
REAL-TIME ERROR DETECTION AND CORRECTION FOR ROBUST
OPERATION OF AUTONOMOUS SYSTEMS USING ENCODED STATE

CHECKS

A Dissertation
Presented to

The Academic Faculty

By

Md Imran Momtaz

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

College of Engineering

Georgia Institute of Technology

August 2021

© Md Imran Momtaz 2021

REAL-TIME ERROR DETECTION AND CORRECTION FOR ROBUST
OPERATION OF AUTONOMOUS SYSTEMS USING ENCODED STATE

CHECKS

Thesis committee:

Dr. Abhijit Chatterjee
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Dr. Mark Davenport
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Dr. Samuel Coogan
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Dr. David Anderson
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Dr. Hao-Min Zhou
School of Mathematics
Georgia Institute of Technology

Date approved: Apr 30, 2021

To my parents - A K M Momtaz Uddin and Homayra Safina Shabnam, my spouse -

Murshida Parven, and my child - Zayaan Momtaz, who encouraged and stood by me in

this journey.

ACKNOWLEDGMENTS

First and foremost I would like to thank my advisor Prof. Abhijit Chatterjee who has

over the past few years guided, taught and helped me. His technical expertise and constant

drive and excitement about the state of the art research inspired me a lot. Additionally he

has been a role model and a friend to his students and I hope I can imbibe some of his

generosity, understanding, kindness in my personal life.

I would also like to thank my committee members for their valuable comments about

my research. Georgia Tech would not be the place it is without the many excellent faculty

and I would like to thank all the faculty members whom I have been lucky to learn from.

I would also like to thank my funding agency - National Science Foundation, and the

Semiconductor Research Corporation for their support to carry out this research. This

would not be possible of their support.

I would like to mention all my friends at Georgia Tech and Atlanta who made these

years such fun. A special thanks to Debashish Banerjee, Sabyasachi Deyati, Barry Muldrey,

Suvadeep Banerjee, Sujay Panday, Chandramouli Amarnath, Kwondo Ma, Joshua Wells,

Jun Yang Lei, Sanya Gupta, Suhasini Komarraju and Mouhyemen Khan for making this

journey enjoyable.

Finally, I would like to acknowledge my parents: A K M Momtaz Uddin and Homayra

Safina Shabnam, my sistem Tanzim Mahrim, my spouse Murshida Parven and my son

Zayaan Momtaz. My parents sacrificed a lot to provide me a cushion from the harsh diffi-

culties of life. My spouse and son had provided every support possible during this journey.

Their smile was the only thing which made me move forward.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . x

List of Figures . xi

Summary . xvii

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Prior Work . 4

1.3 Contributions of Dissertation . 10

1.4 Dissertation Overview . 11

Chapter 2: Probabilistic Error Detection and Correction in Switched Capacitor
Circuits Using Checksum Codes . 13

2.1 Key Contributions and Approach . 14

2.1.1 Key Contributions: . 14

2.1.2 Approach . 15

2.2 Switched-Capacitor Circuits: Overview 15

2.2.1 Example 1 . 15

v

2.3 Proposed methodology on Error detection and probabilistic Error correc-
tion: A checksum based approach . 18

2.3.1 Error Detection Scheme . 18

2.3.2 Error correction scheme . 21

2.4 Real time error correction: experimental results 24

2.4.1 Parametric faults . 24

2.4.2 Alpha-particle strike . 26

2.4.3 Induced noise . 27

2.4.4 Experimental Data . 27

2.5 Summary . 28

Chapter 3: On-Line Detection, Diagnosis, and Compensation for Failures in
Linear State Variable Circuits and Systems Using Time-Domain
Checksum Observers . 31

3.1 Real-Time Error Detection and Control Compensation From Steady State
Checksum . 31

3.1.1 Introduction and Key Contribution 31

3.1.2 DC Motor Control: An Overview 32

3.1.3 Proposed Methodology: Error Detection 34

3.1.4 Error Detection Result . 36

3.1.5 Real-Time Parametric Error Compensation 38

3.1.6 Summary . 46

3.2 On-Line Error Diagnosis, and Compensation Linear State Variable Circuits
and Systems Using Time-Domain Checksum Observers 47

3.2.1 Introduction and Key Contribution 47

3.2.2 Proposed Approach: Error Diagnosis, and Correction 48

vi

3.2.3 Test Cases Overview . 52

3.2.4 Result: Real-Time Diagnosis of System Parameters 54

3.2.5 Result: Real-Time Error Correction 59

3.2.6 Summary . 61

Chapter 4: Detection, Diagnosis and Compensation of Control Program, Sen-
sor and Actuator Failures in Nonlinear Systems Using Hierarchical
State Space Checks . 62

4.1 Introduction . 62

4.2 Key Contributions . 63

4.3 Preliminaries: Quadcopter and Brushless DC Motor Models and Control . . 64

4.3.1 State Variable System: Overview 64

4.3.2 Quadcopter Overview . 65

4.3.3 Actuator Overview: Brushless DC (BLDC) Motor 68

4.3.4 Controller Design for Quadcopter 69

4.4 Hierarchical Checking Approach . 71

4.4.1 Failure Model . 71

4.4.2 Checking methodology: state space checks 71

4.4.3 Hierarchical check infrastructure for the quadcopter system 78

4.4.4 Resilience methodology . 80

4.4.5 Simulation Experimental Result 84

4.4.6 Hardware Experimental Result . 93

4.4.7 Summary . 100

vii

Chapter 5: Concurrent Error Detection in Embedded Digital Control of Non-
linear Autonomous Systems Using Adaptive State Space Checks . . . 101

5.1 Introduction and Key Contributions . 101

5.1.1 Key Contributions . 101

5.2 Preliminaries: Extended Kalman Filter . 102

5.3 Proposed Approach: State Encoding Based EKF Checks 105

5.3.1 Encoding property of matrix: an overview and its application to EKF 105

5.3.2 Algorithmic State Check . 110

5.3.3 State Update Check . 110

5.3.4 Statistical Variance Check . 110

5.3.5 Variance Update Check . 111

5.4 Resilience methodology . 121

5.4.1 Machine learning assisted failure diagnosis 122

5.5 Test Cases: Overview and EKF Checks . 131

5.5.1 Quadcopter . 131

5.5.2 Steer by Wire System . 133

5.6 Experimental Results . 136

5.6.1 Statistical analysis based best bound selection: 136

5.6.2 Sensor Failure . 138

5.6.3 Actuator Error . 140

5.6.4 Covariance Computation Failure 141

5.6.5 Control Program Error . 142

5.6.6 Comparison with state of the art detection methods 143

viii

5.6.7 Hardware validation . 145

5.6.8 Simulation result: error correction 154

5.6.9 Hardware validation: Error correction 163

5.7 Summary . 166

Chapter 6: Conclusion and Future Work . 167

6.1 Future Work . 168

References . 170

Vita . 186

ix

LIST OF TABLES

2.1 Error correction comparison . 27

4.1 Diagnosis summary . 73

4.2 Summary of Experiments . 92

4.3 Hardware configuration of Crazyflie 2.1 93

5.1 Error detection experiments on quadcopter system 143

5.2 Error detection experiments on SbW system 143

5.3 Comparative study for quadcopter system 145

5.4 Comparative study for Steer-by-Wire system 146

5.5 Comparative study among different checks for quadcopter system 147

5.6 Comparative study among different checks for Steer-by-Wire system 147

5.7 Hardware configuration of Crazyflie 2.1 148

5.8 Average number of trial required to learn controller parameter 162

x

LIST OF FIGURES

1.1 Autonomous vehicle disengagement data 3

2.1 Biquadratic Circuit . 16

2.2 Switched capacitor realization of a biquadratic circuit 17

2.3 Error detection signal flow graph . 20

2.4 Error correction signal flow graph . 21

2.5 Error correction scheme for biquadratic circuit 24

2.6 Pareto surface for parametric failure . 25

2.7 Response corrected by checksum error feedback 29

2.8 Pareto surface for alpha-particle strike failure 30

2.9 Pareto surface for induced noise failure . 30

3.1 State transition graph showing the motor, controller and the error detection
circuit . 35

3.2 Simulink model of the DC motor . 36

3.3 Checksum error signal with permanent perturbations in: (a) armature resis-
tance, (b) back-emf constant, (c) viscous friction coefficient and (d) torque
constant . 37

3.4 Experimental prototype showing the DC motor, speed encoder, error detec-
tion circuit, current sensor and the controller 38

3.5 Analog checksum signal in presence of blocked rotor 38

xi

3.6 Analog checksum signal in presence of supply transient 39

3.7 Correlation between normalized specification metric ms and normalized
error metric me . 41

3.8 3-d scatter plot showing the distribution of ‘good’, ‘bad’ and ‘tunable’ sys-
tems according to ‘pass’/‘fail’ classification criteria on the e1 − e2 − Ra

axes . 41

3.9 Compensation Look-up table (LUT) for DC Motor Control: The rightmost
columns show the quantization limits of tuning metric specifying each bin
uniquely. The specification coverage indicates the percentage of systems
that are tuned by application of the optimal gain for that bin 42

3.10 Histogram plots of rise time, settling time, overshoot percentage and steady
state error (Ess) before compensation. Vertical lines indicate the nominal
range of each specification . 45

3.11 Histogram plots of rise time, settling time, overshoot percentage and steady
state error (Ess) after compensation. It can be observed that more number
of systems have been included within the nominal specification limits, val-
idating the efficacy of real-time compensation 46

3.12 Training of checksum error response for diagnosis 49

3.13 System architecture for error correction 50

3.14 Error correction flow chart . 51

3.15 Biquad filter . 54

3.16 Estimated vs Actual parameter of DC motor with control 55

3.17 Estimated vs Actual parameter of generator connected to infinite bus 57

3.18 SVM classification of time constants of biquad filter 58

3.19 Error correction of DC motor system . 60

4.1 A nonlinear state variable system . 64

4.2 An Example Quadcopter System (adopted from [142]) 66

4.3 Brushless DC motor equivalent circuit (adopted from [145]) 69

xii

4.4 Block diagram . 71

4.5 Hierarchical checking methodology . 72

4.6 Computation of state space based check 74

4.7 Long Short Term Memory Block . 75

4.8 Trade-off between observation window and accuracy for σ2
noise = 0.05 . . . 76

4.9 Trade-off between observation window and accuracy for σ2
noise = 0.25 . . . 77

4.10 Control program check . 78

4.11 Sensor (gyroscope and accelerometer) check 79

4.12 Actuator check . 80

4.13 Sensor check in presence of control program failure 86

4.14 a) Control check for control program fault, and b) actuator check plot in
presence of control program failure . 87

4.15 a) Trajectories of quadcopter for control program fault, and b) Correspond-
ing control program check plot . 87

4.16 a) Trajectories of quadcopter for accelerometer transient fault, and b) Cor-
responding accelerometer check plot . 88

4.17 a) Trajectories of quadcopter for gyroscope transient fault, and b) Corre-
sponding gyroscope check plot . 89

4.18 a) Trajectories of quadcopter for accelerometer parametric deviation, and
b) Corresponding accelerometer check plot 90

4.19 a) Trajectories of quadcopter for gyroscope parametric deviation, and b)
Corresponding gyroscope check plot . 91

4.20 a) Trajectories of quadcopter for parametric deviation in actuator, and b)
Corresponding actuator check plot . 91

4.21 Hardware setup . 94

4.22 Neuromorphic model architecture for Crazyflie 2.1 95

xiii

4.23 Quadcopter trajectory in presence of control program fault 96

4.24 Quadcopter trajectory in presence of sensor fault 97

4.25 Quadcopter trajectory in presence of actuator fault 99

4.26 Controller compensation effect observed from height due to actuator fault . 100

5.1 A nonlinear state space control system . 103

5.2 State check plot for (left) constant, and (right) variable CV for a transient
sensor failure in quadcopter . 119

5.3 State check plot for (left) constant, and (right) variable threshold 121

5.4 Resilience methodology flow . 122

5.5 State check plot for (left) sensor, (middle) actuator, and (right) control pro-
gram failure . 122

5.6 Error diagnosis block diagram . 123

5.7 Classification score the diagnosis engine for different hyper-parameter . . . 124

5.8 Cost function for gyroscope parametric failure 125

5.9 Cost function for accelerometer parametric failure 126

5.10 Sensor trade-off study . 127

5.11 Check error plot for (left) without, and (right) with correction for sensor
failure . 128

5.12 Risk of actuator parametric deviation . 129

5.13 Reward (=1/Risk) value of different control parameter for Multi-Armed
Bandit based control parameter reconfiguration 130

5.14 Check error plot for (left) without, and (right) with correction for actuator
failure . 131

5.15 An example quadcopter system (adopted from Crazyflie [142]) 132

5.16 Steer-by-Wire system with rotary motors (adopted from [177]) 133

xiv

5.17 F1 score profile for quadcopter system . 138

5.18 F1 score profile for Steer-by-Wire system 138

5.19 Checks for quadcopter system in presence of sensor error 139

5.20 Checks for SBW system in presence of sensor error 139

5.21 Checks for quadcopter system in presence of actuator error 140

5.22 Checks for SBW system in presence of actuator error 140

5.23 State Check for quadcopter system in presence of covariance computation
error . 141

5.24 State Check for SBW system in presence of covariance computation error . 142

5.25 Hardware setup . 148

5.26 (a) Trajectory of the quadcopter under gyroscope fault and (b) correspond-
ing error plot . 149

5.27 (a) Trajectory of the quadcopter under gyroscope fault and (b) correspond-
ing error plot at hovering condition . 150

5.28 (a) Trajectory of the quadcopter under gyroscope fault and (b) correspond-
ing error plot at sharp turn . 150

5.29 (a) Trajectory of the quadcopter under Accelerometer fault and (b) corre-
sponding error plot . 151

5.30 (a) Trajectory of the quadcopter under Accelerometer fault and (b) corre-
sponding error plot at hovering condition 151

5.31 (a) Trajectory of the quadcopter under Accelerometer fault and (b) corre-
sponding error plot at sharp turn . 152

5.32 (a) Trajectory of the quadcopter under Actuator fault and (b) corresponding
error plot . 152

5.33 (a) Trajectory of the quadcopter under Actuator fault and (b) corresponding
error plot at hovering condition . 153

5.34 (a) Trajectory of the quadcopter under Actuator fault and (b) corresponding
error plot at sharp turn . 153

xv

5.35 (a) Trajectory of the quadcopter under Control program fault and (b) corre-
sponding error plot . 154

5.36 (a) Trajectory of the quadcopter under Control program fault and (b) corre-
sponding error plot at hovering condition 154

5.37 (a) Trajectory of the quadcopter under Control program fault and (b) corre-
sponding error plot at sharp turn . 155

5.38 Error diagnosis trade-off study . 155

5.39 Error correction of gyroscope parametric failure 156

5.40 Error correction of accelerometer parametric failure 157

5.41 (Left) Trajectory of the steer-by-wire system under sensor fault and (right)
corrected trajectory . 158

5.42 Block diagram of MAB framework . 158

5.43 Reward per episode plot of MAB learner for ‘cold start configuration’ . . . 159

5.44 Reward per episode plot of MAB learner for ‘hot start configuration’ 159

5.45 Error correction of actuator parametric failure 160

5.46 Reward per episode plot of MAB learner for SbW system 161

5.47 (Left) Trajectory of the steer-by-wire system under actuator parametric
fault and (right) corrected trajectory . 162

5.48 Error correction of control program failure 162

5.49 (Left) Trajectory of the steer-by-wire system under control program tran-
sient fault and (right) corrected trajectory 163

5.50 Error correction of sensor failure . 164

5.51 Error correction of actuator parametric failure 165

xvi

SUMMARY

The objective of the proposed research is to develop methodologies, support algorithms

and software-hardware infrastructure for detection, diagnosis, and correction of failures for

actuators, sensors and control software in linear and nonlinear state variable systems with

the help of multiple checks employed in the system. This objective is motivated by the pro-

liferation of autonomous sense-and-control real-time systems, such as intelligent robots and

self-driven cars which must maintain a minimum level of performance in the presence of

electro-mechanical degradation of system-level components in the field as well as external

attacks in the form of transient errors. A key focus is on rapid recovery from the effects of

such anomalies and impairments with minimal impact on system performance while main-

taining low implementation overhead as opposed to traditional schemes for recovery that

rely on duplication or triplication. On-line detection, diagnosis and correction techniques

are investigated and rely on analysis of system under test response signatures to real-time

stimulus. For on-line error detection and diagnosis, linear and nonlinear state space en-

codings of the system under test are used and specific properties of the codes, as well as

machine learning model based approaches were used are analyzed in real-time. Recovery

is initiated by copying check model values to correct error for sensor and control software

malfunction, and by redesigning the controller parameter on-the-fly for actuators to restore

system performance. Future challenges that need to be addressed include viability studies

of the proposed techniques on mobile autonomous system in distributed setting as well as

application to systems with soft as well as hard real-time performance constraints.

xvii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Intel launched the first commercial microprocessor chip, the 4004 containing 2300 tiny

transistors, in November 1971. Since then, the computational capabilities integrated chip

has been governed by Intel’s co-founder Gordon Moore which predicts that processing

power doubles roughly every two years as smaller transistors are packed more tightly onto

silicon wafers, boosting performance and reducing costs. The attempt to satisfy this rule

has achieved exponential progress in computing performance that is orders of magnitude

superior than the 1971 processor. A modern Intel Coffee Lake processor contains more

than 2 billion transistors and delivers 500,000 times as much computational capability as

a 1971 processor. This computing power can be experienced from the fact that a modern

smartphone is more capable than a room-sized supercomputer in the 1980s.

After almost five decades of successful execution of Moore’s law, the trend of expo-

nential performance achievement are slowed down as reported in [1–6]. Geometric scaling

of transistor feature sizes were performed Until the 2000s. After the 2000s, continuing

further geometric scaling posed numerous problems and the semiconductor industry kept

devising sophisticated technical measures to keep pace with the predictions of Moore’s law

[7] - at 90 nm, strained silicon was introduced; at 45 nm, new materials (high-κ dielec-

tric) to increase the capacitance of each transistor layered on the silicon were introduced;

at 22 nm, trigate transistors [8] maintained the scaling. Technology scaling down to the

22nm node and beyond has led to new challenges [9] in the design of analog and digital

signal processing and control systems. Noise margins have reduced considerably making

operation of analog, switched-capacitor and digital circuits on the same silicon substrate

1

difficult and hazardous. As an example, power supply and ground bounce induced noise

and signal coupling from adjacent “aggressor” interconnections are critical problems that

can cause malfunction of electronic circuits. The problem is made worse by the fact that

precise simulation of all electrical aspects of the design including the interfaces between

digital and analog circuitry, coupling through the power and ground planes, etc., across

all process variability effects is a very difficult problem to solve and is very expensive as

well. In this context, resilience of mixed-signal Systems-on-Chips (SoCs) to soft errors

due to radiation, electrical bugs and errors induced by low voltage operation (for reasons

of reduced power consumption) has become a critical design problem.

While the last decade saw major developments in the areas of computing and com-

munication, the next decade will see a proliferation of autonomous sensor networks and

robots. The successful deployment and assimilation of the intelligent autonomous systems

in human society depends on the trustworthiness of these systems. Unless these central-

ized and distributed autonomous systems are [10–18] dependable (reliable, fault-tolerant,

available, maintainable, safe and secure), such systems may never see fruition in the com-

mercial arena or be useful for critical operations. As an example of autonomous system,

the disengagement data of self-driven cars can be mentioned. Autonomous vehicle disen-

gagement data filed with the California Department of Motor Vehicles [19] for 2016 shows

that a self-driving car failed about every 3 hours due to hardware or software malfunction

as shown in Figure 1.1. Other examples abound [20–22]. The most recent Boeing incident

[20, 21], was diagnosed to a malfunctioning sensor generating incorrect measurement data.

As can be observed from Figure 1.1, future autonomous systems will have to be de-

signed to be extremely reliable for them to be assimilated into day to day living func-

tions of human societies. This is because many such emerging applications can have life-

threatening consequences if they malfunction in the field. While proponents of such sys-

tems argue that automation will make self-driven cars safer than human-driven vehicles,

they ignore the fact that the controlling hardware and software itself may have bugs, that

2

Figure 1.1: Autonomous vehicle disengagement data

sensors and actuators can degrade over time and that control principles will need to adapt

in real-time to account for electrical and mechanical wear-and-tear.

For reliable and dependable vehicle operation of autonomous system, cross-layer (sen-

sor, actuator and control) design methods need to be developed that deliver ultra-high lev-

els of dependability (compared to the safety/dependability of aircraft and space travel). To

make such autonomous systems dependable, errors in the sensors, actuators, electronics

and control subsystems [13] of the autonomous system assembly will need to be contin-

uously monitored. If any deviation from normal expected performance is detected, then

corrective action must be taken to allow time for maintenance operations to be initiated

on the failing device. For instance, mechanical performance degradation (such as due to

increased friction from loss of lubrication in the ball bearings of a motor) must be compen-

sated via electrical means (such as increased motor drive current). As another example, if a

sensor produces incorrect readings, the condition must be detected and the control system

for the device must be compensated for the lack of sensor performance. This has to hap-

pen on a per-vehicle basis to thousands of autonomous vehicles for the technology to ever

become commercially successful on a massive scale. A single vehicle malfunction result-

ing in injury or loss of life can spell doom for the commercialization of such technology

in the future. In this context, the control operations of modern autonomous systems are

evolving towards electronics as opposed to mechanical/hydraulic means of control as evi-

3

dent from the proliferation of ‘steer-by-wire’ and ‘brake-by-wire’ control systems. While

this improves the reliability of the system due to use of fewer mechanical components, the

overall dependability of the system is now contingent on error-free operation of the control

program, sensors and actuators. Detection and mitigation of such control malfunction in

real-time forms the core objective of this research.

1.2 Prior Work

In this section, we formally define the different facets of the research landscape and present

the challenges faced. We also discuss the merits and demerits of the state-of-the-art method-

ologies for the different areas.

Dealing with failures has been a major concern even with the earliest electronic systems

[23, 24]. The use of checksums for failure tolerant matrix arithmetic and signal processing

algorithms was first investigated by Hua, Jou and Abraham in [25, 26] and led to the field

of algorithm-based fault tolerance (ABFT) in the context of complex signal processing al-

gorithms. The underlying research focused on exact detection and correction of errors in

classes of widely used signal processing algorithms such as for matrix arithmetic and the

Fast Fourier Transform [27], among others. In [28], a methodology for soft error detec-

tion and correction called algorithmic noise tolerance (ANT) was developed and further

explored in [29–31]. Here, the focus was on using reduced-precision duplication codes to

detect and correct errors with the understanding that not all errors need to be detected and

corrected precisely and that ‘perfect’ error compensation is not always required for various

classes of signal processing algorithms such as for video compression. In [32, 33], the

authors used the idea of ‘algorithmic soft error tolerance’ (ASET) which employs low-

complexity estimators of a main DSP block to achieve reliable operation in the presence of

soft errors in the form of rollback. Three distinct ASET techniques — spatial, temporal and

spatio-temporal are presented. For frequency selective finite-impulse response (FIR) filter-

ing. ANT schemes are also used to change the supply voltage dynamically to save energy

4

and to match critical path delay in [34]. A class of codes called ‘real-number checksums’

for matrix-vector computations was developed by Nair and Abraham in [35]. This class

of codes was used by Chatterjee and d’Abreu in [36] to perform error detection and cor-

rection in linear digital state variable systems. While error detection could be performed

with low overhead in [36], error correction incurred large overheads both in area and time

using the proposed algorithms. To resolve this, probabilistic and guided error compensa-

tion schemes were proposed in [37, 38]. In [39] and [40], continuous checksums, derived

from the real number codes [35] were used for the first time to detect and correct faults in

linear analog state variable systems. The state matrix was encoded using checksums and by

tracking the system state variables, any change in the analog transfer function of the sys-

tem could be detected in real-time. Trial and error based compensation learning methods

combined with the use of less than minimum distance codes are used for failure tolerance

for analog circuits are shown in [41]. Additionally, the idea of linear checksum was used

for compensation of induced noise and transient errors at linear analog system [42].

