter the quantitative and qualitative results produced by the

scanning process. The patient’s motion results in image blurring, reduction in the

image signal to noise ratio, and reduced image contrast, which could lead to misdi-

agnoses.

In the literature, software and hardware-based techniques have been studied to

implement motion correction over medical files. Techniques based on the use of an

external motion tracking system are preferred by researchers because they present a

better accuracy. This thesis proposes a motion correction system that uses 3D affine

registrations using particle swarm optimization and an off-the-shelf Microsoft Kinect

camera to eliminate or reduce errors caused by the patient’s motion during a medical

imaging study.

1

1. INTRODUCTION

Advances in health care technologies have helped physicians make more accurate

diagnoses about the health and medical conditions of their patients. A consequence

of having better diagnosis is that doctors can decide the best plan of action to treat

any disease or health related problem. One of the many tools currently used to

diagnose health problems in patients is the Positron Emission Tomography-Computed

Tomography (PET/CT). PET/CT, is an advanced nuclear imaging technique used

to obtain information about the structure and metabolic processes of cells and tissues

in the body [1]. PET/CT scans are typically used to detect: cancer, heart diseases,

brain disorders and diseases of the central nervous system. In addition, when used

to detect cancer, it reveals how the cancer is metabolized, as well as whether it has

spread to other parts of the body.

Since PET/CT imaging can take up to 60 minutes or more to acquire, it is likely

that patients will not be able to remain motionless throughout the imaging process.

Furthermore, for pediatric, geriatric, and neurodegenerative patients, the motion is

often involuntary [2] [3] [4]. These movements create motion-related artifacts which

alter the quantitative and qualitative results during the scanning process. The pa-

tient’s motion results in image blurring, reduction in the image signal to noise ratio,

and reduced image contrast, which could lead to a misdiagnosis of the patient’s med-

ical condition. In some cases, the quality of the images obtained cause the patient to

have to be re-imaged, which generates loss of revenue and time, as well as increases

the exposure time of the patient to ionizing radiation [5].

As the resolution of the PET/CT scanners increase, the motion correction task

becomes increasingly important. In the literature, software and hardware-based tech-

niques have been studied to implement motion correction [6] [7]. From these meth-

ods, techniques based on the use of an external motion tracking system have been

2

developed, and are preferred by researchers because they provide an opportunity to

improve accuracy. In addition, marker and marker-less motion tracking systems have

been implemented [8] [5] [9].

Of particular interest is a motion tracking system that utilizes Microsoft Kinect.

The Microsoft Kinect is a motion sensor device capable of capturing RGB images

as well as infrared images and depth maps. It has a tracking library that allows

users to develop software capable of capturing and tracking the body and face of a

target. But these libraries have limitations with respect to the orientation in which

the sensor must be placed, the quantity of joints that can be traced, the position and

orientation of the people in the scene, and the number of angles that characterise

the movements of the face. For example, Skeletal Tracking which was developed to

recognize standing and sitting users in front of the Kinect requires the user to be

facing towards the Kinect and their head and upper body must be in the field of

view of the sensor in order to be recognized [10]. Since patients would be lying down

during a PET/CT scan, if the provided libraries are used, the Microsoft Kinect will

not be able to track their movements inside the scanner. Therefore, it is not possible

to obtain the necessary information to perform the motion correction.

This thesis proposes a motion correction system that uses 3D affine registrations

using particle swarm optimization and off-the-shelf Microsoft Kinect to eliminate or

reduce errors caused by the patient’s motion during a medical imaging study. The

concept is to use the Microsoft Kinect sensor to acquire and store the movements

of the patients during the scanning process. Using a series of image frames that

are submitted to an algorithm that identifies unique keypoints in the scene. These

keypoints are extracted frame by frame and an optimized alignment of the keypoints

is constructed using affine registration. The resulting affine transformations between

the frames are then used to eliminate the patient’s motion in the medical image files.

This thesis is organized as follows: Chapter 1 contains the background and moti-

vation for the proposed motion correction system, while Chapter 2 presents a review

of alternative systems that have already been proposed. Chapter 3 details the work-

3

flow and implementation of the various stages of the proposed system. Chapter 4

includes the results obtained from the implemented system, and Chapter 5 consists

of the conclusions obtained and future work that would improve the proposed system.

4

2. LITERATURE REVIEW

In this chapter, a review of previous researches is presented. This researches are

divided in two sections: Section 2.1 presents a series of studies related to motion

correction on medical images, and Section 2.2 shows studies related to the use of the

Microsoft Kinect and depth information for motion tracking.

2.1 Related Works

There are several research areas related to this project. The use of motion sensing

devices for body and head tracking for medical purposes has been studied in [11] [5]

[9] [8] and the studies of the effect of motion correction on medical data is shown

in [9] [8] [6] [7] [12] [13].

In 2014, the use of the Microsoft Kinect sensor as a tool to monitor safety of a

patient during hospital stay was studied [11]. The study proposed a system that can

automatically detect edges and posture of the patient’s bed using depth information

acquire by the Kinect. In addition, the proposed system can work under several

different lighting changes without the need to process color information.

Motion due to respiration creates breathing artifacts that affects the quality of the

results on a whole body PET scan [5]. These breathing artifacts are a consequence of

the acquisition time of PET scan, since it is acquired during several respiratory cycles,

which can lead to spatial blurring. This blurring can cause errors such as reduction

in the measured uptake, incorrect delineation of the volume, and misalignment with

anatomical imaging.

A method to produce a respiratory signal which allows gating of PET list-mode

data was developed in [5]. The proposed system uses a Microsoft Kinect sensor

to track the entire surface of the chest. This system was compared to an existing

5

commercial respiratory monitoring system, called “Varian RPM Tracking”, which

was designed primarily for radiotherapy patients. The results show that the Kinect

is able to match the performance of the Varian RPM system in the measurement

of the rate of the cyclic motion, and furthermore, the Kinect was more accurate in

determining the amplitude of movements.

The importance of motion correction for brain PET images was studied in [9].

In this study, the authors presented a system that uses the Kinect as a marker-less

tracking device. This system was compared to an existing marker-based tracking

system, called Polaris Vicra. A drawback of marker-based tracking systems is that

the method for attaching the markers to a patient’s head may be uncomfortable and

may move during the scanning, which may lead to unreliable tracking information.

The results of this study demonstrated that Polaris Vicra has higher noise levels than

the Kinect. In addition, the precision, robustness and stability of the Kinect based

system were tested, and the results proved that the Kinect can be used as a motion

correction scheme for high resolution brain PET.

An alternative approach for a 3D marker-less tracking system for motion correc-

tion was developed in [8]. The proposed system in this research, called Tracoline,

consists of two Point Grey Research Inc CCD cameras and one Texas Instruments

PICO projector modified to operate in infrared, thus avoiding discomfort to the pa-

tients. This system is capable of correcting motion in PET brain images without

compromising accuracy. The performance of this system was compared with Polaris

Vicra. Three experiments were performed: one using a phantom scan and two using

human scans. During the experiments, both systems were used simultaneously and

the results obtained to the PET images with motion correction were compared with

the PET images without motion correction. In the experiment using the phantom,

the tracking conditions were optimal for both tracking systems and no differences

were noticed. Similarly, during the experiments using human scans, both systems

6

exhibited similar accuracies and the only difference observed was that the marker-

less system eliminated errors due to the attachment of the markers to the patient and

improved the overall work-flow.

A survey of the performance and accuracy of three motion compensation methods

was performed in [6]. The three studied methods are: frame-based motion correction,

post-reconstruction image registration, and event-by-event motion compensation with

list-mode reconstruction, also known as MOLAR. The results obtained in this study

show that event-by-event motion compensation with list mode has a superior motion

correction than the other two methods, especially if motion is larger than 10 mm.

Also, event-by-event motion compensation with list mode can reliably correct all

reasonable head motions.

A comparison between event-by-event motion correction and frame-based motion

correction in human brain PET imaging was described in [7]. It was concluded

that given enough and accurate motion information, event-by-event motion correction

is able to reliably correct head motion. On the other hand, frame-based motion

correction was able to give comparable quantitative accuracy if used correctly with

an aligned attenuation map and externally acquired motion data. In addition, frame-

based motion correction is reliable and accurate when the motion is less than 5 mm

and the attenuation map is correctly aligned, otherwise, given large motion, event-

by-event motion correction was preferred.

A study of the uses of retrospective motion correction in the acquisition of high-

quality high-resolution anatomical magnetic resonance imaging (MRI) images can be

found in [12]. Even though they consider that the results are potentially biased,

the average retrospective motion correction distance was 0.56 mm and the corrected

images demostrated a significant improvement over the images without correction.

The conclusion at the end of this study was that the proposed technique can be used

to reliably improve the quality of the images in high-resolution MRI images, and

suggests that shortening the acquisition times could lead to further improvements in

the quality of the motion correction.

7

2.2 Kinect and Depth Data used for Tracking

The Microsoft Kinect has been widely used as a tool for motion tracking, face

detection, and head pose estimation [14] [15] [16]. In addition, research studies have

been conducted to assess the accuracy of the depth information obtained from the

Microsoft Kinect [17]. Lastly, Microsoft developed a tool named KinectFusion, which

provides 3D object scanning and 3D model creation using a Microsoft Kinect Sensor

[18] [19].

Khoshelham [17] evaluated the quality, accuracy and density of the depth informa-

tion provided by the Kinect and concluded the following: first, if the Kinect is properly

calibrated, the point cloud generated by the depth data does not have significant sys-

tematic errors compared with a laser scanning data. Second, as the distance from the

sensor increases, the error of the depth measurements increases quadratically until

reaching a maximum of 4 cm at the maximum range. Third, as the distance to the

sensor increases, the density of points decreases. The density of points is influenced

by the depth resolution, which is small at large distances. Moreover, Khoshelham

recommended at the end of the study that the information be acquired at a distance

of 1 to 3 meters from the sensor since, at large distances, the quality and accuracy of

the depth data becomes degraded by the effect of the noise and the lower resolution

of the depth measurements [17].

A tracking system that uses depth edges was described in [16]. This work con-

cluded the following: the system is invariant to the lighting conditions as long as the

environment does not have a light source, the error in the depth measurements is

approximately 5 to 15 mm for a distance of 0.5 to 3 m, and for some objects, such as

light absorbing materials, it is not possible to obtain a distance.

The first KinectFusion research article [18] introduces the concepts behind Kinect-

Fusion, an interactive 3D reconstruction system. KinectFusion takes real-time depth

information from a moving Kinect and creates a single accurate high quality 3D model

of the scene. The algorithm is able to create a 3D model of an indoor scene within

8

seconds. The major contribution of this research is the creation of a detailed GPU

pipeline that is capable of achieving tracking, reconstruction, segmentation, rendering

and interaction, in real-time and in 3D.

The second KinectFusion research article [19] expands the previous research [18]

by creating an accurate real-time system capable of mapping complex and arbitrary

indoor scenes under varying lighting conditions using the Microsoft Kinect. The

system uses all the information acquired from the camera to generate a surface model

of the observed scene. In addition, the proposed system works at a frame rate of 30 Hz

and is invariant to the scene’s lighting conditions because it only uses the depth data.

Also, this research compares the advantages of tracking against a growing full surface

model over frame-to-frame tracking. With this research, the creators believe that

the proposed system will become a facilitator for augmented reality and interaction

scenarios, in addition to providing a high quality occlusion handling.

9

3. APPROACH

This chapter presents the implementation of the project. It contains the algorithms

used for the development of the proposed motion correction system, as well as the

selection of the parameters used in these algorithms.

3.1 Overview

The proposed system aims to correct motion artifacts in PET/CT images gen-

erated by the motion of the patients inside a scanner. The system uses a Microsoft

Kinect to obtain infrared and depth images over the duration of the PET/CT scan,

that are used to correct the medical image files obtained from the PET/CT scanner.

All image information required by the system for motion correction, such as the image

slice, its location, and the time at which it was obtained; are contained in the medical

image files generated by the PET/CT scanner. The Digital Imaging and Communi-

cations in Medicine (DICOM) standard is the standard used in medical imaging to

handle, store, print and transmit information acquired by medical devices.

For the development of the project, the following libraries are used:

1. Kinect SDK

Kinect SDK is a software development kit that allows users the ability to develop

applications using a Microsoft Kinect as an input device.

2. Open Source Computer Vision

Open Source Computer Vision (OpenCV) is a library of computationally ef-

ficient functions for real-time computer vision applications. In this project,

OpenCV libraries are used to extract and match features of the infrared images

obtained from the Microsoft Kinect.

10

3. Open Graphics Library

Open Graphics Library (OpenGL) is an application programming interface used

for rendering 2D and 3D vector graphics. In this project, OpenGL is utilized to

handle the creation, manipulation and visualization of the point clouds using

the depth maps obtained from the Microsoft Kinect.

4. DICOM Toolkit

The DICOM Toolkit (DCMTK) is a package that contains a set of libraries

and applications whose purpose is to implement part of the DICOM standard.

The toolkit was is used in this project for the manipulation of the DICOM files

obtained from the PET/CT scanner.

Motion correction is performed by obtaining an affine registration between two

point clouds of a user defined region of interest in the scene. Two techniques are

used for this: SURF and PSO. Subsequently, the result of the affine registration step

(which is a transformation matrix between the two point clouds) is applied to the

PET/CT images. In order to choose the corresponding transformation matrix, a

time stamp alignment process is used.

In of this project, it is assumed that the movements of the patient inside the

PET/CT scanner can be approximated by affine rigid transformations. This stems

from the assumption that between consecutive frames little or no movement is ob-

served. Furthermore, in case there is no apparent movement observed between con-

secutive frames, the result of the registration will be an identity matrix. In addition,

only the regions selected by the user will be corrected. An important consideration

for this project is that the system must be able to work regardless of the lighting

conditions in the room, since it cannot be guaranteed that the lightning conditions

will remain the same during a PET/CT scan. Also, the system does not work in

real-time and uses a marker-less tracking system. Motion correction is performed in

the image domain and only once the scan is complete.

11

3.2 Background

In this section, a review of all the necessary tools for the development of this re-

search is presented. The rest of this section is organized as follows: Section 3.2.1 de-

scribes Image Registration, Section 3.2.2 Affine Transformations, Section 3.2.3 Affine

Registration, Section 3.2.4 Non-Linear Registration, Section 3.2.5 Features Detection,

Extraction and Matching, Section 3.2.6 Particle Swarm Optimization Background,

and Section 3.2.7 Microsoft Kinect.

3.2.1 Image Registration

Image registration refers to a method wherein a transformation is applied to an

image, a series of images, or a video [20]. In general the transformation maps the pixels

of an input image into corresponding pixels on a second image, usually referred to as

the reference image. The most common examples of transformations applied to images

are: geometric, rigid, affine, projective, and perspective transformations. Estimating

the transformation parameters allows the comparison of images from different point of

views or different time frames. In addition, these parameters can be used to determine

motion, depth, or distances between a pair of images.

Image registration can also be used to align two or more images into one common

reference. The images can be taken from different viewpoints, different times or using

different sensors. Usually, the correspondences between the images are unknown a-

priori. The image that is kept unchanged and used as the common reference is called

the “reference frame”, while the other images “registered” to the reference frame

are called the “input frames”. The purpose of image registration is to estimate the

“optimal” transformation such that the transformed input frames become similar to

the reference frame.

12

Image registration algorithms can be divided into two categories: rigid and non-

rigid registration. Rigid registration methods utilize rigid transformations that do not

change the distances between points [21]. On the other hand, non-rigid registration

schemes use non-rigid transformations that employ non-linear transformations that

include articulated objects or objects that change shape over time [22].

Both, rigid and non-rigid registration techniques are used in robotics, augmented

reality, and health-care. The shared goal between these three different fields is to

determine the position and/or orientation of an object given a reference viewpoint.

Registration algorithms are not limited to 2D images, they can be applied to 3D

objects in applications such as 3D scanning (e.g. Medical Imaging), 3D localization,

and human body and faces detection. Image registration applications can be divided

into four major groups based on the acquired input images [23]:

• Multiview analysis: The images are acquired from different viewpoints. The

goal is to gain a larger 2D view of the scene or a 3D representation of the scene.

An example of this application is image mosaicing.

• Multitemporal analysis: The images are acquired at different times. The goal

is to find changes in the scene during a period of time. An example of this

application is motion tracking.

