49 research outputs found

    Economical sampling of parametric signals

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 107-115).This thesis proposes architectures and algorithms for digital acquisition of parametric signals. It furthermore provides bounds for the performance of these systems in the presence of noise. Our simple acquisition circuitry and low sampling rate enable accurate parameter estimation to be achieved economically. In present practice, sampling and estimation are not integrated: the sampling device does not take advantage of the parametric model, and the estimation assumes that noise in the data is signal-independent additive white Gaussian noise. We focus on estimating the timing information in signals that are linear combinations of scales and shifts of a known pulse. This signal model is well-known in a variety of disciplines such as ultra-wideband signaling, neurobiology, etc. The signal is completely determined by the amplitudes and shifts of the summands. The delays determine a subspace that contains the signals, so estimating the shifts is equivalent to subspace estimation. By contrast, conventional sampling theory yields a least-squares approximation to a signal from a fixed shift-invariant subspace of possible reconstructions. Conventional acquisition takes samples at a rate higher than twice the signal bandwidth.(cont.) Although this may be feasible, there is a trade-off between power, accuracy, and speed. Under the signal model of interest, when the pulses are very narrow, the number of parameters per unit time-the rate of innovation-is much lower than the Fourier bandwidth. There is thus potential for much lower sampling rate so long as nonlinear reconstruction algorithms are used. We present a new sampling scheme that takes simultaneous samples at the outputs of multiple channels. This new scheme can be implemented with simple circuitry and has a successive approximation property that can be used to detect undermodeling. In many regimes our algorithms provide better timing accuracy and resolution than conventional systems. Our new analytical and algorithmic techniques are applied to previously proposed systems, and it is shown that all the systems considered have super-resolution properties. Finally, we consider the same parameter estimation problem when the sampling instances are perturbed by signal-independent timing noise. We give an iterative algorithm that achieves accurate timing estimation by exploiting knowledge of the pulse shape.by Julius Kusuma.Ph.D

    Digitally-Assisted Mixed-Signal Wideband Compressive Sensing

    Get PDF
    Digitizing wideband signals requires very demanding analog-to-digital conversion (ADC) speed and resolution specifications. In this dissertation, a mixed-signal parallel compressive sensing system is proposed to realize the sensing of wideband sparse signals at sub-Nqyuist rate by exploiting the signal sparsity. The mixed-signal compressive sensing is realized with a parallel segmented compressive sensing (PSCS) front-end, which not only can filter out the harmonic spurs that leak from the local random generator, but also provides a tradeoff between the sampling rate and the system complexity such that a practical hardware implementation is possible. Moreover, the signal randomization in the system is able to spread the spurious energy due to ADC nonlinearity along the signal bandwidth rather than concentrate on a few frequencies as it is the case for a conventional ADC. This important new property relaxes the ADC SFDR requirement when sensing frequency-domain sparse signals. The mixed-signal compressive sensing system performance is greatly impacted by the accuracy of analog circuit components, especially with the scaling of CMOS technology. In this dissertation, the effect of the circuit imperfection in the mixed-signal compressive sensing system based on the PSCS front-end is investigated in detail, such as the finite settling time, the timing uncertainty and so on. An iterative background calibration algorithm based on LMS (Least Mean Square) is proposed, which is shown to be able to effectively calibrate the error due to the circuit nonideal factors. A low-speed prototype built with off-the-shelf components is presented. The prototype is able to sense sparse analog signals with up to 4 percent sparsity at 32 percent of the Nqyuist rate. Many practical constraints that arose during building the prototype such as circuit nonidealities are addressed in detail, which provides good insights for a future high-frequency integrated circuit implementation. Based on that, a high-frequency sub-Nyquist rate receiver exploiting the parallel compressive sensing is designed and fabricated with IBM90nm CMOS technology, and measurement results are presented to show the capability of wideband compressive sensing at sub-Nyquist rate. To the best of our knowledge, this prototype is the first reported integrated chip for wideband mixed-signal compressive sensing. The proposed prototype achieves 7 bits ENOB and 3 GS/s equivalent sampling rate in simulation assuming a 0.5 ps state-of-art jitter variance, whose FOM beats the FOM of the high speed state-of-the-art Nyquist ADCs by 2-3 times. The proposed mixed-signal compressive sensing system can be applied in various fields. In particular, its applications for wideband spectrum sensing for cognitive radios and spectrum analysis in RF tests are discussed in this work