Along a similar line, the ANT has been applied to detect various faults including tran-

sient errors and noise induced by signal coupling, electromagnetic interference and power

supply/ground bounce in electronic circuits used for different applications. This is particu-

larly important as these types of faults are difficult to simulate pre-silicon and very difficult

to diagnose by current design verification algorithms that are designed mostly for digital

timing validation and property checking [43, 44]. In prior research, methods targeting the

detection and correction of catastrophic and parametric faults have been proposed. Many of

these approaches include the use of redundancy (voting circuits, time averaging schemes,

etc.) in the design and target the detection/mitigation of structural faults. In [45], a method

for error detection in linear analog filters using state estimation was proposed and in [46]

a checker for fully differential analog circuits was developed. In [47], the method was

applied for checking linear analog circuits using DC signals. Of increasing concern, in

this context, are nonlinear digital filters that are extensively and routinely used in signal

5

processing, communication and control applications where reliability and dependability

are critical issues. In such safety-critical applications, traditional methods for error detec-

tion and correction rely on hardware duplication/triplication. Error detection in non-linear

systems generally involves partitioning of the circuit into linear and nonlinear components.

Checksum codes are applied to the linear components for error detection whereas hardware

and/or software redundancy is applied for error detection in the nonlinear modules. How-

ever, the high overhead in terms of power and area associated with these methods makes

them relatively expensive in general applications. A more elegant error detection technique

for non-linear systems based on time-freeze linearization was proposed in [48, 49] which

models a nonlinear digital filter using a time-varying linearized representation. The check-

sum circuit generates a time-varying checksum code for each single time frame by freezing

the system dynamics between two adjacent time frames and linearizing the circuit behavior

between the two frames. However, the method can result in duplication of all the nonlinear

functions in the worst case and further requires that the word-length precision of the check-

ing circuitry be the same as that of the circuit under test (CUT). This incurs higher cost in

terms of both complexity, area and power.

While prior works focused on concurrent error detection in different applications, it

does not apply directly to linear or nonlinear autonomous systems, as these consist of plant

and controller equations which must be combined together in a meaningful way to allow

detection of perturbations in the plant as well as its controller. This necessitates the devel-

opment of a general methodology for combining the plant and controller functions into a

single state variable representation to which checksum codes can be applied. The second

major difference is that while in [39, 45], it is possible to associate the state variables and

their derivatives with specific nodes in the corresponding electrical circuits, the same is

not necessarily true in generic control systems where sensors are used to monitor the sys-

tem states but may not explicitly provide information about both the state values and their

derivatives.

6

There has been significant work in the past on failure tolerance in autonomous sys-

tems: sensors, actuators and control. This can be classified into two broad research themes:

anomaly detection and control adaptation. An anomaly is defined to be an operating con-

dition different from normal that the system is not designed to handle. After an anomaly

is detected, system control is reconfigured in such a way as to compensate for the effect of

the anomaly on overall system function.

With regard to anomaly detection, there has been work on statistical estimation algo-

rithms for the detection of outliers (anomalies) for wide varity of test cases [50–60]. These

methods are generally compute-intensive and not suitable for applications with hard real-

time constraints. The work of [61] develops a methodology for detecting anomalies in high

dimensional data while a robot is operating in the field. Positive and negative data models

are created and separated using a support vector machine. There is a significant body of

work revolving around prediction of the future observable states of a system from prior

states and comparison with achieved future state (measured) values for anomaly detection

[62–66]. Particle filter based approaches have been emplpyed extensively to detect anoma-

lies for different applications [67–72]. In [63], particle filtering and maximum likelihood

methods are used to diagnose and correct sensor anomalies in autonomous ground vehicles.

In [64], a sliding window observer is designed to predict future sensor measurements for

error detection. In [65, 66], a Kalman filter is designed to perform accurate statistical state

estimation in the presence of single inertial sensor faults and thereby enable sensor fault

tolerant control of unmanned aerial vehicles. Recently there has been work on sensor data

fusion to identify sensor as well as actuator malfunction in robotic systems [73]. Similar to

[32], the idea of rollback to recover from error also was introduced in [74] at Boeing 737

simulator.

Of particular relevance to this research is prior work on the use of neuromorphic net-

works for anomaly detection and correction. In [75], a suite of neural networks are trained

in real time to predict aircraft sensor measurements from values of prior sensor measure-

7

ments and control inputs. Actuator faults are determined by specific measurement cross-

correlation tests. Actuator correction is performed by forcing the neural network to stabilize

the aircraft through PID control applied to the non-faulty aircraft actuators. A similar state

estimation based failure detection strategy for generic nonlinear systems using a bank of

neural networks is developed in [76]. State estimation methods are also used for error de-

tection in [77, 78]. In [78], a neural network is used to learn the normal future and past state

and input dependencies. On-line gradient descent on the plant model parameter values is

used to minimize the prediction error between the observed and predicted future states for

parameter diagnosis. In [79–82], past observed sensor measurements and inputs are used to

predict a linear encoding of all the system states using static machine learning techniques

which lacks adaptability. In [83], past observed sensor measurements and inputs are used

to predict a linear encoding of all the system states using a nonlinear regression mapping.

This is shown to detect sensor, actuator failures as well as errors in execution of the control

program on a digital processor. A hierarchical error detection and error localization scheme

is presented in [81]. However, this does not address error correction and control reconfig-

uration, which was performed in [84, 85]. A hierarchical framework for fault propagation

analysis was also addressed in [86].

With regard to control adaptation there has been significant research in the past [87–

93]. In gain scheduling [87], relevant gain parameters of the system control algorithm are

adapted to meet dynamic performance requirements. For example, the speed of an aircraft

and its height (measured by speed and height sensors) can be used to dynamically change

the aircraft controller parameters. Model reference adaptive control (MRAC) assumes the

use of a reference model of the system (plant) continuously running on a processor in the

background against which the system behavior is compared in real-time to generate an er-

ror signal. The so-called MIT rule [87] relies on the derivative of the controller parameters

to this error to tune the controller to minimize this error. There are indirect methods for

control adaptation as well. In indirect MRAC and self-tuning regulators [87, 89], first plant

8

parameter estimation is performed using observed sensor measurements. The resulting es-

timated parameters are then mapped to optimize control law parameters using a mapping

function or look-up table. In [94], controller parameters were redesigned using absolute

value of the encoded state of the system which was improved at [79] by utilizing the time

dependent profile of the encoded state. In [95], the value function of a reinforcement learn-

ing algorithm is initialized to specific profiles corresponding to clusters of plant parameter

values estimated by a probabilistic neural network from sensor measurements. In this case,

not all the plant parameter values can be estimated with high accuracy and the selection of

the profile concerned significantly speeds up the reinforcement learning process. Similar

work was also pursued by researchers in [96] and, by the imitation learning, in [97–100]. In

[97], researchers have demonstrated an approach to control a vehicle from expert demon-

strations of low-level controls and high-level commands. At training time, the commands

resolve ambiguities in the perceptuomotor mapping, thus facilitating learning. At test time,

the commands serve as a communication channel that can be used to direct the controller.

In [98], the researchers present an end-to-end imitation learning system for agile, off-road

autonomous driving using only low-cost on-board sensors. This method requires neither

state estimation nor on-the-fly planning to navigate the vehicle. More research on health

management, resiliency and fault tolerance of autonomous vehicles and systems are ad-

dressed in [101–103].

Recently L1 adaptive controllers [88] have been proposed in which the problem of state

estimation (adaptation) is decoupled from that of control. This allows very fast adaptation

to changing plant dynamics and actuation failures while allowing robust control under pa-

rameters variations and noise using conventional control theoretic techniques. L1 adaptive

controllers, however, need the use of state prediction algorithms that are typically derived

from linearized models of nonlinear systems. A recent work [84] has investigated at this

problem with the help of ‘time-series based prediction’ where the measurements of the

system are predicted using time-series models validated by simulation. The initial research

9

[84] provided initial proof-of-concept ideas to motivate the present research. The present

research is significantly detailed compared to [84].

There has also been significant body of work in the field of safe and robust operation

of autonomous systems [104]. Researchers have looked at Unscented Kalman Filter [105]

to project an uncertainty distribution ahead in time for vehicles on the road, use that to

mathematically define collision risk, model risk beyond prediction horizon, and have con-

sidered sensing and communication losses. Stochastic model predictive controller [106]

with a cost function based approach was used to have optimal control action when and

where the vehicle changing lanes can satisfy a defined condition of ‘safe’ lane change.

The uncertainty in the stochastic MPC cost is propagated by an Extended Kalman Filter.

Stochastic model predictive controller was also pursued in [107] where an approach was

demonstrated for driver-aware vehicle control based on stochastic model predictive control

with learning (SMPCL). The framework combines the onboard learning of a Markov chain

that represents the driver behavior, a scenario-based approach for stochastic optimization,

and quadratic programming.

Researchers also worked on real-time filtering algorithms with a robotic vehicle to

smooth emergent traffic waves [108]. They look at trade-offs in estimation accuracy to

provide both distance and velocity estimates, with ground-truth hardware-in-the-loop tests

with a robotic car.

1.3 Contributions of Dissertation

The key innovations of the proposed research are summarized as follows:

1. State encodings of linear and nonlinear control systems are utilized to generate error

signature with low overhead that can monitor, and detect errors in a linear and non-

linear system operating under arbitrary failure mechanisms. Typically, a nonlinear

system switches across different operating points around which the system behavior

is weakly nonlinear [109]. Prior methods have focused on system operation around

10

fixed equilibrium points where the nonlinear behavior is limited and linearization

techniques can be applied. The proposed research in this dissertation makes no such

assumption and is applicable over a broad class of systems across all operating modes

- i) linear, ii) weakly nonlinear and iii) strongly nonlinear.

2. State space check based approach is developed to diagnose parametric failures, and

reconfiguration of controller based correction for different linear state variable sys-

tem to enable real-time adaptability with low latency.

3. Hierarchical check based approach is developed to detect and diagnose the health of

a nonlinear autonomous system decomposing the system down to individual subsys-

tems while allowing multiple failures to occur simultaneously without compromising

detectability.

4. State encoding based correction approaches are developed to correct sensor, actuator

and control program failures for linear and nonlinear autonomous systems.

5. Dynamically adjusted encoded checking scheme is proposed, designed and demon-

strated to detect, diagnose and correct failures in sensors, actuators, control execution

core of a nonlinear autonomous systems.

6. Error detection and real-time compensation were demonstrated using machine learn-

ing model and state estimator assisted encoded checks on an actual quadcopter hard-

ware.

1.4 Dissertation Overview

The primary objective of this dissertation is to develop methodologies, support algorithms

and software-hardware infrastructure for detection, diagnosis, and correction of parametric

failures for actuators, transient and slow-changing parametric errors for sensors and tran-

sient and permanent error at control program and transient and parametric error at actuators

11

in linear and nonlinear state variable systems.

Chapter 2 discusses error detection and correction of switched capacitor circuits. Three

different failure mechanisms are addressed in this work namely - parametric failure, alpha

particle strike, and induced noise. Real-time noise cancellation is demonstrated for all of

these mechanisms on linear analog filters.

Chapter 3 introduces the foundational theory of system level state-space encoding for

detection, diagnosis and correction of parametric failures for multiple linear autonomous

systems. The theory of error detection is developed, designed and implemented. The

diagnosis of the failure was demonstrated with the help of machine learning algorithms.

It is also shown how a linear encoding can be used for error correction with low latency.

Simulation results on a linear system are presented to illustrate the detection and correction

capabilities.

Chapter 4 extends the state encoding based error checking infrastructure to nonlinear

state variable system. A properly learned machine learning model has been employed in

hierarchical manner to diagnose the health of a nonlinear autonomous system decomposing

the system down to individual subsystems, namely - sensors, actuators and control program

execution. Error is detected and corrected in each of these subsystems. The proposed

approach is implemented in a quadcopter hardware.

Chapter 5 looks at computationally inexpensive method to detect and correct failures

for nonlinear autonomous systems where the encoded checking scheme dynamically adapt

to the operating condition of the system by adjusting its threshold. The proposed approach

has been applied to quadcopter and ‘Steer-by-wire’ automotive system in simulation. Ad-

ditionally, the approach was validated in quadcopter hardware system.

Finally, chapter 6 presents the conclusions of this dissertation and recommends avenues

for future research.

12

CHAPTER 2

PROBABILISTIC ERROR DETECTION AND CORRECTION IN SWITCHED

CAPACITOR CIRCUITS USING CHECKSUM CODES

As technology scales to smaller dimensions and operating speeds of circuits increase,

CMOS mixed-signal circuits and systems are becoming increasingly vulnerable to errors

due to parametric variations, external radiation (alpha particle strikes) and induced cir-

cuit noise. Parametric variations are static in nature and result in permanent deviations in

the values of passive components or behavioral parameters of active components (such as

transistor gain). The effects of external radiation are, in comparison, transient in nature

and result in dynamic changes in the voltage values of internal circuit nodes. In digital

circuits, such voltage changes can result in logic values to be flipped resulting in soft er-

rors. Such soft errors can occur randomly on any circuit node since the trajectory of an

alpha-particle strike through the layers of a physical design cannot be predicted a-priori.

Induced circuit noise also results in changes in the node voltage or branch current values

within a circuit. However, its effects are localized to a small set of circuit elements since

noise is coupled onto a victim circuit through specific design vulnerabilities. For exam-

ple, crosstalk between two wires affects only the two wires concerned and no other circuit

nodes. Hence, the sources of induced circuit noise can be localized to a subset of the com-

plete set of nodes in a circuit. In this research, error detection and correction in a class

of circuits called switched-capacitor circuits was focused for all three sources of errors

discussed above. An interesting aspect of switched-capacitor circuits is that they combine

the principles of operation of digital state machines (clocked circuits) along with those of

analog circuits (continuous-time operation). Hence, novel and elegant solutions for error

detection and correction in switched-capacitor circuits can be found that combine aspects

of digital error correction with analog error feedback to achieve analog error correction

13

in ways that cannot be applied to continuous-time analog circuits.

2.1 Key Contributions and Approach

2.1.1 Key Contributions:

Digital error detection and correction schemes are difficult to apply to continuous-time

analog circuits because of the lack of a system clock. A key benefit of digital systems is that

errors corrected before the onset of future clock cycles prevents them from propagating to

other system states allowing for ease of correction [36]. On the other hand, error correction

for analog circuits is performed by feeding back the detected error value with high negative

gain to the corrupted circuit state variable [39]. Both techniques require accurate error

diagnosis requiring the use of complex circuitry as well as incur significant correction

latency making them infeasible for use in practice. Worse yet, circuit noise can render the

diagnosis incorrect where digital or analog division is used for diagnosis purposes [36,

39].

To solve this problem, the use of probabilistic correction algorithms that have tradi-

tionally been applied to digital circuits which do not require error diagnosis and are very

attractive from the viewpoint of hardware overhead and real-time, near-zero-latency cor-

rection. However, probabilistic correction algorithms are not amenable to high-gain error

feedback as has traditionally been used for analog circuit error correction [39]. In this

research [110], for the first time, probabilistic correction algorithms [111, 112] was ap-

plied to switched-capacitor circuits that are clock-enabled but retain all the properties of

continuous-time analog circuits in terms of input-output behavior. Detected errors are cor-

rected, to the maximum extent possible, before the onset of future clock systems using

probabilistic correction techniques, without the need for high gain error value feedback

[39]. No error diagnosis is necessary as claimed in [41, 113] and the circuit performs its

normal functions automatically, in the absence of errors. In this work, different errors in

system are only considered.

14

2.1.2 Approach

Checksum encodings are utilized by using circuit states and inputs to generate an error

signal that detects presence of any fault, permanent or transient, indicating deviation from

nominal performance. This checksum error signal is then fed back with appropriate gains

to all system states, eliminating the need of expensive error diagnosis routines. The proper

gain values are computed by performing pre-design statistical optimization experiments

on the checksum error values over the assumed fault models. Such a concurrent error

feedback to different states reduces the error power in a probabilistic sense, improving

the overall SNR, without the need of error diagnosis and still achieving low-latency error

compensation.

2.2 Switched-Capacitor Circuits: Overview

In switched capacitor circuits [114], resistances are emulated with capacitors with switch-

based charge transfer mechanisms to the capacitor. These switches are operated with clocks

that run at frequencies significantly higher than the circuit bandwidth. Such circuits are

inherently resistant to process variability effects making them attractive to circuit designers.

In theory, switched capacitor circuits function as analog sampled circuits where charge is

stored in relevant capacitors for one phase of the clock cycle and in the next phase of the

clock cycle, the same charge is distributed to other parts of the circuit.

2.2.1 Example 1

To show the efficacy of our proposed approach for error detection and probabilistic error

correction, a biquadratic (also known as bi-quad) filter has been selected as the test circuit.

The bi-quad circuit is very popular to implement second-order low-pass, band-pass, and

high-pass filters. The system of bi-quad circuit is given in Figure 2.1, which is generally

15

Figure 2.1: Biquadratic Circuit

modeled as [115]:

ẋ =

 0 a12

a21 a22

x+

 0

b2

u (2.1)

Where, a12 = 1
RC
, a21 = − 1

RFC
, a22 = − 1

RBC
, b2 = 1

RGC
and x = [vLP vBP]T , u = vin,

vLP and vBP being the low-pass and band-pass outputs, respectively with vin as the input

signal and vLP (= x1) is the system response.

The model represented in 2.1 can also be expressed as a transfer function in the follow-

ing way:

H(s) = −
α6s

2 +
sα3α5

T
+
α1α5

T 2

s2 +
sα4α5

T
+
α2α5

T 2

(2.2)

where, αi|i=1,··· ,6 are design parameters, and T is the clock period that is used to design its

switched capacitor counter-part. The switched capacitor realization of the aforementioned

biquad circuit is shown in Figure 2.2 as depicted in [116]. In this circuit, the resistors are

replaced by switched capacitors. By replacing s = 2
T
z−1
z+1

, in 2.2, the transfer function of

16

Figure 2.2: Switched capacitor realization of a biquadratic circuit

the switched-capacitor representation is obtained as follows:

H(z) = −α6z
2 + (α3α5 − α1α5 − 2α6)z + (α6 − α3α5)

z2 + (α4α5 + α2α5 − 2)z + (1− α4α5)
(2.3)

The z-domain transfer function of 2.3 is translated into the appropriate state-space rep-

resentation as follows:

x[k + 1] =

 −a1 1

−a0 0

x[k] +

 −b1

b0

u[k]

y[k] =

[
1 0

]
x[k] + [0]u[k]

(2.4)

where, a1 = α4α5 + α2α5 − 2, a0 = 1 − α4α5, b1 = α3α5 − α1α5 − 2α6, and b0 =

α6−α3α5. By this way, the system can be generally represented as the discrete-time state-

space form of x[k + 1] = Ax[k] + Bu[k], and a checksum circuit can be constructed from

this representation.

17

2.3 Proposed methodology on Error detection and probabilistic Error correction: A

checksum based approach

2.3.1 Error Detection Scheme

The general representation of a linear digital state variable system is given as follows:

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] +Du[k]

(2.5)

Here, x[k] =
[
x1[k], x2[k], ..., xn[k]

]T is a vector of system state variables, y[k] =
[
y1[k], y2[k], ..., ym[k]

]T
is a vector representing the system outputs and u[k] =

[
u1[k], u2[k], ..., up[k]

]T are the in-

puts to the system. The dimensions of the matrices A, B, C and D are of size n× n, n× p,

m×n andm×p respectively. The next sample of the jth state variable, xj[k+1] is expressed

as a weighted sum of the state variables xj[k], 1 ≤ j ≤ n and inputs uj[k], 1 ≤ j ≤ p. Sim-

ilarly the outputs yi[k] for 1 ≤ i ≤ m are expressed as a weighted sum of xj[k], 1 ≤ j ≤ n

and inputs uj[k], 1 ≤ j ≤ p.

The generalized theory of analog checksum has been introduced in [36], which is re-

viewed here for the sake of continuity. The signal flow graph of a switched-capacitor

implementation of a state variable system has been shown in Figure 2.3 as represented by

2.4 and 2.5 where x[k]’s are the states of the system and u[k] is the input variable. With

this mathematical setup, following theorem is proposed:

Theorem 2.3.1. If a linear state variable system is represented byA andB, and if there is a

row vector CV . Then the quantity e[k] = c[k]−CV.x[k] will produce non-zero value when

there is a deviation in system model A and B, where c[k] = M.x[k] +N.u[k], M = CV.A

and N = CV.B.

Proof. The plant of a linear state variable system follows the model shown in 2.5,M andN

are computed as M = CV.A and N = CV.B, which is saved in the checking computer. If

18

the system is in nominal condition, the matricesA andB does not change. In this situation:

x[k + 1] = Ax[k] +Bu[k] (2.6)

=⇒ CV.x[k + 1] = CV.Ax[k] + CV.Bu[k] (2.7)

=⇒ e[k] = CV.Ax[k] + CV.Bu[k]− CV.x[k + 1] = 0 (2.8)

i.e. the quantity, ‘chekcksum error’, e(k), stored in the checking computer, produces a

zero valued signal.

Now, lets assume that the plant matrices A and B are going through some deviation,

and the new values are A′(= A + δ) and B′(= B + γ). Here δ and γ are matrices with

appropriate dimensions having one row i containing non-zero elements, and zero otherwise.

Now, the checksum error computation becomes:

e[k] = CV.Ax[k] + CV.Bu[k]− CV.x[k + 1] (2.9)

= CV.Ax[k] + CV.Bu[k]− (CV.A′x[k] + CV.B′u[k]) (2.10)

= CV.Ax[k] + CV.Bu[k]− (CV.(A+ δ)x[k] + CV.(B + γ)u[k]) (2.11)

= −CV.δx[k]− CV.γu[k] (2.12)

(2.13)

From this analysis, it is proved that the quantity, ‘chekcksum error’, e(k), will produce

non-zero signal, and hence, detect failure when there is a deviation in system model A, and

B.

As seen from the Theorem 2.3.1, the new variable checksum error, e[k] = c[k] −

CV. x[k] was defined that generates a value less than a predefined threshold for nomi-

nal system operation. This predefined value depends on measurement noise statistics and

modeling inaccuracy and chosen accordingly from pre-deployment simulations and post-

19

deployment calibrations. If the error signal e[k] generates a value greater than the chosen

threshold, an error is detected.

Figure 2.3: Error detection signal flow graph

Example

To implement checksum circuit in the example system introduced in Section 2.2, A coding

vector, CV = [β1, β2] was selected. Then the following was obtained as the expressions of

M = CV.A, and N = CV.B:

M =

[
(−β1a1 − β2a0) β1

]
N =

[
(−β1b1 − β2b)

] (2.14)

The data checksum, c[k] is computed as c[k] = M. x[k] + N. u[k], and checksum error,

e[k] becomes e[k] = CV. x[k]−M. x[k]−N. u[k]. This shows how the checksum error is

computed in the example circuit. In practical implementations, this is always constructed

using only two op-amps with necessary resistors and capacitors and the hardware overhead

is independent of the number of system states.

