2,622 research outputs found

    Observer-based Anomaly Diagnosis and Mitigation for Cyber-Physical Systems

    Full text link
    Cyber-Physical Systems (CPS) seamlessly integrate computational devices, communication networks, and physical processes. The performance and functionality of many critical infrastructures such as power, traffic, and health-care networks and smart cities rely on advances in CPS. However, higher connectivity increases the vulnerability of CPS because it exposes them to threats from both the cyber domain and the physical domain. An attack or a fault within the cyber or physical domain can subsequently affect the cyber domain, the physical domain, or both, resulting in anomalies. An attack or a fault on CPS can have serious or even lethal consequences. Traditional anomaly diagnosis techniques mainly focus on cyber-to-cyber or physical-to-physical interactions. However, in practice they can often be subverted in the face of cross-domain attacks or faults. In summary, the safety and reliability of CPS become more and more crucial every day and existing techniques to diagnose or mitigate CPS attacks and faults are not sufficient to eliminate vulnerability. The motivation of this dissertation is to enhance anomaly diagnosis and mitigation for CPS, covering physical-to-physical and cyber-to-physical attacks or faults. With the advantage of dealing with system uncertainties and providing system state estimation, observer-based anomaly diagnosis is of great interest. The first task is to design a multiple observers framework to diagnose sensor anomalies for continuous systems. Since CPS contain both continuous and discrete variables, CPS are modeled as hybrid systems. Utilizing the relationship between the continuous and discrete variables, a conflict-driven hybrid observer-based anomaly detection method is proposed, which checks for conflicts between the continuous and discrete variables to detect anomalies. Lastly, the observer design for hybrid systems is improved to enable observer-based anomaly diagnosis for a wider class of hybrid systems. The novel observer-based anomaly diagnosis and mitigation approaches introduced in this dissertation can not only diagnose anomalies caused by traditional faults, but also anomalies caused by sophisticated attacks. This research work can benefit the overall security of critical infrastructures, preventing disastrous consequences and reducing economic loss. The effectiveness of the proposed approaches is demonstrated mathematically and illustrated through applications to various simulated systems, including a suspension system, the Positive Train Control system and a microgrid system.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147576/1/zhengwa_1.pd

    Security of Cyber-Physical Systems

    Get PDF
    Cyber-physical system (CPS) innovations, in conjunction with their sibling computational and technological advancements, have positively impacted our society, leading to the establishment of new horizons of service excellence in a variety of applicational fields. With the rapid increase in the application of CPSs in safety-critical infrastructures, their safety and security are the top priorities of next-generation designs. The extent of potential consequences of CPS insecurity is large enough to ensure that CPS security is one of the core elements of the CPS research agenda. Faults, failures, and cyber-physical attacks lead to variations in the dynamics of CPSs and cause the instability and malfunction of normal operations. This reprint discusses the existing vulnerabilities and focuses on detection, prevention, and compensation techniques to improve the security of safety-critical systems

    Multi-Layer Cyber-Physical Security and Resilience for Smart Grid

    Full text link
    The smart grid is a large-scale complex system that integrates communication technologies with the physical layer operation of the energy systems. Security and resilience mechanisms by design are important to provide guarantee operations for the system. This chapter provides a layered perspective of the smart grid security and discusses game and decision theory as a tool to model the interactions among system components and the interaction between attackers and the system. We discuss game-theoretic applications and challenges in the design of cross-layer robust and resilient controller, secure network routing protocol at the data communication and networking layers, and the challenges of the information security at the management layer of the grid. The chapter will discuss the future directions of using game-theoretic tools in addressing multi-layer security issues in the smart grid.Comment: 16 page

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability
    • …
    corecore