    A Summary of the Foundation Development Program : Report for the Period 1 July 1976 to 30 September 1977

    Get PDF
    The principal thrust of the exploratory development program at the Naval Postgraduate School (NPS) stems from the School's mission: To conduct and direct advanced education of commissioned officers, and to provide such other technical and professional instruction as may be prescribed to meet the needs of the Naval Service; and in support of the foregoing to foster and encourage a program of research in order to sustain academic excellence.Prepared for: Chief of Naval Development Washington, D. C. 20360http://archive.org/details/summaryoffoundat78002nav

    Surveyor lunar roving vehicle, phase I. Volume III - Preliminary design and system description. Book 2 - Validation of preliminary design, sections 7-13 Final technical report

    Get PDF
    Systems design validation of Surveyor lunar roving vehicle - navigation, control and display, television, telecommunications, power supply, and thermal contro

    Applied Measurement Systems

    Get PDF
    Measurement is a multidisciplinary experimental science. Measurement systems synergistically blend science, engineering and statistical methods to provide fundamental data for research, design and development, control of processes and operations, and facilitate safe and economic performance of systems. In recent years, measuring techniques have expanded rapidly and gained maturity, through extensive research activities and hardware advancements. With individual chapters authored by eminent professionals in their respective topics, Applied Measurement Systems attempts to provide a comprehensive presentation and in-depth guidance on some of the key applied and advanced topics in measurements for scientists, engineers and educators

    An optical telemetry system for wireless transmission of biomedical signals across the skin

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Vita.Includes bibliographical references (p. 236-239).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.A technology base for optically-coupled systems was developed that permits in-vivo transmission of biomedical signals across the skin. By complete implantation of sensors and instrumentation electronics, problems with percutaneous connectors were eliminated. Optical power and signal transmission was accomplished with smaller and lighter implant structures than previously achieved with radio frequency (RF) coupling techniques. This is particularly valuable in the field of neuroprosthetics, because it may be possible to implant an optical telemeter directly on the surface of the brain to make mechanically stable connections to microelectrode arrays for neuroelectric recordings. Miniature optical power panels (2.5 mm x 2.5 mm) were developed from arrays of photodiodes. Infrared light of 880 nm wavelength was effective for delivering power across the skin. Panels composed of silicon photodiodes were 14% efficient at converting this light to electrical power, and GaAlAs panels were 41% efficient. Tissue heating experiments demonstrated the safety of optical power transmission. An LED was identified that was both electrically efficient (16%) and of appropriate wavelength (660 nm) for transmitting optical signals from the implant. Pulse period encoding was used for transmission of signals because it was robust and required less power than schemes with higher LED duty cycles. Specialized photodetector circuits were developed to receive pulse encoded data, and decoder circuits were built to reconstruct the transmitted signals. Two prototype single-channel neural waveform telemeters (approx. 10 Hz to 7 kHz bandwidth) were constructed and implanted in the visual cortex of rabbits. Both implants successfully transmitted neuroelectric signals. The first implant survived for four weeks before failing due to a flaw in the encapsulation, and the improved second prototype continues to function properly 28 months after implantation. Integrated circuits (ICs) were designed to record and transmit eight channels of neural waveforms. The first IC telemeter functioned properly, although the sensitivity was not as great as needed for the recording of neural waveforms. It required less than 50 mW of electrical power to operate. Efforts to improve this design introduced flaws in the next set of IC designs, so these problems were addressed, and a final set of designs was submitted for fabrication at the conclusion of this research project.by Bruce C. Larson.Ph.D