• Multimodal analysis: The images are acquired from different cameras or sensors.

The goal is to gather information from different sources to obtain a detailed

representation of the scene. An example of this application is the employment

of various sensors to record the anatomical body structure as well as functional

and metabolic body activities.

• Scene to model registration: The acquired images from a scene are registered to

a model of the scene. The goal is to find an acquired image in the represented

model. An example of this application is automatic quality inspection.

13

3.2.2 Affine Transformations

An affine transformation is a linear transformation that preserves points, straight

lines, parallel lines and planes, but does not necessarily preserves angles and distances.

However, the distance ratios between points on a straight line are preserved.

An affine transformation can be expressed as a matrix vector product. The matrix

includes all the affine transformations parameters, while the vector includes the pixel

coordinates of the input object.

In the case of 2 dimensions this product is expressed as [21]:

pi,2D =


Xi

Yi

1

 =


A B Tx

C D Ty

0 0 1

×

xi

yi

1

 = TM,2D × qi,2D (3.1)

where, qi,2D is the the ith element of the input object, TM,2D the transformation

matrix, and pi,2D the ith element of the transformed object. Equivalently, for the 3D

objects, the transformation can be expressed as [21]:

Pi,3D =


Xi

Yi

Zi

1

 =


A B C Tx

D E F Ty

G H I Tz

0 0 0 1

×

xi

yi

zi

1

 = TM,3D ×Q3D (3.2)

where, Qi,3D is the the ith element of the input object, TM,3D the transformation

matrix, and Pi,3D the ith element of the transformed object.

Affine transformations include translations, scaling, reflection, rotation, shearing

and/or any combination thereof. These transformations are explained in the following

sections.

14

Figure 3.1. Example of a translation in 2D

Translation

Translation is a linear transformation that moves every point of an object by the

same amount in a given direction. The matrix representation for a translation in the

2D case is [21]: 
1 0 Tx

0 1 Ty

0 0 1

 (3.3)

and in the 3D case it is [21]: 
1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1

 (3.4)

Figure 3.1 shows an example of a translation in 2D space.

15

Rotation

Rotation is a linear transformation that rotates an object by a specified angle θ in

the clockwise direction around a reference point, called center of rotation. In general,

the rotation matrix in 2D, around the origin, is [21]:
cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (3.5)

For the 3D case, there exists three cases for rotation, one around each axis in the

3D Cartesian coordinate system. These matrices are [21]:

• Rotation around the x-axis,
1 0 0 0

0 cos θx − sin θx 0

0 sin θx cos θx 0

0 0 0 1

 (3.6)

• Rotation around the y-axis,
cos θy 0 sin θy 0

0 1 0 0

− sin θy 0 cos θy 0

0 0 0 1

 (3.7)

• Rotation around the z-axis,
cos θz − sin θz 0 0

sin θz cos θz 0 0

0 0 1 0

0 0 0 1

 (3.8)

Figure 3.2 shows an example of a rotation about the origin on the 2D space.

16

Figure 3.2. Example of a rotation about the origin in 2D.

17

Reflection

Reflection is a linear transformation that reflects an object relative to a reference

line, called the line of reflection. For the 2D case, there are three cases of reflection

[21]:

• Reflection about the origin (see Figure 2.3)
−1 0 0

0 −1 0

0 0 1

 (3.9)

• Reflection about the x-axis (see Figure 2.4)
1 0 0

0 −1 0

0 0 1

 (3.10)

• Reflection about the y-axis (see Figure 2.5)
−1 0 0

0 1 0

0 0 1

 (3.11)

Figures 3.3, 3.4, and 3.5 depicts examples of reflections about the origin, x−axis and

the y−axis, respectively.

For the 3D case, reflections are performed about planes [21].

• Reflection about the xy-plane,
1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 (3.12)

18

Figure 3.3. Example of a reflection about the origin in 2D

• Reflection about the yz-plane,
−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (3.13)

• Reflection about the xz-axis, 
1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

 (3.14)

19

Figure 3.4. Example of a reflection about the x-axis in 2D

Figure 3.5. Example of a reflection about the y-axis in 2D

20

Figure 3.6. Example of a scaling about the origin in 2D

Scaling

Scaling is a linear transformation that enlarges or shrinks an object by a scale

factor. When the scale factor is the same for all directions, the scaling is considered

uniform scaling. When at least one of the scaling factors is different than the others,

it is referred to as non-uniform scaling. In general, the scaling matrix in 2D is [21]:
W 0 0

0 H 0

0 0 1

 (3.15)

and in 3D is [21]: 
W 0 0 0

0 H 0 0

0 0 D 0

0 0 0 1

 (3.16)

Figure 3.6 shows an example of a scale transformation in 2D.

21

Figure 3.7. Example of shearing in both axis.

Shear

Shearing is a linear transformation that displaces each point in a fixed direction.

In general, the shearing matrix in 2D is [21]:
1 A 0

B 1 0

0 0 1

 (3.17)

and in 3D is [21]: 
1 hxy hxz 0

hyx 1 hyz 0

hzx hzy 1 0

0 0 0 1

 (3.18)

Figure 3.7 shows an example of a shearing transformation.

3.2.3 Affine Registration

Affine registration is the process of obtaining the corresponding affine transfor-

mation between two objects. The number of parameters that can vary independently

without violating imposed constraints on a system are called degrees of freedom. In

the 2D case, the transformation consist of 6 degrees of freedom, whereas, in 3D it has

22

up to 12 degrees of freedom. Using either Equation 3.1 or Equation 3.2, solving for

an affine registration can be reduced to the operation of finding the corresponding

transformation matrix (TM,2D for the 2D case, or TM,3D for the 3D case), given two

objects (p2D and q2D for the 2D case, or P3D and Q3D for the 3D case).

3.2.4 Non-linear Registration

In addition to linear transformations, such as affine transformations, objects can

also suffer from deformations. A transformation which allows non-uniform mapping

between objects, is called a Non-Linear Transformation. The degrees of freedom for

a non-linear transformation can vary from 7 to 1000, generating a more complex

transformation. These types of transformations are common in medical image regis-

tration since events such as, breathing and anatomical changes can produce an elastic

transformation of the data of the same patient obtained at different times.

Some examples of non-linear transformations include:

• Thin plate spline.

This is a spline-based technique introduced by Duchon [24], which is used for

data interpolation and smoothing. It is used as a non-rigid model for image

alignment and shape matching. The popularity of thin plate spline is due to

some of its properties, which include the production of smooth surfaces, no need

for manual tuning, and the fact that it has a closed solution for warping and

parameter estimation.

• Cubic-spline

This is a spline-based technique in which the spline is constructed using a third-

order polynomial, which has to pass through a set of control points [25]. The

advantages of using cubic-splines are, simplicity of construction, ease and accu-

racy of evaluation, and the capacity to approximate complex shapes using curve

fitting and design.

23

3.2.5 Features Detection, Extraction and Matching

A feature, also called a keypoint, is a point of interest used to describe an object

or region in an image. Normally, a feature is represented by its spatial location in

the image. Features are important because no matter which transformation is used

on an image, it should be possible to obtain the same feature in the transformed

image. In image processing, a feature could be a structure such as a point, an edge or

an object in the image. Usually, features are obtained using a general neighborhood

operation or a feature detection algorithm. In this section feature detection and

extraction algorithms, such as: SIFT and SURF, and feature matching algorithms

will be discussed.

Features Detection and Extraction

Feature detection methods are used to find key-points in an image. Feature de-

tection can be classified via two types of algorithms: feature detector and feature

descriptor. A feature detector takes an image as input and returns as an output

spatial locations of interesting regions in the image. A corner detector is an example

of a feature detector, since it returns the locations of corners in the input images

but it does not returns any additional information about the detected features. On

the other hand, a feature descriptor takes an image as input and returns features

descriptors, also called features vectors.

A feature descriptor is a data vector that describes the local structure around

a feature. Features descriptors are used to differentiate one feature from another.

Ideally, these descriptors are invariant under any transformation applied to the image.

After detecting the features, it is necessary to obtain an efficient descriptor that

describes the area around each obtained feature. Feature extraction methods are used

to obtain the descriptors from each pixel around the feature. Feature extraction refers

to a type of dimensionality reduction used to represent regions of interest in an image

24

in a compact and efficient way. Some examples of features descriptors and features

extraction algorithms are: Scale-Invariant Feature Transform (SIFT), Speeded-Up

Robust Features (SURF) and Histogram of Oriented Gradients (HOG).

SURF and SIFT are two feature detection/extraction algorithms that are scale

and rotation invariant. The difference between them is that SIFT is better at handling

changes in viewpoints and illumination while SURF is better at handling blurs and

rotations [26]. In addition, the developers of SURF claim that SURF is faster than

SIFT [27].

Scale-Invariant Feature Transform

Scale-Invariant Feature Transform (SIFT) was first introduced by Lowe in 1999

[28], where it was is used to detect and describe local keypoints in images. The features

and descriptors generated by SIFT are used in problems, such as point matching

between different views, object tracking, and view-based object recognition. SIFT

is invariant to translations, rotations, and scaling in the image domain, while being

robust to perspective and illumination changes [28].

The SIFT algorithm can be split into the following steps:

1. Construct a scale-space of images.

To create the SIFT scale-space of images, start by taking the original image and

construct a set of progressively Gaussian blurred images. This group of images

is called an octave. Then, generate a new octave by resizing the original image

using a factor of 0.5, and generate a new set of progressively Gaussian blurred

images. This last step is repeated several times. Lowe [28] suggests that the

ideal number of octaves and blur levels for the algorithm is 4 and 5, respectively.

25

2. Laplacian of Gaussian Approximation.

The Laplacian of an image is an operation used to highlights the areas of rapid

intensity change in an image. It is typically used for edge and corner detection.

In general, the Laplacian of an image is defined as [29]:

L(x, y) =
∂2I

∂x2
+
∂2I

∂y2
(3.19)

The Laplacian of Gaussian (LoG) is the process of using a Gaussian blur be-

fore applying the Laplacian operator. The two major concerns of the Lapla-

cian are that it is extremely sensitive to noise, and calculating second order

derivatives are computationally intensive operations (because these types of op-

erations require large amount of memory resources and elevated computational

time). Therefore, the SIFT algorithm uses an approximation of the Laplacian

of Gaussian called: Difference of Gaussians (DoG).

The Difference of Gaussians is obtained by taking the difference between two

consecutive images within a octave. This process is repeated with all the con-

secutive pairs in an octave, and is performed for all octaves. The resulting dif-

ference images are approximately equivalent to the results that can be obtained

by the Laplacian of Gaussian. The two benefits obtained by using Difference

of Gaussians are that the process of computing second order derivatives is re-

placed with simple subtraction, and the images generated by the Difference of

Gaussians are scale-invariant.

3. Determine the Keypoints.

The process of finding the keypoints consists of two parts:

(a) Locate maxima and minima in the Difference of Gaussians images.

To locate the maxima and minima points, iterate through each pixel and

check all its neighbors. The comparisons are made using eight neighbors

in the current image and nine neighbors in the scale above and below.

If the pixel is the largest or smallest of all its 26 neighbors, then the

26

Figure 3.8. Difference of Gaussian

pixel is marked as an approximate maxima/minima. These are considered

approximate because, typically maxima/minima point do not lie exactly

on a pixel, but somewhere within the pixel.

(b) Find subpixel maxima and minima.

Since subpixel locations are not of maxima/minima are not physically

available thus must be obtained mathematically. This is done using a

quadratic Taylor series expansion of the Difference of Gaussians image

around the approximate maxima/minima location. Obtaining the Taylor

series expansion (See Equation 3.20) will provide the subpixel location of

the keypoint,

D(x) = D +
∂DT

∂x
x +

1

2
xT ∂

2D

∂x2
x (3.20)

here the Difference of Gaussians image D and its derivative are evaluated

at the keypoint x = (x, y, σ)T .

27

Figure 3.9. Marked Keypoint

28

Lowe [28] recommends the use of 2 extrema images per octave. The number of

Difference of Gaussians images needed to generate 2 extrema images is 4. To

generate 4 Difference of Gaussians images, requires 5 Gaussian blurred images,

therefore, the recommended number of blur levels is 5 in each octave.

4. Eliminate low contrast keypoints.

The previous steps generates a large amount of keypoints, but some of them

have low contrast or lie along edges, and are not useful as features. Removing

low contrast keypoints requires one comparison: if the magnitude of the absolute

intensity at the current pixel in the Difference of Gaussian image is less than a

threshold, the keypoint is removed.

Removing edges requires the calculation of two gradients at a keypoint, which

are orthogonal to each other. Based on the area around the keypoint, there

exists three possible cases:

(a) Flat region: Both gradients will have small values.

(b) Edge: One gradient will have a large value, which means it is perpendicular

to the edge, and the other will have a small value, which means it is along

the edge.

(c) Corner: Both gradients will have large values.

From these three cases, corners represent important keypoints. Therefore, if the

values of both gradients are above a threshold, the keypoint is kept, otherwise,

it is removed. The mathematical tool used to achieve this task is the Hessian

Matrix, which permits checking if a point is a corner or not. SIFT uses a

criterion based on the ratio between the eigenvalues of the Hessian Matrix.

5. Assign an orientation to each keypoints.

To provide rotation invariance, an orientation must be assigned to each keypoint

obtained from the previous step. In this case, the directions and magnitudes of

the gradients around each keypoint must be collected, then, the most dominant

29

orientation in the keypoint region is assigned as the orientation for that key-

point. To ensure rotation invariance, all the calculations in the following steps

for the keypoint are done relative to the assigned orientation.

The gradient magnitude and orientation are given by Equations 3.21 and 3.22:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (3.21)

θ(x, y) = tan−1 L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
(3.22)

where L(x, y) is the Laplacian of Gaussian approximation for the pixel located

at position < x, y >.

The gradient magnitude and orientation are obtained for all the pixels in the

orientation collection region. The size of the orientation collection region is

equal to the size of the Gaussian blur kernel. An orientation histogram is also

created using the collected gradient orientations. This histogram is composed

of 36 bins of 10 degrees each which covers the 360 degrees of orientation. Each

sample pixel is added to its corresponding bin with a value proportional to its

gradient magnitude.

The peak of the orientation histogram corresponds to the dominant orientation,

and this orientation is assigned to the given keypoint. Also, if the histogram

has any peaks above 80% of the highest peak, each of these peaks is used to

create a new keypoint with the same location and scale but with an orientation

equal to that of the new peak.

6. Generate the SIFT Features/Descriptors.

After keypoints have been identified, a SIFT feature structure is obtained at

each keypoint in the scale space. The feature structure is composed of four

elements: location of the keypoint in the image p, scale s, orientation r, and a

128 dimensional descriptor vector f generated from the local image gradients.

The SIFT feature structure is denoted by:

SIFT Feature =< p, s, r, ~f > (3.23)

30

To generate the 128 dimensional vector, a 16x16 window is placed around each

keypoint. The 16x16 window is divided into sixteen 4x4 windows. For each

window, the gradient magnitudes and orientations is obtained, which will gen-

erate an eight bin orientation histogram. To accomplish rotation independence,

the keypoint rotation is subtracted from each orientation. As in the previous

orientation assignment step, the value added to the bin is proportional to the

gradient magnitude, but it also depends on the distance from the keypoint. This

will reduce the pixels in the 4x4 window into eight predetermined bins. This is

done for all sixteen windows. At the end, the 16X16 window will generate 128

numbers: 16 windows times the 8 orientation bins. After normalizing these 128

values, the result is the descriptor vector, which uniquely identifies a keypoint.

Speeded-Up Robust Features

The two main concerns of SIFT are its execution time and susceptibility to illumi-

nation changes. An alternative features detection and extraction algorithm developed

to overcome this issues is Speeded-Up Robust Features. Speeded-Up Robust Features

(SURF) was introduced by Bay, Tuytelaars and Van Gool in 2006 [30]. It is a feature

detector and descriptor algorithm. As with SIFT, the algorithm is used to address

problems such as object recognition, object tracking, image registration and 3D re-

construction. SURF is partly inspired by the principles of SIFT.

The first difference between SIFT and SURF is the Laplacian of Gaussian approxi-

mation. While SIFT uses Difference of Gaussians, SURF approximates the Laplacian

of Gaussian with a Box Filter. The advantage of this approximation is an increase in

speed, because convolution with a box filter is quickly obtained using integral images.