20

Figure 2.4: Error correction signal flow graph

2.3.2 Error correction scheme

The proposed methodology for error correction is illustrated in the signal flow graph of

Figure 2.4. Following theorem is proposed for error correction scheme:

Theorem 2.3.2. To correct the failure, the ‘checksum error’, e[k] = −CV.δx[k]−CV.γu[k]

should fed back to the state with high gain.

Proof. Consider the system referred in Theorem 2.3.1. In presence of failure, the system

shown in 2.5 will change according to following:

x̃[k + 1] = (A+ δ)x̃[k] + (B + γ)u[k] (2.15)

And, x̃[k] corresponds to the modified state which the system having parametric failure

exhibits. It is clear from this representation that the error in state x is given as

∆x[k] = δx[k] + γu[k] (2.16)

Thus an accurate compensation scheme will exactly compensate for this error of the

state x by providing −∆x as feedback into state xi[k] with a gain ρ. In this situation, the

expression of checksum error becomes the following:

21

e[k] = CV.Ax[k] + CV.Bu[k]− CV.x[k + 1] (2.17)

= CV.Ax[k] + CV.Bu[k]− (CV.A′x[k] + CV.B′u[k] + ρCV.e[k]) (2.18)

= CV.Ax[k] + CV.Bu[k]− (CV.(A+ δ)x[k] + CV.(B + γ)u[k] + ρCV.e[k])

(2.19)

Now, as the failure is in ith row, elements in all other element will get cancelled. As ith

element of CV is βi, following is obtained after simplification:

e[k] = −βi.δx[k]− βi.γu[k]− ρβi.e[k] (2.20)

Which implies:

(1 + ρβi)e[k] = −βi.δx[k]− βi.γu[k] (2.21)

=⇒ ρe[k] = −δx[k]− γu[k] (2.22)

when ρ −→ ∞. It is also observed that the quantity checksum error approaches zero

when gain ρ is sufficiently large and it is independent of coding vector CV . i.e. ρe =

−δx[k]− γu[k] = −∆x

Now, when this signal is fed back to the state xi, the expression of modified state be-

comes:

x̃+ ρe = x+ ∆x+ ρe = x+ ∆x−∆x = x (2.23)

Thus, it can be seen that the compensation signal ρe[k] fed back into the state xi is

exactly equal and opposite to the error in the state xi and by this way, the compensation is

performed.

22

It should be noted, the checksum error can also be constructed by e[k] = CV.x[k +

1]−CV.Ax[k]−CV.Bu[k]. This expression will be able to detect the failure in real-time,

however, it should be phase inverted to for correction. This definition will be used for the

to explain the remaining part of this research. To correct the error caused by any failure

mechanism, the phase-inverted checksum error signal e[k] is fed back to the states of the

switched capacitor circuit with appropriate gains k1 and k2. Pre-deployment design-stage

statistical experiments are performed on different instances of assumed fault models where

the gain values are varied over possible range of choices and error power is measured. Such

Pareto-surface based optimization provides us with the knowledge of the disparate effects

of different faults on the checksum error signal e[k] along with optimal gain choices for

best error correction. In post-deployment operation of the circuit, the temporal profile of

the error signal e[k] as well as the magnitude of the signal provide an indication of the type

of fault. A transient alpha-particle induced soft error causes a temporary glitch of low mag-

nitude on the error signal line whereas persistent fault effects such as coupled noise sources

or parametric shifts due to process variations generate a permanent error signal. For transi-

tory faults, the error signal is fed back for a short duration after observing the non-zero error

signal whereas the feedback is performed over longer periods of time for persistent error

sources. A decision-making system observes the error signal and chooses the appropriate

pre-computed gain values from look-up table based memory (which is available in modern

systems) and performs the pertinent temporal feedback to the system states, resulting in

significant SNR improvements as reported in the following section.

Implementation Example

The implementation of the error correction scheme in the bi-quad circuit is illustrated in

Figure 2.5. The states X1(z) and X2(z) and the input u(z) are used in the ‘error detection

circuit’ to generate the checksum error signal. This signal is then fed back through ap-

propriate gains to states by capacitive coupling of the signal to the corresponding op-amp

23

Figure 2.5: Error correction scheme for biquadratic circuit

inputs. During fault-free operation of the circuit, the error signal lies below the pre-defined

threshold and the gain values are chosen to be zero such that there is no feedback of er-

ror signal. Upon observance of the error signal above the threshold, the feedback is per-

formed by a separate decision-making system (can be implemented by either software or

comparator-based techniques) as mentioned above.

2.4 Real time error correction: experimental results

To demonstrate the viability of the proposed method, simulation experiments on the bi-

quad filter were performed where three different kinds of faults were applied. The results

are explained below:

2.4.1 Parametric faults

Parametric faults have been considered as the first fault model. Here, the parameters (ca-

pacitance values) of the filter circuit shown in Figure 2.2 are varied as time progresses,

which results in non-zero checksum error. In the simulation experiments, this checksum

24

Figure 2.6: Pareto surface for parametric failure

error is fed back to the states with different gain value choices and the error power is com-

puted for each case. This experiment is repeated by varying all the capacitors in the filter.

It must be noted here that the faults being considered in this fault model are permanent in

nature. This necessitates a permanent feedback of the checksum error ensuring continual

correction of the faults. By selecting different combination of feedback gains from check-

sum error to different states, different error power values were obtained which is shown

in the form of a Pareto surface in Figure 2.6. Here, k1 and k2 represent gain values from

checksum error to x1, and x2 respectively that allows error mitigation while keeping the

circuit operation stable. From the convex contours of the Pareto surface, it can be seen that

by selecting appropriate gain values k1,opt, and k2,opt, the error power can be minimized.

This shows the viability of the proposed approach for correcting the parametric faults in

switched capacitor circuits.

25

2.4.2 Alpha-particle strike

The faults due to alpha-particle strikes have been considered as the second type of faults

in this work. An alpha-particle strike introduces an ionized path between different nodes

of the electronic system which changes the voltage level at different nodes and hampers

the operation of the electronic circuit. To model such a phenomenon in this test case,

soft errors are introduced in different nodes of the circuit by a fast temporary discharge of

circuit nodes. This creates a temporary error in the circuit operation as shown in Figure

2.7. Due to transitory nature of these errors, it is sufficient to feed the checksum error

only once to nullify the effects of the temporary error. This is accomplished by feeding the

checksum error back to the states at next phase of the clock cycle with different gains. Like

the previous case, a Pareto surface of error power was obtained by selecting different gain

values k1 and k2 within stability boundary as shown in Figure 2.8. From this surface plot,

the optimum gain k1,opt, and k2,opt were selected to minimize the error power introduced by

alpha particle strike.

In Figure 2.7, the temporal output response of the bi-quad filter is plotted where, an

alpha-particle strike has happened in the circuit at t = 300µs, and by feeding back the

checksum error to the states with optimum gains, the mean of the system response was

restored in that instant. The zoomed-in image of the inset portrays the error mitigation

effects of the proposed correction scheme. In the absence of any error correction, the circuit

slowly recovers from the soft error towards the nominal performance as seen in the inset

of the faulty response. The proposed error scheme is able to correct the system response

instantaneously with near-zero latency. This again demonstrates the effectiveness of the

proposed scheme in correcting different fault effects in a probabilistic sense by appropriate

feedback of the checksum error to different system states.

26

2.4.3 Induced noise

As a third fault model, the performance of the proposed approach was explored in presence

of induced noise sources such as coupled noise from digital substrates or nearby conduc-

tors, power supply switching, etc. In this study, an additional persistent noise source was

coupled in one of the states of the switched capacitor circuit and the output of checksum

error was observed. Similar to previous experiments for the other fault models, the gain

values k1 and k2 are varied and the checksum error is fed back to the states in continuous

manner for the duration the noise source is active. The Pareto surface obtained by varying

the values of k1 and k2 within the stability limit of circuit performance is given Figure 2.9.

As observed from this surface plot, the error power reduces as an optimum set of gain val-

ues was applied. This observation also demonstrates the viability of the proposed approach

to correct induced noise faults.

2.4.4 Experimental Data

The experimental data for 2 different instances of the assumed fault models in the test

circuit have been tabulated in Table 2.1. The error power before and after correction for

the different fault models clearly demonstrate the SNR improvement performed by the

correction mechanism. It is noteworthy that this noise power reduction has been achieved

without any diagnosis mechanisms[113].

Table 2.1: Error correction comparison

Failure
mechanisms

Error power
(dB) without

correction

Error power
(dB) with
correction

Parametric, fault at α1C1 -34.68 -37.81
Parametric, fault at α3C1 -62.07 -74.47

Alpha particle strike, fault at α3C1 -62.07 -74.47
Alpha particle strike, fault at α4C1 -55.22 -79.35

Induced noise at state x1 -70.33 -80.71
Induced noise at state x1 -86.60 -92.50

27

2.5 Summary

A real time approach to detect and correct errors in switched capacitor circuits has been

demonstrated in this work. This has been accomplished by taking advantage of the clock

separation which is an inherent property of switched capacitor circuits. System level check-

sum encodings have been exploited to detect any deviation from nominal system perfor-

mance. This error signal is then fed back with appropriate gain values to all system states

without performing any dedicated diagnosis routines. Three different fault models have

been considered and the proposed approach has been able to correct faults in all of this

situations with very high degree of accuracy minimizing the error power. The experimen-

tal data represent the effectiveness of the proposed approach. Future work will involve

demonstration of error correction on other complex linear and nonlinear electronic systems

operating under arbitrary failure mechanisms.

28

Figure 2.7: Response corrected by checksum error feedback

29

Figure 2.8: Pareto surface for alpha-particle strike failure

Figure 2.9: Pareto surface for induced noise failure

30

CHAPTER 3

ON-LINE DETECTION, DIAGNOSIS, AND COMPENSATION FOR FAILURES

IN LINEAR STATE VARIABLE CIRCUITS AND SYSTEMS USING

TIME-DOMAIN CHECKSUM OBSERVERS

3.1 Real-Time Error Detection and Control Compensation From Steady State Check-

sum

3.1.1 Introduction and Key Contribution

While the last two decades witnessed revolutions in computing and communications, the

next decade will witness a revolution in robotics. From self-driven cars to robot-assisted

surgery, there will be a plethora of applications that will depend on the reliable operation of

sensors and actuators at the various man-machine interfaces of future autonomous systems.

There is wide variety of application of DC motor in real life. Although its operation is well

understand, real time detection, diagnosis and correction of different electro-mechanical

faults in an electro-mechanical system like a DC motor is yet to be looked at. In this sec-

tion, real-time detection of mechanical anomalies, namely co-efficient of viscous friction,

torque constant etc were investigated that arise in the operation of a simple actuator due to

field wear-out of a DC motor. Purely electrical tests are used for anomaly detection and

once an error is detected, the motor control algorithm is adjusted almost instantaneously

to compensate for loss of motor performance. The idea is to allow the motor to run un-

interrupted until such time that more detailed (off-line) tests can be carried out to diagnose

the problem and create a permanent fix for it.

A device such as a brush-activated DC motor can be represented as a linear state vari-

able system, traditionally referred to as the plant, in control theoretic terminology. The

plant is accompanied by a controller (proportional or PID [10, 18]) which measures specific

31

plant parameters (such as input current and angular velocity) to maintain the performance

of the plant under changing load conditions. In the past, there has been work on detection

of faults using plant models derived from off-line and real-time experiments [117–121].

In each of these research papers, the plant model is estimated using off-line experiments

(plant parameter measurements). Subsequently, in real-time, the plant and its model are

both stimulated with the same input and the plant output is compared against the model

output. Any discrepancies between the two are flagged as faults. However, failure diag-

nosis is not real-time and therefore error compensation cannot be performed in real-time

either.

Real-time analog checksums [94] was proposed to perform real-time error detection

and compensation. The key contributions of this research are as follows:

1. Use of checksum codes for encoding the state matrix of the DC motor in such a

way that allows real-time diagnosis of the state variable of the motor that is in error.

This allows detection/diagnosis of mechanical effects (e.g. friction) using electrical

measurements.

2. Development of a checksum error driven performance compensation algorithm that

dynamically modifies the motor control parameters to recover motor performance

under diverse electro-mechanical field degradation conditions in near real-time until

the motor can be powered off for regular maintenance.

3.1.2 DC Motor Control: An Overview

Two popular methods of speed control in a DC motor are armature control (controlling

the torque by varying armature current) and flux control (controlling the field current). The

approach of armature control results in a linear state space representation, and was followed

in this work. The DC motor is modeled by the armature resistance Ra, self-inductance of

the armature La, back emf constant Kb, and torque constant Ke. Under ideal condition,

32

the electrical torque Te developed at the shaft is directly proportional to armature current ia

and the induced emf v is directly proportional to speed ω.

Te = Keia

v = Kbω

(3.1)

The speed of the motor can be controlled by applying a DC voltage across its armature

terminals. For a proportional control system the terminal voltage V is equal toK(ωref−ω)

where, K is the proportionality constant. Ke and Kb are numerically equal in magnitude if

Kb is expressed in the unit of volt-s/rad. The terminal relationship assuming Ke = Kb is

given by the following equation:

V = Kbω + iaRa + La
dta
dt

=⇒ ia = −Ra

La

∫
iadt−

Kb

La

∫
ωdt+

1

La

∫
V dt

=⇒ ia = −Ra

La

∫
iadt−

Kb +K

La

∫
ωdt+

K

La

∫
ωrefdt

(3.2)

The mechanical shaft driven by the motor is modelled as a moment of inertia J for

the sake of simplicity with a co-efficient of viscous friction B1. Then, the torque equation

which drives the load is given by,

J
dω

dt
= Kbia −B1ω − TL

=⇒ ω =
Kb

J

∫
iadt−

B1

J

∫
ωdt− 1

J

∫
TLdt

(3.3)

Combining 3.2 and 3.3, following was obtained as the state space model of a DC motor

speed control system. Here, x(t) represents [ia, ω]T and control action u(t) represents

33

[ωref , TL]T .

ia
ω

 =

a11 a12

a21 a22

∫
ia
ω

 dt+

b11 0

0 b22

∫
ωref
TL

 dt (3.4)

Where, a11 = −Ra

La
, a12 = −Kb+K

La
, a21 = Kb

J
, a22 = −B1

J
, b11 = K

La
and b22 = − 1

J

Similar to linear digital state variable system expressed in 2.5, the linear analog state

variable system takes the following form:

ẋ = Ax(t) +Bu(t)

y = Cx(t) +Du(t)

(3.5)

The state space representation is rewritten in the integral form to eliminate noise sensi-

tivity as,

x = A

∫
x(t)dt+B

∫
u(t)dt (3.6)

3.1.3 Proposed Methodology: Error Detection

Similar to linear digital state variable system, a row vector namely ‘coding vector’, CV is

introduced where CV = [α1 α2 · · ·αn]. Additionally, two new matrices M = CV.A and

N = CV.B a quantity ‘data checksum’, c(t) = M
∫
x(t)dt+N

∫
u(t)dt were introduced.

From this representation it can be shown that, in a fault free system, c(t) = CV.x(t) where,

c(t) is called as ‘state checksum’. The ‘Checksum error’, e(t) is defined as e(t) = c(t) −

CV.x(t) which will produce non-zero output when there is a fault. By this way, the error

in the system can be detected. To make this system stable, a small value of this error is fed

back to the data checksum circuitry. The feedback gain should be small enough to keep the

system dynamics unchanged. In case of DC motor system, the following is obtained as the

expression of M and N :

34

M =

[
α1a11 + α2a21 α1a12 + α2a22

]
N =

[
α1b11 α2b22

] (3.7)

And, the expression of ‘checksum error’ becomes: e(t) = M
∫ t

0
x(t) + N

∫ t
0
u(t) −

CV.x(t). In presence of parametric faults in the system, this error signal produces non-

zero signal output. The state transition graph of the DC motor along with the proportional

controller and the analog checksum circuitry is shown in Figure 3.1. To keep this figure

simple, the variables ia, ω, ωref and TL are shown separately.

Figure 3.1: State transition graph showing the motor, controller and the error detection
circuit

For error compensation, in this work, two checksums e1 and e2 were employed, with

coding vectors of [1, 0] and [0, 1] respectively such that e1 and e2 check for explicit errors

in the first and second equations of the state space representation in 3.4. A fault in the first

state equation is uniquely identified by the signal e1(t) and similarly e2(t) detects errors in

the second state equation.

35

Figure 3.2: Simulink model of the DC motor

3.1.4 Error Detection Result

Simulation

The system was developed in Simulink and is shown in Figure 3.2. Here, the system was

simulated along with the error detection circuit. The faults injected in the system are in

the form of different parametric variations in coefficient of viscous friction B1, back-emf

constant Kb, and armature resistance Ra. Power supply transients are modelled by the

change in motor torque constant Ke during simulation. Injection of faults changes the

state-space representation of the system and generates a non-zero checksum error signal

36

Figure 3.3: Checksum error signal with permanent perturbations in: (a) armature resis-
tance, (b) back-emf constant, (c) viscous friction coefficient and (d) torque constant

e(t) indicating the presence of parametric perturbations in the system. The checksum error

signal is shown in the presence of different fault injection conditions in Figure 3.3.

Hardware Validation of the Error Detection Circuit

An experimental test-bench has been built using commercial off-the-shelf components and

DC motor. Figure 3.4 shows a picture of the constructed test bench in stripboard using

operational amplifiers, passive components and a DC motor. The overhead of the error

detection scheme is low and is O(1/n), where n is the number of states in the system.

Figure 3.4 shows the experimental hardware prototype.

Figures 3.5 and 3.6 show the analog checksum signal as recorded in an oscilloscope in

presence of a blocked rotor (modelling temporary change in viscous friction coefficientB1),

and power supply transient (modelling temporary change in torque constant) respectively.

37

It is clearly seen that a non-zero signal output indicates the presence of a transient fault in

the system. The experimental results match very closely with the simulation.

Figure 3.4: Experimental prototype showing the DC motor, speed encoder, error detection
circuit, current sensor and the controller

Figure 3.5: Analog checksum signal in presence of blocked rotor

3.1.5 Real-Time Parametric Error Compensation

In this study, the steady state value of ‘checksum error’ was used to detect and compensate

for error. The error compensation process is based on the following steps:

38

Figure 3.6: Analog checksum signal in presence of supply transient

Tuning Procedure

Analysis of the state space equations of the DC motor reveal that the sensitivity of the error

signals e1 and e2 to perturbations in armature resistance is orders of magnitude smaller

than that to perturbations in the other electro-mechanical parameters like torque constant,

or back-emf constant. This is a fundamental property of the system state equations for the

DC motor considered and to facilitate our study, the armature resistance Ra was measured

independently. Hence, the error compensation involves measuring 3 metrics – e1, e2 and

Ra. The tuning procedure involves 3 steps which are described in detail in the following

subsections:

1. Measure e1, e2 and Ra.

2. Compute the deviations from nominal values - ∆e1, , ∆e2 and ∆Ra. Classify systems

as pass/fail if the deviations exceed precomputed limits.

39

3. Formulate the tuning metricme = ∆e2
1+∆e2

2+∆R2
a with appropriate normalizations

and apply optimum controller gain Kopt as Kopt = f(mt) where f(.) denotes the

functional mapping from the tuning metric to the optimum gain.

Pass/Fail Classification

The nominal limits of ∆e1, , ∆e2 and ∆Ra are determined by introducing a 3−σ perturba-

tion of 6% in the electro-mechanical parameters of torque constant Ke, back-emf constant

Kb and coefficient of viscous frictionB1 as well as the armature resistanceRa. It is assumed

that the system is calibrated for perturbations in armature inductance La and moment of in-

ertia J from the nominal design values during deployment. Perturbations in La and J are

negligible compared to the changes in the previously mentioned electro-mechanical param-

eters during on-field deployment.

100 systems were created in simulation by perturbing 4 parameters of Ke, Kb, B1

and Ra with a Gaussian distribution with σ = 2% from the nominal values. 4 system

specifications namely – 2% settling time, overshoot percentage, rise time and steady state

error for the angular velocity ω were considered in this work. The nominal ranges of the

specifications as well as the error metrics are determined from this experiment.

Systems are classified as ‘pass’ or ‘fail’ depending on the error metrics. For a system,

a system is called ‘fail’ if any of the 3 error metrics ∆e1, , ∆e2 and ∆Ra are larger than

the allowable nominal deviations ∆e1(opt), , ∆e2(opt) and ∆Ra(opt) (determined from the

aforementioned experiment),and it is caleed ‘pass’ if all the error metrics fall within the ac-

ceptable limit. Similarly, a system is categorized as ‘good’ if all 4 specifications fall within

the nominal specification limits or categorize systems as ‘bad’ if at least one of the speci-

fications falls outside the acceptable nominal range. Among the ‘bad’ systems, if a search

for the optimum controller gain for tuning the system into a ‘good’ one is performed and

all 4 specifications can be restored within their nominal limits, such systems as reclassified

as ‘tunable’. ‘Bad’ systems which have experienced catastrophic parametric perturbations

40

cannot be tuned with any controller gain and hence are not tunable.

Figure 3.7: Correlation between normalized specification metric ms and normalized error
metric me

Figure 3.8: 3-d scatter plot showing the distribution of ‘good’, ‘bad’ and ‘tunable’ systems
according to ‘pass’/‘fail’ classification criteria on the e1 − e2 −Ra axes

41

The pass/fail classification test based on the proposed tuning metric me is able to dif-

ferentiate between ‘good’ and ‘bad’ systems since there exists a high correlation between

the error metricme and the normalized specification metricms = ∆s2
1 +∆s2

2 +∆s2
3 +∆s2

4,

where si, i = 1, 2, 3, 4 are the different specifications mentioned previously. This correla-

tion is shown in Figures 3.7 and 3.8. In Figure 3.7, the good systems are located very close

to the origin and are not discernible. Here, as the parameters of the given system lies close

to its nominal value, the error metric as well as the specification metric will lie very close to

zero. That means the zero error results in compliance of all the specification of the system.

On the other hand, as the parameter value deviates from its nominal one, different specifi-

cations of the system also deviates from its nominal value. This was the rational to select

the aforementioned definition for the specification and error metric. Figure 3.8 shows a 3-d

scatter plot on the e1 − e2 −Ra axes where all the systems can be identified clearly.

Figure 3.9: Compensation Look-up table (LUT) for DC Motor Control: The rightmost
columns show the quantization limits of tuning metric specifying each bin uniquely. The
specification coverage indicates the percentage of systems that are tuned by application of
the optimal gain for that bin

42

Optimum Controller Gain Determination

400 instances of DC motor speed control systems were created in simulation where in

200 systems, 4 perturbed parameters Ke, Kb, B1 and Ra follows a Gaussian distribution

of σ = 2% from the nominal values. For the remaining 200 systems, the aforementioned

parameters were perturbed with a uniform distribution of 30%. This distribution results

in a set of systems where the 4 system specifications do not lie within the nominal range

resulting in bad systems.

For each of the ‘bad’ systems, an exhaustive search for optimum controller gain was

performed for tuning the systems such that all specification are restored within acceptable

nominal boundaries. Here the gain was increased and it was checked whether the system

meets all the specifications. If the specification is met, then the gain is the optimum gain.

