1,252 research outputs found

    Analysis and Realization of a Dual-Nacelle Tiltrotor Aerial Vehicle

    Get PDF
    Unmanned aerial vehicles are a salient solution for rapid deployment in disaster relief, search and rescue, and warfare operations. In these scenarios, the agility, maneuverability and speed of the UAV are vital components towards saving human lives, successfully completing a mission, or stopping dangerous threats. Hence, a high speed, highly agile, and small footprint unmanned aerial vehicle capable of carrying minimal payloads would be the best suited design for completing the desired task. This thesis presents the design, analysis, and realization of a dual-nacelle tiltrotor unmanned aerial vehicle. The design of the dual-nacelle tiltrotor aerial vehicle utilizes two propellers for thrust with the ability to rotate the propellers about the sagittal plane to provide thrust vectoring. The dual-nacelle thrust vectoring of the aerial vehicle provides a slimmer profile, a smaller hover footprint, and allows for rapid aggressive maneuvers while maintaining a desired speed to quickly navigate through cluttered environments. The dynamic model of the dual-nacelle tiltrotor design was derived using the Newton-Euler method and a nonlinear PD controller was developed for spatial trajectory tracking. The dynamic model and nonlinear PD controller were implemented in Matlab Simulink using SimMechanics. The simulation verified the ability of the controlled tiltrotor to track a helical trajectory. To study the scalability of the design, two prototypes were developed: a micro scale tiltrotor prototype, 50mm wide and weighing 30g, and a large scale tiltrotor prototype, 0.5m wide and weighing 2.8kg. The micro scale tiltrotor has a 1.6:1 thrust to weight ratio with an estimated flight time of 6 mins in hover. The large scale tiltrotor has a 2.3:1 thrust to weight ratio with an estimated flight time of 4 mins in hover. A detailed realization of the tiltrotor prototypes is provided with discussions on mechanical design, fabrication, hardware selection, and software implementation. Both tiltrotor prototypes successfully demonstrated hovering, altitude, and yaw maneuvering while tethered and remotely controlled. The developed prototypes provide a framework for further research and development of control strategies for the aggressive maneuvering of underactuated tiltrotor aerial vehicles

    Aeronautical Engineering: A special bibliography with indexes, supplement 69

    Get PDF
    This bibliography lists 305 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1976

    Optimized Endpoint Delivery Via Unmanned Aerial Vehicles

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are remotely piloted aircraft with a range of varying applications. Though early adoption of UAVs focused on military applications, surveillance, photography, and agricultural applications are presently on the rise. This work aims to ascertain how UAVs may be employed to elicit deceased transportation times, increased power efficiency, and improved safety. Resulting in optimized end point delivery. A combination of tools and techniques, involving a mathematical model, UAV simulations, redundant control systems, and custom designed electrical and mechanical components were used towards reaching the goal of a 10-kilogram maximum payload delivered 10 miles under 30 minutes. Two UAV prototypes were developed, the second of which (V2) showed promising results. Velocities achieved in V2, in combination with a versatile payload connector and proper networking, allowed for 5-10 mile deliveries of goods less than 8-kilograms to be achieved within a metropolis faster than the 30-minute benchmark

    Guidance, Navigation and Control for UAV Close Formation Flight and Airborne Docking

    Get PDF
    Unmanned aerial vehicle (UAV) capability is currently limited by the amount of energy that can be stored onboard or the small amount that can be gathered from the environment. This has historically lead to large, expensive vehicles with considerable fuel capacity. Airborne docking, for aerial refueling, is a viable solution that has been proven through decades of implementation with manned aircraft, but had not been successfully tested or demonstrated with UAVs. The prohibitive challenge is the highly accurate and reliable relative positioning performance that is required to dock with a small target, in the air, amidst external disturbances. GNSS-based navigation systems are well suited for reliable absolute positioning, but fall short for accurate relative positioning. Direct, relative sensor measurements are precise, but can be unreliable in dynamic environments. This work proposes an experimentally verified guidance, navigation and control solution that enables a UAV to autonomously rendezvous and dock with a drogue that is being towed by another autonomous UAV. A nonlinear estimation framework uses precise air-to-air visual observations to correct onboard sensor measurements and produce an accurate relative state estimate. The state of the drogue is estimated using known geometric and inertial characteristics and air-to-air observations. Setpoint augmentation algorithms compensate for leader turn dynamics during formation flight, and drogue physical constraints during docking. Vision-aided close formation flight has been demonstrated over extended periods; as close as 4 m; in wind speeds in excess of 25 km/h; and at altitudes as low as 15 m. Docking flight tests achieved numerous airborne connections over multiple flights, including five successful docking manoeuvres in seven minutes of a single flight. To the best of our knowledge, these are the closest formation flights performed outdoors and the first UAV airborne docking

    Aeronautical engineering: A continuing bibliography with indexes (supplement 309)

    Get PDF
    This bibliography lists 212 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Design, Developement, Analysis and Control of a Bio-Inspired Robotic Samara Rotorcraft