Integral images, also known as Summed Area Table, is technique used to quickly

and efficiently calculate the sum of pixel values in a given image [31]. In addition,

31

this process can be performed in parallel for different scales. For scale and location,

SURF uses the determinant of the Hessian Matrix, as a measure of change around a

keypoint, and the points where the determinant is maximum are marked as keypoints.

The orientation assignment in SURF is performed using wavelet responses in the

horizontal and vertical directions using a circular neighborhood size of 6s, where s

is the scale at which the point is being detected. The obtained wavelet responses

are then weighted by a Gaussian function centered at the keypoint. The dominant

orientation is obtained by obtaining the sum of all wavelet responses within a slid-

ing orientation window of size 60 degrees. The sum of the horizontal and vertical

responses within the window yield an orientation vector, and the longest obtained

vector defines the orientation of the keypoint.

Wavelet responses are also used by SURF to obtain the feature descriptors. A

square region of size 20sx20s centered at the keypoint is extracted, where s is the

scale in which the keypoint was detected. This region is divided into 4x4 sub-regions,

and for each sub-region, horizontal and vertical wavelet responses are found. Each

sub-region generates a vector composed of the wavelet responses. The concatenation

of these vectors results in a 64 dimensional SURF feature descriptor. The SURF

feature descriptor can be extended to a 128 dimensional version which leads to slower

computation but a slight increase in accuracy. To extend the vector, the sums of

the horizontal wavelet responses are found separately depending on the sign of the

vertical wavelet response. In the same way, the sums of the vertical wavelet responses

are obtained separately depending on the sign of the horizontal wavelet response.

In this research the algorithm used for feature detection and extraction is SURF

because SURF has a faster runtime and it is more robust to changes in illumination.

32

Feature Matching

Feature matching refers to the process of finding correspondences between features

from two similar data sets. These correspondences can be done, for example, based

on the search distances between features, the euclidean distances between features

or differences in the descriptors of the features. Some examples of features matching

algorithms include: brute-force matching, iterative closest point (ICP), and nearest

neighbors algorithm.

Brute-Force Matching

Brute-force matching works by taking one feature from the first object and com-

paring it to all the features in the second object using “distance” metric such as

Euclidean distance. Then, the closest feature on the second object is returned as the

matched feature. This is repeated for each feature in the first object.

Iterative Closest Point

In order to match objects it is necessary to minimize the difference betweem

them. One method that can be used to achieve this is the Iterative Closest Point

(ICP) method which has been used for such applications as reconstruction of 2D and

3D surfaces, and object registration, and in robotics, for the optimum planning of a

robot’s route. ICP works by iteratively reviewing the transformation created by a

combination of translations and rotations needed to minimize the distance between

the two objects. The steps involved are:

1. Define the source object, the reference object, and the stopping criteria.

2. For each point in the source object, find its “closest” point in the reference

object.

33

3. Estimate the transformation using an error cost function which will best align

each point in the source object to its corresponding match found in the previous

step.

4. Apply the obtained transformation to the source object.

5. Iterate from step 2 until the stopping criteria is met.

Nearest Neighbors Search

As mentioned above, object matching requires finding “closest” points. A tech-

nique for achieving this is Nearest Neighbor Search. Nearest Neighbor Search, also

referred as proximity search, is an optimization problem that find the closest point

in a set of points to a given point, where “closeness” is expressed using a function.

Typically, a dissimilarity function is used, for which less similar objects have greater

values. Nearest neighbor search appears in several fields, including pattern recog-

nition, robotic sensing, statistical classification, computer vision, and computational

geometry.

In the literature, there exists several variants of nearest neighbors search:

• k-Nearest Neighbor [32]

The k-Nearest Neighbor method searches for the “top” k-nearest neighbors of a

given point. The typical use for this technique is to estimate or classify a given

point based on its neighbors.

• Approximate Nearest Neighbor [33]

This technique returns a “good guess” of the nearest neighbor of a given point.

Even though it does not guarantee to return the best nearest neighbor, this

technique has an improved speed and memory usage.

• Nearest Neighbor Distance Ratio [34]

Nearest Neighbor Distance Ratio compares the distances between a given point

34

and its two second closest neighbors. Then, if the distance ratio is below a

threshold, the technique validates the match given by the closest neighbor.

This technique can be used to recover pictures in content-based image retrieval

and for matching problems.

• Fixed-Radius Near Neighbors [35]

Fixed-Radius Near Neighbors efficiently finds all the neighboring points in the

Euclidean space, within a given fixed distance, of a given point.

• All Nearest Neighbors [36]

The All Nearest Neighbors method attempts to find the nearest neighbors of a

group ofN data points simultaneously. One way to solve this problem is to apply

the nearest neighbor search to each of the N data points. Alternatively, the All

Nearest Neighbors technique exploits any redundancy between the N queried

points, to obtain a more efficient search. A simple example of redundancy

between the queried points is the fact that the “distance” between point X and

point Y is the same as the distance between point Y and point X, which means

that the same computation can be reused.

k-d Tree

Finding “closests” points requires that these points be organized in such a way

to facilitate the search and computations. A method for organizing points is the k-d

Tree data structure that was developed by Jon Louis Bentley in 1975 to divide and

organize points in a k-dimensional space [37]. One important application for the k-d

trees is searches using multidimensional search keys (e.g. nearest neighbor searches).

A k-d tree is a special case of the binary space partitioning (BSD) tree, because k-d

trees use only the planes perpendicular to the axes of the coordinate system, whereas

the planes used in BSD trees can be arbitrary. All nodes of the k-d trees store a

point in the k-dimensional space thus each plane must pass through one of the points

35

in the tree. There are several ways to choose the planes, therefore there are several

ways to generate the k-d tree for a set of points. Usually, the following two conditions

are used:

• The method used to generate the tree will cycle through the axes used to select

the planes, as it descends through the tree. For example, using three axes (x,

y, and z), the root of a tree uses a plane aligned to the x-axis, its children will

use planes aligned to the y-axis, its grandchildren will use planes aligned to the

z-axis, its great-grandchildren will use planes aligned with the x-axis, and so

on.

• At each step, the point selected to create and choose the cutting plane will be

the median of all the points placed in the k-d subtree.

This method generates a balanced k-d tree, where each leaf node has the same

distance to the root node. A general algorithm used to create a k-d tree is the

following:

kdTree(points, depth)

1. If the number of points, ‘n’, is equal to 0, return null.

2. Select the axis based on the depth. [Use the axis number depth mod k].

3. Sort the points using the selected axis.

4. Choose the median of the sorted points.

5. Create the node and use the median as its location.

6. Construct the left subtree using all the points before the median and

increase the depth by 1. [kdTree(points[0,median-1], depth+1)]

7. Construct the right subtree using all the points after the median and

increase the depth by 1. [kdTree(points[median+1,n], depth+1)]

8. Return node.

36

3.2.6 Particle Swarm Optimization Background

Finding the “optimal” transformation parameters needed to perform image reg-

istration requires the use of an optimization method. In this research, the optimiza-

tion scheme used is Particle Swarm Optimization. Particle Swarm Optimization is

a stochastic computational technique introduced by James Kennedy and Russell C.

Eberhart in 1995 [38]. It is a powerful population-based search algorithm that is used

to efficiently optimize a wide range of functions in a multi-dimensional space. The

roots of Particle Swarm Optimization (PSO) reside in swarm behavior and social in-

teraction from many species in nature. In particular, it was inspired by the behavior

and movement of bird flocks and fish schools.

In general, PSO guides a population, called swarm, through a multi-dimensional

solution space until a potentially “optimal” solution is reached. Each member of

the swarm, called a particle, represents a candidate solution to the problem and the

success of each particle influences the action of the swarm.

The original idea used to develop and explain PSO is as follows: consider a flock of

birds searching for food in a region. At the beginning, before the birds start to search

for food, they can be either scattered around the potential search space or grouped

together. During the process of searching for food, one bird can find food better than

others in the cohort, which means that this bird is able to notice the promising area

where the food may be found, and therefore it has the better information. Then, this

bird shares the obtained information with the other members in the flock. Since the

flock is communicating, the birds will eventually converge to the area where the food

can be found.

From the Particle Swarm Optimization perspective, the bird flock represents the

solution swarm; the area in which the bird flock is searching for food represents

the solution space; the movements of each bird represents the progress made by the

solution swarm in finding the answer; the information represents the most positive

solution during the exploration of the solution swarm in the solution space; and the

37

place where the bird flock finds the food represents the solution of the problem.

Particle Swarm Optimization obtains the solution by the joint action of the particles

in the swarm, where each particle is allowed to have a regulated behavioral pattern

used to show the complexity of the whole swarm. Using this approach, Particle Swarm

Optimization can be used to solve complex deterministic problems.

Basic Particle Swarm Optimization Algorithm

A basic particle swarm optimization algorithm contains a population, called a

swarm of particles, where each individual particle represents a candidate solution for

the problem. These particles then “fly” through a multidimensional search space

(i.e. solution space), where the position of each particle is updated based on its own

experience and the experience of its neighbors. The changes in a particle’s position

take into consideration three elements: the particle’s inertia, the particle’s individual

experience, and the swarm’s experience. The position of the particle changes through

each iteration by adding a velocity term to the current position. This is described

as [39]:

xi(t+ 1) = xi(t) + vi(t+ 1) (3.24)

where xi(t) is the position of particle i in the solution space at time step t, and vi(t)

is the velocity term of particle i at time step t.

The velocity term vi(t) drives the optimization process, and reflects the experience

of the particle and the exchanged information from the particle’s neighborhood. The

particle’s experience is normally referred as the cognitive component, and it depends

on the distance between the particle’s current position and its own best result since

the first iteration. The exchanged information is normally referred to as the social

component, and it depends on the distance between the particle’s current position

and the neighborhood’s best result since the first iteration. Based on the size of the

neighborhood for social interaction, there exists two Particle Swarm Optimization

algorithms, namely global best PSO and local best PSO.

38

Exploration refers to the ability to explore the solution space in order to find

the optimal solution. Conversely, exploitation refers to the ability to concentrate

the search in a given promising region in order to improve a candidate solution. An

optimization algorithm has to balance between these two terms, since the efficiency

and accuracy of the algorithm are determined by the relationship between them [40].

Exploration and exploitation are addressed in the velocity equation. This is done

using an additional parameter (i.e. the inertia weight) discussed in Section 3.2.6.

Global Best Particle Swarm Optimization

Global best particle swarm optimization, also referred as gbest PSO, is a variant

of Particle Swarm Optimization in which the neighborhood of a particle is the entire

swarm. Since all particles communicate together, the topology that gbest PSO uses is

a star neighborhood topology. Therefore, the best candidate particle has the largest

influence in the entire swarm, and is reflected in the velocity term. Since gbest PSO

has larger particle inter-connectivity, it tends to converge fast, but can get trapped

in local minima [39].

For any k-dimensional particle i, the jth component of its velocity at time t + 1,

denoted by vij(t+ 1), can be obtained by [39]:

vij(t+1) = vij(t)+c1r1j(t)[pbest,ij(t)−xij(t)]+c2r2j(t)[sbest,j(t)−xij(t)] with, 1 ≤ j ≤ k

(3.25)

where vij(t) is the jth component of the velocity of particle i at time t, c1 and c2

are acceleration constant, r1j(t) and r2j(t) are two random values that are updated

with each iteration, xij(t) is the position of the particle i at time t along dimension

j, pbest,ij is particle i’s best position along dimension j, and sbest,j is the swarm’s best

position along dimension j.

39

The personal best position for particle i, pbest,i refers to the best position that

particle i has visited since the first iteration. The personal best position at time t is

obtained as [39]:

pbest,i(t) =

 pbest,i(t− 1) if f(xi(t)) ≥ f(pbest,i(t− 1))

xi(t) if f(xi(t)) < f(pbest,i(t− 1))
(3.26)

where f(·) is a fitness function.

The global best position, sbest, refers to the best position that the swarm has

visited since the first iteration. It is defined as [39]:

sbest(t) ∈ {pbest,0(t), ..., pbest,n(t)}|f(sbest(t)) = min{f(pbest,0(t)), ...f(pbest,n(t))}

(3.27)

Notice that, the global best position can be calculated as the best personal best

position.

Local Best Particle Swarm Optimization

To avoid being stuck in local minima, another variant namely local best PSO.

Local Best Particle Swarm Optimization, also referred as lbest PSO, was developed.

In lbest PSO each particle is only influenced by the best candidate within the par-

ticle’s neighborhood. Usually, the implemented network topology for lbest PSO is

a ring topology. The velocity term in this case reflects local knowledge within the

neighborhood of the particle. Since the particles in lbest PSO exchange information

within a neighborhood, PSO tends to converge slow, but is less likely to get trapped

in a local minima.

For any particle i, its velocity at time t can be obtained by [39]:

vij(t+ 1) = vij(t) + c1r1j(t)[pbest,ij(t)− xij(t)] + c2r2j(t)[lbest,j(t)− xij(t)] (3.28)

where lbest,j(t) is the best position of the neighborhood for particle i along dimension

j.

40

Let Ni be the neighborhood of particle i, the best position of neighborhood Ni,

lbest,j(t), is defined as [39]:

lbest(t) ∈ {Ni|f(lbest(t)) = min{f(p)},∀p ∈ Ni} (3.29)

It is important to note that the selection of the particle’s neighborhood is based

on particles indices. Even though, there exists strategies to create neighborhoods

based on spatial similarities, neighborhoods created using the particle’s indices are

preferred [39]. The two main reasons for this are:

1. It is computationally inexpensive, because it does not require the particles to

be ordered based on any specific attribute.

2. It promotes the dissemination of information for all particles, regardless of their

current position in the solution space.

Since neighborhoods can overlap, a particle will be a member of multiple neighbor-

hoods. In addition, since neighborhoods are interconnected, they share information

and this guarantees that the swarm will converge to a single point, which tends to be

the global best particle of the swarm.

Since the only difference between Equation 3.25 and Equation 3.28 is sbest(t) and

lbest(t), respectively, let Bbest(t) be defined as:

Bbest(t) =

 sbest(t) for gbest PSO

lbest(t) for lbest PSO
(3.30)

Using Bbest(t), define a general velocity equation as:

vij(t+ 1) = vij(t) + c1r1j(t)[pbest,ij(t)− xij(t)] + c2r2j(t)[Bbest(t)− xij(t)] (3.31)

41

Particle Swarm Optimization Parameters

There are several parameters that affect the performance of PSO. The impact

of each of these parameters is problem-dependent. In this section, the following

parameters are discussed: swarm size, swarm topology, neighborhood size, number of

iterations, stopping conditions, velocity components, acceleration coefficients, velocity

clamping, inertia weight, and constriction coefficients.

Swarm Size

Swarm size is the number of particles in a swarm. A large swarm size implies a

larger initial diversity and allows for larger parts of the solution space to be covered

per iteration. While a large number of particles may reduce the number of iterations

needed, it increases the computational complexity per iteration which can result in

an increase in execution time. The optimal swarm size is problem-dependent, but

empirical studies has shown that the swarm size should be between 10 and 60 particles.

In the original paper by Eberhart and Kennedy [38], the suggested size for the swarm

is 15 to 30 particles, whereas, Bratton and Kennedy [41], suggested a swarm size of

50 particles.

Swarm Topology

Since PSO revolves around social interactions of each particle, the swarm “learns”

and adjusts its position towards successful particles in the swarm. The extent of

this social interaction is determined by the neighborhood of the particles, and the

amount of interaction depends on the size of the neighborhood. For example, smaller

neighborhoods have less interaction. As mentioned before, small neighborhoods tend

to take longer to converge to a solution, but may return a better solution, while in

large neighborhoods the particles converge faster, but may get stuck in local minima.

The swarm topology has a strong influence on the performance of PSO. Usually,

42

neighborhoods are determined by particle indices, but there are other methods to

determine the neighborhoods. For example, neighborhoods can be determined based

on Euclidean distances between particles [41]. The four most used neighborhood

topologies are:

1. Star Topology

In this topology, each particle can communicate with every other particle in the

swarm. This topology tends to lead to faster convergence at the risk of getting

trapped in local minima. Each particle tries to imitate the behavior of the best

candidate particle present in the swarm. This is the topology implemented in

the gbest PSO. For the lbest PSO, if this topology is used, it will have the same

local minima problem on the extreme cases, which are when the neighborhood

size is either 0 or the swarm size.