If not, the gain is again increased to see if this meets the specification. This was continued

until the system becomes unstable. Systems for which an appropriate gain was obtained to

tune the specifications are re-categorized as ‘tunable’ systems. For all such ‘tunable’ sys-

tems, the tuning metric me was computed. From simulation of a large number of systems

it had been observed that the tuning metric stays within a particular range of values. All

the tunable systems were grouped into 8 bins according to uniform quantization of tuning

metric value. An optimum controller gain Kopt for each bin was selected in a way such

that the number of tuned systems meeting all the system specifications is maximized for

the corresponding bin by applying the same gain Kopt. This may result in a few systems

in each bin for which application of the optimal gain of that bin does not tune the sys-

tem. However, on an average, maximum number of systems in that bin will be tuned with

the optimal gain parameter. The number of bins is determined by the tradeoff between

the granularity of tuning process and the computational effort required to search for opti-

mal controller parameters for each bin. In this work, an exhaustive search was performed

for finding the optimal controller gain. Further computational savings can be achieved by

more sophisticated techniques. Figure 3.9 shows the optimum controller gains obtained for

43

8 bins along with the tuning metric values specifying each bin limit and the specification

coverage of the systems lying in each bin. Here, as an example, it is observed that bin 2

contains 22 tunable instances out of which our technique was able to tune 9 (40.91%) by

selecting a Kopt of 2.59.

Performance of Error Compensation Procedure

The real-time error compensation involves measuring the three metrics of ∆e1, , ∆e2 and

∆Ra for a system in real-time. Computing the deviations ∆e1, , ∆e2 and ∆Ra from their

respective nominal values will classify the systems as ‘pass’ and ‘fail’. No compensation

is performed on DC motor systems which are classified as ‘pass’ on the basis of the tuning

metric me. For systems classified as ‘fail’, the tuning metric is computed and the appro-

priate bin in which the corresponding tuning metric value falls, is determined in real-time.

If the tuning metric value does not fall into any of the precomputed bins, the compensa-

tion is not possible and offline tests are required to diagnose the faults for permanent fixes.

However, the tuning metric value belonging to a particular bin’s range indicates tunability

and the corresponding optimal controller gain for that bin is applied to the DC motor in

real-time for compensation.

In our simulation of 400 systems, 29 systems are incorrectly classified as ‘pass’ based

on the tuning metric value. These false negative systems are those which doesn’t meet at

least one specification and still no compensation is applied to these systems, having passed

the classification test. On the other hand, 8 systems out of 400 are ‘good’ systems and

incorrectly classified as ‘fail’.

Figure 9 shows the histogram plot of all 400 systems before performing real-time com-

pensation. It can be observed that a significant number of systems remain outside the

nominal boundaries for each of the specifications. The purpose of compensation procedure

is to apply the appropriate controller gain and restore maximum systems within the accept-

able nominal limits. Figure 10 shows the same histogram distribution of all 400 systems

44

Figure 3.10: Histogram plots of rise time, settling time, overshoot percentage and steady
state error (Ess) before compensation. Vertical lines indicate the nominal range of each
specification

after applying real-time compensation.

66 out of 400 systems were determined to be tunable based on tuning metric value (as

shown in the Look-up-Table of Figure 3.9). After compensation, 30 of these 66 systems

are tuned such that all their specifications are restored, yielding a compensation efficiency

of 45.45%. These are the systems which were going to be identified as faulty ones without

any compensation. Only this approach was able to compensate them and hence they can

be used as a good system. This efficiency can further be improved by employing more

sophisticated controllers like PID control allowing more degrees of control parameters and

by increasing the number of bins. This compensation efficiency has to be considered with

the fact that the proposed methodology provides a real-time compensation for the first time,

unlike prior works which required offline model estimation methods for optimal control.

45

Figure 3.11: Histogram plots of rise time, settling time, overshoot percentage and steady
state error (Ess) after compensation. It can be observed that more number of systems have
been included within the nominal specification limits, validating the efficacy of real-time
compensation

3.1.6 Summary

A real time error detection scheme was introduced for speed control of a DC motor in this

paper. The error detection scheme was able to detect the target electrical and mechanical

faults. The error detection scheme was very simple in nature yet it was very effective

in detecting the faults. The methodology has been demonstrated experimentally and it is

found to be in good match with the simulation. Future work will involve the error detection

methodology for field controlled DC motor speed control system which is non-linear in

nature and also on the correction of error for armature controlled DC motor speed control

system.

46

3.2 On-Line Error Diagnosis, and Compensation Linear State Variable Circuits and

Systems Using Time-Domain Checksum Observers

3.2.1 Introduction and Key Contribution

In the past, circuit and system engineers have assumed that the underlying hardware which

is used to actuate a linear system and its control algorithms as well as the relevant sensors

and actuators are correct by design [10, 11, 16, 18, 122, 123]. However, the sensors and

actuators as well as different components of the circuit and system go through wear and

tear over time and gradually degrade in performance resulting in realistic failure events

which can lead to loss of Quality of Service (QoS) and eventually system failure. From the

perspective of application-level safety, it is imperative that such anomalies be diagnosed in

real-time with high accuracy before the onset of failures resulting in catastrophic accidents.

In the past, there has been work on detection of faults using system models derived

from off-line and real-time experiments [117–121]. In some of these works, the system

model is estimated using off-line experiments (system parameter measurements). In other

research, the system and its model are both stimulated with the same input in real time

and the plant output is compared against the model output. Any discrepancies between the

two are flagged as failures. However, it is difficult to perform failure diagnosis in real-time

using a model of the system alone, as this requires the use of computationally intensive

model parameter estimation algorithms.

While error detection can be performed using a variety of techniques [36, 39, 45, 48, 94,

111, 112], error correction for a state variable system is a much harder problem. Typically,

error detection is followed by diagnosis and once diagnosis is complete, error compensation

is performed via error feedback [36, 39] or adaptation of the feedback control law of the

system [94]. It was shown in [39] that the steady state values of multiple checksums are

required for real-time diagnosis.

47

Key Contributions

The key contributions of this research [79] are as follows:

1. In this work it is demonstrated for the first time, that the transient response of the

checksum error to dynamic input stimulus in a checksum-encoded linear state vari-

able system contains diagnostic information about the values of multi-parameter per-

turbations that causes the system to behave differently from its normal behavior. In

theory, the transient response of even a single checksum can be used to uncover a

wealth of multi-parameter diagnostic information about multi-parametric deviations

within the system.

2. This information can subsequently be used to significantly improve both the speed

and accuracy of estimation-driven multi-parameter diagnosis algorithms as well as

diagnosis-driven control law correction algorithms for linear real-time state variable

systems. An algorithm for detection, diagnosis and correction of multiple failure

events at different points in time is developed.

3.2.2 Proposed Approach: Error Diagnosis, and Correction

As explained in the previous section, the error due to a failure can be detected in real-time

comparing ‘checksum error’ signal with respect to precomputed threshold. However, the

diagnosis and correction has scope of improvement. In this section, the idea for error cor-

rection is presented using the checksum error signal. As observed from previous studies,

the crossing the ‘checksum error’ signal over a precomputed threshold would detect the

failure. Additionally, it is also observed that the time-domain property of checksum er-

ror can be used to diagnose multi-parametric deviations in the plant parameters of a linear

control system. The signal waveform of the checksum error for a faulty system depends

on the input stimulus. Different input stimuli excite multi-parameter variations in different

ways, resulting in dissimilar checksum error signals. Conversely, the same input stimulus

48

may produce different error signals in systems with different failure conditions. The di-

agnosis of the source of failure is performed with a two-step process (pre-deployment and

post-deployment) which are explained below:

Pre-deployment Step: Training of Checksum Error

The input stimulus, along with the corresponding checksum error response across a multi-

tude of multi-parameter failure conditions is used to train a regression function to predict

failed plant parameter values from observations of the same. The training procedure is

depicted in Figure 3.12.

Figure 3.12: Training of checksum error response for diagnosis

As shown in Figure 3.12, a family of N parameter-perturbed systems (plant parameters)

is stimulated by the same input and the checksum response is captured by digitizing the

checksum error waveform. This experiment is repeated for diverse sets of input stimuli. A

regression based model is trained with samples of the checksum error and stimuli as inputs

and the perturbed plant parameter set of the system as output. This trained model is later

used for coarse plant parameter estimation of the linear system.

49

Post-deployment Step: Diagnose and Correct

In this section, the idea for error correction using the checksum error signal is presented.

The system architecture of a regular control system is shown in Figure 3.13 and the flow-

chart of the proposed methodology for error correction is shown in Figure 3.14. In Figure

3.13, the ‘set point’ represents the operating point of the system which the system is de-

signed to track with assistance from the controller. An additional checksum, namely the

“system checksum” was introduced for error correction. In Figure 3.13, the ‘plant check-

sum’ is created by only encoding the state equations of the plant, P and the ‘system check-

sum’ is implemented by encoding the state equations of both the plant P and the controller,

K (the latter is updated upon failure detection to enable detection of future failure events)

Figure 3.13: System architecture for error correction

It must be noted that, the plant may experience several parametric failure events over the

course of time, and the precomputed model described in Step 1 becomes invalid if the ‘plant

checksum’ is updated after failure detection. For this reason, the same reference ‘plant

checksum’ over time was maintained. This allows diagnosis of more than one parametric

failure event while one additional checksum, the ‘system checksum’ is required to detect

50

Figure 3.14: Error correction flow chart

more than one failure event across time and is updated after each such event. The ‘system

checksum’ triggers the correction scheme, shows the status of the controller updates and

allows the checksum error to return to zero when the controller update is completed. In

a nominal system, both the plant and system checksum errors are ideally zero (lie within

specified certain thresholds in the presence of measurement noise). In the event of para-

metric failure, both of these checksum errors, namely eplant(t) and esystem(t) are non-zero.

When esystem(t) is greater than a predefined threshold and hence triggers the correction

scheme, the parameters of the modified plant (after multi-parameter failure) are estimated

from the input stimulus and eplant(t) using the previously learned regression model. Let

the estimated parameter set from the model be X0. After obtaining the initial parameter

estimate, a non-linear optimization is performed in real-time to determine the best estimate

for the plant parameter set by minimizing eplant(t) taking X0 as the initial starting point

for the search in the parameter space of the plant, P . It must be noted that from the time

51

the system checksum crosses the threshold indicating parametric failure, the plant inputs

as well the checksum error response are digitized and recorded for use as input to the re-

gression model described earlier. It is imperative that the error compensation be performed

as rapidly as possible. The estimated parameters X0 from the regression function, help the

real-time optimization to converge quickly. After obtaining the revised parameter estimate,

the controller, K is updated in such a way that the system specifications are restored. At

the same time, the ‘system checksum’ is also updated with the estimated plant parameter

values such that esystem(t) is forced to zero and can trigger the error detection/correction

scheme again in case of future parametric failure.

3.2.3 Test Cases Overview

Test Case I: DC Motor Control

DC motor speed control system has been considered as the first test case for this study. The

system dynamics and check constructions are already explained in Section 3.1.2, and hence

is skipped here for the sake of brevity.

Test Case II: Generator Connected to Infinite Bus

A generator connected to infinite bus is the second test case for our proposed approach. The

generator system connected to an infinite bus is expressed as a linear state variable system

whose representation is given as:

d|E ′a|
dt

=
Efd
Td0

+
1− k3

k3Td0

|V∞| cos δ − E ′a
k3Td0

dδ

dt
= p

dp

dt
=
Pm
M
−Dp− Pg(|E ′a|, δ)

(3.8)

52

where, Pg(|E ′a|, δ) and k3 have following expression.

Pg(|E ′a|, δ) =
|E ′a||V∞|
x′dm

sin δ +
|V∞|2

2

(
1

x′qm
− 1

x′dm

)
sin 2δ

k3 =
x′d + xL
xd + xL

(3.9)

Here, Efd = Field voltage, Td0 = Rotor time constant, δ = Power angle, xd = Direct axis

reactance, x′d = Direct axis transient reactance, xq = Quadrature axis reactance, xL = Line

reactance, Pm = Mechanical power input, Pg = Electrical power output, xqm = xq + xL,

and x′dm = xd + xL. All the quantities have the unit of per unit (p.u.), except power angle

whose unit is in degrees. The state vector of this system is given as: x = [|E ′a|, δ, p]T and

input to this system consist of the field voltage and mechanical power which is supplied to

the generator.

Equation 3.10 shows that the generator connected to an infinite bus is a non-linear

system by nature. Hence, the checksum is implemented on a linearized version of the

model at its operating point. The linearized version of the system at its operating point is

given below in equation (7):

ẋ =


− 1
k3Td0

(1−k3)|V∞|
k3Td0

0

0 0 1

1
M

∂Pg(|E′a|,δ)
∂|E′a|

1
M

∂Pg(|E′a|,δ)
∂δ

− D
M

x+


1
Td0

0

0 0

0 1
M

u (3.10)

where, x = [|E ′a|, δ, p]T , and u = [Efd, Pm]T . In this way, the linearized version of

generator connected to infinite bus can be represented in matrix form as ẋ = Ax + Bu.

From this representation, the checksum circuit was implemented by selecting a coding

vector CV = [α1, α2, α3]T .

53

Figure 3.15: Biquad filter

Test Case III: Analog Biquadratic Filter

An analog biquadratic filter (also known as biquad filter) is considered as the third test case

and is shown in Figure 3.15. The biquad filter is expressed in state space form by:

ẋ =

a11 a12

0 a22

x+

 0

b2

u (3.11)

where, a11 = −
(

2 + R
RG

)
RQ

RQ+R1

1
R1C1

, a12 = 1
R1C1

, a22 = − 1
R2C2

, b2 = R
RG

1
R1C1

. And,

x = [vBP , vLP]T , u = vin. From the representation given in equation 3.11, the checksum

circuit can be implemented by selecting a coding vector CV = [α1, α2]T .

3.2.4 Result: Real-Time Diagnosis of System Parameters

DC motor with control

1. Simulation: The system along with its error detection scheme was simulated in MAT-

LAB. The faults injected in the system were multi-parameter perturbations in coeffi-

54

cient of armature reactance La, moment of inertia J , torque constant Ke, and arma-

ture resistance Ra. Injection of faults changes the state-space representation of the

system and generates a non-zero checksum error signal e(t) indicating the presence

of parametric perturbations in the system.

2. Model training: After selecting a proper coding vector, a family of 400 parameter-

perturbed DC motor control systems was created. The parameters were varied with a

uniform distribution of 30% and stimulated with unit step signals. The checksum er-

ror signals eplant(t) for each of the systems were sampled at 100 samples per second.

Among the 400 systems, 200 instances were selected in random to train a Multivari-

ate Adaptive Regression Spline (MARS) model with the perturbed parameter set as

target output. After training, a MARS model was obtained with 14 basis functions.

Figure 3.16: Estimated vs Actual parameter of DC motor with control

3. Model validation: The trained model is tested for validation by the remaining 200 in-

55

stances of systems. The graph of estimated parameters obtained by the MARS model

vs actual parameters are shown in the Figure 3.16. It clearly shows that the proposed

approach of using only one checksum can accurately estimate the parameter of the

DC motor control system.

Generator connected to infinite bus

1. Simulation: As the second test case, a generator connected to infinite bus was consid-

ered. It was also simulated in MATLAB. Multi-parameter perturbations were intro-

duced by varying direct axis reactance Xd, quadrature axis reactance Xq, direct axis

transient reactanceXdp and rotor time constant Td0. The checksum was implemented

on the linearized version of the system when input mechanical power gradually in-

creased from 0 p.u. to 0.8 p.u as a ramp signal.

2. Model training: The model for this system was trained in the same way like the

previous case. 400 instances of generator connected to infinite bus system were

created. After simulation, the checksum signal eplant(t) was captured by sampling

at 100 samples per second. 200 instances are selected in random to train a MARS

model with 8 basis functions.

3. Model validation: The trained model was tested for validation by the remaining 200

instances of generator systems. The graph of estimated parameters obtained by the

MARS model vs actual parameters is shown in the Figure 3.17. As can be seen from

the obtained graph, the model is able to estimate direct axis reactance, quadrature

axis reactance, direct axis transient reactance and rotor time constant with very high

accuracy. This again demonstrates that temporal information of only checksum can

be used for parameter prediction.

56

Figure 3.17: Estimated vs Actual parameter of generator connected to infinite bus

Biquadratic filter

1. Simulation: The biquadratic filter was simulated as the third test case to demonstrate

the applicability of the proposed approach to analog circuits as well. This system was

also simulated in MATLAB along with error detection. A family of 500 biquad filters

was created by varying its R1, R2, C1, and C2 values from a uniform distribution of

40% variation. Introduction of these variation injects faults in the biquad filters in its

central frequency and quality factor and by this way, parametric faults are injected

in the system. Here, only these four parameters were varied to show the proof of

concept and it can be very extended to all the parameters of the system.

2. Model training: The system was excited with single-tone sinusoidal input signal and

the checksum error signal eplant(t) was recorded for all the circuit instances. After

computing the checksum error of all the filters, the amplitude ratio and phase lag

57

of this error signal with respect to the input signal, were determined. Taking the

amplitude ratio and phase lag of 250 instances as input, a Support Vector Machine

(SVM) [124] based learner was trained. ‘Radial Basis Function’ was used as the

kernel function to train the SVM classifier model.

Figure 3.18: SVM classification of time constants of biquad filter

3. Model Validation: The trained model was tested for validation by the remaining 250

instances of biquad filters. The resulting plot was shown in Figure 3.18. As can be

observed from the graph, the SVM classifier was successfully able to create a distinct

boundary to classify whether the fault is because of τ1 = R1C1 or τ2 = R2C2 .

The misclassification rate observed for this classifier is 2.8%. These three test cases

clearly demonstrate the viability of the proposed approach to diagnose the source of

faults from the temporal information of only one checksum error using any suitable

regression/learning algorithm.

58

3.2.5 Result: Real-Time Error Correction

A detailed description of error correction approach for a linear state variable system is

already provided in Section 3.2.2 and in this section, the result obtained using this approach

on a DC motor control system with PID controller is discussed.

System architecture

For correction of parametric faults, two checksum signals are introduced in the DC motor

speed control system namely, ‘plant checksum’ and ‘system checksum’ as shown in Figure

3.13. The ‘system checksum’ is being used to trigger the correction scheme whereas the

‘plant checksum’ would be used to estimate the parameter from model as well as to perform

nonlinear optimization.

Pre-deployment learning

Before the deployment stage, a family of 128 systems has been created with a PID con-

troller to attain a nominal %overshoot (%OS) of 5% and rise time (Tr) of 100µs. Each

of those systems was simulated with 16 stimuli and their eplant(t) has been recorded for a

certain time horizon. A neural network based model has been trained using eplant(t) and its

corresponding stimuli as the input and the plant parameter as the target output. For the er-

ror diagnosis results presented in Section 5.4.1, a MARS model was trained for prediction

purposes. Here, a neural network based model was trained as any appropriately designed

machine learning algorithm would be a candidate for this purpose.

Post-deployment optimization

Plots of ω, eplant(t), and esystem(t) of one system, which has %OS= 1.1% but Tr = 102µs

which violates nominal specification, are shown in Figure 3.19 and post-deployment cor-

rection is explained using these plots. At the post-deployment stage, the error correction

scheme checks the system checksum, esystem(t) at all times. As soon as the magnitude

59

Figure 3.19: Error correction of DC motor system

of esystem(t) becomes higher than a pre-defined threshold indicating parametric failures,

eplant(t) and the input stimuli are recorded and used as inputs to the model learned at pre-

deployment stage. In this example, esystem(t) of this system crosses the threshold just

before 10 ms. The compensation scheme records the value of eplant(t) and input stimu-

lus from 10 ms to 12.5 ms and predict the parameters from model. Using the output of

this model as the initial condition, a ‘Levenberg-Marquardt’ algorithm [125, 126] based

non-linear optimization is performed in real-time from 12.5 ms to fine tune the parame-

ter estimation. Because of using the initial search point, the optimization completed very

quickly at 15 ms. The system checksum and the PID controller of the system is updated

after the optimization is completed at 15 ms using the final predicted parameter set that

drives esystem(t) to zero again as shown in Figure 3.19 and updates the controller to restore

system specifications to nominal value of %OS= 3.1% and Tr = 99.6µs. This demonstrates

60

the viability of error correction scheme.

3.2.6 Summary

A real time parametric diagnosis approach for the linear state variable system has been

proposed in this work. The approach has been applied to three test cases and they have

been able to diagnose the system parameters with high accuracy. Error correction was

demonstrated for a DC motor with PID controller. These examples represent the viability

of this proposed approach. Future work will involve demonstration of error correction on

other complex linear and nonlinear systems operating under arbitrary failure mechanisms.

61

CHAPTER 4

DETECTION, DIAGNOSIS AND COMPENSATION OF CONTROL PROGRAM,

SENSOR AND ACTUATOR FAILURES IN NONLINEAR SYSTEMS USING

HIERARCHICAL STATE SPACE CHECKS

4.1 Introduction

With increasing dependence on autonomous machines that can sense their environment

and govern their own actions, it is becoming imperative that they be completely safe, se-

cure and resilient. This research focuses on the problem of mitigating resilience threats

to autonomous quadcopters from failures in sensors, actuators and soft errors in on-board

processors running control program. The scope of the problem is well illustrated with data

for self-driving cars that is more readily available. In current world, safety standard of the

complex autonomous systems is described in ISO 26262 [127], where operation quality

of different subsystems are pointed out with their minimum safety standard. Autonomous

vehicle disengagement data filed with the California Dept. of Motor Vehicles [19] for 2016

shows that a self-driving car failed about every 3 hours due to hardware or software mal-

function. Other examples abound [20–22]. The most recent Boeing incident [20, 21], was

diagnosed to a malfunctioning sensor generating incorrect measurement data.

In this research, we focus on low overhead diagnosis and compensation of sensor and

actuator malfunction in quadcopters. Both transient and parametric failure effects are ad-

dressed. We also consider detection and correction of malfunction in control program

running on an on-board digital processor. The key idea is to exploit a hierarchy of checks

for rapid parametric diagnosis and control adaptation of the quadcopter to enable the sys-

tem to sustain its performance for the maximum possible length of time without human

intervention.

62

4.2 Key Contributions

The key contributions of this research [81, 84, 85] are as follows:

1. A novel hierarchical error checking methodology for autonomous systems is devel-

oped in this research that allows errors to be detected with ultra low latency and high

sensitivity across the different components of an autonomous robotic system. The

effects of subsystem errors on system function are detected by system level checks

that ensure high coverage of internal failure mechanisms.

2. The technique allows errors in sensors and actuators of the system to be diagnosed

with low diagnostics granularity using a matrix of checks across the different levels

of the design.

3. The methodology allows diagnosis and correction of multiple simultaneous failures

in different subsystems while allowing assessment of the impact of such failures on

overall system performance. The contribution in individual subsystem recovery is

given below:

4. Control Program Errors: There has been limited attention to recovery from errors

in control program execution on a digital processor [128, 129]. These involve base-

line recovery methods or use of computational redundancy. We propose the design

of special machine learning assisted checks for control program error detection and

use of the same checking mechanism for actuator value restoration for error recov-

ery. The method handles both data and control flow errors and performs both error

detection and correction with low overhead and low latency as compared to existing

techniques.

5. Sensor Malfunction: The proposed machine learning assisted checks are used to

detect and localize sensor errors. Both transient errors and sensor value offsets are

63

addressed by estimating the correct sensor values from the implemented checks. Cor-

rection is performed over a limited future time horizon via sensor value restoration

and involves replacing affected sensor values with their estimated duplicates. This

allows additional time for returning a nonlinear system to a “safe” state (for example,

returning to ground for a quadcopter) as opposed to its normal operating plan.

6. Actuator Malfunction: It is seen that the error signals e(t) taken over the hierarchi-

cal set of checks employed bear strong correlation with the actuator parameters that

are perturbed under failure. The set of checks is leveraged to perform rapid actuator

parameter estimation and the relevant actuator (quadcopter motor) controller param-

eters are adjusted to restore overall system performance using closed form equations.

