136 research outputs found

    Deep Learning-Based, Passive Fault Tolerant Control Facilitated by a Taxonomy of Cyber-Attack Effects

    Get PDF
    In the interest of improving the resilience of cyber-physical control systems to better operate in the presence of various cyber-attacks and/or faults, this dissertation presents a novel controller design based on deep-learning networks. This research lays out a controller design that does not rely on fault or cyber-attack detection. Being passive, the controller’s routine operating process is to take in data from the various components of the physical system, holistically assess the state of the physical system using deep-learning networks and decide the subsequent round of commands from the controller. This use of deep-learning methods in passive fault tolerant control (FTC) is unique in the research literature. The proposed controller is applied to both linear and nonlinear systems. Additionally, the application and testing are accomplished with both actuators and sensors being affected by attacks and /or faults

    Lyapunov-based fault tolerant control of quadrotor unmanned aerial vehicles

    Get PDF
    This thesis presents the theoretical development, simulation study and flight tests of a Lyapunov-based control approach for the Fault Tolerant Control (FTC) of a quadrotor unmanned aerial vehicle (UAV). Based on the derivation of nonlinear model of the dynamics of the quadrotor UAV, a Lyapunov-based control approach with fixed controller gains is proposed and firstly demonstrated through simulations of the quadrotor UAV for handling system parameter uncertainties. Secondly, this proposed Lyapunov-based approach with the selected controller gains is applied as a fault tolerant controller in the framework of a passive Fault Tolerant Control System (FTCS), for handling less severe faults occurring in the quadrotor UAV. Thirdly, the proposed new controller by Lyapunov-based adaptive control method for fault tolerant control of the quadrotor UAV is proposed to handle more severe faults. Finally, the Lyapunov-based control method has been implemented to the test bed, Qball-X4 Unmanned Aerial Vehicle, and the acceptable performances on altitude control have been achieved. In the thesis, simulation and flight testing results demonstrate that the FTCS with the Lyapunov-based approach has certain robustness for most of partial losses. However, the FTCS with Lyapunov-based adaptive control approach has advantages in accommodating more severe faults for, which may not be addressed by the Lyapunov-based approac

    REAL-TIME ERROR DETECTION AND CORRECTION FOR ROBUST OPERATION OF AUTONOMOUS SYSTEMS USING ENCODED STATE CHECKS

    Get PDF
    The objective of the proposed research is to develop methodologies, support algorithms and software-hardware infrastructure for detection, diagnosis, and correction of failures for actuators, sensors and control software in linear and nonlinear state variable systems with the help of multiple checks employed in the system. This objective is motivated by the proliferation of autonomous sense-and-control real-time systems, such as intelligent robots and self-driven cars which must maintain a minimum level of performance in the presence of electro-mechanical degradation of system-level components in the field as well as external attacks in the form of transient errors. A key focus is on rapid recovery from the effects of such anomalies and impairments with minimal impact on system performance while maintaining low implementation overhead as opposed to traditional schemes for recovery that rely on duplication or triplication. On-line detection, diagnosis and correction techniques are investigated and rely on analysis of system under test response signatures to real-time stimulus. For on-line error detection and diagnosis, linear and nonlinear state space encodings of the system under test are used and specific properties of the codes, as well as machine learning model based approaches were used are analyzed in real-time. Recovery is initiated by copying check model values to correct error for sensor and control software malfunction, and by redesigning the controller parameter on-the-fly for actuators to restore system performance. Future challenges that need to be addressed include viability studies of the proposed techniques on mobile autonomous system in distributed setting as well as application to systems with soft as well as hard real-time performance constraints.Ph.D