2. Ring Topology

In this topology, each particle can communicate with its n immediate neigh-

bors; for example, for n = 2, any given particle will communicate only with its

immediately adjacent neighbors. This topology has a slower convergence but

larger portions of the solution space are explored, which leads to better solu-

tions. Each particle tries to imitate the behavior of the best candidate particle

within its neighborhood. In this topology, the neighborhoods overlap allowing

exchange of information between neighborhoods, which leads the swarm to con-

vergence to a single solution. This is the topology implemented in the lbest

PSO case.

3. Wheel Topology

In this topology, one particle is chosen as the focal particle while all other parti-

cles are isolated from one another. The focal particle is connected to every other

particle in the neighborhood and all information is communicated through it.

The focal particle gathers the performances of all the particles in the neighbor-

hood and adjusts its position towards the best performing particle. Then, the

43

new position of the focal particle is transmitted to all particles if there is an

improvement. This topology tends to slow down the propagation of information

in the swarm.

4. Four Clusters Topology

In this topology, the swarm is divided into four clusters. The clusters are

connected by two edges to adjacent neighboring clusters and by one edge to

opposite clusters. The particles inside the clusters are usually connected using

a star topology or a ring topology.

Figure 3.10 depicts each of the four most used topologies networks.

Neighborhood Size

The neighborhood size impacts the social interaction within the swarm and in-

fluences the movement of the particles. For smaller neighborhoods, the algorithm

takes longer to converge, but it is more reliable to converge into optimal solutions,

since smaller neighborhoods are less vulnerable to local minima. Meanwhile, larger

neighborhoods tends to converge faster but at the cost of having some parts of the

solution space unexplored. The suggested neighborhood size is about 10-20% of the

swarm size [42].

Number of Iterations

The number of iterations needed to obtain good results depends on the problem. A

low number of iterations may cause the algorithm to stop prematurely, which would

lead to a non-optimal solution. A large number of iterations can add unnecessary

computational complexity. Normally, the number of iterations is not the only factor

that decides when the PSO algorithm will stop, but it is a criteria that has to be taken

into account. Also, if the number of iterations is too large and the stopping criteria

44

Figure 3.10. Example of neighborhood topologies

45

is too narrow, the algorithm will start to wander in the solution space. Typically,

the number of iterations is set to a high value and the implementation of a stopping

condition is used to allow the algorithm to stop sooner.

Stopping Condition

The stopping condition is used to determine if the algorithm has reached an opti-

mal solution to the problem. A good stopping condition does not cause the swarm to

converge prematurely. Moreover, it does not create oversampling of the fitness func-

tion, since this incurs unnecessary usage of computational resources which in turn

can increase execution time. Some stopping conditions proposed in are:

• A certain amount of iterations has been reached.

The algorithm will stop when a fixed amount of iterations has been executed.

It is easy to note that if the specified number of iterations are too small, the

algorithm will stop before a reasonable solution has been found. Usually, this

condition is used in conjunction with others, as a way to force the algorithm to

finish execution in case the swarm fails to converge.

• An acceptable solution has been found.

The algorithm will stop as soon as a particle finds a solution that is within an

acceptable error. The selection of the threshold affects the behavior of the algo-

rithm. If the threshold is too large, the algorithm will stop prematurely, while

a too small threshold may cause the algorithm to never stop. To implement

this stopping conditions successfully, it is required to have prior knowledge of

the optimum solution which normally is not available.

• No improvement is observed over a certain number of iterations.

The algorithm will stop when there is no significant improvement in the swarm

after a certain amount of iterations. The improvement can be judged by mon-

itoring the changes in the particle positions or the particle velocities. If these

46

changes are below a certain threshold after a specified number of iterations, the

algorithm will consider the swarm to have converged.

• The normalized swarm radius is below a threshold.

The algorithm will stop when the normalized radius of the swarm, Rnorm, is

below a certain threshold. The algorithm will stop when all the particles are

centered around the global best position. The selection of the threshold affects

the performance of the algorithm. Large thresholds may cause the algorithm

to stop prematurely, while small thresholds may cause excessive number of

iterations.

Velocity Components

Particle’s velocity (Equation 3.31) is composed of three terms: previous velocity,

the cognitive term and the social term. The previous velocity term vi(t), also referred

to as the inertia component, is used as the memory of the particle’s velocity and

direction from the previous iteration. This term can be considered as the particle’s

momentum and is used to prevent the particle from abruptly changing its direction.

Additionally, it creates a bias towards the current direction.

The cognitive term c1r1(pbest,i− xi), also referred as the particle’s nostalgia, mea-

sures the performance of the particle with its past performances. It represents the

particle’s individual memory of its best position since the first iteration. The impact

of this term on the particles is to draw them back to their own past best positions.

The social term c2r2(Bbest − xi) measures the performance of the particle with

its neighbors, in the lbest PSO case; or with the swarm, in the gbest PSO case.

It represents the group standard that the individuals in the swarm seek to attain.

The impact of this term in the particles is to draw them towards the best position

found in the particle’s neighborhood. The cognitive and social terms are influenced

by stochastic values r1 and r2, which will be discussed in the following section.

47

Acceleration Coefficients

The acceleration coefficients are responsible for maintaining the stochastic in-

fluence of the cognitive and the social components on the particle’s velocity. The

acceleration coefficients are composed of four parameters: two constants (c1 and c2)

and two random values updated with each iteration (r1 and r2). The constants c1 and

c2, known as trust parameters, are non-negative values. The constant c1 is related

to how much confidence a particle in to itself and the constant c2 is related to how

much confidence a particle has in its neighbors. A wrong selection for these values

will result in divergent behavior. Based on the different values that c1 and c2 can

have, there are six different cases:

1. c1 = c2 = 0

In this case, the particles will keep flying at their current speed until they reach

the solution space’s boundary. The particle’s velocity is obtained as:

vij(t+ 1) = vij(t) + (0)r1j(t)[pbest,ij(t)− xij(t)] + (0)r2j(t)[Bbest(t)− xij(t)]

= vij(t)

(3.32)

2. c1 > 0 and c2 = 0

In this case, the particles are isolated from one other. Since the particles do not

trust others particles in the swarm, there is no exchange of information between

particles. The particle’s velocity is found as:

vij(t+ 1) = vij(t) + c1r1j(t)[pbest,ij(t)− xij(t)] + (0)r2j(t)[Bbest(t)− xij(t)]

= vij(t) + c1r1j(t)[pbest,ij(t)− xij(t)]

(3.33)

48

3. c1 = 0 and c2 > 0

In this case, all particles move towards one single point, which is the best particle

in the neighborhood. The particle’s velocity is obtained as:

vij(t+ 1) = vij(t) + (0)r1j(t)[pbest,ij(t)− xij(t)] + c2r2j(t)[Bbest(t)− xij(t)]

= vij(t) + c2r2j(t)[Bbest(t)− xij(t)]

(3.34)

4. c1 = c2 6= 0

In this case, all particles move towards the average of the personal best position

and the neighborhood’s best position.

5. c1 >> c2

In this case, a particle is more influenced by its own good performances, which

may cause excessive wandering.

6. c1 << c2

In this case, the particles are more influenced by the best neighbor particle,

which can lead the particles to move towards the local optima prematurely.

Also, small values for c1 and c2 result in smooth particle movement. This allows

the particles to roam the region in which they are before being attracted towards

the “good” regions. Meanwhile, large values cause abrupt movements towards these

“good” regions, limiting the exploration of the solution space. The values for c1 and c2

are problem-dependent, and normally, they are static values. For example, Kennedy

and Eberhart [38] suggest that the values for the two acceleration constants should

be c1 = c2 =
√

2, and Khan and Engelbrecht [43] suggest that the values should be

c1 = c2 = 1.49.

49

Velocity Clamping

In a particle swarm optimization algorithm, the velocity value tends to grow

quickly. This is more noticeable when the particle’s current position is far from its

personal best position and the neighborhood best position. Therefore, the particles

will have large position changes which can cause the particles to leave the solution

space. The aim of velocity clamping is to maintain the particles within the bound-

aries of the solution space and to guarantee that the size of the steps are reasonable

to comb the solution space. To implement velocity clamping, if the velocity of a

particle exceeds a specified maximum value, then the particle’s velocity is set to this

maximum value. The particle velocity is adjusted before updating the position of the

particle. (See Equation 3.35) [39].

vij(t) =

 v′ij(t) if v′ij(t) < Vmax,j

Vmax,j if v′ij(t) ≥ Vmax,j

(3.35)

where v′ij(t) is found using Equation 3.31.

Velocity clamping depends on the value of Vmax,j. A poorly chosen value leads

to poor performance since large values of Vmax,j favor global exploration while small

values of Vmax,j favor local exploitation. This implies that, if the value of Vmax,j

is too small, the swarm will not sufficiently explore regions beyond the promising

regions, and in the worst case, the swarm may get trapped in a local optimum. On

the contrary, large values of Vmax,j have the risk of missing promising regions since

the particles are moving erratically and faster.

Even though, the advantage of using velocity clamping is that the changes in

velocity are controlled, one disadvantage of velocity clamping is that it affects the

direction in which the particles move in addition to the step size. Moreover, if all

velocities are equal to Vmax,j, the particles will search only on the boundaries of

a hyper-cube defined by [xi(t) − Vmax, xi(t) + Vmax]. This issue can be solved by

implementing a method to reduce the value of Vmax,j over time.

50

Inertia Weight

The goal of the inertia weight is to control the exploration and exploitation of

the swarm. Even though, it was created to overcome some of the disadvantages of

velocity clamping, it does not eliminate the need for it. The inertia weight works by

weighting the influence of the previous velocity on the current velocity. Using the

inertia parameter, the velocity Equation 3.31 changes to [39]:

vij(t+ 1) = wvij(t) + c1r1j(t)[pbest,ij(t)− xij(t)] + c2r2j(t)[Bbest(t)− xij(t)] (3.36)

where w is the inertia weight.

Based on the different values that the inertia weight can have, there are three

possible different cases:

1. w = 0

For this case, the particles will move without taking into account the previous

velocity. Replacing w = 0 on Equation 3.36, leads to:

vij(t+ 1) = (0)(vij(t)) + c1r1j(t)[pbest,ij(t)− xij(t)] + c2r2j(t)[Bbest(t)− xij(t)]

= c1r1j(t)[pbest,ij(t)− xij(t)] + c2r2j(t)[Bbest(t)− xij(t)]

(3.37)

2. w < 1

For this case, the particles velocities tend to decrease. Also, this allows the

particles to accept quick changes in directions.

3. w ≥ 1

For this case, the particle velocities tends to increase over time towards the

maximum velocity. This may cause the swarm to diverge. Also, it is more

difficult for the particles to change their direction and move back into promising

regions.

51

Based on the behavior of the particles depending on the value of w, it is to be

noted that large values of w favor global exploration, while small values of w favor

local exploitation. However, for excessively large values the swarm may diverge and

for excessively small values, the swarm will have a limited exploration ability. Also,

for small values of w, the cognitive and social components have a greater influence in

a particle’s position.

The inertia weight can be implemented using a fixed or dynamic value. Several

researchers favor dynamically changing values because this allows the particles to

favor exploration at the early stages while favoring exploitation in later iterations.

The basic idea behind these approaches is to start with large inertia values, which

will allow the particles to explore the solution space freely, and then decrease them

over time, as this favors local exploitation. Van den Bergh and Engelbrecht showed

that in order to avoid cyclic or divergent behaviors, and to guarantee convergence in

the particles trajectories, the inertia weight has to fulfill the following condition [39]:

w >
1

2
(c1 + c2)− 1 (3.38)

There are several approaches to implement the concept of dynamic inertia weight.

One simple approach is to randomly select a new inertia weight value at each iteration.

For example, let the inertia weight be, at each iteration, the sum of the acceleration

coefficients [44]. Another implementation is to linearly decrease an initially large

inertia weight. For example, let the inertia weight start at the value of 0.9 and

decrease until it reaches the value of 0.4 [45]. Also, the inertia weight can be decreased

non-linearly over time [39]. Normally, these methods make the particles spend less

time in the exploration mode while allowing them to spend more time in exploitation

mode.

There are three nonlinear methods for changing the inertia weight:

• Peram, Veeramachaneni and Mohan [45] proposed:

w(t+ 1) =
(w(t)− 0.4)(nt − t)

nt + 0.4
(3.39)

with w(0) = 0.9.

52

• Venter and Sobieszczanski-Sobieski [46] suggested:

w(t+ 1) = αw(t′) (3.40)

where α = 0.975 and t′ is the last iteration where the inertia last changed.

The inertia weight only changes if the variation of the fitness value is small.

The initial value of the inertia weight is w(0) = 1.4 and the lower bound is

w(nt) = 0.35.

• Clerc [39] proposed:

The inertia weight value should be proportional to the improvement of the

swarm, as is obtained by:

wi(t+ 1) = w(0) + (w(nt)− w(0))
emi(t) − 1

emi(t) + 1
(3.41)

where: w(0) < 1, w(nt) ≈ 0.5, and mi is the relative improvement that is

estimated by:

mi(t) =
f(lbest,i(t))− f(xi(t))

f(lbest,i(t)) + f(xi(t))
(3.42)

Clerc’s notion is that as an individual improves more over its neighbors, it

should be able to follow its own path.

Constriction Coefficient

A constriction coefficient, normally represented as χ, was introduced by Maurcie

Clerc in [47]. It was developed to eliminate the need for velocity clamping while

guaranteeing convergence to a stable point. It works by reducing the velocity at every

time step. The velocity equation with the constriction coefficient is given by [39]:

vij(t+ 1) = χ[vij(t) + c1r1j(t)[pbest,ij(t)− xij(t)] + c2r2j(t)[Bbest(t)− xij(t)]] (3.43)

where χ is defined as:

χ =
2κ

|2− φ−
√
φ(φ− 4)|

, where, φ = φ1 + φ2, κ ∈ [0, 1] and φi = ciri (3.44)

53

The parameter κ is used to control the exploration and exploitation of the swarm.

The conditions for κ and φ to guarantee convergence are [39]: φ ≥ 4 and κ ∈ [0, 1].

Many researchers consider the constriction coefficient approach to be equivalent to

the inertia weight approach to the extent that it is possible to obtain an inertia weight

model given χ [39], [48]. The equivalent inertia model for a given χ can be obtained

using Equations 3.45 and 3.46.

w = χ (3.45)

φi = χciri, where, i = 1, 2 (3.46)

General PSO

A particle swarm optimization method can be divided into three important steps:

initialization, function evaluation and stopping condition. Particle swarm optimiza-

tion works by evaluating a function iteratively until a stopping condition is met. The

evaluated function is usually called fitness function. A general PSO algorithm is

presented below:

PSO Algorithm

Initialize the n particles

Repeat

For each particle

Update the particle’s velocities and the particle’s position

Evaluate the particle’s fitness formula

Check if the new particle position has a better result than lbest

End the for loop

Check if any of the new particles positions has a better result than the

gbest.

54

Until the stopping condition is met.

Return the global best position as the solution.

End

Initialization Step

The first step of the particle swarm optimization algorithm is the initialization

step. In this step, the swarm and control parameters are initialized. The constants,

such as the acceleration coefficients c1 and c2, the swarm size and the neighborhood

size, are specified. If a fixed inertia weight and fixed maximum velocity are used, they

need to be specified in this step.

The initial swarm has an impact on performance since a bad initial swarm can not

cover the entire solution space and it will be harder to find a solution that lies outside

of the initial covered area. Usually, the particles are initially uniformly distributed

over the solution space. Some researchers favor the use of a completely random

distribution, but the issue emerges by doing this is that the swarm can have some

bias towards certain regions due to an increased number of particles present over

those regions. On the other hand, uniformly distributed particles do not guarantee

good performance.

Usually, the initial velocities of the particles are set to zero, but, depending on

the task in hand, these velocities may be set to non-zero values, while taking into

consideration that large velocities will generate large position updates, and these large

updates may cause the particles to move outside of the solution space boundaries.

The particle’s personal best position is initialized to its current value. This means,

the particle’s personal best position at time t = 0 is equal to the particle’s initial

value. The best global particle position is initialized to the initial particle position

value which has the lowest fitness function value at time t = 0.