Alternatively this adjustment to the controller parameters can be predicted directly

from the observed transient check error signals e(t) using supervised machine learn-

ing based models. Note that no reference model of the quadcopter continuously

running in the background is needed.

4.3 Preliminaries: Quadcopter and Brushless DC Motor Models and Control

4.3.1 State Variable System: Overview

Figure 4.1: A nonlinear state variable system

Figure 4.1 shows the block diagram of a state variable system which can be of linear or

nonlinear type. For a general state variable system, the plant behavior is expressed in the

64

form of an ordinary differential equation.

ṡ(t) = f(s(t), u(t)) + w(t) (4.1)

where, s(t) is the states of the system, u(t) is the plant inputs and y(t) is the outputs of the

system. The function f(.) represents the relationship between s(t), u(t) and the derivative

of the vector s(t) and w(t) represents zero-mean process noise. The output equation of the

plant is given by,

z(t) = h(s(t), u(t)) + v(t) (4.2)

where h(.) represents the relationship between s(t), u(t) and the system output z(t) and

v(t) represents zero-mean measurement noise. For both linear and nonlinear state vari-

able systems, the input u(t) is computed from the system output z(t) and the reference

signal r(t) by an external controller K that strives to maintain system performance under

dynamically changing plant conditions. The control actions performed by the controller

can be based on closed form equations (for example, PID controller [130], Lyapunov based

controller design [131] or on a reinforcement learning (RL) based controller [132]). The

controller analyzes the system outputs, the reference input and determines the best input

which drives the plant to its desired performance goals. We use a quadcopter test vehicle

and control system to demonstrate the proposed state space check based error detection

and compensation approach. This is discussed next followed by a discussion of the error

detection and compensation methodology.

4.3.2 Quadcopter Overview

As an example test case of a nonlinear state variable system, quadcopter control is con-

sidered in this work which has become a defacto standard to assess the performance of

different research on nonlinear state variable autonomous systems [133–137] and which

65

also is used for different applications [138–140]. The quadcopter has 12 state variables

which are given as: [x, y, z, ẋ, ẏ, ż, φ, θ, ψ, φ̇, θ̇, ψ̇]T . Here, x, y and z represent the posi-

tion of the quadcopter in 3 dimensional inertial reference frame and φ, θ and ψ represent

the roll, pitch and yaw angle in the body frame of the quadcopter (see Figure 5.15). The

quadcopter has an inertial measurement unit (IMU) as the prime sensor which comprises

of an accelerometer and a gyroscope, and has 4 brushless DC motors which are used as

actuators. The expressions of linear acceleration and angular acceleration for a quadcopter

system are given below [141]:

[ẍ, ÿ, z̈]T = [0, 0,−mg]T +RTB + FD

[φ̈, θ̈, ψ̈]T = I−1(τ − ω × (Iω))

(4.3)

Figure 4.2: An Example Quadcopter System (adopted from [142])

where, m = mass of the quadcopter, g = acceleration due to gravity, R = rotational matrix

(R ∈ vector space R3×3), TB = thrust vector, FD = drag force, I = inertia matrix, τ =

external torque vector, ω = angular velocity vector. The expressions for the aforementioned

66

quantities are given as below:

ω =


1 0 −Sθ

0 Cφ CθSφ

0 −Sφ CθSφ



φ̇

θ̇

ψ̇


FD = −kD × [ẋ, ẏ, ż]T

R =


(CφCψ − CθSφSψ) (−SφCψ − CθCφSψ) (SθSψ)

(CφCψ + CθSφCψ) (−SφSψ + CθCφCψ) (−CψSθ)

(SφSθ) (CφSθ) (Cθ)


TB =

[
0, 0, k

i=4∑
i=1

Ω2
i

]T
IXX = IY Y = 2m(

r2

5
+ L2)

IZZ = 2m(
r2

5
+ 2L2)

I = diag([IXX , IY Y , IZZ])

τ =


Lk(Ω2

1 − Ω2
3)

Lk(Ω2
2 − Ω2

4)

b(Ω2
1 − Ω2

2 + Ω2
3 − Ω2

4)


In these expressions, C∗ and S∗ represent cos (∗) and sin (∗) respectively. As an example,

CθSφSψ represents cos θ sinφ sinψ. Additionally, Ωi is the rotor speed of the ith motor, r is

radius of quadcopter body as point mass, L is distance of one actuator from center of grav-

ity, b is drag co-efficient and k and kD are constants of proportionality, and k depends on

propeller type, number of blades in each propeller, air density etc. The simplified expres-

sion for k is given in the following which establishes the relation between thrust generated

by a motor-propeller pair with the motor speed [143]:

k=18.5944745× 10−12d3.5
√
pitch (4.4)

67

where, d = the propeller diameter, and pitch = propeller pitch. Applying appropriate thrust

from each motor changes the dynamics of the system, and hence control the quadcopter in

the desired way.

4.3.3 Actuator Overview: Brushless DC (BLDC) Motor

For actuation, the use of brushless DC (BLDC) motors has been investigated in this work

[144]. To operate a motor, a three phase AC source is generated from battery (a DC source)

with the help of ‘power electronic’ circuitry. The AC source is then used to actuate the

actuator. The simplified state space representation of a BLDC motor can be expressed as

ẋact(t) = Aactxact(t) + Bactuact(t) where Aact and Bact are state dependent and they are

defined as follows [145]:

Aact =

−Rs/L1 0 0 f̂a(λθact)/J 0

0 −Rs/L1 0 f̂b(λθact)/J 0

0 0 −Rs/L1 f̂c(λθact)/J 0

f̂a(λθact)/J f̂b(λθact)/J f̂c(λθact)/J −Bf/J 0

0 0 0 P/2 0



Bact =



1/L1 0 0 0

0 1/L1 0 0

0 0 1/L1 0

0 0 0 −1/J

0 0 0 0



where, xact(t) = [Ia,act, Ib,act, Ic,act, ωact, θact]
T and uact(t) = [Vas, Vbs, Vcs, Tl]

T are the

motor state and input respectively. Rs, λ, J, Bf and P are the stator resistance per phase,

68

Figure 4.3: Brushless DC motor equivalent circuit (adopted from [145])

back emf constant, moment of inertia of the rotor, friction coefficient, number of magnetic

pole pairs respectively. L1 is defined as Lact−Mact where Lact andMact are self inductance

and mutual inductance per phase respectively. I∗,act, ωact, θact, V∗ and Tl are the stator phase

currents, motor speed, motor electrical angle, applied armature voltage and load torque re-

spectively. f̂∗(.) (i.e. f̂a(.), f̂b(.) and f̂b(.)) are trapezoidal functions for modeling generated

back emf which are nonlinear in nature [145] and are related by:

f̂b(θ) = f̂a(θ − 120◦), f̂c(θ) = f̂a(θ + 120◦) (4.5)

From the above relationships, we can see that, the quadcopter system have six degrees of

freedom and four actuators, making this an underactuated system. Additionally, the system

dynamics of a quadcopter and its actuators can be represented in a hierarchical manner: a)

for the entire quadcopter, b) for the controller and c) for individual motor.

4.3.4 Controller Design for Quadcopter

A PID controller has been employed for altitude and attitude control of the quadcopter. The

controller was designed using the ‘Successive Loop Closure’ method [146]. For the quad-

copter system, the system dynamics is defined in subsection 4.3.2. We have the following

69

as dynamics for roll, pitch and yaw angles [147]:

φ̈ =
IY Y − IZZ

IXX
θψ − JTP

IXX
θω +

U2

IXX

θ̈ =
IZZ − IXX

IY Y
φψ − JTP

IY Y
φω +

U3

IY Y

ψ̈ =
IXX − IY Y

IZZ
φθ +

U4

IZZ

where, [U2, U3, U4]T are individual components of the external torque vector τ and JTP is

angular momentum. All other quantities are explained in subsection 4.3.2. In the nominal

case, the values of φ, θ, ψ and ω all will be small. Consequently the above equations can

be approximated as:

φ̈ ≈ U2

IXX

θ̈ ≈ U3

IY Y

ψ̈ ≈ U4

IZZ

From these simplified equations, a PID controller can be designed which controls the roll,

pitch, and yaw angles of the quadcopter. For altitude control of the quadcopter, we consider

the following:

z̈ = −g + cosφ cos θ
U1

m
(4.6)

where, U1 = k(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4) and other terms are described in subsection 4.3.2.

Similar to the design of previous PID controller, the values of φ and θ will be very small

under normal operating condition. For this reason, it is assumed that cosφ ≈ 1, cos θ ≈ 1.

This again results in a simplified equation for which a PID controller was designed to

control the altitude. Further details about the controller design can be found in [147].

70

4.4 Hierarchical Checking Approach

4.4.1 Failure Model

We consider failures in control program execution running on a digital processor, in sen-

sors as well as actuators of the quadcopter system. Errors in control program execution

are modeled as caused by soft errors in data and datapath control of the digital proces-

sor. Sensor failures are modeled with transient or permanent effects. Spurious bit-flips in

digitized sensor values are used to model transient sensor errors. Permanent effects are

modeled by parametric deviations that cause quadcopter control algorithms to malfunc-

tion. Finally, we considered actuator failures. These are modeled as parametric deviations

in electro-mechanical parameters of the brushless DC motors of the quadcopter (such as

loss of torque).

4.4.2 Checking methodology: state space checks

Figure 4.4: Block diagram

In this subsection, we describe how hierarchical checks are employed to detect and di-

agnose multiple faults in quadcopter subsystems. A block diagram of an autonomous sys-

tem is shown in Figure 4.4. Here, the system is depicted as a hierarchical interconnection

of subsystems, which may have their own controllers. Figure 4.4 shows a block diagram

71

of the proposed hierarchical error checking methodology. At the highest level, the observ-

able states of the autonomous system and its controller K are monitored and checked via

the mechanism described in Figure 4.6. The states of each subsystemi and their respective

controllers Ki are checked hierarchically using the mechanism of Figure 4.6. Respective

check signals checki are generated as shown in Figure 4.4. Such a hierarchical decom-

position of checks allows ease of failure diagnosis down to individual subsystems while

allowing multiple failures to occur simultaneously without compromising detectability.

Figure 4.5: Hierarchical checking methodology

For the quadcopter case, the system can be divided as an ensemble of a couple of

subsystems, namely - the controller of the system and the BLDC motors as actuators. Con-

troller generates the control action and each BLDC motors receives this control action

which produces the thrust. Additionally, the IMU unit is producing the sensor readings for

the controller. A block diagram of the proposed hierarchical checking mechanism for a

quadcopter is shown in Figure 4.5. At the highest level of the design, state space checks

(described next) are implemented to detect gyroscope and accelerometer sensor errors. At

the lower level of the design, one check was implemented for control program errors and

four checks are implemented for each of the four quadcopter actuators. Such a hierarchical

decomposition of checks allows ease of failure diagnosis down to individual subsystems

while allowing multiple simultaneous failures to occur without compromising detectabil-

ity. We assume that control program errors can occur concurrently with motor errors but

that sensor errors can occur only in isolation. Table 4.1 summarizes the diagnosis strategy.

72

Table 4.1: Diagnosis summary

Checks

ch
k
a
ct

1

ch
k
a
ct

2

ch
k
a
ct

3

ch
k
a
ct

4

ch
k
ct
r
l

ch
k
a
cc

ch
k
g
y

Motor1 × × ×
Motor2 × × ×

Failures Motor3 × × ×
Motor4 × × ×

Control Program × × ×
Linear acceleration ×

Angular rate ×

Sequential model based state checking

Figure 4.6 shows the generation of the implemented state space based check for a nonlinear

state variable system [83]. Each column within the dashed block of Figure 4.6 represents a

vector of observable state measurements and inputs obtained across different slices of time.

Here, the state trajectory (estimated using an Extended Kalman filter) of the nonlinear state

variable system and inputs are recorded across a pre-defined observation window tW . For

prescribed state of the system and possible input u(t), a quantity of the states of the system

vc is computed using a linear weighted sum, Fc [83]. In this work, vc consists of the sensor

or actuator value for which the check is computed (the objective being to detect errors in

the respective sensor or actuator or a control program error). A machine learning algorithm

based nonlinear model, Fm is used which takes the ensemble trajectory of state vectors

s(t−1), s(t−2), . . . , s(t−tW) and the corresponding inputs u(t−1), u(t−2), . . . , u(t−tW)

as input and estimates vm. Training of the machine learning system is performed for normal

system operation under diverse input stimuli. The quantity vm − vc is defined as the error

signal. Ideally, when the learning of Fm is complete, the error signal given by vm − vc is

zero or near zero under fault free conditions, whereas this will not be true when the system

is going through failure. This will detect the failure. To compute vm, a recurrent neural

network based neuromorphic system is used in this research [148] which is explained in

73

Figure 4.6: Computation of state space based check

subsection 4.4.2.

Use of time-series model for computing vm

To compute vm, the set of prior states of the system as well as inputs (see Figure 4.6) are an-

alyzed in a sequential manner, and Recurrent Neural Networks (RNNs) (or its variants) can

be utilized to perform this function. RNNs were introduced by Siegelmann et al. in [148]

and are based on feedback of the output of a perceptron to its input, and they have been

successfully used in various applications [149–156]. Although RNN expresses memory

effects and can analyze sequential data, it suffers from long term memory loss. To resolve

this, a variant of RNNs is introduced, called Long Short Term Memory (LSTM) [157], and

is used in this research. A block diagram of an LSTM cell is shown in Figure 4.7 where

important information from one time instant to next pass through with intermediate vari-

ables Ct−1 and ht−1. Unlike RNNs, LSTMs selectively suppress unimportant information

74

Figure 4.7: Long Short Term Memory Block

from the input by multiplying the input with a sigmoid activation function. Also, the tanh

activation function limits the inputs to lie between -1 and 1. The details of this approach

can be found in [157].

Trade-off between observation window size and accuracy of vm prediction

In this work, vm prediction by LSTM based model Fm is employed to match the observed vc

value based on prior sensor and actuator measurements as well as system inputs. However,

the training data for such an LSTM based predictor is subject to process and measurement

noise. In addition, the length of the observation window tW is important as a value of tW

less than the memory latency of the system causes prediction errors while too long a value

of tW can cause overfitting. We have studied the LSTM based vm prediction methodology

to understand how prediction accuracy depends on the size of the observation window.

Figure 4.8 shows performance of the LSTM based state space check with respect to size of

the observation window for a nominal fault-free system. Here, the model was constructed

with two hidden layers and 10 LSTM cells per layer. Process and measurement noise was

injected to study the trade-offs. The threshold in Figure 4.8 refers to the largest value

of vm-vc for a given tW . An error is detected only if it causes the instantaneous value

of vm-vc to be larger than this threshold. In the nominal system, the presence of noise

75

Figure 4.8: Trade-off between observation window and accuracy for σ2
noise = 0.05

can cause spurious detection of error resulting in false positives (FP) which are defined

as # of detected faults due to noise
of total fault−free experiments . On the other hand, for systems experiencing failures, we

define detection accuracy (DA) = # of detected faults
of total faulty experiments

to denote the coverage of such

failures using the proposed checking methodology. In Figure 4.8, the x-axis shows the

length of the observation window and the y-axis shows DA(%), FP(%) and threshold value.

From this figure, it is observed that, increasing the observation window reduces the value of

the threshold at first and then the value of threshold increases again. At first, the threshold

is high as the model has access to reduced state transition information. For this reason,

the check shows higher tendency to flag errors. This phenomenon results in a high FP

value. Additionally, with a small observation window, injected faults are detected as well.

That is why, high values of DA and FP are observed with a small observation window.

However, the threshold decreases with increase in the size of the observation window as the

model has access to more information and can learn the dynamic behavior of the quadcopter

76

more accurately. This reduces the FP value, however the DA value stays almost the

same. So, the model gradually performs better with increase in the observation window.

However, as the observation window increases further, the model for computing Fm results

in overfitting. As a result, the threshold increases, and this deteriorates the DA and FP

value again.

Figure 4.9: Trade-off between observation window and accuracy for σ2
noise = 0.25

To determine the dependence of the window length with respect to noise power, we

repeated the experiment for noise power, σ2
noise = 0.25 as shown in Figure 4.9, whereas

it was σ2
noise = 0.05 in previous study. For the higher level of noise power, higher value

of threshold was observed as the data are noisier compared to previous one, and hence the

error threshold has higher value in nominal case. For this reason, it is more difficult to

detect the noisy but nominal response (hence, high values of false positives were observed)

and to have better detection accuracy. As a result, we observe that, for higher noise power,

in general, the threshold is higher and FP is higher for same window length. Additionally,

77

we observe similar kind of DA for higher value of window length as noise power increases.

We observe that these three metrics are almost plateaued for window length of greater than

12, which represents that for higher noise power, the window length is increasing as the

model needs access to more data to better understand the system behavior.

We considered σ2
noise = 0.05 for this work and from Figure 4.8, it is observed that for

prediction window length of 10, the DA ≥ 80% and FP ≤ 10% and the model stays

comparatively simpler, which makes a corresponding selection of window length a good

choice. Hence, this was selected as the check model architecture in this work.

4.4.3 Hierarchical check infrastructure for the quadcopter system

According to the study conducted in Section 4.4.2, the LSTM based models used in this

study consists of 2 hidden layers with 10 LSTM cells in each layer. In the following,

detailed description of each of the checks are presented.

Control program check

Figure 4.10: Control program check

The control program check takes the current control action and the current reference

signal of the quadcopter system as input and estimates the next control action. The control

actions are separate for each actuator and hence, the control action is a vector of size 4× 1.

78

Additionally, the system reference inputs are the x, y, and z coordinates of the quadcopter

destination which are 3 dimensions in nature. Hence, this quantity is a vector of size

3 × 1. So, the control program check’s inputs and outputs sizes are 7 × 1 and 4 × 1

respectively. If the ensemble control actions are denoted by U(t) (= [U1, U2, U3, U4]T ,

defined in subsection 4.3.4), then the control program check, chkctrl is defined as chkctrl =

U(t)predicted − U(t)actual, and it is of size 4× 1.

Sensor check

Figure 4.11: Sensor (gyroscope and accelerometer) check

Two checks for gyroscope and accelerometer are employed which check for angular

rate and linear acceleration respectively. They take the trajectory of inputs of the system,

u(t), angular rate ω(t), and linear acceleration, a(t) as the input and predicts the next an-

gular rate ω(t)predict and linear acceleration, a(t)predict respectively. Then gyroscope check

chkgy and accelerometer check chkacc are computed as, chkgy = ω(t)predict − ω(t)actual,

and chkacc = a(t)predict − a(t)actual. We looked at linear acceleration and angular rate at

each direction separately, and hence both chkgy and chkacc are vectors of size 3× 1. In this

work, they have been merged together to share model resources efficiently, and hence they

are considered as one unit.

79

Actuator check

Figure 4.12: Actuator check

For the actuator check, the LSTM based machine learned model receives the windows

of motor speed Ω, input terminal voltage and armature current as model input and estimates

the next motor speed. Here, we assume a small resistor to sample the armature current,

which does not increase the cost significantly. Additionally, this resistance is normally

very small compared to the rotor resistance and thus, they have minimal effect on actuator

behavior. Finally, the actuator check, chkact is defined as chkact = Ω(t)predict − Ω(t)actual.

As we are comparing only one quantity in this check, this check is scalar in nature. How-

ever, as there are four actuators in this system, four actuator checks are employed.

4.4.4 Resilience methodology

A procedural pseudo code for the resilience methodology for managing failures in control

program, sensors, and actuators is given in Algorithm 1, and the resilience methodologies

are discussed in this subsection.

80

Algorithm 1 Resilience methodology pseudo code
Require: chkctrl, chkM , chkgy, chkacc

1: while t ≤ tEnd do
2: Evaluate chkctrl, , chkM , chkgy, chkacc
3: if chkctrl ≥ thctrl or chkact ≥ thmotor or chkgy ≥ thgy or chkacc ≥ thacc then
4: if chkctrl ≥ thctrl then
5: /* Control program fault */
6: Estimate control action
7: Restore control action
8: end if
9: if chkgy ≥ thgy and (chkact < thmotor and chkctrl ≥ thctrl) then

10: /* Gyroscope fault */
11: Estimate gyroscope value
12: Restore gyroscope value
13: end if
14: if chkacc ≥ thacc and (chkact < thmotor and chkctrl ≥ thctrl) then
15: /* Accelerometer fault */
16: Estimate accelerometer value
17: Restore accelerometer value
18: end if
19: if chkact ≥ thmotor then
20: /* Actuator fault */
21: estParam← actuatorParameterEstimator
22: Reconfigure controller
23: end if
24: end if
25: end while

81

Control program fault

Control program execution suffers from two failure mechanisms, namely control flow and

data flow errors. Control flow errors can be detected by ‘watchdog timers’ or ‘control flow

error checks’ [158]. Both control and data flow errors that occur due to spurious bit-flips

can result in incorrect system actuation.

In our approach, both control and data flow errors are managed using state restoration

(line 7 in Algorithm 1). In this approach, once an error is detected, the erroneous control

actions are replaced with their predicted values at time t from the respective checks as

described earlier. Additionally, to address the control flow error, a register is periodically

set and reset at the start and end of control action computation routine at the rate at which

actuation is enacted by the control program. In the case of undesired jump/halt/branch

to unexpected/undefined locations etc., the register will not reset at the end of the routine

which denotes the existence of such failure. In this case, we reset the control computation

routine and continue applying the last properly computed action. In implementing the

checks, care has to be taken to ensure that the software kernels implementing the checks

are run as independent tasks on a digital co-processor. Also, redundant checks are used to

flag errors in the check software itself, in which case no corrective action is taken.

Sensor fault

Two failure mechanisms, namely transient failures (which occur due to induced noise in

the system, power supply and ground bounce) and parametric deviations (these occur due

to field degradation or regular wear and tear) were considered for sensors (gyroscope and

accelerometer). In this work, we consider only internal failure of the systems. In the

presence of long-lasting deliberate attempt to attack the system, the best step would be to

take fail-safe approach (for example, bringing the quadcopter down on the ground). The

only other way to manage the latter is through the use of redundant sensors. This is a

broad topic and not within the scope of the presented research (the work focuses on failure

82

mitigation, not security attacks).

In a real-life system, both gyroscope and accelerometer readings are converted from

analog to digital signal with the help of Analog to Digital Converter (ADC) whose sampling

interval is in the neighborhood of µs compared to time constant of quadcopter (in ms).

Hence, we have assumed the output of ADC to be readily available. Hence, once the failure

is detected in any sensors, it is enough to replace their faulty value with predicted values at

time t, in digital domain, from their respective checks (line 12 and 17 in Algorithm 1), and

this is what was adopted in our approach.

Actuator fault

For the correction of actuator parametric deviations (such as due to change of torque in

a motor), we propose controller reconfiguration on-the-fly. The fault can be detected and

diagnosed in real-time by observing the check values. After the fault is diagnosed, the

observed actuator check is sampled in high frequency for tk time points (to adequately

capture system behavior) and this recorded quantity is defined as chkobserved(tk). Similar

to Section 4.4.2, a trade-off study of check signal length tk and optimization accuracy was

performed to obtain the best check signal length, and a length of 55 time points (equivalent

to 55 ms time) ensured both fast and accurate estimation. We have performed optimization

of the state/check prediction function over several signal lengths and we found that for high

values of signal length, above 55 ms, the accuracy saturates and does not improve further.