    Fault tolerant flight control system design for unmanned aerial vehicles

    Get PDF
    Safety and reliability of air vehicles is of the utmost importance. This is particularly true for large civil transport aircraft where a large number of human lives depend on safety critical design. With the increase in the use of unmanned aerial vehicles (UAVs) in our airspace it is essential that UAV safety is also given attention to prevent devastating failures which could ultimately lead to loss of human lives. While civil aircraft have human operators, the pilot, to counteract any unforeseen faults, autonomous UAVs are only as good as the on board flight computer. Large civil aircraft also have the luxury of weight hence redundant actuators (control surfaces) can be installed and in the event of a faulty set of actuators the redundant actuators can be brought into action to negate the effects of any faults. Again weight is a luxury that UAVs do not have. The main objective of this research is to study the design of a fault tolerant flight controller that can exploit the mathematical redundancies in the flight dynamic equations as opposed to adding hardware redundancies that would result in significant weight increase. This thesis presents new research into fault tolerant control for flight vehicles. Upon examining the flight dynamic equations it can be seen, for example, that an aileron, which is primarily used to perform a roll manoeuvre, can be used to execute a limited pitch moment. Hence a control method is required that moves away from the traditional fixed structure model where control surface roles are clearly defined. For this reason, in this thesis, I have chosen to study the application of model predictive control (MPC) to fault tolerant control systems. MPC is a model based method where a model of the plant forms an integral part of the controller. An optimisation is performed based on model estimations of the plant and the inputs are chosen via an optimisation process. One of the main contributions of this thesis is the development of a nonlinear model predictive controller for fault tolerant flight control. An aircraft is a highly nonlinear system hence if a nonlinear model can be integrated into the control process the cross-coupling effects of the control surface contributions can be easily exploited. An active fault tolerant control system comprises not only of the fault tolerant controller but also a fault detection and isolation subsystem. A common fault detection method is based on parameter estimation using filtering techniques. The solution proposed in this thesis uses an unscented Kalman filter (UKF) for parameter estimation and controller updates. In summary the main contribution of this thesis is the development of a new active fault tolerant flight control system. This new innovative controller exploits the idea of analytical redundancy as opposed to hardware redundancy. It comprises of a nonlinear model predictive based controller using pseudospectral discretisation to solve the nonlinear optimal control problem. Furthermore a UKF is incorporated into the design of the active fault tolerant flight control system

    Restructurable Controls

    Get PDF
    Restructurable control system theory, robust reconfiguration for high reliability and survivability for advanced aircraft, restructurable controls problem definition and research, experimentation, system identification methods applied to aircraft, a self-repairing digital flight control system, and state-of-the-art theory application are addressed

    An Incremental Navigation Localization Methodology for Application to Semi-Autonomous Mobile Robotic Platforms to Assist Individuals Having Severe Motor Disabilities.

    Get PDF
    In the present work, the author explores the issues surrounding the design and development of an intelligent wheelchair platform incorporating the semi-autonomous system paradigm, to meet the needs of individuals with severe motor disabilities. The author presents a discussion of the problems of navigation that must be solved before any system of this type can be instantiated, and enumerates the general design issues that must be addressed by the designers of systems of this type. This discussion includes reviews of various methodologies that have been proposed as solutions to the problems considered. Next, the author introduces a new navigation method, called Incremental Signature Recognition (ISR), for use by semi-autonomous systems in structured environments. This method is based on the recognition, recording, and tracking of environmental discontinuities: sensor reported anomalies in measured environmental parameters. The author then proposes a robust, redundant, dynamic, self-diagnosing sensing methodology for detecting and compensating for hidden failures of single sensors and sensor idiosyncrasies. This technique is optimized for the detection of spatial discontinuity anomalies. Finally, the author gives details of an effort to realize a prototype ISR based system, along with insights into the various implementation choices made

    Surface effectiveness estimation for control reconfiguration of impaired aircraft

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1989.Includes bibliographical references (leaves 90-91).by Derek Paul Laufenberg.M.S

    Aeronautical engineering: A continuing bibliography with indexes (supplement 267)

    Get PDF
    This bibliography lists 661 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; theoretical and applied aspects of aerodynamics and general fluid dynamics; electrical engineering; aircraft control; remote sensing; computer sciences; nuclear physics; and social sciences

    Discrete Time Systems

    Get PDF
    Discrete-Time Systems comprehend an important and broad research field. The consolidation of digital-based computational means in the present, pushes a technological tool into the field with a tremendous impact in areas like Control, Signal Processing, Communications, System Modelling and related Applications. This book attempts to give a scope in the wide area of Discrete-Time Systems. Their contents are grouped conveniently in sections according to significant areas, namely Filtering, Fixed and Adaptive Control Systems, Stability Problems and Miscellaneous Applications. We think that the contribution of the book enlarges the field of the Discrete-Time Systems with signification in the present state-of-the-art. Despite the vertiginous advance in the field, we also believe that the topics described here allow us also to look through some main tendencies in the next years in the research area
    • …
    corecore