55

Function Evaluation

The function evaluation step consists of the actions that the algorithm must per-

form during each iteration until one or more of the stopping condition are satisfied.

Usually, this step is the one that consumes more time and resources during the exe-

cution of a PSO algorithm. The runtime of the function evaluation step depends of

the number of particles in the swarm. In one iteration, the algorithm must perform

the following actions for each particle in the swarm:

1. Find the velocity along each dimension.

2. Update the particle’s position.

3. Evaluate the fitness function.

4. Determine the particle’s personal best position.

5. Determine the local best position, in lbest PSO, and the global best position,

in gbest PSO.

3.2.7 Microsoft Kinect

Microsoft Kinect is an input device used for motion sensing that enables the

user to interact with a system using gestures and spoken commands. Its software

technology has been developed by Rare, a subsidiary of Microsoft since 2002, while

the camera technology has been developed by PrimeSense, a subsidiary of Apple since

2013. The first version of the Microsoft Kinect was introduced in November 2010 and

its upgraded version was introduced in November 2013. The Microsoft Kinect was

originally introduced as an accessory for the Xbox 360, but now, because of the

information that the Microsoft Kinect is able to acquire, it is not limited to gaming

and is a tool used in different fields in industry and research, such as health-care,

image processing, computer vision, robotics, virtual reality, and security system.

56

Figure 3.11. Microsoft Kinect Sensor.

57

Figure 3.12. Components of the Microsoft Kinect Sensor.

Hardware Components

A Microsoft Kinect sensor is composed of a four-microphones array, a color camera,

an IR emitter, and an IR sensor.

Color Camera

The Kinect Sensor is equipped with a color camera that is able to capture video

that has a resolution of 1920x1080 pixels at a frame rate of 30 fps. Also, it works

in three different color formats: RGBA, GBRA and YUV2. Some features that the

camera possess are: white balancing, black reference, flicker avoidance, and color

saturation. The field of view for the color camera is 85◦ horizontal and 54◦ vertical,

as shown in Figure 3.13.

IR Emitter and IR depth Sensor

The IR emitter and the IR depth sensor are used to generate the infrared and depth

images. The IR emitter is an IR projector that emits infrared light in a “pseudo-

random” speckle pattern onto the scene. The light reflected from the speckles is

captured by the IR sensor which converts it into depth and infrared information. The

58

Figure 3.13. Field of view of the color camera.

59

Figure 3.14. Field of view of the IR Emitter/IR Sensor.

IR sensor can work regardless of the lighting conditions of the scene. The resolution

of both images is 512x424 at a frame rate of 30 fps. Each pixel in an infrared frame

has a 16-bit value to represent the IR intensity. On the other hand, each pixel value

in the depth map represents a distance in millimeters that ranges from 500 mm to

8000 mm, which is the working range of the IR sensor. The field of view for the IR

sensor emitter is 70◦ horizontal and 60◦ vertical, as shown in Figure 3.14.

Infrared and Depth Images

Microsoft Kinect uses its IR emitter and IR sensor to generate real-time depth

maps and infrared frames. The resolution of the depth maps and the infrared frames

is 512x424 at a frame rate of 30 fps. To generate these frames, the Kinect sensor

employs two techniques: Structure light and Time of Flight (TOF). Structure light is

a method of sending a known light pattern, usually a grid or horizontal bars onto a

scene. Using the way the pattern deforms when hitting the surface of objects in the

scene, allows the on board processor to calculate the depth and surface measurements

of the object. Similarly, TOF is the process of measuring the time it takes for an

60

Figure 3.15. Example of an infrared image.

object to travel a distance through a medium. The pattern used by the Kinect sensor

for structure light is a speckle pattern, and the infrared frames are generated by

capturing the intensity of infrared light that is reflected.

To generate depth maps, the IR sensor measures the time used by infrared light to

leave the sensor and return to it. Using this time, the Kinect calculates the distance

between the sensor and the corresponding object which the infrared light reflected off.

Depth maps can be used to generate a set of discrete 3D data points, called a point

cloud. It is necessary to emphasize that the Kinect sensor is innately noisy, which

causes fluctuations in the depth measurements and as a result may create “hot” or

“cold” spots in the depth maps where no measurements can be obtained.

61

Figure 3.16. Example of a depth map.

62

Figure 3.17. Example of a point cloud.

63

Kinect Software Development Kit

The Microsoft Kinect has a software development kit (SDK) which grants users

the ability to develop their own applications using the Microsoft Kinect sensor as a

sensing device. This toolkit is comprised of a set of libraries that provide an interface

for communication with the Microsoft Kinect sensor. It also includes the applica-

tion program interface (API) and the system drivers for the sensor. Applications can

be built using C++, C# and Visual Basic. Some of the functions included in the

Kinect SDK are: skeleton recognition, skeleton tracking, facial tracking and speech

recognition. In addition to these basic functions, the Kinect SDK contains: a face

API, which facilitates the creation of applications that require motion tracking and

detection of human faces, Kinect Studio, which allows recording and playback of the

acquired depth and color data, and documentation. The minimum system require-

ments that must be meet to be able to use the Microsoft Kinect and the Kinect SDK

are:

• The operating system has to be: Windows 8, Windows 8.1, or Windows 10.

• A 64-bit physical dual-core 3.1 GHz or equivalent processor.

• 4 GB of RAM.

• A graphics card that supports DirectX 11,

• A USB 3.0 host controller.

3.3 System Workflow

The proposed motion correction system consist of four sequential stages:

• The first stage is responsible for capturing and storing the infrared and depth

images from the Microsoft Kinect. This stage works in parallel while performing

PET/CT scanning. Ideally, the Kinect sensor will start capturing images at the

same time the scanner is started, and will stop when the scanning is completed.

64

Figure 3.18. Block Diagram of the proposed system.

• The second stage is in charge of performing the registration between consecutive

frames. It is composed of three steps: a Kinect file reader step, a features

extraction and matching step, and a particle swarm optimization step.

• The third stage consists of the registration of all frames with respect to a ref-

erence frame. This stage returns the affine transformation matrices with their

corresponding time stamps.

• The purpose of the fourth stage is to perform motion correction on the DI-

COM files from the PET/CT scanner using the affine transformation matrices

obtained from the previous stage.

The system has the following inputs: the infrared and depth images from the

Microsoft Kinect, as well as the DICOM files from the PET/CT Scanner. The final

output of the system will be motion corrected images contained in corrected DICOM

files. The system does not require markers for registration and tracking of the patient

movements. Figure 3.18 shows a block diagram that illustrates the proposed motion

correction system. The following sections of this chapter explain in detail each element

of the block diagram presented in Figure 3.18.

65

Figure 3.19. Microsoft Kinect Stage.

3.3.1 Microsoft Kinect Stage

This stage consists of algorithms necessary for the Microsoft Kinect to capture

and store the infrared and depth images of the patient inside a PET/CT scanner

during the examination. The Microsoft Kinect sensor and a user-defined region of

interest (ROI; used in the next stages) are the two inputs for this stage. The output

is a file which contains the infrared and depth information as well as the information

of the ROI defined by the user. These files are saved locally for the posterior motion

correction stages. Figure 3.19 shows a block diagram that describes this stage.

The initialization and termination processes of the Kinect sensor are handled using

functions found in the Kinect SDK. In addition, SDK functions are used to extract

the infrared and depth maps arrays from the sensor. Even though the Kinect is able

to work at a maximum frame rate of 30 fps, the acquisition frame rate used in this

66

project is lower than this, as explained below. Additionally, instead of creating two

files at every acquisition time step (one for the infrared frame and one for the depth

map) these two files are combined into one single file which is the input file used in

the following stages.

In order to choose the appropriate frame rate, some limitations must be considered:

1. A PET scan can take between 15 to 60 minutes (or 900 to 3600 seconds). If

the acquisition frame rate is 30 fps and assuming that each frame has a size of

1 MB, the total amount of saved information can be computed by:

dataSize = tscan ∗
30 frames

s
∗ 1 MB

frame
(3.47)

where tscan is the duration of the PET scan in seconds. Using Equation 3.47,

the amount of acquired data for a 60 minutes scan will be 105.47 GB.

2. In practice, the size of each of frame file is 4.27 MB. Replacing the real file size

in Equation 3.47 gives a amount of data equal to 450.35 GB for a 60 minutes

PET/CT scan.

3. The hard disk drive write speed, and the Kinect algorithm running time create

a bottleneck for the system. One approach that helps overcome this issue is to

limit the amount of information that will be stored.

4. The amount of data generated during this stage determines the duration of the

subsequents stages.

Hence, there must be a balance between the acquisition frame rate, the execution

time of the algorithm, the size of the acquired data, and the ability to detect the

patient’s movements. The machine used for the development of this project allows to

store up to 2 frames every second without compromising the speed of the system.

The infrared images and the depth maps are acquired from the Kinect as two

arrays, where each entry in the array is pixel value in the corresponding image. The

Kinect creates both images simultaneously and with the same resolution. The images

67

are created using the same mechanisms and sensors described in Section 2.4. The

unified frame file is then created by simultaneously reading the same position in each

array, and the values written in the corresponding entry of the output file. The

creation of a single combined file facilitates the handling of the information in the

subsequent stages. This file consists of: one entry for the region of interest and 217088

entries for the infrared and depth data (this value is based on a frame resolution of

512x424). The region of interest entry consists of the x and y coordinates of the upper

left corner of the region of interest, as well as the width and the height of the region

of interest. Each infrared/depth entry has four parameters:

1. The location along the x-axis, which varies from 0 to 511.

2. The location along the y-axis, which varies from 0 to 423.

3. The infrared pixel value, which varies from 0 to 65535.

4. The depth value, which varies from 0 to 8000.

3.3.2 Consecutive Frames Registration Stage

The purpose of this work is to correct artifacts arising from patient motion. An

issue that arises is that in order to perform the registration between frame i and the

initial frame, it is necessary that the previous frames be already registered against

the initial frame. Therefore, this forces the system to register each frame sequentially

which can make the execution time of the algorithm impractical. In addition, the

number of files generated by the Microsoft Kinect stage must be considered, because

the number of files have a large impact on the execution time of the registration stage.

If the number of files generated at that stage is excessively large, the execution time

of the registration stage will be too long which could make the use of the proposed

system unfeasible.

68

Kinect File

Reader

Feature

Extrac!on and

Matching

Par!cle Swarm

Op!miza!on

Step

Affine

Transforma!on

Matrix

Unified Frame

File

Unified Frame

File

Consecu!ve Frames Registra!on Stage

Figure 3.20. Consecutive Frames Registration Stage.

One way to reduce the runtime of the system is to parallelize the frame registration

process. Registering two consecutive frames does not require knowledge of previous

results, hence, the proposed system divides the registration process into two stages:

the process of registration between consecutive frames and the registration of all the

frames to an initial reference frame.

It should be noted that there is no prior information linking two consecutive

frame files. In addition, the only relationship between the infrared images and the

depth maps is that the objects present in the scene occupy the same position in both

images. To perform registration in 3D, the proposed system requires correspondences

between the entries of the point clouds. Feature extraction and matching is used to

create these correspondences. Moreover, these techniques are applied to the infrared

images since they have better contrast and more features than the depth maps.

This stage takes as input the n frame files generated in the Kinect Stage. Its output

consists of n − 1 affine transformation matrix, which correspond to the maximum

number of possible combinations of consecutive files. This is accomplished in three

steps. The first step takes the Kinect frame files and generates the infrared images

and the point clouds of the region of interest. The second step uses the infrared

images and the point clouds to generate a pair of matched arrays which will be used

to perform the registration. The third step performs the affine registration using

69

PSO over the matched arrays. Since the algorithm only requires the two consecutive

frame files to obtain the affine transformation matrix that register both files, multiple

registration processes can be run in parallel, leading to an improvement in the run

time of the system. Figure 3.20 illustrates the process performed in this stage.

Kinect File Reader

The purpose of this step is to read the unified frame file created in the Microsoft

Kinect stage. From this file, the infrared image and the point cloud of the region of

interest that was defined by a user during PET examination are created. Figure 3.21

shows the implementation of this step.

The region of interest data is used to create a mask. This mask is a 512x424 image

that consist of 0’s and 1’s, where each pixel with a value of 1 implies that it belongs

to the region of interest, whereas if it is 0 it does not belong to the region of interest.

Since the region of interest has a rectangular shape, the only information needed to

create it is: the x and y coordinates of one of its vertices (xROI and yROI), the width

(wROI), and the height (hROI). As described Section 3.2.1, the frame file contains

this information. To create the mask, the algorithm iterates through each pixel of

the mask. If the pixel coordinates in x is between xROI and xROI + wROI and its

coordinate in y is between yROI and yROI +hROI then, the value is set to 1, otherwise,

it is set to 0. This process is performed only if the ROI information changes.

To generate the infrared images, for each entry of the frame file, the read infrared

value is placed in its corresponding pixel position, then, the infrared image is mul-

tiplied by the mask. This process will extract the region of interest in the infrared

image. The point clouds are generated using the depth maps, where depth values

vary from 0 to 8000, representing the distance, in centimeters, of the Kinect sensor

to the objects in the scene. The depth map is multiplied with the mask to extract

the region of interest. Each pixel in the region of interest in the depth map generates

70

Depth Map

Region of

Interest

Infrared

Data

Region of

Interest

Extrac!on

Point Cloud

Mapping

Infrared

Data

Region of

Interest

Depth Map Point Cloud

Mapping

Region of

Interest

Extrac!on

Unified

Frame File

Unified

Frame File

ROI

Infrared

Image

ROI Point

Cloud

ROI Point

Cloud

ROI

Infrared

Image

Kinect File Reader Step

Figure 3.21. Kinect File Reader Step.

71

a point in the point cloud. Using equations 3.48, 3.49 and 3.50, the 3D coordinates of

these point are obtained. Each entry of the point cloud is linked to its corresponding

pixel in the infrared image.

xi =
ui − cx
fx

∗ pixelu,v (3.48)

yi =
vi − cy
fy

∗ pixelu,v (3.49)

zi = pixelu,v (3.50)

where: ui and vi are the x and y coordinates of the i-th pixel in the depth map,

pixelu,v is the value of the i-th pixel in the depth map, fx and fy are the horizontal

and vertical focal length of the Kinect sensor, cx and cy are the location of the center

point of the Kinect, and xi, yi and zi are the 3D coordinates of the i-th entry of the

point cloud. The Kinect SDK allows the user to obtain the values of fx, fy, cx and

cy.

Feature Extraction and Matching Algorithm

The frame files generated by the Kinect do not have any relationship between

them. It is necessary to create a relationship by taking the infrared images and

the point clouds to generate a pair of matched arrays. These arrays are the input

information used by the PSO step to obtain the affine transformation matrix that

aligns the point clouds. The most important consideration in the development of this

project is that the lightning conditions in the room may vary. For these reason, it

was decided to use the infrared camera instead of the RGB camera.

In this step SURF is used to detect and extract the features in the infrared images.

Once the features are extracted, the system proceeds to obtain the matches between

both images. The output is the pair of matched point cloud arrays as shown in Figure

3.22.

72

ROI

Infrared

Image

ROI Point

Cloud

Feature

Detec!on &

Extrac!on

Feature

Matching

ROI Point

Cloud

ROI

Infrared

Image

Feature

Detec!on &

Extrac!on

Infrared

Matches

Infrared

Matches

Matched

Point Cloud

Matched

Point Cloud

Feature Extrac!on and Matching Step

Figure 3.22. Features Extraction and Features Matching Step.

73

Feature matching is done using a nearest neighbor search library called Fast Ap-

proximate Nearest Neighbor Search (FLANN), which is implemented in OpenCV.

FLANN takes two features arrays (source and reference) and creates a k-d tree for

each array. A k-d tree is a data structure used to arrange the points in a k-dimensional

space. These structures are useful for applications that involves a multidimensional

search key, such as in nearest neighbor searches. To perform the feature matching

process, FLANN takes a feature of the source array and it finds its nearest neighbor

in the reference array by performing a query in the k-d tree. This process is repeated

for each feature in the source array. The matches returned by FLANN are passed

through an outliers removal step. Since it is assumed that between consecutive frames

there is little movement, if the distance between two matched features is considerably

large, the match is considered an outlier. To decide which matches will be removed,

the mean and the standard deviation of the distances of all the matches are obtained.