This was done with respect to the specific quadcopter model considered in our simulation

studies. A ‘Golden Section Search’ based optimization [159] is performed to estimate the

changed parameter (line 22 in Algorithm 1), p which is defined as:

p∗ = arg min
p

(‖chkobserved(ti)− chk(act(p, ti))‖2)

subject to, 0 < ti ≤ 55

(4.7)

83

where, chk(act(p, ti) is the actuator check for parameter p and at time point ti. After

the changed parameter value is obtained, a controller is designed using ‘Successive Loop

Closure’ method [146]. For different back-emf constants, the optimal motor controller

coefficients were pre-computed and stored in a form of ‘Look up table’ (LUT). In this work,

these controller parameters are the coefficients of the PID controller. Once the estimated

parameter is obtained, this LUT is used to reconfigure the controller on the fly (line 19 in

Algorithm 1).

4.4.5 Simulation Experimental Result

A quadcopter with the following design parameters were considered: L = 0.3 m, r =

0.1 m, m = 1.2 kg, and b = 0.0245 , propeller diameter d = 10 inch, and propeller pitch

= 4.5 inch . As the actuator, brushless DC motors were used with the following parame-

ters: Rs = 0.52 Ω, λ = 0.0137V/rad/s, J = 1.2 × 10−5Kg/m2, Bf = 0.01Nms,

P = 2, Lact = 3.6 × 10−5H , and Mact = 1.2 × 10−6H . f̂a(.), f̂b(.) and f̂c(.) are

assumed to be trapezoidal (which follows linear relation and gets clipped when absolute

value is larger than 0.01264V/rad/s). A quadcopter flight was simulated from one source

to one destination through some points along the way. These points were selected such

that all subsystems of the quadcopter would be adequately exercised. Here, we are inter-

ested in the quadcopter system behavior as a whole. As the time constants of accelerome-

ter/gyroscope are in µs and that of the quadcopter system is in ms, we have assumed that

the accelerometer and gyroscope readings are stabilized within short amount of time. That

is, the internal subsystem blocks are stabilized (i.e. their own time-constants are elapsed),

and hence, it will be able to capture the behavior of these subsystems well. However, the

actuator’s time constant is comparable to quadcopter system time constant (in ms) and this

was considered in this study. As the actuators are always in continuous stimulation, the

new actuation gets stabilized quickly.

For the failure in execution of control program, faults were introduced in the data of

84

16-bit long control action in the form of spurious bit-flips in multiple locations where

bit-flips were injected in random bit position in random manner. Same word length was

considered for accelerometer and gyroscope sensor readings as well for transient fail-

ures. As they are introduced in the digital word and every bits of a digital word have

same failure probability, this translates into high probability of faults in these subsys-

tems. Additionally, we observed a few cases where a failure in the nominal system re-

sulted in a crash during the hardware validation stage (explained in Subsection 5.6.7).

For parametric failures of accelerometer and gyroscope, a 15% offset was introduced in

the readings which are the most common form of parametric failures. For parametric

failures of actuators, the back emf constant was gradually reduced to 80% as the fail-

ure model. To evaluate the performance of the proposed approach on different experi-

ments, 2 quantities v1 = ‖TrajectorywithoutCorrection − Trajectoryreference‖2 and v2 =

‖TrajectorywithCorrection−Trajectoryreference‖2 were defined. These are the L2 norm of

quadcopter’s 2 trajectories (without correction and with correction) with respect to a refer-

ence trajectory which the system would follow in absence of all faults. For every injected

faults, the fault detection, and diagnosis were performed by the method explained in [84].

Error Diagnosis

We will briefly discuss the error diagnosis performance in this section. Figures 4.13 and

4.14 show the check error plots when an alpha particle strike fault is introduced in the

computation core of the system at time t = 1.5 sec.

As can be observed these plots, the sensor check. which is the higher level check, pro-

duces a non-zero signal at time t = 1.5 sec representing the existence of the failure. Once

the failure is detected, one can investigate Figures 4.14a and 4.14b. Here, it is observed that

the control check produces a non-zero signal, and actuator check is producing zero signal.

From these plots, it can be concluded that the failure was introduced at Control program

execution. Similar type of experiments are performed for failures in other blocks and Table

85

Figure 4.13: Sensor check in presence of control program failure
4.1 was constructed.

Errors in Execution of control Program

Figure 4.15 shows the detection, and correction efficacy of the proposed approach for Con-

trol program malfunction. The trajectory of the quadcopter system, along with its control

program check, is plotted where a transient fault was injected at t = 1.5 sec when the

control program data gets corrupted and it creates incorrect control action. Here, the faults

were injected in the data of the control program in the form of spurious bit-flips which can

result from highly energetic radiation such as alpha particle strike. As seen from Figure

4.15a, the trajectory is changed to great extent when no correction is performed which can

result into crash with obstacles. However, when the correction approach is employed, the

system followed its reference trajectory. Additionally, as observed from Figure 4.15b, the

faults have been detected successfully, in real-time, by the control program check. The

performance metrics of the proposed approach, v1 and v2 were evaluated and are shown in

Table 4.2. This shows the improvement and hence the efficacy of the proposed approach.

86

(a) (b)

Figure 4.14: a) Control check for control program fault, and b) actuator check plot in
presence of control program failure

(a) (b)

Figure 4.15: a) Trajectories of quadcopter for control program fault, and b) Corresponding
control program check plot

87

Sensor Transient Errors: Accelerometer

(a) (b)

Figure 4.16: a) Trajectories of quadcopter for accelerometer transient fault, and b) Corre-
sponding accelerometer check plot

Proposed approach was applied to transient error injected in accelerometer sensor as

2nd experiment. A transient error was injected at t = 0.5 sec, as a form of spurious bit-

flips, at accelerometer sensor reading which changed the trajectory of the quadcopter as

observed in Figure 4.16a. It can also be observed from Figure 4.16b that the accelerometer

check were able to detect the failure instantaneously and proposed correction method was

able to correct the sensor error and to restore the trajectory of the system. The performance

metrics v1 and v2 of the proposed approach were computed and are given in Table 4.2.

Sensor Transient Errors: Gyroscope

Figure 4.17 shows the detection, and correction efficacy of the proposed approach when

transient error was injected in gyroscope sensor at t = 0.5 sec. The fault was detected in

real-time as shown in Figure 4.17b, and the trajectory is changed to a great extent when

no correction is performed. However, after applying the proposed methodology, it was

88

(a) (b)

Figure 4.17: a) Trajectories of quadcopter for gyroscope transient fault, and b) Correspond-
ing gyroscope check plot
possible to improve the trajectory of the system. The comparison of v1 and v2 are given in

Table 4.2. As can be seen from these trajectories and the table, the corrected trajectory was

very close to reference one.

Parameter Deviations in Sensors: Accelerometer

Figure 4.18 demonstrates the behavior of the proposed approach for the parametric vari-

ation of accelerometer. Parametric variation has been modelled as a gradual change in

accelerometer behavior from t = 0.5 sec to t = 1.3 sec. Because of this variation, the

system goes through unexpected trajectory (possibly dangerous) which is observed from

the Figure 4.18a. As seen from the accelerometer check, the check produces a non-zero er-

ror signal (chkacc[z] produced non-zero signal for the whole duration) which performs the

detection, and diagnosis. Additionally, replacing accelerometer reading from the model

improved the system trajectory. Similar to previous cases, the comparison of performance

is performed in this experiment and it is given in Table 4.2. Here, the machine learning

models were trained under closed loop configuration where the system behavior was moni-

89

(a) (b)

Figure 4.18: a) Trajectories of quadcopter for accelerometer parametric deviation, and b)
Corresponding accelerometer check plot
tored and observed behavior was utilized to train the model. During the deployment phase,

the behaviors were validated with respect to learned model. In this situation, they are oper-

ating in the same manner like in the training phase. Additionally, this corrected information

is processed further in the system and these information are used in future time-steps. In

this way, they are working in closed loop.

Parameter Deviations in Sensors: Gyroscope

We investigated parametric variation of gyroscope as the fifth study which is shown in Fig-

ure 4.19. Similar to accelerometer case, the parametric variation happened in very long time

window (from t = 0.5 sec to t = 2.0 sec), and it was successfully detected and diagnosed

in gyroscope check. The system went through widely different and possibly dangerous tra-

jectory with no corrective action, and the trajectory was restored to its expected behavior

when the proposed corrective action is applied. The performances were compared and are

provided in Table 4.2.

90

(a) (b)

Figure 4.19: a) Trajectories of quadcopter for gyroscope parametric deviation, and b) Cor-
responding gyroscope check plot

Parametric Deviations in Actuators

(a) (b)

Figure 4.20: a) Trajectories of quadcopter for parametric deviation in actuator, and b) Cor-
responding actuator check plot

In this experiment, the back emf constant of the actuators were slowly changed to 80%

91

of its nominal value from t = 1.5 sec to t = 1.6 sec to model the parametric deviation.

This gradually changed the behavior of the actuator which results in change in control input

as well as the output speed of the actuator, and the system trajectory changes. However,

parametric deviation introduced non-zero check value in actuator check chkact (see Figure

4.20b) which detects and diagnoses the source of the fault. An optimization as described in

Equation 5.38 was performed to estimate the changed parameter value, and this estimated

parameter value was fed to the ‘Look up table’ which predicts new controller parameters.

The new control law was employed and this resulted into improved system performance.

The trajectories of fault-free, faulty without correction and faulty with correction cases are

shown in Figure 4.20. As seen from Table 4.2, the L2 norm of trajectory improves when

corrective action is employed.

Summary of Experimental Results

Table 4.2: Summary of Experiments

L2 Norm Comparison
Faults Without Correction, v1 With Correction, v2

control program 16.17 0.69
Accelerometer: Transient 32.17 15.50
Gyroscope: Transient 64.88 12.49
Accelerometer: Parametric 327.10 60.26
Gyroscope: Parametric 350.17 71.30
Actuators: Parametric 5.42 2.28

Table 4.2 shows the summary of the experiments where, different failures are indicated

across rows of the table and performance of the correction approach is indicated across

the columns of the table. As observed from the table, the proposed approach was able to

correct different kinds of failures with very high accuracy which clearly shows the efficacy

of the approach.

92

4.4.6 Hardware Experimental Result

We implemented the proposed checking methodology on a ‘Crazyflie 2.1’ [142] quadcopter

system. The quadcopter was physically flown along a reference trajectory, different faults

were injected, and proposed correction approaches were applied to manage the faults. The

hardware configuration of the system is shown in Table 5.7. The quadcopter communi-

Table 4.3: Hardware configuration of Crazyflie 2.1

Physical parameters/Components Specification/Model
System mass 27 gm

Size (W×H×D) 92× 92× 29 mm
Radio Band 2.4 GHz

Coomunication type Bluetooth
Coomunication protocol Crazy RealTime Protocol (CRTP)

STM32F405
Cortex-M4

Main microcontroller Unit Clock frequency: 168MHz
RAM: 192KB
Flash: 1MB

Radio and power management unit nRF51822
3 axis accelerometer / gyroscope BMI088

Pressure sensor BMP388
Actuator 4 DC coreless motors

cates with a PC via Bluetooth interface and a proprietary ‘Crazy RealTime Communication

Protocol (CRTP)’. The server (on PC) and client (the quadcopter itself) platforms for the

setup were implemented using Python and C, respectively. The server was used to send

commands to the client and all the necessary computations related to control action genera-

tion, necessary system level consistency check for the client, Extended Kalman filter based

state estimation, our proposed checks and correction strategy etc. were implemented in the

Crazyflie Microcontroller unit (MCU). The client, residing in the quadcopter, performed

the necessary maneuver according to its objective and the check values were read back

from the client in the form of a log variable. The minimum period for a log variable to be

read from the client was 10 ms. This system has limited hardware resource and timing cy-

93

Figure 4.21: Hardware setup
cle available, and for this reason, model and code optimization for our proposed approach

was necessary which is described below:

Neuromorphic model preparation for hardware

The ‘Crazyflie 2.1’ system has only 192 KB RAM and 1 MB flash memory available which

contains all firmware code of the quadcopter system. For this reason, very little RAM and

flash spaces are available after the regular code of the system is loaded. Additionally,

the quadcopter system is battery operated. Therefore, every computation execution has a

direct impact on the total ‘operation time’ of the system, which means more computation

will drop the battery (i.e. flight time) of the system quickly.

Hence, we looked for the best combination for minimally complex, yet accurate neuro-

morphic models. We have captured the system behavior during its flight and applied dif-

ferent model architectures which would ensure enough accuracy with expense of minimal

94

hardware and computation overhead. For this reason, we have employed the time-series

model based on Gated Recurrent Unit (GRU) [160] which has less parameter (less compu-

tation overhead and simpler) with almost same accuracy, and has use in multiple different

applications which includes sentiment analysis [161], stock market and financial institu-

tion [162, 163], energy dissipation [164], security attacks [165] and biomedical [166] and

speech applications [167]. Additionally, we have performed a combined analysis to assess

the performance for all the neuromorphic checks to ensure efficient hardware reuse. We

have adopted the method described in Section 4.4.2 to come up with the optimum model

(the average mean square error of estimation was less than 5×10−3), and finally, a general-

ized model architecture given in Figure 4.22 was obtained. Note that in the last layer of this

model, the number of perceptrons is equal to the number of the output, which varies with

model and it is needed to ensure the functionality. However, the remaining model reuses

the same hardware.

Figure 4.22: Neuromorphic model architecture for Crazyflie 2.1

In this model, the first layer receives data at two time instants, processes the data, and

95

hands this to second layer. This and final layer further process the data and generates the

model output. As the model input and output, we have the same quantities which we used

to implement previous models. Control program check has windows of control action and

reference signal as input and next control action as output. Sensor check has windows of

sensor values and control action as input and next sensor reading as output. Actuator check

has windows of motor speed, input terminal voltage, and armature current as input and next

motor speed as output. Faults were injected into the sensor, actuator circuit, and control

program of the quadcopter and the obtained results are discussed below:

Control program fault

x (m) ->0.0
0.1

0.2
0.3

y (m) ->
0.10

0.05
0.00

0.05
0.10

0.15
0.20

z (m
) ->

0.1

0.2

0.3

0.4

0.5

0.6

With correction (dotted line)

Without correction
(dashed line)

Fault-free (solid line)

Fault
injection
time point, tp

Figure 4.23: Quadcopter trajectory in presence of control program fault

We look at failure at the control program execution as the first test case. We introduced

transient failure in control program execution in the form of spurious bit-flips in the data of

96

the processor core. Introduction of spurious bit-flips results in incorrect quadcopter control

action. Three trajectories of the quadcopter namely - at fault-free or nominal condition

(solid), with control program fault when no correction is performed (dashed), and finally

with correction approach applied (dotted) are showed in Figure 5.35. These plots show that

after ‘fault injection time point, tp’, the proposed correction approach was able to correct

the behavior of the quadcopter which demonstrates the efficacy of the proposed approach.

x
(m

) -
>

0.05
0.00

0.05
0.10

0.15
0.20

0.25
0.30

0.35

y (m) -> 0.0
0.1

0.2
0.3

0.4
z (m

) ->
0.1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Fault injection time point, tp

Fault-free
(solid line)

With correction
(dotted line)

Without
correction
(dashed line)

Figure 4.24: Quadcopter trajectory in presence of sensor fault

Sensor fault

A transient fault is introduced in the gyroscope reading as the sensor fault in the form of

spurious bit-flips. As the gyroscope are micro-electro-mechanical systems (MEMS), it can

experience sudden change in movement and register incorrect reading. The trajectories

of the system during fault-free (solid), with fault and no correction (dashed), and with

97

correction (dotted) are shown in Figure 4.24. As can be observed from these trajectories,

without fault correction, the trajectory of the quadcopter varies widely from its fault-free

case. However, when the correction approach is employed after ‘fault injection time point,

tp’, the proposed error correction approach was able to improve the quadcopter behavior in

presence of sensor error.

Actuator fault

We look at the actuator fault as the next failure mode. The quadcopter system has DC

motors which produces necessary thrust from its input voltage. The generated thrust from

the actuator can vary due to numerous reasons which include change in terminal resistance

of the motor or temporary variations at the propeller driven by the motors. The crazyflie

system has an internal pulse-width modulator (PWM) circuit which effectively changes the

generated torque of an arbitrary motor. In this study, we trained the actuator check model

with the PWM module and we introduced temporary speed changes in the motors through

PWM module (due to loss of torque which results in change of thrust). We performed

experiments with different PWM input which would result into generated torque to 100%,

90%, 80%, and 70% of its nominal value, and computed appropriate controller parameter

which would restore the system performance in each case. Finally, a LUT was populated

with this information.

During the deployment, we performed an experiment (see Figure 5.32) where the sys-

tem was supposed to hover 0.4 m above the ground in 3-dimensional reference frame. We

show three trajectories, namely - fault-free case (solid), when fault is injected but no cor-

rection is done (dashed), and finally when fault is injected and correction is performed

(dotted). As this was a hovering experiment, the vertical height is of concern and it is plot-

ted in Figure 4.26 to provide another view of the results. As observed from these plots, the

fault was injected at time point, tp (t = 3.5 sec) when actuators were losing their thrusts,

and as a result the system was coming down. When no the controller reconfiguration was

98

x (m) ->

0.20
0.15

0.10
0.05

0.00
0.05

0.10
0.15

0.20 y (m) ->
0.20 0.15 0.10 0.050.00 0.05 0.10 0.15 0.20

z
(m

)
->

0.0

0.1

0.2

0.3

0.4
Fault-free
(solid line)

With correction
(dotted line)

Without correction
(dashed line)

Fault injection point, tp

Figure 4.25: Quadcopter trajectory in presence of actuator fault
performed (dashed line), the height dropped to almost 0.2 m, and it took the system until

t = 5.0 sec to take care of this event. However, when the correction approach is applied

(dotted), the change in thrusts were readily detected in the actuator check and the controller

was reconfigured on-the-fly from LUT. As a result, the system went down to only 0.35 m

and was able to recover from the fault within t = 4.5 sec (faster than earlier case). We also

observe a small deviation of 0.05m at the beginning of the experiments between without

correction and fault-free cases, which can happen due to various reasons. Here, as the ex-

periments were performed in real environment, no two environments are exactly same. For

this reason, their behavior may deviate a little (0.05 m deviation at the beginning of Figure

4.26). Additionally, the behavior will also depend on how the system was initialized in that

particular time instant before each experiment, which may change as well. The sensors,

and actuators may also be initialized differently. We think these are some of the reasons

for this behavior. From this discussion, it shows that, by applying appropriate controller

99

3.0 3.5 4.0 4.5 5.0 5.5
Time (sec) ->

0.20

0.25

0.30

0.35

0.40

0.45
H

ei
gh

t
(m

)
->

Fault-free (solid line)

With correction
(dotted line)

Without
correction
(dashed line)

Fault
injection
time point, tp

Figure 4.26: Controller compensation effect observed from height due to actuator fault
parameter, the behavior of the system was improved.

4.4.7 Summary

In this work, hierarchical checks for general nonlinear systems are proposed. The approach

is able to successfully detect, and diagnose failures in different subsystems with small

latency. Data obtained for different fault models in different subsystems corroborate the

efficacy of the proposed technique. Even compensation based on diagnosed failures was

demonstrated for control program execution, sensor, and actuator faults. The method incurs

low overhead. Simulation and hardware experiments prove the viability of the proposed

resilience methodology.

100

CHAPTER 5

CONCURRENT ERROR DETECTION IN EMBEDDED DIGITAL CONTROL OF

NONLINEAR AUTONOMOUS SYSTEMS USING ADAPTIVE STATE SPACE

CHECKS

5.1 Introduction and Key Contributions

The increased deployment of autonomous vehicles and drones has raised questions regard-

ing the safety and trustworthiness of such systems [168]. Risks in the real-time operation of

such nonlinear systems can arise from errors and failures in sensors, actuators and runtime

execution of control software [82, 169] due to field stress, part wearout and hostile oper-

ating conditions. Such risks, if manifested during real-time system operation can result in

abnormal behavior of the system or that of its constituent subsystems (electrical, electro-

mechanical, sensors, actuators and relevant controllers). Abnormal behaviors which are

different from nominal system function are broadly called anomalies, and need to be de-

tected with high coverage and low latency to enable quick recovery. We are particularly

concerned with applications such as aerial drone maneuvers and subsystems of autonomous

vehicles where the latency of anomaly detection must be extremely small (fractions of a sec-

ond) to minimize the risk of accidents. In this context, the key contributions of this research

are the following:

5.1.1 Key Contributions

The key contributions of this research are provided below:

1. A new methodology for checking anomalous behaviors in subsystems (sensors, ac-

tuators, state estimation algorithms and control program execution) of nonlinear au-

tonomous systems using encoded Extended Kalman Filter (EKF), is developed. The

101

method is scalable to a variety of nonlinear systems, incurs minimal computation

overhead and latency and requires no machine learning as compared to [82]. For

the first time, state encoding based checks are introduced both for checking the state

transition as well the covariance matrix computation steps of the Extended Kalman

Filter.

2. As opposed to prior checking schemes with time-invariant coding schemes and fixed

detection thresholds, the state transition behavior changes from one time step to the

next in generalized nonlinear systems (as given by the Jacobian of the state transition

function). For this reason, prior encoding techniques cannot be directly applied to

Extended Kalman filter (EKF). This fundamental problem is solved in this research

by employing a time-varying encoding scheme with variable detection thresholds.

This further allows the checks to adapt to changing performance sensitivities to er-

ror/failure conditions under diverse maneuvers of autonomous systems (e.g. hovering

vs. sharp turns for quadcopters), achieving higher error coverage than possible with

prior techniques with significantly lower computational overhead. Results on two

test cases are demonstrated: a quadcopter and a steer-by-wire system for autonomous

vehicles.

3. A machine learning facilitated error diagnosis and correction framework is devel-

oped. Error at sensor is compensated by performing online parameter estimation and

correction. Errors at actuator parametric failure and controller were compensated

by reconfiguring the controller by reinforcement learning and by restoring last safe

action, respectively.

5.2 Preliminaries: Extended Kalman Filter

Figure 5.1 shows the block diagram of a nonlinear state variable system. Let us assume

that the system has n states x(t), m outputs y(t), p inputs u(t), and q measurements z(t).

102

Figure 5.1: A nonlinear state space control system
i.e. x(t) ∈ Rn, y(t) ∈ Rm, u(t) ∈ Rp, and z(t) ∈ Rq. The plant behavior of this system

is expressed in the form of an ordinary differential equation:

ẋ(t) = f(x(t), u(t)) + w(t) (5.1)

where the vectors x(t) ∈ Rn and u(t) ∈ Rp represent the system states and inputs, respec-

tively. The function f(.) defines the system dynamics and w(t) ∈ Rn represents zero-mean

process noise. The output y(t) ∈ Rm of the plant is given by,

y(t) = h(x(t), u(t)) + v(t) (5.2)

where h(.) represents an output mapping and v(t) ∈ Rq represents zero-mean measurement

noise. For both linear and nonlinear state variable systems, the input u(t) is computed by

an external controller K that strives to maintain system performance under dynamically

changing plant conditions. In this work, we assume that the states and measurements follow

Gaussian statistics. Check computation for states and measurements with non-Gaussian

statistics is addressed in [170].

In general, due to limited observability of all the internal states of the plant, a recursive

state estimator such as the Extended or Unscented Kalman filter is used to estimate the plant

states in the presence of measurement noise. In partially observable nonlinear state variable

systems, the Extended Kalman Filter (EKF) [171] is used to estimate the observable as

103

well as the unobservable states of the system in the presence of measurement noise under

the assumption that the system states have Gaussian distributions. The EKF assumes a

system model of the form of Equations 5.1 and 5.2. The nonlinear functions f(.) and

h(.) are linearized at discrete time instants k and are denoted by the Jacobian matrices

Fk ∈ Rn×n and Hk ∈ Rm×n, respectively. The estimated state and covariance matrices

are represented by x̂ ∈ Rn and P ∈ Rn×n, respectively. Qk ∈ Rn×n and Rk ∈ Rq×q

represent covariance matrices for the process and observation noise, respectively. zk ∈ Rq

is a vector of measurements performed on the system and corresponds to discretized values

of the measured outputs of the system y(t) ∈ Rm of Figure 5.1. In the following, x̂−k ∈ Rn

and P−k ∈ Rn×n represent the state estimate and covariance matrix at time instant k based

on observations up to time instant k − 1. Similarly x̂k ∈ Rn and Pk ∈ Rn×n represent

corresponding estimates based on observations up to time instant k.