    Get PDF
    THIS body of work details the development of the first at-scale (>15 cm) robotic samara, or winged seed. The design of prototypes inspired by autorotating plant seed geometries is presented along with a detailed experimental process that elucidates similarities between mechanical and robotic samara flight dynamics. The iterative development process and the implementation of working prototypes are discussed for robotic samara Micro-Air-Vehicles (MAV) that range in size from 7.5 cm to 27 cm. Vehicle design issues are explored as they relate to autorotation efficiency, stability, flight dynamics and control of single winged rotorcraft. In recent years a new paradigm of highly maneuverable aircraft has emerged that are ideally suited for operation in a confined environment. Different from conven- tional aircraft, viscous forces play a large role in the physics of flight at this scale. This results in relatively poor aerodynamic performance of conventional airfoil and rotorcraft configurations. This deficiency has led to the consideration of naturally occurring geometries and configurations, the simplest of which is the samara. To study the influence of geometric variation on autorotation efficiency, a high speed camera system was used to track the flight path and orientation of the mechan- ical samaras. The wing geometry is planar symmetric and resembles a scaled version of Acer diabolicum Blume. The airfoil resembles a scaled version of the maple seed with a blunt leading edge followed by a thin section without camber. Four mechan- ical samara geometries with equal wing loading were designed and fabricated using a high precision rapid prototyping machine that ensured similarity between models. It was found that in order to reduce the descent velocity of an autorotating samara the area centroid or maximum chords should be as far from the center of rotation as possible. Flight data revealed large oscillations in feathering and coning angles, and the resultant flight path was found to be dependent on the mean feathering angle. The different flight modalities provided the basis for the design of a control sys- tem for a powered robotic samara that does not require high frequency sensing and actuation typical of micro-scaled rotorcraft. A prototype mechanical samara with a variable wing pitch (feathering) angle was constructed and it was found that active control of the feathering angle allowed the variation of the radius of the helix carved by the samara upon descent. This knowledge was used to design a hovering robotic samara capable of lateral motion through a series of different size circles specified by precise actuation of the feathering angle. To mathematically characterize the flight dynamics of the aircraft, System identi- fication techniques were used. Using flight data, a linear model describing the heave dynamics of two robotic samara vehicles was verified. A visual positioning system was used to collect flight data while the vehicles were piloted in an indoor laboratory. Closed-loop implementation of the derived PID controller was demonstrated using the visual tracking system for position and velocity feedback. An approach to directional control that does not require the once-per-revolution actuation or high-frequency measurement of vehicle orientation has been demon- strated for the first time. Lateral flight is attained through the vehicles differing responses to impulsive and step inputs that are leveraged to create a control strategy that provides full controllability. Flight testing revealed several linear relationships, including turn rate, turn radius and forward speed. The steady turn discussed here has been observed in scaled versions of the robotic samara, therefore the open-loop control demonstrated and analyzed is considered to be appropriate for similar vehicles of reduced size with limited sensing and actuation capabilities

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones

    CM Scale Flapping Wing Of Unmanned Aerial Vehicle At Very Low Reynolds Numbers Regime

    Get PDF
    This dissertation investigates the CM−-SCALE Flapping Wing of Unmanned Aerial Vehicle (FWUAV) that can accommodate nacelles of the scale of current Unmanned Air vehicle (UAV) designs are complex systems and their utilization is still in its infancy. The improving design of unmanned aerial vehicle from previous teams by improving the wings and outer body of bird. So, to potentially improve wing design, a complaint joint mechanism is proposed in order to make wing flapping and provide lift and thrust needed to fly. Also, change the wing design from flat wing to airplane wing by using two different airfoils, NACA 0012 and s1223. For bird\u27s body change the internal body to ensure to contain all internal components and give more space for flapping wings. Concurrently a redesign of the outer shell by making it smoother and lighter will be commensurate with the updated design. In addition, development of an evaluation methodology for the capability of a flapping wing to replication design loads by using computational fluid dynamic CFD by using fluid structure interaction in 2D and 3D analysis. We will investigate the design and analysis of the flapping wing. Specifically, this includes: 1. Review of cm−Scale Unmanned Aerial Vehicle Model and design (a) Investigate flapping Mechanism. (b) Investigate gear mechanism 2. Analysis of flapping wings for MAV (a) Select Airfoils for flapping wing. (b) Analyze Flapping Wings. (c) Make recommendations for Tail design for MAV. (d) Make recommendations for the improved design of MAV body. 3. Development of Finite Element flapping wing Model. (a) 2D computational analysis for Airfoils. i. NACA0012 Airfoil. ii. s1223 Airfoil. (b) 3D computational analysis with different shape of wings. i. Relationship between critical parameters and performance. ii. Design Optimization. Which is new key to make flapping wing close to the nature or real flapping wing, a new wing design inspired from nature exactly from thrush and scaled to our design. Starting from gear design by choose proper gear system. Then redesign the wings to commensurate with new bird. Computational fluid analysis also will used to replicate the loads needed to fly. This is another important area in which the literature is not offering guidance. Addresses the lack of an overview paper in the literature that outlines the challenges of testing a full−-scale flapping wing Unmanned aerial vehicle onto laminar flow test and suggests research direction to address these challenges. Although conceptual in nature, this contribution is expected to be significant given that it takes experience in the unmanned vehicle industry to determine what challenges matter and need to be addressed. The growth in testing full-scale unmanned air vehicle using a laminar flow test being recent limits the number of people who can offer the perspective needed to suggest a research roadmap

    Aeronautical enginnering: A cumulative index to a continuing bibliography (supplement 312)

    Get PDF
    This is a cumulative index to the abstracts contained in NASA SP-7037 (301) through NASA SP-7073 (311) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled by the Center for AeroSpace Information of the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract number, report number, and accession number indexes
    • …
    corecore