All matches whose distance is larger than the mean plus the standard deviation are

removed. The remaining matches are used in the next step. This is described in

Equation 3.51.

O(Mi) =

true If di ≥ d+ σd

false Otherwise

(3.51)

where O(Mi) is the function that determines if the matched features i is an outlier,

Fi is the ith matched feature, di is the distance between features, d is the mean of the

distances of all the matches, and σd is the standard deviation of the distances of all

the matches.

The last step of this stage is dedicated to the creation of arrays used by the PSO

algorithm. Each element of the matched features array, created in the previous step,

represents a match and consists of two entries. The first entry is the location of a

feature in the source infrared image, while the second entry is the matched feature in

the reference image. To generate the matched point clouds, the feature entries in the

matched features array are located in their respective depth maps, and nxn square

74

-5

0

5

10

15

20

3 5 7 9 11 13 15 17 19 21 23 25

D
is

ta
n

c
e

 i
n

 m
m

Kernel Size

Distance vs Kernel Size

Figure 3.23. Obtained average distance and standard deviation of the
matches at the output of the system while varying the kernel size.

kernel placed at each coordinate. All distance values within the kernel are averaged.

Using the mean distance and the 2D coordinates of the feature, the 3D coordinates

can then be obtained using Equations 3.48, 3.49 and 3.50. These coordinated values

represent the corresponding matched feature in the point cloud, are subsequently

saved in the same location on the output point clouds arrays. The process is repeated

with each element of the matched features array and the output generated consists of

two point cloud arrays whose entries represent the matched features of the infrared

images in 3D. The kernel size was chosen based on tests were performed using the

complete system while the kernel size value was varied. Figure 3.23 shows the results

obtained from these tests. In this case the chosen value for the kernel size is 21.

75

Matched

Point Cloud

Matched

Point Cloud

PSO Stage

#1

PSO Stage

#2

Outliers

Removal

Step

Affine

Transforma"on

Matrix

Par"cles Swarm Op"miza"on Step

Figure 3.24. Particle Swarm Optimization Step.

Particle Swarm Optimization Step

The PSO step is used to obtain the 3D affine transformation matrices between

consecutive point clouds. This step consist of an outlier removal step and two stages

of PSO. The same PSO algorithm is used in both PSO stages. The outlier removal

step is needed to eliminate outliers and static points which introduce artificial bias.

The static points are matches generated by static objects in the scene.

The PSO stage inputs are the two matched point clouds and the output is the

3D affine transformation matrix. The outlier removal step takes the two point clouds

(source and reference) and the 3D affine matrix and returns the two point clouds with

the outlier entries removed. Figure 3.24 shows the block diagram of the proposed step.

76

In the previous outliers removal step, an outlier was any match whose distance is

higher than the mean of all the match distances plus the standard deviation of all the

match distances (Equation 3.51). The same concept is applied in the outlier removal

step between the two PSO stages, except that the comparison uses the mean and the

standard deviation of the distances between the corrected features.

In the case in which the features are perfectly aligned, the distance between the

corrected input feature and its reference feature will be 0. On the other hand, if

the distance between the corrected input feature and its reference feature increases

relative to the distance between the uncorrected features, then it means that the

matched feature is potentially an outlier because the input feature is moving away

from the reference instead of moving closer to the reference. Therefore, in the outlier

removal step, the distance between the corrected source point cloud and the reference

point cloud are used to obtain the mean and the standard deviation used in Equation

3.51, instead of the distance between the source point cloud and the reference point

cloud.

The implemented particle swarm optimization algorithm is as follows:

PSO(pointCloud1, pointCloud2)

1. Initialize parameters

2. Compute initial fitness value

3. If the initial fitness value is 0 then return identity matrix as the result

4. Initialize particles

5. While the stop criteria is not met

6. Increase the iteration counter

7. For each particle

8. Find the best local particle of the particles in the neighborhood

9. For each dimension of the particle

10. Compute the inertia weight for the dimension

77

11. Compute the velocity of the dimension

12. Apply the particle to pointCloud1

13. Compute the new fitness value

14. Update the particle’s best local fitness value

15. Update the best global fitness value

16. Check if the stop criteria is met

17. Return the best global particle as the affine transformation matrix

Each particle represents a possible affine matrix that aligns both point clouds

arrays, which means that each particle has 12 degrees of freedom. The fitness function

chosen for this system is the sum of the distances between the corrected and reference

features (See Equation 3.52). In the ideal case of a perfect match the fitness value

will be equal to 0. Therefore, the smaller the value of the fitness function, the better

the registration. In some rare occasions, the patient may remain immobile for some

time. This implies that the respective frames will reflect no motion, which means that

the affine transformation matrix between those frames is approximately an identity

matrix. An initial fitness value is calculated to prevent the algorithm from running

unnecessarily. If the initial fitness value is equal to 0, the algorithm considers that

there was no movement between the two frames and returns an identity matrix as

the result. The update of the position of each dimension of the particle is done

using Equation 3.24. The velocity of each dimension of the particle is updated using

Equation 3.36. Meanwhile, the inertia weight term is calculated using Equation 3.41.

fitness =
n∑

i=1

√
(xPC1,i − xPC2,i)2 + (yPC1,i − yPC2,i)2 + (zPC1,i − zPC2,i)2 (3.52)

where, n is the number of matches, PC1 and PC2 are pointCloud1 and pointCloud2,

respectively, and xA,i, yA,i and zA,i are the x, y and z coordinates of the i−th feature

in point cloud A, respectively.

78

An initialization step is used to generate the initial particles. Each particle is

assigned an identification label, which is its location in an array. Then, the swarm

is initialized using a completely random normal distribution, and a random value is

assigned to each of the 12 degrees of freedom parameters of each particle. Also, the

particles’ velocity array, the best local fitness for each particle, the best local result

for each particle and the best global particle are initialized using random values.

The acceleration coefficients c1 and c2 are set to 1.49 as suggested in [43]. To

choose the swarm size, the neighborhood size, and the maximum number of iter-

ations, several experiments were performed. A value for the maximum number of

iterations is fixed to ensure that the process does not run indefinitely. Moreover,

this also depends on the execution time of a single iteration, which is on average

0.807 ± 0.2118 ms. Assuming that the execution time per file should not exceed 30

seconds in the worst case scenario, then the maximum number of iterations will be

execution time per file
execution time for a single iteration

= 30
0.807+0.2118

= 29447.87, which is approximately 30000

iterations.

To choose the swarm size several experiments were carried out using different

swarm and neighborhood sizes that were varied systematically while keeping the rest

of the parameters constant. In particular, two neighborhood sizes were used: 15% of

the swarm size and 30% of the swarm size. Figure 3.25 depicts the results of these

tests were the swarm size was varied from 10 to 60 particles. From this figure, it can

be concluded that a swarm size between 20 and 30 particles gives a good balance

between runtime and number of iterations when neighborhood sizes are set to be 15%

to 30% of the swarm size. Based on this, the chosen value for the swarm size for this

project was set to 30.

Having chosen a swarm size of 30, a similar experiment was conducted to choose

the neighborhood size. However, in this case only odd numbers where used for neigh-

borhood sizes, as shown in Figure 3.27 Figure 3.26 shows the results obtained. For a

swarm size of 30 particles, the best results where obtained with a neighborhood size,

Nsize, of 11 particles. Moreover, it can be concluded that for smaller neighborhood

79

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50

N
o

rm
a

li
z
e

d
 T

im
e

 a
n

d
 F

it
n

e
s
s

Par!cles

Normalized Run!me and Fitness Value vs Number of

Par!cles in the Swarm

Time 15%

Fitness 15%

Time 30%

Fitness 30%

Figure 3.25. Comparison of the Normalized Runtime and Fitness
Value vs the Number of Particles in the Swarm..

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 7 9 11 13 15 17

N
o

rm
a

li
ze

d
 T

im
e

 a
n

d
 F

it
n

e
ss

Neighborhood Size

Normalized Run!me and Fitness Value vs

Neighborhood Size

Time

Fitness

Figure 3.26. Comparison of the Normalized Runtime and Fitness
Value vs the Neighborhood Size.

80

Neighborhood of par!cles

par!clespar!cles

Figure 3.27. Neighborhood of size a for particle i.

sizes the algorithm will take more time to finish because the particles take longer to

converge. On the other hand, larger neighborhood sizes take less time to finish be-

cause the particles take less time to converge, but the fitness value increases because

the particles become more susceptible to getting stuck in a local minimum. Addition-

ally, the local topology of the neighborhood implemented in this system was a wheel

topology. During each iteration, each particle has its “own” neighborhood which is

made up Nsize−1
2

particles that precede it in the particles array and Nsize−1
2

particles

that come after it in the particles array. For example, for particle i, its neighborhood

consists of all the particles whose indices range from i− Nsize−1
2

to i + Nsize−1
2

. Each

particle in the neighborhood communicates its results to particle i, which compares

who has the best results based on the fitness value, but it does not communicates

this to its neighbors. It uses the obtained best result as the Bbest(t) which it used to

update its own position.

The algorithm uses one of two stopping conditions: the first condition is the

maximum number of iterations and the second condition is that the difference between

the last change and the average of the last 10 changes is less than 10−6. Also, in each

iteration all particles must update their positions before communicating their results

to the swarm.

81

3.3.3 3D Model Registration Algorithm

In the previous stage, the Consecutive Frames Registration Stage, only the affine

matrices that align consecutive frames are obtained. However, to perform motion

correction, all frames must be aligned with respect to an initial reference frame.

During the early phases of the development of the system, it was observed that to

carry out the task of registration between the frames it has to be done sequentially.

This has a major impact on the runtime of the algorithm. On the other hand, it was

observed that the system’s runtime could be improved by dividing the registration

step in two stages: a stage in which the registration is performed over consecutive

frames and a stage in charge of registering all the frames with the reference. The first

stage only requires two consecutive frame files to perform registration; meanwhile,

the second stage requires the affine matrices from the first stage in addition to the

frame files.

Figure 3.28 describes the process by which the infrared images and point clouds

have passed to this point through of the proposed system. The first step is to obtain

the matching features between the infrared images Ii−1 and Ii, then, the matches and

the point clouds are then used to generate matched point clouds, which are used to

perform the registration whose result is the affine matrix T(i−1)i which aligns point

cloud i and point cloud i− 1.

In the case where perfect registration is obtained, whenever the resulting affine

matrix T(i−1)i is applied to point cloud i, it will generate point cloud i−1. Therefore,

to obtain the affine matrix T0i, which aligns point cloud i and point cloud 0 (the

initial reference), it is enough to apply all the affine matrices sequentially starting

with T(i−1)i and ending with T01. Figure 3.29 illustrates this concept, where Pi is the

original point cloud and F ′i is the registered version of Pi with respect to point cloud

Pi−1. If the point clouds are perfectly aligned, F ′i and Pi−1 will be equal, then, for

example, to align P2 with the reference, first apply T12 to P2 which gives F ′2 = P1,

and then apply T01 to F ′2 which results in F ′′2 = F ′1 = P0.

82

Figure 3.28. Infrared Images and Point Clouds Flow Chart.

Figure 3.29. Ideal Registration Process.

83

In practice, no ideal results are obtained for the registration process. Even small

differences in the transformation cause a registration error. With the procedure de-

scribed above is applied, these errors accumulate along the frames causing a drifting

behavior as more affine matrices are applied. To reduce the drifting effect due to

the errors, a windowing method is used. In the proposed algorithm, the system will

update the reference frame after k frames have been processed. This is depicted in

Figure 3.30 which describes the workflow of the proposed algorithm for k = 4.

The first step of the algorithm is to perform the registration between frames i and

i− 1. Once this task is done, the algorithm has to perform the registration between

corrected frame i and frame i−2 using all the ith frames that have not been corrected

with respect to the reference frame. This process is repeated until all the frames in

the window of size k are registered with respect to the reference frame. Once all

frames have been corrected, corrected frame k is set as the new reference for the next

set of frames.

3.3.4 Motion Correction Step

The purpose of this stage is to perform motion correction on the DICOM images.

This step utilizes, it takes the DICOM images from the PET/CT scanner and the

affine transformation matrices obtained from the previous stage. The output gener-

ated is the motion corrected DICOM files. To choose the appropriate transformation

matrix that has to be applied over the DICOM image, the time stamps of the DICOM

file and the transformation matrix need to be aligned. Figure 3.31 depicts the work-

flow of this stage. The process is comprised of three steps: a pre-motion correction

step where the DICOM files and the affine matrices are aligned and this results in a

3D volume that is reconstructed from the DICOM files, the motion correction step

where the affine matrices are applied over their corresponding 3D volume, and the

last step in which the motion corrected DICOM files are created.

84

Figure 3.30. Windowing Algorithm Flow Chart.

85

Figure 3.31. Motion Correction Stage.

86

Although the prior stage returns all the necessary affine matrices, this stage re-

quires one to choose and apply only the appropriate matrix to the DICOM images.

Usually, a certain number of DICOM files have the same acquisition time. In this

case, the files will use the same affine matrix. To make the motion correction task

efficient and since 3D affine matrices are obtained, a 3D volume will be constructed

from the image slices contained in the DICOM files that share the same acquisition

time. This is possible because the header of the DICOM file contains the following

attributes: image position, image orientation, pixel spacing in the x-axis and y-axis,

slice location, and slice thickness.

The image position attribute gives the x, y, and z coordinates of the upper left

corner of the slice. The image orientation gives the direction cosines of the first

row and the first column with respect to the patient. Image position and image

orientation are used to properly order the slices in space. The pixel spacing attribute

is the physical distance between the center of each 2D pixel in mm. It is specified by

two values, where the first one is for the row spacing, yspacing, and the second one is for

the column spacing, xspacing. Figure 3.32 depicts an example to illustrate this concept

where each square represents a pixel and the orange squares represents the center of

the pixel. The pixel spacing attribute allows the pixels of the slice to be spaced and

positioned appropriately relative to a physical distance. The slice thickness attribute

represents the width in mm of the PET scanner detector used to acquire the image,

and the slice location is the relative position of the image plane expressed in mm.

Using slice location attribute, the image slices can be placed in the proper location.

Each pixel in the image slice generates a point in the 3D model. Generating the

3D model, for each slice, it starts by placing the pixel in the upper left corner of the

slice in the 3D space. This is iterated through each pixel in the slice placing them in

the 3D space using the appropriate spacing, in the x and y axis, given by the pixel

spacing attribute. The z coordinate of all the pixel for a specific slice is given by its

slice location attribute, and the intensity of the point in 3D is given by its pixel value

in the slice. This is illustrated in Figure 3.33.

87

Figure 3.32. Pixel spacing example.

88

Figure 3.33. Process of generating a 3D model using the image slices.

89

Once the 3D volume is generated, the time stamp aligned affine matrix is applied

to this volume. This process will return a motion corrected 3D model of the DICOM

files for that specific acquisition time step. This corrected 3D model is then used to

obtain the corrected 2D images which will be returned to the PET/CT scanner as a

series of DICOM files. The number of 2D slices generated is equal to the number of

slices given for the generation of the 3D model.

To generate the slices, the method places a 2D plane perpendicular to the z-axis

of the 3D model at each slice location, then, it locates the upper left corner of the

slice in the 2D plane and extracts the intensity value of that position and copies it

into the corresponding pixel of the slice. To fill the rest of the pixels the technique

“iterates” through the 2D plane, which is possible because the resolution of the output

slice is the same as the resolution of the slice used to generate the 3D model and the

pixel spacing is known. For example, to fill the first row of the slice, the 2D plane

is sampled at every k ∗ xspacing, where k varies from 0 to the number of columns in

the slice. Once all the pixels in the slice are obtained, the slice image is stored in the

output DICOM file.

3.4 Graphical User Interface

The proposed motion correction algorithm is controlled using a graphical user

interface. The graphical user interface consists of four tabs, each of controls a different

aspect of the implemented system. The graphical user interface tabs are:

• Camera Tab

The Camera tab is used to control the capture of the infrared images and the

depth maps during the PET/CT examination, in addition to allowing the user

to choose the region of interest. Figure 3.34 shows the initial Camera Window.

The Camera Window displays the infrared images obtained by the Kinect in

real-time. The region of interest is specified using a user specified rectangle.