The EKF works in a two major part at every time instant k [172], namely - prediction

and correction. During the prediction as the Step 1, the states and covariance matrix are

predicted by

x̂−k = f(x̂k−1, uk)

P−k = FkPk−1F
T
k +Qk

(5.3)

on the basis of knowledge of x̂−k , uk, Fk, P−k andQk. The predicted state and covariance

matrices are denoted by xpriork and Pprior, respectively.

In the update as Step 2, the measurements zk are used to determine the state residue as

ỹk = zk − h(x̂−k) (5.4)

Once the residue is computed, the covariance residue Sk and the Kalman gain Kk are

104

computed in Step 3 as

Sk = HkP
−
k H

T
k +Rk

Kk = P−k H
T
k S
−1

(5.5)

Using these quantities, the state and covariance matrix are updated using the following

equations in Step 4:

x̂k = x̂−k +Kkỹk

Pk = (I −KkHk)P
−
k

(5.6)

5.3 Proposed Approach: State Encoding Based EKF Checks

5.3.1 Encoding property of matrix: an overview and its application to EKF

We review algorithm based encoding of matrices as first described in [25, 26, 35]. Consider

the information matrix A, where A ∈ Rm×n. Let us define two vectors, namely CV1 ∈

R1×m and CV2 ∈ R1×n. The column, row, and full weighted checksum matrix Ac, Ar, and

Af , of the matrix A are defined as [25]:

Ac =

 A

CV1.A


Ar =

[
A A.CV T

2

]

Af =

 A A.CV T
2

CV1.A CV1.A.CV
T

2


(5.7)

As shown in [25], it can be seen that each of these weighted checksum matrices has its

separate information matrix and check vectors which can be used to ensure fault tolerance.

105

The matrix is stored in its full weighted checksum matrix format and is manipulated in the

full, row, or column weighted checksum matrix format, on the matrix. After computations

are performed, the information sub-matrix can be readily extracted from the full weighted

checksum encoded matrix. There are five matrix operations which preserve the weighted

checksum property: addition, multiplication, LU decomposition, transpose, and product of

a matrix with a scalar [25]. They are as follows:

1. If A+B = C,then Ar +Br = Cr, Ac +Bc = Cc, and Af +Bf = Cf

2. If AB = C,then AcB = Cc, ABr = Cr, and AcBr = Cf

3. If sA = C, where s is a scaler, then sAr = Cr, sAc = Cc, sAf = Cf

4. If AT = C, then ATr = Cr, ATc = Cc, ATf = Cf

5. If A = LU , then Af = LcUr

Considering these definitions and properties, different aspects of the EKF framework

can be encoded for rapid error detection. During the prediction step, predicted state esti-

mate x̂, and predicted covariance estimate Pk|k−1 are encoded by:

x̂k−1,c =

 x̂k−1

CV.x̂k−1


P−k,f =

 P−k P−k .CV
T

CV.P−k CV.P−k .CV
T


(5.8)

Where, CV is an appropriately sized row vector, called Coding Vectors, containing non-

zero elements.

Next, we show how the state and covirance matrices can be encoded to detect computa-

tion errors in the Equations 5.3, 5.4, 5.5 and 5.6 of the EKF algorithm as discussed before.

106

The quantities of update steps (Equations 5.4, 5.5, and 5.6) are augmented in the following

way:

Sk,f =

 Sk Sk.CV

CV.Sk CV.Sk.CV
T


Kk,f =

 Kk Kk.CV
T

2

CV1.Kk CV1.Sk.CV
T

2


x̂k,c =

 x̂k

CV.x̂k


Pk,f =

 Pk Pk.CV
T

CV.Pk CV.Pk.CV
T



(5.9)

where, CV1 and CV2 are row vectors having size equal to the number of states and mea-

surements, respectively.

For error detection, we propose to encode the Jacobian Fk by including an extra check

state by introducing a time-varying coding vectorCVk, defined asCVk = [α1k, α2k, . . . , αnk],

where n is the number of states of the system (the mechanism for determining the coding

vector CVk is discussed later). We augment the Jacobian of the system Fk and the system

state estimate x̂k in the following manner:

x̂k,aug =

 x̂k

Ck


Fk,aug =

 Fk 0

CVkFk 0


(5.10)

where, CVk is the coding vector at time k and Ck is defined as Ck = CVkxk, the inner

product of CVk and xk. As the states’ estimates can be for prior and posterior, the quantity

107

Ck also have two representations: Cpre
k = CVkx

pre
k , and Cpost

k = CVkx
post
k . Following is

the expanded form of the augmented jacobian Fk,aug:

Fk,aug =



a11 a12 . . . a1n 0

a21 a22 . . . a2n 0

...
...

...
...

an1 an2 . . . ann 0

c1 c2 . . . cn 0


(5.11)

Where, ci = CVk.coli, and coli is the ith column of system jacobian Fk.

After the augmentation, the linearized state variable system takes the following form:

 ˙̂xk

Ċk

 = Fk,aug

x̂k
Ck

+



b11 b12 . . . b1p

b21 b22 . . . b2p

...
...

...
...

bn1 bn2 . . . bnp

b1 b2 . . . bp


u (5.12)

Where, bi = CVk.colBi, and colBi is the ith column of linearized input matrix. As the state

vector is augmented, the covariance matrix also takes modified form where we have one

additional row and additional column given by CV.P and P.CV T , respectively (P can be

both predicted or updated covariance matrix). Further simplification can be performed on

108

these expressions as showed below. The ith element of CV.P is given by:

(CVk.P)i =
n∑
j=0

αjcov(xi, xj)

=
n∑
j=0

cov(xi, αjxj)

= cov(xi,
n∑
j=0

αjxj)

= cov(xi, Ck)

(5.13)

Similar simplification can also be performed for P.CV T . With these simplifications,

the fully encoded covariance matrix takes the form:

Paug =



var(x1) cov(x1, x2) . . . cov(x1, Ck)

cov(x1, x2) var(x2) . . . cov(x2, Ck)

...
...

...
...

cov(x1, Ck) cov(x2, Ck) . . . var(Ck)


(5.14)

From these representations, it is clear that the augmented system contains all the compu-

tations for the canonical EKF, and hence, can be considered as a filter augmented with a

check state. We propose two checks, namely the state check and the variance check (ex-

plained below) by reusing these EKF computations. The overhead can vary from O(1/k)

to 100% where k is the number of system states, and this depends on the composition of

the Jacobian. In rest of this work, we denote the state estimates x̂−k and x̂k as xpriork and

xpostk and covariance matrices P−k and Pk as Pkprior and Pkpost, respectively. Additionally,

we assume xk be the vector of states xk = [s1k, s2k, .., sik, .., snk]
T , and the variance of the

state sik be σik for both prior and posterior quantities. These notations are used to deduce

the proposed checks in following subsections.

109

5.3.2 Algorithmic State Check

In the computation flow of the EKF, the check state at time instants k, Cpost
k and the state

estimates xpostk are computed during update steps. The response of a state variable system

is highly correlated in time in the presence of bounded inputs, and hence, for a nominal

system, the quantities Cpost
k and CVk.x

post
k are equal (limited by modelling inaccuracy and

noise statistics). As a result, the quantity ex,a(k) = Cpost
k − CVk.xpostk is very small. How-

ever, this argument is not true when the system experiences failure. Here, the quantity

Cpost
k − CVk.xpostk exceeds a threshold (discussed later), which can be used in real-time to

detect the presence of failures or errors in the system, and we propose this as the ‘Algorith-

mic state check’.

5.3.3 State Update Check

Similar to the ‘Algorithmic state check’, the states are computed during predict (xpriork) and

update (xpostk) at a time instant k, steps along with corresponding check states (Cprior
k and

Cpost
k). The response of a state variable system is highly correlated in time in the presence

of bounded inputs, and hence, for a nominal system, the quantities Cprior
k and Cpost

k are

highly correlated as well. As a result, the quantity ex,u(k) = Cprior
k − Cpost

k is very small

(limited by modeling inaccuracies and noise). However, this argument is not true when

the system experiences failure. Here, the quantity Cprior
k − Cpost

k exceeds a time-varying

threshold (discussed later), which can be used in real-time to detect the presence of failures

or errors in the system, and we propose this as the ‘State update check’.

5.3.4 Statistical Variance Check

The ‘Statistical Variance Check’ is constructed using the covariance matrix which is given

in Equation 5.14. From the properties of random variables, the variance of the updated

check state at time instants k, Cpost
k (defined earlier as Cpost

k = CVkx
post
k), can be expressed

110

as:

var(Cpost
k) = Σn

i=1Σn
j=1αikαjkcov(spostik , spostjk) (5.15)

As can be observed and proved using properties of random variables, both var(Cpost
k) and

Σn
i=1Σn

j=1αikαjkcov(spostik , spostjk) are equal (limited by noise and modelling inaccuracy) in

nominal operation. However, they will differ significantly when the system experiences

anomalies as changes in the state trajectories impact state covariance values. Hence, we

propose the following as the definition of a statistical variance check ev,a(k):

ev,a(k) = var(Cpost
k)− Σn

i=1Σn
j=1αikαjkcov(spostik , spostjk) (5.16)

5.3.5 Variance Update Check

The ‘statistical variance Check’ is also constructed using the covariance matrix which is

given in Equation 5.14. Using the representation of var(Ck), we define a quantity v∗k for

both prior and posterior covariance matrices as follows:

vpriork = var(Cprior
k) = Σn

i=1Σn
j=1αikαjkcov(spriorik , spriorjk)

vpostk = var(Cpost
k) = Σn

i=1Σn
j=1αikαjkcov(spostik , spostjk)

(5.17)

As can be observed, vpostk and vpriork will agree during nominal operation of the system (lim-

ited by noise and modelling inaccuracy). However, they will differ significantly when the

system experiences anomalies as changes in the state trajectories impact state covariance

values. Hence, we propose the following as the definition of a variance check ev,u(k) which

is followed by mathematical analysis:

ev,u(k) = vpriork − vpostk (5.18)

All four quantities namely - ‘algorithmic state check’, ‘state update check’, ‘statistical

variance check’, and ‘variance update check’ can be used to detect failures and they can be

111

proved using properties of random variables.

We propose following theorem with proof to establish this.

Theorem 5.3.1. Consider a nonlinear system with system states x which receives in-

put u. Further assume that, the system states are following Gaussian distribution. The

‘Algorithmic state check’ ex,a(k) = Cpost
k − CVk.s

post
k is zero under nominal condition

and ‘State update check’ ex,u(k) = Cprior
k − Cpost

k is bounded by ex,u(k)nominal, where

ex,u(k)nominal = max(
∑n

i=0 αikKk(zk − h(ŝ−k)), ∀k

Proof. From the earlier discussion, for the case of ‘Algorithmic state check’, the quantity

Cpost
k is defined as CVk.s

post
k and their relationship is defined in Equation 5.12. From the

definition of Cpost
k , the quantities Cpost

k and CVk.s
post
k will agree and ex,a(k) will be zero.

For the ‘State update check’, ex,u(k) is defined as ex,u(k) =
∑n

i=0 αik(s
prior
ik − spostik).

Under nominal operation of the system, different quantities of the EKF follows the behavior

described in Subsection 5.2. According to these relations, the state update check can be

simplified to:

ex,u(k) = Cprior
k − Cpost

k =
n∑
i=0

αik(ŝ
−
k − ŝk)

=
n∑
i=0

αikKkỹk =
n∑
i=0

αikKk(zk − h(ŝ−k))

(5.19)

Lets define, ex,u(k)nominal = max(
∑n

i=0 αikKk(zk−h(ŝ−k)),∀k. Under nominal condition

of system operation, the operation of EKF is also nominal and the state residuals ỹk =

zk − h(ŝ−k) are bounded. This makes the ‘State update check’ also bounded and the bound

is defined by ex,u(k)nominal.

Corollary 5.3.1.1. Errors in the Kalman filter computations that produce check error val-

ues for the ‘algorithmic state check’ and ‘state update check’ larger than their respective

thresholds will be detected by the proposed methodology.

Proof. To set up the premise of the proof, we look at different computation steps (Step 1-4

112

in Section 5.2) of Extended Kalman Filter and observe how they are changed in presence

faults. As seen before, the predicted covariance estimate P−k subsequently changes the

other quantities one after another. Let us consider the predicted covariance estimate (Step

1) is changed in following way:

P−k,corrupt → P−k,nominal + ∆Pk−1 (5.20)

where, ∆Pk−1 represents the faulty value (zero in absence of any error). Because of this

change covariance estimate, the residual covariance Sk (Step 2 and 3) will also change in

the following:

Sk,corrupt → Sk,nominal + ∆S (5.21)

After simplification, the expression of ∆S becomes (Step 3),

∆S = Hk∆Pk−1H
T
k (5.22)

Similarly, the expression of Kalman gain in presence of fault becomes (Step 3),

∆Kk = Kk,corrupt −Kk,nominal

= (P−k + ∆Pk−1)HT
k (Sk + ∆S)−1 − P−k H

T
k S
−1
k

= P−k H
T
k (Sk + ∆S)−1 + ∆Pk−1H

T
k (Sk + ∆S)−1

− P−k H
T
k S
−1
k

(5.23)

We use Woodbury matrix identity [173] to compute the inverse of corrupted residual

covariance. This relation states that if there are two matrices A and B, then inverse of

113

(A+B) can be computed by the following:

(A+B)−1 = A−1 − 1

1 + g
A−1BA−1︸ ︷︷ ︸
B̃ (let,)

(5.24)

where, g = trace(BA−1). Using this relation to compute the inverse of residual covariance

and after simplification, we obtain the following:

∆Kk = ∆Pk−1H
T
k S
−1
k + (P−k + ∆Pk−1)HT

k ∆̃S (5.25)

where, ∆̃S = − 1
1+gs

S−1
k ∆SS−1

k , and gs = trace(∆SS−1
k) Similarly corrupted version of

updated covariance matrix (Step 4) will change to:

Pk,corrupted

= (I − (Kk + ∆Kk)Hk)(P
−
k + ∆Pk−1)

= (I −KkHk)P
−
k︸ ︷︷ ︸

Pk,nominal

+

(I −KkHk)∆Pk−1 −∆KkHkP
−
k −∆KkHk∆Pk−1︸ ︷︷ ︸

∆̃P (let,)

= Pk,nominal + ∆̃P

(5.26)

Similarly the change in states becomes (Step 4),

ŝk,corrupted = ŝk + (Kk + ∆Kk)ỹk

= ŝk +Kkỹk︸ ︷︷ ︸
ŝk,nominal

+ ∆Kkỹk︸ ︷︷ ︸
∆̃s (let,)

= ŝk,nominal + ∆̃s

(5.27)

With these aforementioned relations, the algorithmic state check ex,u(k) can be simpli-

114

fied to:

ex,a(k) = CVk.∆̃s (5.28)

which crosses the bound for algorithmic state check. Similarly, the state update check,

ex,u(k) is expressed as:

ex,u(k) =
n∑
i=0

(αik(ŝ
−
k − ŝk)) =

n∑
i=0

(αikKkỹk) (5.29)

Reusing the expression of corrupted Kk and after further simplification,

ex,u(k) = ex,u(k)nominal +
n∑
i=0

(αik∆Kkỹk)

> ex,u(k)nominal

(5.30)

Now, the first term of the aforementioned equation represents bound due to nominal

operation (due to modelling inaccuracy, noise etc.). And, in presence of failure, the second

term of the last equation would become non-zero. From this analysis, it is shown how

errors in computation of different steps in EKF are detected in algorithmic state check and

state update check.

From corollary 5.3.1.1, it can be seen that the error in covariance matrices (step 1)

will be detected as this error will create non-zero elements in ∆Pk−1. Similarly, sensor,

actuator and control program failure will be detected by ‘state update check’ due to incor-

rect residue (step 2), out of bounds systems states (Step 4), and out-of-distribution control

action respectively (Step 3). On the other hand, ex,a(k) will detect failure in sensor and

actuator through system residue (Step 2) and state estimates (Step 4).

Theorem 5.3.2. The ‘statistical variance check’ ev,a(k) = var(Cpost
k)−Σn

i=1Σn
j=1αikαjkcov(spostik , spostjk)

is zero under nominal operation, and ‘variance update check’ ev(k) = vpriork − vpostk ,

115

is bounded by ev,u(k)nominal, where ev,u(k)nominal = max(
∑n

i=0

∑n
j=0 αikαjk((P

−
k)ij −

(Pk,nominal)ij),∀k and Pij represents element of P at ith row and jth column.

Proof. From the properties of random variables, the variance of Ck is given by:

var(Cpost
k) = var(

n∑
i=0

αiks
post
k) =

n∑
i=0

n∑
j=0

αikαjkcov(spostik , spostjk) (5.31)

As can be observed from the definition of ‘statistical variance check’, var(Cpost
k) and∑n

i=0

∑n
j=0 αikαjkcov(spostik , spostjk) are equal which makes ev,a(k) zero under nominal con-

dition.

The ‘statistical variance check’ ev,u(k) is dependent on vpriork and vpostk which are de-

fined at Equation 5.17. Under nominal operation, different computations of the EKF fol-

lows the behavior described in Section 5.2, and the expression of ‘statistical variance check’

ev,u(k) becomes,

ev,u(k) =
n∑
i=0

n∑
j=0

αikαjk((P
−
k)ij − (Pk)ij) (5.32)

Lets define, ev,u(k)nominal = max(
∑n

i=0

∑n
j=0 αikαjk((P

−
k)ij − (Pk,nominal)ij),∀k.

Under nominal condition of system operation, the operation of EKF is also nominal and

the state residuals covariance matrices are very close to one another. Hence their element

wise difference is bounded. This makes the ‘variance update check’ also bounded and the

bound is defined by ev,u(k)nominal.

Corollary 5.3.2.1. Errors in the Kalman filter computations that produce check error val-

ues for the ‘statistical variance check’ and ‘variance update check’ larger than their re-

spective thresholds will be detected by the proposed methodology.

Proof. In Theory 5.3.1.1, we showed how the deviation in predicted covariance matrix

introduces changes other quantities in the EKF computaion, which will be used in this

116

proof. The expression of var(Ck) in presence of failure becomes:

var(Ck) = var(
n∑
i=0

αik(sik + (∆̃s)i)) (5.33)

From the properties of random variables, the variance of sum of random variables A

and B is var(A+B) = cov(A,A) + cov(B,B) + 2cov(A,B). Using this relation,

var(
∑n

i=0 αik(xik + (∆̃x)i)) can be expressed as sum of
∑n

i=0

∑n
j=0 αikαjkcov(sik, sjk)

and variance of corrupted terms (∆̃s)i and covaiance of (∆̃s)i and sik. From this analysis,

it can be shown that the first term corresponds to bound and the second and third terms will

cross the bounds in presence of failure.

In presence of failure, the variance update check, ev,u(k) becomes:

ev,u(k) = (
n∑
i=0

n∑
j=0

αikαjkcov(spriorik , Spriorjk))

− (
n∑
i=0

n∑
j=0

αikαjkcov(spostik , spostjk))

=
n∑
i=0

n∑
j=0

αikαjk(cov(spriorik , spriorjk)− cov(spostik , spostjk))

=
n∑
i=0

n∑
j=0

αikαjk((P
−
k)ij − (Pk)ij)

(5.34)

In presence of failure, the expression of Pk is corrupted and, as shown before, takes the

following form:

Pk,corrupted = Pk,nominal + ∆̃P (5.35)

117

Using this relation and after further simplification, the expression of ev,u(k) becomes,

ev,a(k) =
n∑
i=0

n∑
j=0

αikαjk((P
−
k)ij + (∆Pk−1)ij

− (Pk,nominal)ij − (∆̃P)ij)

= ev(k)nominal +
n∑
i=0

n∑
j=0

αikαjk((∆Pk−1)ij − (∆̃P)ij)

> ev(k)nominal

(5.36)

The first term of the aforementioned equation represents the bound which will be

present in nominal form (due to modelling inaccuracy, noise etc.). And, in presence of

failure, the second term of the last equation would become non-zero. Hence, the error will

be detected.

As shown in the proof of the corollary 5.3.1.1, state update check ex,u(k) can detect

failure. In reality, it is compared against a time-varying threshold to determine whether the

system is experiencing failure. The threshold needs to be selected carefully to ensure good

‘precision’ and ‘recall’. For this reason, a statistical bound is computed to determine the

threshold and a two-tail statistical test is performed on these bounds to determine whether

the system is experiencing anomalies. To make this bound even tighter and to make the

checks more responsive to different anomalies, the time varying coding vector CVk is de-

termined. We explain the time-varying threshold and coding vector using state checks in

the following. However, the analysis is extended to variance checks as well.

Determination of Time-Varying Coding Vector

To allow the checks to adapt to changing performance sensitivities to error/failure con-

ditions, the coding vector CVk is computed as suggested by Lemma 1. Here, CVk =

[α1k, α2k, . . . , αnk] and {αik} is varied inversely to the variance of the state xi at time in-

stant k (the latter variance is obtained as a direct by-product of the EKF computations).

118

This reduces the variance of the check quantity ex(k) allowing a tighter detection threshold

at time instant k. Example state check plots for a quadcopter system with constant (as in

prior research) and variable coding vectors are shown in Figure 5.2, where a small error is

introduced in the sensor reading and escapes the constant coding vector based check (left),

but is detected by the time-varying coding vector based check (right). Let xk be the vector

of states xk = [s1k, s2k, .., sik, .., snk]
T , and the variance of the state sik be σik, then we

have,

Figure 5.2: State check plot for (left) constant, and (right) variable CV for a transient sensor
failure in quadcopter

Lemma 1. Given N independent normally distributed states and elements of coding vectors

αik such that the variance of each sik > 1, the variance of the resultant check state reduces

when the coding vectors are produced by αik = 1/σik at time step k.

Proof. From the properties of a normal distribution, for independent and identically dis-

tributed states, the variance of
∑N

i=1 αiksik is the sum of the individual variances of each

αiksik, i.e. var(Ck) = var(
∑N

i=1 αisik) =
∑N

i=1 α
2
ikσ

2
ik for each αikσik being the standard

deviation of a given αiksik. Since each α2
ikσ

2
ik > 1 we have var(Ck) > N .

When we scale the states such that αik = 1/σik we map each sik to the unit normal

119

distribution with unity standard deviation, giving var(αiksik) ≈ 1, and the overall check

state variance as var(Ck) =
∑N

i=1 12 ≈ N . From the previous, we see that the variance is

reduced.

Accordingly, the coding vector at time step k is selected to satisfy the constraint α1kσ1k =

α2kσ2k = · · · = αikσik, 1 ≤ i ≤ n with
∑n

i=1 αik ≤ R, where R is selected to prevent

overflow in the numerical arithmetic involved.

Computation of Time-Varying Check Threshold

Since Ck is a weighted sum of the states, a hypothesis test is performed to determine how

the state check should be thresholded as a proxy for flagging errors in the system states.

For a hypothesis test, we choose the simple two-tail test for normal distributions [174].