    GENERATION AND DETECTION OF NONCLASSICAL STATES IN THE CONTINUOUS VARIABLE REGIME

    Get PDF
    Squeezed states of light addressed in this Thesis have proved to be the most readily accessible optical fields with demonstrably quantum mechanical behaviour in the Continuous Variable regime and they are considered at the heart of Quantum Mechanics. They may be concretely applied in several research fields such as metrology and quantum information science, as well as enabling to investigate the properties of the quantum world. Since their first observation, considerable progresses have been made in their generation and detection techniques. The research activity presented in this Thesis is devoted to the development of an experimental setup based thereon. The heart of generation process is a sub-threshold Optical Parametric Oscillator whereas the detection system is based on Homodyne Detector. On this structural background, we implemented an electronic/optical apparatus whereby it is possible to generate different kinds of squeezed states on demand. This Thesis presents how these engineered generation/acquisition processes work. Besides, it features a miniaturized Homodyne detection system based on a waveguide beam splitter inscribed in a glass substrate by femtosecond laser writing technology. We demonstrate for the first time the possibility to use such a device to detect genuine nonclassical features of light

    Techniques for imaging small impedance changes in the human head due to neuronal depolarisation

    Get PDF
    A new imaging modality is being developed, which may be capable of imaging small impedance changes in the human head due to neuronal depolarization. One way to do this would be by imaging the impedance changes associated with ion channels opening in neuronal membranes in the brain during activity. The results of previous modelling and experimental studies indicated that impedance changes between 0.6%and 1.7% locally in brain grey matter when recorded at DC. This reduces by a further of 10% if measured at the surface of the head, due to distance and the effect of the resistive skull. In principle, this could be measured using Electrical Impedance Tomography (ElT) but it is close to its threshold of detectability. With the inherent limitation in the use of electrodes, this work proposed two new schemes. The first is a magnetic measurement scheme based on recording the magnetic field with Superconducting Quantum Interference Devices (SQUIDs), used in Magnetoencephalography (MEG) as a result of a non-invasive injection of current into the head. This scheme assumes that the skull does not attenuate the magnetic field. The second scheme takes into consideration that the human skull is irregular in shape, with less and varying conductivity as compared to other head tissues. Therefore, a key issue is to know through which electrodes current can be injected in order to obtain high percentage changes in surface potential when there is local conductivity change in the head. This model will enable the prediction of the current density distribution at specific regions in the brain with respect to the varying skull and local conductivities. In the magnetic study, the head was modelled as concentric spheres, and realistic head shapes to mimic the scalp, skull, Cerebrospinal Auid (CSF) and brain using the Finite Element Method (FEM). An impedance change of 1 % in a 2cm-radius spherical volume depicting the physiological change in the brain was modelled as the region of depolarisation. The magnetic field, 1 cm away from the scalp, was estimated on injecting a constant current of 100 µA into the head from diametrically opposed electrodes. However, in the second scheme, only the realistic FEM of the head was used, which included a specific region of interest; the primary visual cortex (V1). The simulated physiological change was the variation in conductivity of V1 when neurons were assumed to be firing during a visual evoked response. A near DC current of 100 µA was driven through possible pairs of 31 electrodes using ElT techniques. For a fixed skull conductivity, the resulting surface potentials were calculated when the whole head remained unperturbed, or when the conductivity of V1 changed by 0.6%, 1 %, and 1.6%. The results of the magnetic measurement predicted that standing magnetic field was about 10pT and the field changed by about 3fT (0.03%) on depolarization. For the second scheme, the greatest mean current density through V1 was 0.020 ± 0.005 µAmm-2, and occurred with injection through two electrodes positioned near the occipital cortex. The corresponding maximum change in potential from baseline was 0.02%. Saline tank experiments confirmed the accuracy of the estimated standing potentials. As the noise density in a typical MEG system in the frequency band is about 7fT/√Hz, it places the change at the limit of detectability due to low signal to noise ratio. This is therefore similar to electrical recording, as in conventional ElT systems, but there may be advantages to MEG in that the magnetic field direcdy traverses the skull and instrumentation errors from the electrode-skin interface will be obviated. This has enabled the estimation of electrode positions most likely to permit recording of changes in human experiments and suggests that the changes, although tiny, may just be discernible from noise

    Customized Integrated Circuits for Scientific and Medical Applications

    Get PDF
    corecore