This rectangle can be resized and moved within the margins of the image while

90

Figure 3.34. Initial view of the camera tab.

the Camera is not capturing images (either, before the algorithm starts image

acquisition or while the acquisition is paused). To resize the rectangle, the user

needs to use any of the 8 square grips placed on the rectangle. To move the

rectangle, use a ‘drag and drop’ operation. Before starting a capture, a subject

or study ID must be entered. This can be done using the ‘Enter Subject ID’

button. Once clicked, a dialog box will appear (as shown in Figure 3.35). This

button will not appear again until acquisition is finished. Also, before capturing

images for a new study, the user needs to finish the prior capture. Figure 3.38

depicts the screen that allows the user to finish the acquisition process. This

view is the same while the image acquisition is paused. Figure 3.36 shows the

screen view of the system when it is ready to start the image acquisition process

and Figure 3.37 shows the screen view during the image acquisition process.

91

Figure 3.35. View of the ’Enter Study ID’ dialog box.

Figure 3.36. View of the tab when the system is ready to start the
image acquisition.

92

Figure 3.37. View of the tab during the images acquisition task.

Figure 3.38. View of the tab while the image acquisition is paused.

93

• Motion Correction Tab

The Motion Correction tab is used to apply the motion correction on the DI-

COM files. Before starting the motion correction, it is expected that the DI-

COM files and the Kinect files have been stored on the computer. The DICOM

files can be selected in two ways: by specifying the Study ID number and the

date of the study, as shown in Figure 3.39(a), or by specifying the directory con-

taining the DICOM files to be corrected, as depicted in Figure 3.39(b). Once

the DICOM files have been selected, the user has to select the Kinect Files

directory from a list of possible directories. If the Kinect directory list remains

empty after choosing the DICOM files directory, it means that no Kinect di-

rectory exists for the chosen DICOM directory. The user can specify an output

directory. If the text box is left empty, the system will generate a new directory

for the corrected files at a default location. Once these three parameters are

specified, the motion correction algorithm can be started. The progress and any

possible error generated during the execution of the algorithm will show up in

the Info Log located at the bottom of the window.

• DICOM Receiver Tab

The DICOM Receiver tab is used to enable a receiving server that allows the

computer to receive DICOM files from the PET/CT scanner. The server re-

quires two parameters: the directory in which the received DICOM files will be

stored and the Port number. If the directory is not specified, the files will be

saved in a default location. Figure 3.40 displays the DICOM Receiver window.

• DICOM Sender Tab

The DICOM Sender tab is used to send DICOM files towards the PET/CT

scanner or a specified machine. To send the DICOM files, three parameters are

required: the directory that contains the DICOM files, the Port number and the

IP address of the endpoint. Figure 3.41 depicts the DICOM Sender window.

94

(a) Study ID and Date

(b) DICOM Files Directory

Figure 3.39. Motion Correction Views

95

Figure 3.40. DICOM Receiver View

Figure 3.41. DICOM Sender View

96

4. RESULTS AND DISCUSSION

This chapter presents the results obtained from the implementation of the registration

algorithm. To obtain these results, the proposed Microsoft Kinect Stage, described

in Section 3.2.1, was implemented in the PET/CT scanner and images were acquired

with a subject inside the scanner. The distance between the subject and the Kinect

sensor was 0.9144 meters. No PET/CT data was acquired at this time. The ac-

quired images were used as input to the Consecutive Frames Registration, described

in Section 3.2.2, and the 3D Model Registration Algorithm, described in Section 3.2.3.

The different stages of the proposed system were tested separately to permit op-

timization of each component (e.g. unit test). The use of the transformation matrix

over the medical images files was tested on various images and it was found to be

reliable. The current tests are directed at ensuring that the integration between the

Microsoft Kinect Stage, the Consecutive Frames Registration Stage and 3D Model

Registration Stage work as expected.

During the initialization tests (See Figures 3.25 and 3.26) it is observed that the

swarm size and the neighborhood size had a great influence on the runtime of the

algorithm and the final distance between matched features. As the number of parti-

cles in the swarm increases, the runtime increases because more particles have to be

processed but the fitness value decreases because there are more particles searching

for the optimal solution in the solution space. As the neighborhood size increases the

running time and the fitness value decreases, but the fitness value decreases to a limit

and then begins to increase again. This behavior occurs because for smaller neigh-

borhoods, the particles require more iterations to converge to an optimal solution.

On the other hand, for large neighborhoods, more particles communicate with each

other which makes the particles to converge faster, but this point of convergence can

be the local minimum of one of the particles instead of a global minimum.

97

The raw infrared images and depth maps obtained from the Microsoft Kinect are

shown in Figure 4.1. The parameters of the region of interest are: the ROI’s upper

left corner is located at position x = 177 and y = 119, its height is 118 pixels and

it’s width is 152 pixels. As can be seen in the infrared images of Figure 4.1, it is

not possible to make the patient’s head occupy the entire size of the infrared frame.

Scene background data (such as: the PET/CT scanner gantry, interior and, bed)

is captured along the patient’s head and part of their body. Therefore, a region of

interest is used to delimit the area where the patient’s head will be confined. This

facilitates the extraction of the object of interest (in this case, the patient’s head) from

the background of the scene. Each Kinect frame file has a size of 4370 KB. During the

acquisition of these images, the lightning conditions in the room remained constant

and the lights were at a subdued level.

Figure 4.2 shows the results generated using two consecutive frames. The point

clouds are generated using the depth maps and the region of interests. The infrared

images and the region of interest are used to obtain the infrared feature matches. The

quiver plots are the 3D motion vectors between the extracted and matched features

of the two point clouds. For each arrow, the head of the arrow is the location of the

source feature (feature in the right point cloud) and the tail of the arrow represents

the location of the matched reference feature (corresponding matched feature in the

left point cloud).

Figures 4.3, 4.4, 4.5 and 4.6 show the results using seven frames which are equiva-

lent to 3 seconds of motion. The proposed system average runtime using these seven

frames as input is 32.732 ± 0.393 seconds. The average number of infrared matches

obtained for these seven frames is 32. In the case where the registration is able to

perfectly align the two point clouds, the length of each arrow in the quiver plots of the

corrected matches would be equal to 0. Due to several factors, such as noise generated

by the environment, and in the Kinect sensor, the registration is far from perfect and

will not return a distance value of 0 for any match. On average, the length of all the

98

In
fr

a
re

d

Im
a

g
e

s

D
e

p
th

M
a

p
s

F
ig

u
re

4.
1.

R
aw

IR
Im

ag
es

an
d

D
ep

th
M

ap
s

A
cq

u
ir

ed
u
si

n
g

th
e

M
ic

ro
so

ft
K

in
ec

t.

99

0 1

Point Clouds of the Region of Interest

Quiver Plot between Matched Features

Infrared Features Matches

Mo!on Corrected Point Clouds

Quiver Plot of the Corrected Matches

Figure 4.2. Results obtained from two consecutive frames.

100

P
o

in
t

C
lo

u
d

s
o

f
th

e

R
e

g
io

n
 o

f
In

te
re

st

In
fr

a
re

d
 F

e
a

tu
re

s

M
a

tc
h

e
s

Q
u

iv
e

r
P

lo
t

b
e

tw
e

e
n

 M
a

tc
h

e
d

F
e

a
tu

re
s

0
1

2
3

F
ig

u
re

4.
3.

O
ri

gi
n
al

P
oi

n
t

C
lo

u
d
s,

In
fr

ar
ed

M
at

ch
es

an
d

Q
u
iv

er
P

lo
ts

of
th

e
M

at
ch

es
fo

r
F

ra
m

es
0

to
3.

101

3
4

5
6

P
o

in
t

C
lo

u
d

s
o

f
th

e

R
e

g
io

n
 o

f
In

te
re

st

Q
u

iv
e

r
P

lo
t

b
e

tw
e

e
n

 M
a

tc
h

e
d

F
e

a
tu

re
s

In
fr

a
re

d
 F

e
a

tu
re

s

M
a

tc
h

e
s

F
ig

u
re

4.
4.

O
ri

gi
n
al

P
oi

n
t

C
lo

u
d
s,

In
fr

ar
ed

M
at

ch
es

an
d

Q
u
iv

er
P

lo
ts

of
th

e
M

at
ch

es
fo

r
F

ra
m

es
3

to
6.

102

0
1

2
3

C
o

rr
e

c
te

d
 P

o
in

t
C

lo
u

d
s

Q
u

iv
e

r
P

lo
ts

 o
f

th
e

 C
o

rr
e

c
te

d
 M

a
tc

h
e

s

F
ig

u
re

4.
5.

C
or

re
ct

ed
P

oi
n
t

C
lo

u
d
s,

Q
u
iv

er
P

lo
ts

of
th

e
C

or
re

ct
ed

M
at

ch
es

fo
r

F
ra

m
es

0
to

3.

103

3
4

5
6

C
o

rr
e

c
te

d
 P

o
in

t
C

lo
u

d
s

Q
u

iv
e

r
P

lo
ts

 o
f

th
e

 C
o

rr
e

c
te

d
 M

a
tc

h
e

s

F
ig

u
re

4.
6.

C
or

re
ct

ed
P

oi
n
t

C
lo

u
d
s,

Q
u
iv

er
P

lo
ts

of
th

e
C

or
re

ct
ed

M
at

ch
es

fo
r

F
ra

m
es

3
to

6.

104

arrows in the quiver plots between matched features is: 0.01169 ± 0.00725 meters.

By comparison, the average length of all the arrows in the quiver plots of corrected

matches is: 0.00379±0.00417 meters. This indicates on average, the distances between

the reference features and the source features was reduced by a 67%. Table 4.1 shows

the average length of the arrows for the quiver plots between matched features and

Table 4.2 shows the average length of the arrows for the quiver plots of the corrected

matches. All distances in the tables are in meters.

In the literature, there are two types of motion correction systems: marker-based

systems such as Polaris Vicra, and marker-less systems [14] [16] [9] [8]. A drawback of

marker-based tracking systems is that the markers are likely to move during the scan-

ning process leading to incorrect motion compensation, and may create discomfort

for patients. The motion correction system proposed in this thesis is a marker-less

system. In addition, it is not limited to the tracking of a specific object or part of the

body such as tracking the chest motion [5], or as Meyer et.al. [14], where they try to

estimate the position and orientation of the head of a person. Like the marker-less

tracking systems mentioned earlier [14] [16], the proposed system in this thesis uses

the depth information obtained from the Microsoft Kinect, but it uses the infrared

information instead of the color information. This change was necessary because

during a PET/CT scan the lighting conditions in the room can shift to the point

where the lights are turned off completely for the patient’s comfort or experimental

procedures. The tracking systems presented in Sections 2.4.3 and 2.5 use face detec-

tion algorithms (e.g. Viola-Jones) [14] or perform the detection using depth edges to

obtain the tracked object [16]. In contrast, the system proposed in this work uses a

feature extraction and matching (SURF combined with FLANN) approach.

The Kinect SDK possess face tracking tools, but these require the Microsoft Kinect

sensor to be placed in a specific orientation because the system uses the Kinect

incorporated accelerometer. In addition, the Kinect SDK face tracking algorithm

requires the face to be well lit without any harsh shadows on it. The implemented

105

Table 4.1.
Length of the arrows in the quiver plots between the matched features.

Frames Average (m)
Standard

Deviation (m)
Min (m) Max (m)

Frame 0 & Frame 1 0.00540 0.00147 0.00304 0.00883

Frame 1 & Frame 2 0.01217 0.00407 0.00496 0.02204

Frame 2 & Frame 3 0.01646 0.00603 0.00917 0.03345

Frame 3 & Frame 4 0.00971 0.00417 0.00332 0.02125

Frame 4 & Frame 5 0.01774 0.00821 0.00993 0.04964

Frame 5 & Frame 6 0.01280 0.00935 0.00400 0.03716

Table 4.2.
Length of the arrows in the quiver plots of the corrected matches.

Frames Average (m)
Standard

Deviation (m)
Min (m) Max (m)

Frame 0 & Frame 1 0.00148 0.00088 0.00015203 0.00307

Frame 1 & Frame 2 0.00313 0.00263 0.00000027 0.00765

Frame 2 & Frame 3 0.00148 0.00088 0.00015203 0.00307

Frame 3 & Frame 4 0.00511 0.00286 0.00000016 0.00969

Frame 4 & Frame 5 0.00509 0.00489 0.00000096 0.01782

Frame 5 & Frame 6 0.00820 0.00638 0.00008816 0.01768

system in this project does not required the Kinect sensor to be positioned in a specific

orientation to work and is able to obtain the motion parameters from people lying

down as well as it is able to work in poor lighting conditions.

106

5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusion

This thesis describes a motion correction system for medical files. The system

consists of an algorithm capable of storing, acquiring and tracking movements of a

patient within a PET/CT scanner using the Microsoft Kinect, an algorithm used to

perform motion correction in medical files based on rigid body registration, and a

GUI used to receive and transmit medical files. The proposed system is invariant to

the lighting conditions of the room and does not require the use of markers to obtain

the patient motion information. In addition, it does not require prior initialization

except for delimiting the region of interest in acquired frames.

Some disadvantages of the proposed system are its dependency on features extrac-

tion and matching step which can affect the runtime and accuracy of the algorithm.

Although the motion of the patient was considered an affine rigid transformation, the

actual motion information obtained may not be non-rigid.

The proposed system uses PSO to find the parameters needed to perform rigid

registration. In early tests of the algorithm, it was noticed that the PSO stage is

susceptible to outliers. Thus two stages were needed for outlier removal.

The advantages of the proposed system is that motion correction in PET/CT

scans can help physicians to observe a scanned area in a more detailed and precise

manner. For example, it will help determine precisely where a specific structure is

located (e.g. a carcinoma, a lymph node). It can also prevent misdiagnoses generated

by motion blurred scans. Moreover the use of motion correction systems in patient

care may reduce the need to expose the patient to ionizing radiation because of

the need to re-image the patient due to the poor quality obtained in the PET/CT

images. Ionizing radiations does not produce harmful effects on human’s health if

107

used in small quantities, but after certain thresholds, it can affect the function of

tissues and/or organs, in addition to side effects such as hair loss, radiation burns,

and acute radiation syndrome [49].

5.2 Future work

During the development of this system, motion was approximated as a rigid affine

transformation. An important improvement for the system would be to consider

the motion as a non-rigid transformation. Rigid transformations serve to obtain

a good estimate of the transformations generated by a patient’s movements. But

during a PET/CT scan, patient movement may be actually non-rigid, due to different

factors such as tissue movements due to breathing which are non-rigid. Also, features

matching was performed using Nearest Neighbors Search, the use of another feature

matching algorithm, such as Iterative Closest Point, should be evaluated.

Due to limitations in the placement of the Kinect sensor, the proposed system

was limited to correcting the movements of the patient’s head. An idea to improve

the system is to make it capable of correcting the movements of a patient’s entire

body. The acquisition frame rate for this project is not variable throughout the

PET/CT examination; however, the use of an adaptive acquisition frame rate should

be evaluated to see if it can improve the motion tracking. Also, the use of GPU

based computing should be evaluated to improve the running time of the algorithm.

Furthermore, the use of the GPU could allow the system to perform the motion

correction task in near real-time.

In the literature algorithms that are capable of tracking objects using only 3D

information captured by a sensor have been reported in [18] [19] [50]. The implemen-

tation of one of these algorithms would significantly improve the proposed system due

to the elimination of its dependence on the use of the infrared information to perform

the registration.

108

Image matching and registration in the projection domain has been studied pre-

viously [51] [52] [53]. Motion correction in the proposed system was performed in the

image domain. A possibility for future research is to determine whether the motion

correction and tracking can be performed in the projection domain. If a system capa-

ble of making the motion correction in the projection domain is developed, it would

be possible to make the corresponding corrections before the reconstruction of the

medical images.

Lastly, the proposed system was focused on motion correction in PET/CT scans,

but there are other tools used to diagnose health problems in patients which suffer

from similar issues (e.g. ultrasound and magnetic resonance imaging). The use and

implementation of the proposed system for these tools should be evaluated.

REFERENCES

109

REFERENCES

[1] E. Lin and A. Alavi, PET and PET/CT: A Clinical Guide, second edition ed.
Thieme, 2009.

[2] D. C. Owens, E. C. Johnstone, and C. Frith, “Spontaneous involuntary disorders
of movement: Their prevalence, severity, and distribution in chronic schizophren-
ics with and without treatment with neuroleptics,” Archives of General Psychi-
atry, vol. 39, no. 4, pp. 452–461, 1982.

[3] J. M. Kane, P. Weinhold, B. Kinon, J. Wegner, and M. Leader, “Prevalence
of abnormal involuntary movements (spontaneous dyskinesias) in the normal
elderly,” Psychopharmacology, vol. 77, no. 2, pp. 105–108, 1982.

[4] R. Menezes, A. Pantelyat, I. Izbudak, and J. Birnbaum, “Movement and other
neurodegenerative syndromes in patients with systemic rheumatic diseases: A
case series of 8 patients and review of the literature,” Medicine, vol. 94, no. 31,
2015.

[5] P. J. Noonan, J. Howard, D. Tout, I. Armstrong, H. A. Williams, T. F. Cootes,
W. A. Hallett, and R. Hinz, “Accurate markerless respiratory tracking for gated
whole body pet using the microsoft kinect,” 2012 IEEE Nuclear Science Sympo-
sium and Medical Imaging Conference, pp. 3973–3974, October 2012.

[6] X. Jin, T. Mulnix, B. Planeta-Wilson, J.-D. Gallezot, and R. E. Carson, “Accu-
racy of head motion compensation for the hrrt: Comparison of methods,” 2009
IEEE Nuclear Science Symposium Conference Record, pp. 3199–3202, October
2009.

[7] X. Jin, T. Mulnix, J.-D. Gallezot, and R. E. Carson, “Evaluation of motion
correction methods in human brain pet imaging a simulation study based on
human motion data,” Medical Physics, vol. 40, no. 10, September 2013.

[8] O. V. Olesen, J. M. Sullivan, T. Mulnix, R. R. Paulsen, L. Hojgaard, B. Roed,
R. E. Carson, E. D. Morris, and R. Larsen, “List-mode pet motion correction
using markerless head tracking: Proof-of-concept with scans of human subject,”
IEEE Transactions on Medical Imaging, vol. 32, no. 2, pp. 200–209, February
2013.

[9] P. J. Noonan, J. Howard, T. F. Cootes, W. A. Hallett, and R. Hinz, “Realtime
markerless rigid body head motion tracking using the microsoft kinect,” 2012
IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 2241–
2246, October 2012.

[10] Microsoft, Skeletal Tracking, [Online; Last Date Accessed: March 14, 2017],
https://msdn.microsoft.com/en-us/library/hh973074.aspx.

110

[11] Y. Li, L. Berkowitz, G. Noskin, and S. Mehrotra, “Detection of patient’s bed
statuses in 3d using a microsoft kinect,” 36th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, pp. 5900–5903, August
2014.

[12] P. Kochunov, J. L. Lancaster, D. C. Glahn, D. Purdy, A. R. Laird, F. Gao, and
P. Fox, “Retrospective motion correction protocol for high-resolution anatomical
mri,” Human Brain Mapping, vol. 27, no. 12, pp. 957–962, 2006.

[13] C. Studholme, D. J. Hawkes, and D. L. Hill, “Normalized entropy measure for
multimodality image alignment,” Proceedings of the SPIE Conference on Image
Processing, vol. 3338, pp. 132–143, February 1998.

[14] G. P. Meyer, S. Gupta, I. Frosio, D. Reddy, and J. Kautz, “Robust model-based
3d head pose estimation,” Proceedings of the IEEE International Conference on
Computer Vision, pp. 3649–3657, December 2015.

[15] G. P. Meyer, S. Alfano, and M. N. Do, “Improving face detection with depth,”
2016 IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 1288–1292, March 2016.

[16] H. Nanda and K. Fujimura, “Visual tracking using depth data,” Computer Vision
and Pattern Recognition Workshop, vol. 27, no. 2, p. 37, 2004.

[17] K. Khoshelham, “Accuracy analysis of kinect depth data,” International Society
for Photogrammetry and Remote Sensing Workshop Laser Scanning, vol. 38,
no. 5, p. W12, 2011.

[18] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,
S. Hodges, D. Freeman, A. Davison et al., “Kinectfusion: real-time 3d recon-
struction and interaction using a moving depth camera,” Proceedings of the 24th
Annual ACM Symposium on User Interface Software and Technology, pp. 559–
568, October 2011.

[19] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison,
P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfusion: Real-time
dense surface mapping and tracking,” 10th IEEE International Symposium on
Mixed and Augmented Reality, pp. 127–136, October 2011.

[20] R. C. Gonzalez and R. E. Woods, Digital Image Processing, third edition ed.
Pearson, 2007.

[21] L. Shapiro and G. C. Stockman, Computer Vision, first edition ed. Pearson,
2001.

[22] A. A. Goshtasby, 2-D and 3-D Image Registration: for Medical, Remote Sensing,
and Industrial Applications. John Wiley & Sons, 2005.

[23] B. Zitova and J. Flusser, “Image registration methods: A survey,” Image and
Vision Computing, vol. 21, no. 11, pp. 977–1000, 2003.

[24] J. Duchon, “Splines minimizing rotation-invariant semi-norms in sobolev spaces,”
Constructive Theory of Functions of Several Variables, vol. 571, pp. 85–100, 1977.

111

[25] J. F. Hughes, A. Van Dam, J. D. Foley, and S. K. Feiner, Computer Graphics:
Principles and Practice. Pearson Education, 2014.

[26] L. Juan and O. Gwun, “A comparison of sift, pca-sift and surf,” International
Journal of Image Processing, vol. 3, no. 4, pp. 143–152, August 2009.

[27] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features
(surf),” Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359,
June 2008.

[28] D. G. Lowe, “Object recognition from local scale-invariant features,” Proceedings
of the Seventh IEEE International Conference on Computer vision, vol. 2, pp.
1150–1157, September 1999.

[29] L. C. Evans, Partial Differential Equations, first edition ed. Amer Mathematical
Society, 1998.

[30] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,”
European Conference on Computer Vision, vol. 3951, pp. 404–417, 2006.

[31] F. Crow, “Summed-area tables for texture mapping,” ACM SIGGRAPH Com-
puter Graphics, vol. 18, no. 3, pp. 207–212, 1984.

[32] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy k-nearest neighbor al-
gorithm,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-15,
no. 4, pp. 580–585, July 1985.

[33] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An
optimal algorithm for approximate nearest neighbor searching fixed dimensions,”
Journal of the ACM, vol. 45, no. 6, pp. 891–923, November 1998.

[34] T. Liu, A. W. Moore, A. G. Gray, and K. Yang, “An investigation of practical
approximate nearest neighbor algorithms.” Conference and Workshop on Neural
Information Processing Systems, vol. 12, pp. 825–832, 2004.

[35] V. Turau, “Fixed-radius near neighbors search,” Information Processing Letters,
vol. 39, no. 4, pp. 201–203, August 1991.

[36] P. M. Vaidya, “An o(n logn) algorithm for the all-nearest-neighbors problem,”
Discrete & Computational Geometry, vol. 4, no. 2, pp. 101–115, March 1989.

[37] J. L. Bentley, “Multidimensional binary search trees used for associative search-
ing,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, September 1975.

[38] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,”
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, vol. 1, pp. 39–43, October 1995.

[39] A. P. Engelbrecht, Computational Intelligence: An Introduction. John Wiley &
Sons, 2007.

[40] S. Talukder, “Mathematical modelling and applications of particle swarm opti-
mization,” Ph.D. dissertation, Blekinge Institute of Technology, 2011.

[41] D. Bratton and J. Kennedy, “Defining a standard for particle swarm optimiza-
tion,” 2007 IEEE Swarm Intelligence Symposium, pp. 120–127, April 2007.

112

[42] J. F. Kennedy, J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence.
Morgan Kaufmann, 2001.

[43] S. A. Khan and A. P. Engelbrecht, “A fuzzy particle swarm optimization algo-
rithm for computer communication network topology design,” Applied Intelli-
gence, vol. 36, no. 1, pp. 161–177, 2012.

[44] J. Peng, Y. Chen, and R. Eberhart, “Battery pack state of charge estimator de-
sign using computational intelligence approaches,” The Fifteenth Annual Battery
Conference on Applications and Advances, pp. 173–177, January 2000.

[45] T. Peram, K. Veeramachaneni, and C. K. Mohan, “Fitness-distance-ratio based
particle swarm optimization,” Proceedings of the 2003 IEEE Swarm Intelligence
Symposium, pp. 174–181, April 2003.

[46] G. Venter and J. Sobieszczanski-Sobieski, “Particle swarm optimization,” Amer-
ican Institute of Aeronautics and Astronautics Journal, vol. 41, no. 8, pp. 1583–
1589, August 2003.

[47] M. Clerc, “The swarm and the queen: towards a deterministic and adaptive
particle swarm optimization,” Proceedings of the 1999 IEEE Congress on Evo-
lutionary Computation, vol. 3, p. 1957, July 1999.

[48] F. van den Bergh and A. P. Engelbrecht, “A new locally convergent particle
swarm optimizer,” Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, vol. 3, pp. 94–99, October 2002.

[49] United Nations Scientific Committee on the Effects of Atomic Radiation,
“Sources, effects and risks of ionizing radiation,” United Nations Scientific Com-
mittee on the Effects of Atomic Radiation 1988 Report of the General Assembly,
with Annexes, pp. 390–390, 1988.

[50] S. B. Gokturk and C. Tomasi, “3d head tracking based on recognition and inter-
polation using a time-of-flight depth sensor,” Proceedings of the 2004 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, vol. 2,
pp. II–211 – II–217, June 2004.

[51] J. You, W. Lu, J. Li, G. Gindi, and Z. Liang, “Image matching for translation,
rotation and uniform scaling by the radon transform,” Proceedings of the 1998
International Conference on Image Processing, vol. 1, pp. 847–851, October 1998.

[52] F. Hjouj and D. W. Kammler, “Identification of reflected, scaled, translated,
and rotated objects from their radon projections,” IEEE Transactions on Image
Processing, vol. 17, no. 3, pp. 301–310, 2008.

[53] M. Deshmukh and U. Bhosale, “Radon transform fourier transform approach for
image matching and it’s application for image registration,” International Jour-
nal of Computer Science, Software Engineering and Electrical Communication
Engineering, vol. 2, no. 1, pp. 25–30, 2011.

[54] M. Alhussein and S. I. Haider, “Improved particle swarm optimization based on
velocity clamping and particle penalization,” Third IEEE International Confer-
ence on Artificial Intelligence, Modelling and Simulation, pp. 61–64, December
2015.

113

[55] Q. Bai, “Analysis of particle swarm optimization algorithm,” Computer and
Information Science, vol. 3, no. 1, pp. 180–184, 2010.

[56] B. Bellekens, V. Spruyt, R. Berkvens, and M. Weyn, “A survey of rigid 3d
pointcloud registration algorithms,” Fourth International Conference on Ambi-
ent Computing, Applications, Services and Technologies, pp. 8–13, 2014.

[57] L. G. Brown, “A survey of image registration techniques,” ACM Computing
Surveys, vol. 24, no. 4, pp. 325–376, 1992.

[58] N. Chumchob and K. Chen, “A robust affine image registration method,” Inter-
national Journal of Numerical Analysis and Modeling, vol. 6, no. 2, pp. 311–334,
2009.

[59] S. Du, N. Zheng, S. Ying, and J. Liu, “Affine iterative closest point algorithm for
point set registration,” Pattern Recognition Letters, vol. 31, no. 9, pp. 791–799,
2010.

[60] J. Feldmar and N. Ayache, “Locally affine registration of free-form surfaces,”
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition., pp. 496–501, 1994.

[61] A. W. Fitzgibbon, “Robust registration of 2d and 3d point sets,” Image and
Vision Computing, vol. 21, no. 13, pp. 1145–1153, 2003.

[62] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced computer vision with mi-
crosoft kinect sensor: A review,” IEEE Transactions on Cybernetics, vol. 43,
no. 5, pp. 1318–1334, 2013.

[63] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-d mapping: Using
kinect-style depth cameras for dense 3d modeling of indoor environments,” The
International Journal of Robotics Research, vol. 31, no. 5, pp. 647–663, 2012.

[64] J. Ho, M.-H. Yang, A. Rangarajan, and B. Vemuri, “A new affine registration
algorithm for matching 2d point sets,” IEEE Workshop on Applications of Com-
puter Vision., pp. 25–25, 2007.

[65] A. Jana, Kinect for Windows SDK Programming Guide. Packt Publishing Ltd,
2012.

[66] Y. Jiang, T. Hu, C. Huang, and X. Wu, “An improved particle swarm opti-
mization algorithm,” Applied Mathematics and Computation, vol. 193, no. 1, pp.
231–239, 2007.

[67] V. Kapoor, B. M. McCook, and F. S. Torok, “An introduction to pet-ct imaging
1,” Radiographics, vol. 24, no. 2, pp. 523–543, 2004.

[68] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of kinect depth
data for indoor mapping applications,” Sensors, vol. 12, no. 2, pp. 1437–1454,
2012.

[69] B. Kovács, “List mode pet reconstruction,” Sixth Hungarian Conference on Com-
puter Graphics and Geometry, Budapest, 2012.

114

[70] W. W. Moses, “Fundamental limits of spatial resolution in pet,” Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, vol. 648, pp. S236–S240, 2011.

[71] P. Padeleris, X. Zabulis, and A. A. Argyros, “Head pose estimation on depth data
based on particle swarm optimization,” 2012 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops, pp. 42–49, 2012.

[72] P. Panchal, S. Panchal, and S. Shah, “A comparison of sift and surf,” Interna-
tional Journal of Innovative Research in Computer and Communication Engi-
neering, vol. 1, no. 2, pp. 323–327, 2013.

[73] H. Park, G. R. Martin, and A. Bhalerao, “Local affine image matching and
synthesis based on structural patterns,” IEEE Transactions on Image Processing,
vol. 19, no. 8, pp. 1968–1977, 2010.

[74] D. P. Rini, S. M. Shamsuddin, and S. S. Yuhaniz, “Particle swarm optimization:
technique, system and challenges,” International Journal of Computer Applica-
tions, vol. 14, no. 1, pp. 19–26, 2011.

[75] D. F. Rogers and J. A. Adams, Mathematical Elements for Computer Graphics.
McGraw-Hill Higher Education, 1989.

[76] H. M. Sahloul, H. J. D. Figueroa, S. Shirafuji, and J. Ota, “Foreground seg-
mentation with efficient selection from icp outliers in 3d scene,” 2015 IEEE
International Conference on Robotics and Biomimetics, pp. 1371–1376, 2015.

[77] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,”
Proceedings of the 1999 Congress on Evolutionary Computation, vol. 3, 1999.

[78] C. Studholme, D. L. Hill, and D. J. Hawkes, “An overlap invariant entropy
measure of 3d medical image alignment,” Pattern Recognition, vol. 32, no. 1, pp.
71–86, 1999.

[79] D. W. Townsend, “Combined positron emission tomography-computed tomogra-
phy: The historical perspective,” Seminars in Ultrasound, CT and MRI, vol. 29,
no. 4, pp. 232–235, 2008.

[80] Y. Tu, C. Zeng, C. Yeh, S. Huang, T. Cheng, and M. Ouhyoung, “Real-time
head pose estimation using depth map for avatar control,” Proceedings of the
IPPR Conference on Computer Vision, Graphics, and Image Processing, vol. 2,
no. 4, p. 6, 2011.

[81] Y. Tu, H.-S. Lin, T.-H. Li, and M. Ouhyoung, “Depth-based real time head pose
tracking using 3d template matching,” ACM SIGGRAPH Asia 2012 Technical
Briefs, p. 13, 2012.

[82] A. Watt, 3D Computer Graphics, third edition ed. Addison-Wesley, 2000.

[83] J. Webb and J. Ashley, Beginning Kinect Programming with the Microsoft Kinect
SDK. Apress, 2012.

[84] Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, “Adaptive particle swarm
optimization,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 39, no. 6, pp. 1362–1381, 2009.

115

[85] K. Zielinski, D. Peters, and R. Laur, “Stopping criteria for single-objective opti-
mization,” Proceedings of the Third International Conference on Computational
Intelligence, Robotics and Autonomous Systems, 2005.