To determine the statistical bound (threshold) of the check, the trajectory of Cprior
k and

Cpost
k are recorded and mean and variance of the error ex(k) are determined for a cer-

tain time window. In general, the time window can be selected to be adaptive (smaller

time-window when the system is in equilibrium and higher when performing complex

operations). In this work, the length of the window was determined by the method de-

scribed in [83–85]. The covariance is used to derive the variance of the error between the

prior and posterior check state. Thus for the check state Ck, one has M(Cprior
k , Cpost

k) =

[σ2(Cprior
k), σ2

cov;σ
2
cov, σ

2(Cpost
k)] as the covariance matrix. From this representation, the

following relationship is used to determine the variance: σ2(Cprior
k −Cpost

k) = σ2(Cprior
k)+

σ2(Cpost
k)− 2cov(Cprior

k , Cpost
k).

After the mean and variance are computed, the statistical bound of the error is deter-

mined by:

µ± ρσ (5.37)

where, µ and σ are mean and standard deviation of the error ex(k) respectively for the

window described earlier, and ρ controls the error bound beyond which system anomalies

120

Figure 5.3: State check plot for (left) constant, and (right) variable threshold
are flagged. Note that, the quantities µ and σ are time varying in nature, whereas the

quantity ρ is fixed and is determined by the method explained in 5.6.1. This results in

a time-varying threshold for the check employed. In addition to the check proposed in

this work, a simple state check can also be adapted from [175] with time-varying coding

vectors and anomaly detection thresholds, to address detection of slow-changing parametric

failures.

An example use of a variable check threshold is shown in Figures 5.3a and 5.3b where

a quadcopter hovers starting at t = 0 sec and goes through a sharp turn t = 3.95 sec. The

fixed threshold scheme was not able to detect the fault as shown in Figure 5.3a. However,

the variable threshold (Figure 5.3b) adapts dynamically to the operating environment of the

quadcopter, maximizing anomaly coverage while minimizing false alarms.

5.4 Resilience methodology

The diagnosis and resilience methodologies for failures at different subsystems of the au-

tonomous system are discussed in this subsection. As shown in the Figure 5.4, after an

error is detected, the source of this error is diagnosed by the method explained in subsec-

121

Figure 5.4: Resilience methodology flow
tion 5.4.1. Parametric fault was considered as the failure model for sensor and actuator,

and transient fault was considered for control program error. The detailed diagnosis and

resilience methodology for each of these failure are explained below.

5.4.1 Machine learning assisted failure diagnosis

Figure 5.5: State check plot for (left) sensor, (middle) actuator, and (right) control program
failure

Once the failure is detected, the next step is to diagnose the source of the failure. Sample

122

plots for failures in different parts of the system, namely - sensor, actuator, and control

program are shown in Figure 5.5. As can be observed, the time domain property of error

signals are different for different failure mode and this can be used for diagnosis purpose.

For this reason, a machine learning based approach is employed to classify the source

of failure as shown in Figure 5.6. Here, it is assumed that the system behavior will be

captured sufficiently in widely diverse mode of operations and failure to effectively employ

the classifier as a diagnosis tool. In this work, a ‘Support Vector Machine’ [124] has been

trained where the model looks at the state and variance checks of the system for different

failure modes, and learns their dependency on the error. The model was trained using

Radial Basis Function as the kernel. The model was trained on data-sets obtained from 300

simulation studies performed in diverse operating conditions and failure modes selected in

random to completely capture the behavior, and the hyper-parameters of the model were

optimized.

Figure 5.6: Error diagnosis block diagram

Figure 5.7 shows the performance of the trained model for different hyper-parameters.

‘Classification score’ has been selected as the performance metric which is defined as the

fraction of data which are classified accurately (the higher the better). It is observed from

this Figure that, the model hyper-paramters γ and C (γ and C are kernel coefficient and

regularization paramter respectively) are varied for different regions and the classification

score also varies. In the given experiments, the score varied from 67% to 100% for dif-

ferent combination of hyper-parameters. From these experiments, it is found that the best

performance of the model is obtained when γ = 0.1 and C = 1 when the classification

123

Figure 5.7: Classification score the diagnosis engine for different hyper-parameter
score of 100% was obtained. Higher value of γ and C will have similar score. However, it

is not recommended as this may result into overfitting.

Sensor Fault

Sensor offset and scaling faults have been considered which are the most common form of

failure the sensor. For correction of this kind of failure, we propose the parameter optimiza-

tion on-the-fly and apply appropriate correction in the sensor reading. Here, the fault can

be detected by the checking scheme and diagnosed by the machine learning based method

which are explained earlier. After the fault is diagnosed, the observed state checks are

sampled for tk time instants and the recorded quantity is defined as chkobserved(tk). A ’Lev-

enberg Marquardt’ [125, 126] algorithm based optimization was performed to estimate the

124

changed parameter where the optimization problem is defined as:

p∗ = arg min
p

(‖chkobserved(ti)− chk(p, ti)‖2)

subject to, 0 < ti ≤ tk

(5.38)

where, chk(p, ti) is the check defined by sensor parameter p at time-instant ti.

Figure 5.8: Cost function for gyroscope parametric failure

Examples of the cost function for the aforementioned optimization problem is shown

in Figures 5.8 and 5.9 where parametric failures were introduced in gyroscope and ac-

celerometer, respectively. As can be observed from these two plots, a properly tailored

optimization algorithm can be used to estimate the parameter with very high degree of ac-

curacy. For the best performance of this optimization problem, a trade-off study between

relative percentage error of estimation vs. the observation window was performed. This

study was performed for three different cases, namely - a) only state check developed us-

ing state estimator, b) sensor readings, c) both check and sensor readings were used. The

125

Figure 5.9: Cost function for accelerometer parametric failure
performance of these three studies are shown in Figure 5.10.

As can be observed from the Figure 5.10, the relative percentage error starts to reduce

(i.e. the accuracy increases) as the observation window length tk gradually increases. The

reason for this observation is providing more observation points facilitates the optimization

problem and hence better accuracy is obtained. However, the relative error goes through an

optimum point and the error starts to increase after that length as the observation window

is increased further. The reason for this kind of behavior is as the observation window

increases too much, no new information is captured. However, increasing the window too

much captures the random noises which hurts the accuracy. Hence, a saturation at relative

error is observed as the observed window is extended too much.

Among the three different cases, direct comparison with sensor readings resulted into

the minimum relative error (i.e. best accuracy), as in this method the sensor readings are

directly used in this optimization. Comparison with the observed check results into an

126

Figure 5.10: Sensor trade-off study
optimum point which is a bit larger than the same for ‘sensor comparison’ case and the

accuracy is inferior as well. The reason for this behavior is the checks were constructed

by encoding the states’ estimates which may introduce aliasing effects and hence inferior

performance is obtained. However, having an ‘Extended Kalman Filter’ is enough for this

case, but a system model (which may not be accurate all the time) is necessary for ‘sensor

comparison’ method. From this discussion, we can clearly understand the dependency of

accuracy on considered data (check value or sensor value or both) is used is extremely im-

portant. Additionally, if a system has n states and m sensors, and n states are encoded to

produce one check, comparing sensors for optimization would incur n
m

times more over-

head (in addition to model execution overhead) than comparing the checks. It may be

beneficial to use check based optimization when n
m

much larger than one or when the rela-

tive error is less sensitive to the system behavior. Similarly, for a fully observable system,

n
m

= 1, and the overheads are comparable. From this discussion, it is observed that the

127

appropriate approach will depend on the system. The plots also show the iteration count

for three different studies and it was found that all of these approaches take almost same

number of iteration. From the observed study observed from this plot, a window length of

50 (equivalent to 0.050 sec) was selected which results in an error of less than 1%. After

the correction approach is applied, the check error goes down to nominal case, which is

shown in Figure 5.11.

Figure 5.11: Check error plot for (left) without, and (right) with correction for sensor failure

Actuator Fault

Similar to the sensor, parametric deviation was considered as the failure model for actuator

in this work.

The actuator parameter estimation accuracy is not very high because an accurate pa-

rameter estimation requires consistent persistence in actuator with properly designed input

stimuli [88]. For this reason, we employ ‘Multi-Armed Bandit’ based reinforcement learn-

ing algorithm [176] to find out the best control action. The algorithm excites the actuator

128

Figure 5.12: Risk of actuator parametric deviation
for different control parameter to minimize the following risk:

k∗ = arg min
k

(‖chkgolden(ti)− chk(ctrl(k), ti)‖2)

subject to, 0 < ti ≤ tk

(5.39)

Where, k represents control parameter, chkgolden(ti) represents reference check read-

ings which an ideal system should exhibit, and chk(ctrl(k), ti) represents the check read-

ings when the actuator is controlled by a controller having k control parameters. As shown

in the Figure 5.12, an appropriately designed cost function of the risk takes a convex shape,

and the MAB algorithm will learn the optimum value.

The reward (defined as inverse of risk) of the reinforcement learning problem is defined

as follows:

R =
1

(‖chkrgolden(ti)− chk(ctrl(k), ti)‖2) + 0.01
(5.40)

An example reward map is shown in the following figure for different arm knobs (which

129

is control parameter in this case). As can be seen from the figure 5.13, the controller pa-

rameters are correctly tuned when a set of actuators’ parameters were changed. The reward

value is showing a high value for certain combination of controller parameters which rep-

resents the best pair of control actions in this situation. A Gaussian Process based regressor

is trained on the fly to compensate for the error signal and it is deployed in parallel to the

EKF check. After the correction approach is applied, the check error goes down to nominal

case, which is shown in Figure 5.14.

Figure 5.13: Reward (=1/Risk) value of different control parameter for Multi-Armed Bandit
based control parameter reconfiguration

130

Figure 5.14: Check error plot for (left) without, and (right) with correction for actuator
failure

Control Program Fault

For the correction of the transient error in Control program, we propose control action

restoration. As the error in control program execution is detected and diagnosed, the last

saved control action is applied to restore the safe behavior of the system in fail-safe manner.

It is assumed that, the fail-safe action is being executed from a safe part of the controller

which is immune from internal or external failures. By this way, the control program fault

is corrected.

5.5 Test Cases: Overview and EKF Checks

5.5.1 Quadcopter

A quadcopter is modeled as a nonlinear state variable system with 12 state variables:

[x, y, z, ẋ, ẏ, ż, φ, θ, ψ, φ̇, θ̇, ψ̇]T (see Figure 5.15), where, x, y and z represent the position

of the quadcopter in 3 dimensional inertial reference frame and φ, θ and ψ represent the

roll, pitch and yaw angle in the body frame. The dynamics of the quadcopter is explained

in Section 4.3 and hence it is skipped here.

131

Figure 5.15: An example quadcopter system (adopted from Crazyflie [142])
To implement the EKF on quadcopter system, the Jacobian Fk is computed. The full

size of the Jacobian Fk is 12× 12 with the following non-zero components:

Fk(0:2,3:5) =Fk(6:8,9:11) =I(3),Fk(3,6) =T (−cψsθsφ + sψcφ)/m,

Fk(3,7) = T (cψcθcφ)/m, Fk(3,8) = T (−sψsθcφ + cψsφ)/m,

Fk(4,6) = T (−sψsθsφ − cψcφ)/m, Fk(4,7) = T (sψcθcφ)/m,

Fk(4,8) = T (cψsθcφ + sψsφ)/m, Fk(5,6) = T (−cθsφ)/m,

Fk(5,7) = T (−sθcφ)/m, Fk(9,10) = −(Iz − Iy)ψ̇/Ix,

Fk(9,11) = −(Iz − Iy)θ̇/Ix, Fk(10,9) = −(Ix − Iz)ψ̇/Iy,

Fk(10,11) = −(Ix − Iz)φ̇/Iy, Fk(11,9) = −(Iy − Ix)θ̇/Iz,

Fk(11,10) = −(Iy − Ix)φ̇/Iz, Fk(3:5,3:5) = −kDI(3)/m

(5.41)

where, I(.) = identity matrix, T = Thrust = TB[2], [Ix, Iy, Iz] = diag(I) (TB and I are

defined earlier), and c∗ and s∗ represents cos(∗) and sin(∗), respectively. For an appropri-

132

ately selected coding vector CVk ∈ R12, the expression for the state update check becomes

ex,u(k) = Σ12
i=1(Ck−CVkxpostk), algorithmic state check becomes ex,a(k) = Ck−CVk.xpostk ,

variance update check becomes ev,u(k) = var(Cprior
k) − var(Cpost

k), and statistical vari-

ance check becomes ev,a(k) = var(Ck) −
∑n

i=0

∑n
j=0 αikαjkcov(spostik , spostjk). The coding

vector CVk is updated as suggested by Lemma 1, and the statistical bounds for these two

checks were determined.

5.5.2 Steer by Wire System

Figure 5.16: Steer-by-Wire system with rotary motors (adopted from [177])

An automotive subsystem, Steer-by-Wire (SbW) is considered as the second test case.

This system is an integral part of automotive system and has been focus of research interest

[178–183]. As shown in Figure 5.16, a SbW system can be decomposed into two parts,

namely hand wheel and front wheel subsystems. The hand wheel subsystem is comprised

of the hand wheel, the hand wheel angle sensor, and the feedback motor. The front wheel

133

subsystem is comprised of the steering motor, the pinion angle sensor, the rack and pinion

gearbox, and the steered front wheels. These two subsystems are connected through the

‘Electronic Control Unit’ (ECU). The hand wheel motor generates the feedback torque as a

representation of ‘road feel’, and the front wheel steering motor generates the actual torque

to steer the front wheels. Figure 5.16 shows the block diagram of a SbW system.

The dynamics of the hand wheel and front wheel subsystems are given in the following

[177]:

Jhθ̈h +Bhθ̇h + chθh + τr = τh

Jeq δ̈f +Beq δ̇f + Fssign(δ̇f) + τe = τeq

(5.42)

The vehicle’s slip angle β and yaw rate γ dynamics are:

β̇
γ̇

 =

−Cf+Cr

MVCG
−1 +

Crlr−Cf lf
MV 2

CG

Crlr−Cf lf
IZ

−Crl2r+Cf l
2
f

IZVCG


β
γ

+

 Cf

MVCG

Cf lf
IZ

 δf (5.43)

where, Jh(Jeq) = front (equivalent) wheel moment of inertia, Bh(Beq) = front (equivalent)

wheel viscous friction, ch = torsional stiffness of the hand wheel shaft, θh = hand wheel

rotational angle, τh(τr) = hand wheel input (feedback) torque, Nθ = ratio between the hand

wheel rotational angle and the front-wheel steering angle, Fs = Coulomb friction constant,

Cf (Cr) = front (rear) wheel cornering stiffness, lc(lp) = mechanical (pneumatic) trail, lf (lr)

= front (rear) wheel center to center of gravity (CG) distance, M = vehicle mass, IZ =

vehicle inertia around CG, VCG = vehicle velocity. The expression of Jeq and Beq are given

below:

Jeq = Jfw +

(
rN2

N1

)2

Jsm

Beq = Bfw +

(
rN2

N1

)2

Bsm

(5.44)

134

where, Jfw(Jsm) = moment of inertia of the front wheel (steering motor), Bfw(Bsm)

= viscous friction of front wheels (steering motor), r = scale factor to account for the

conversion from linear motion of the rack to the rotation at the steering arm and vice versa,

N1 and N2 are the tooth numbers of the rack and pinion gearbox.

The hand wheel subsystem is controlled by a proportional and derivative (PD) con-

troller, which produces the response θh. This is fed to ECU, which generates the reference

angle θhr = θh/Nθ for the front-wheel subsystem. The input to this subsystem is τeq which

is computed from reference front-wheel angle θhr by a sliding mode controller (SMC).

To implement the EKF on the frontwheel subsystem of the SbW, the whole system was

constructed with systems states xk = [δf , δ̇f , β, γ]T at time step k. the Jacobian Fk was

computed which has following non-zero elements:

Fk(0,1) = 1, Fk(1,0) = −Cf (lc + lp)/Jeq,

Fk(1,1) = −(2Fs∆(0) +Beq)/Jeq, Fk(1,2) = cf (lc+ lp)/Jeq,

Fk(1,3) = cf (lc + lp)lf/(JeqvCG), Fk(2,0) = cf/(MvCG),

Fk(2,2) = −(cf + cr)/(MvCG),

Fk(2,3) = −1 + (crlr − cf lf)/(Mv2
CG),

Fk(3,0) = cf lf/Iz, Fk(3,2) = (crlr − cf lf)/Iz,

Fk(3,3) = −(crl
2
r + cf l

2
f)/(IzvCG)

(5.45)

where, ∆(.) is a ‘Kronecker delta’ function which is 1 if the argument is zero and 0

otherwise. The coding vectors CVk ∈ R4 were updated as suggested by Lemma 1 and the

state check, variance check and statistical bounds for these two quantities were computed

using previously described methods.

135

5.6 Experimental Results

The quadcopter used in this work has following parameters (defined in [141]): L = 0.3m,

r = 0.1m, m = 1.2 kg, b = 0.0245, d = 10 in, and pitch = 4.5 in . The steer-by-

wire system used in this work (adopted from [177]) has the following parameters: Jfw =

2.6 kg.m2, Bfw = 12Nms/rad, Jeq = 9.498 kg.m2, Beq = 24.312Nms/rad, ch =

0.2Nm/rad, Nθ = 12, Fs = 2.68Nm, Cf = Cr = 45000N/rad, lf = 1.2m,

lc = 0.016m, lp = 0.023m, lr = 1.05m, M = 2000 kg, IZ = 1300Kg.m2, and

VCG = 10m/sec. The initial coding vector CV0 (initial CV at t = 0) for quadcopter was

chosen to be [1/4, 1/4, 1/4, 1, 1, 1/8, 4, 4, 4, 2, 2, 2], and that for SbW system was chosen

to be [1, 1, 1, 1]. Subsequent coding vectors and check detection thresholds are computed

as per the discussion in Section 5.3. The proposed error detection framework scales across

a variety of error and failure mechanisms. We discuss the statistical analysis based coding

parameter and threshold selection strategy in the following. This is followed by results for

transient errors in sensor values, Kalman filter computations and control program execution

and offset errors in actuators. Comparison with other state of the art methodologies is

discussed and hardware validation experiments are presented.

5.6.1 Statistical analysis based best bound selection:

Nonlinear systems having the form shown in Figure 5.1 are subject to process and measure-

ment noise. Having a check whose threshold is low results in vulnerability to noise. For

this reason, the proposed Kalman filter check uses all four checks, namely ‘state update

check’, ‘algorithmic state check’, ‘variance update check’ and ‘statistical variance check’.

In general, the quantity ρ is selected to minimize false positives while maximizing error

coverage. Low threshold values result in higher ‘false positive’ counts (detection of errors

when there are none). On the other hand, high values of threshold (high values of ρ) result

in loss of error coverage and hurts performance as well. As a consequence, a proper value

136

of ρ needs to be determined in Equation 5.37 that balances this tradeoff. We use a statis-

tical approach to systematically address this issue. We vary the value of ρ and determine

the ‘Precision’ and ‘Recall’ of the model. ‘Precision’ is defined as TP
TP+FP

and ‘Recall’

is defined as TP
TP+FN

, where TP , FP , and FN are defined as TP = True Positive = the

number of errors that cause failures in performance that are detected, FP = False Positive

= the number of events (error injections) that do not cause failures in performance but are

flagged as errors and FN = False Negative = The number of events that cause failures in

performance but are flagged as error-free. Performance failure for a quadcopter is defined

to occur when theL∞ norm of the difference in the x, y and z co-ordinates of the quadcopter

deviates from its intended trajectory by 5 inches, where the diameter of the spherical vol-

ume of the quadcopter is 10 inches. Similarly, for the Steer-by-Wire system, performance

failure occurs when the lateral acceleration of the vehicle exceeds its maximum permissible

bound, (0.4 g at any speed, set by United States Federal Highway Administration [183]).

To determine the best value of ρ for the quadcopter check, we performed 2000 experi-

ments where faults were injected in 1000 experiments (both the fault models and the fault

value were selected in random) and the remaining experiments were fault-free. From these

experiments, the value of ‘Precision’ and ‘Recall’ were determined. The ‘F1 score, F1’

was determined from these two quantities which is defined as F1 = 2
Recall−1+Precision−1 .

The maximum value of F1 corresponds to the best balance between ‘Precision’ and ‘Re-

call’ and this represents the selected value of ρ. For the quadcopter, the values of F1 score,

Precision, and Recall are plotted in Figure 5.17. As seen from this plots, the value ρ = 4.1

corresponds to the best threshold bound.

Similar to the previous experiment, we performed F1 score based analysis for the Steer-

by-Wire system, and the values of F1 score, Precision, and Recall are plotted in Figure 5.18.

As can be seen from these plots, ρ = 3 corresponds to the best threshold bound.

In the following, we illustrate the detection of failures in sensors, actuators, covariance

computation and control program execution with examples. This is followed by a discus-

137

Figure 5.17: F1 score profile for quadcopter system

Figure 5.18: F1 score profile for Steer-by-Wire system
sion of the benefits of the proposed methodology vis-a-vis the state of the art.

5.6.2 Sensor Failure

Multiple bit-flips were introduced into the sensor readings (inertial measurement unit (IMU)

reading) of the quadcopter from time t = 3 sec to t = 4.2 sec of a planned flight path. The

state check and variance check obtained for this failure are shown in Figure 5.19, and it is

observed from the plots that the injected error is almost instantaneously detected at t = 3

138

sec. Similarly, random bit-flips were injected into the sensor readings of the SbW system

at t = 0.7 sec, and both the state and variance checks are shown in the Figure 5.20. As can

be seen from these plots, the error is detected at t = 0.701 sec with only 1 ms detection

latency. As discussed earlier, both the state check and the variance check are adaptively

encoded with time-varying detection thresholds.

Figure 5.19: Checks for quadcopter system in presence of sensor error

Figure 5.20: Checks for SBW system in presence of sensor error

139

Figure 5.21: Checks for quadcopter system in presence of actuator error

Figure 5.22: Checks for SBW system in presence of actuator error

5.6.3 Actuator Error

Actuator failures for the quadcopter systems are modeled as offsets in actuator values (mo-

tor speed). Figure 5.21 shows plots for state and variance checks when the system experi-

ences an offset in actuator output (failure) at t = 3.15 sec. The state check shows a clear

breach of bounds at t = 4 sec which indicates the detection of failure within 0.85 sec. For

the SbW system, an offset was introduced into the steering motor (brushless DC motor)

140

output at t = 0.7 sec. The corresponding state and variance checks are shown in Figure

5.22 which shows that the error was detected with a latency of only 1 ms. Most other

injected failures were detected with low latency (within 10 ms).

5.6.4 Covariance Computation Failure

We also considered computation errors in the covariance matrix block of the Kalman fil-

ter. Computation of this matrix is particularly important as the coding vectors are scaled

according to the diagonal elements of this matrix and errors in computation directly impact

the error checking process. Figures 5.23 and 5.24 show plots for the state and variance

Figure 5.23: State Check for quadcopter system in presence of covariance computation
error

checks for the quadcopter and the SbW system respectively, when the covariance matrix

stored in memory is corrupted due to soft errors. The errors for the quadcopter system and

the SbW system were injected at t = 3 sec and t = 0.7 sec, respectively. As seen from

these plots, both the state and variance checks were able to flag the computation error in

real-time at t = 3.001 sec and t = 0.701 respectively, resulting in corresponding error

detection latencies of 1 ms in both cases.

141

Figure 5.24: State Check for SBW system in presence of covariance computation error

5.6.5 Control Program Error

Soft errors involve fault injection in the controller (digital processor core) block of Figure

5.1. These errors are modeled as spurious bit flips in the processor core on which the control

algorithm is executed. In a simulation environment, the plant, controller and checking

algorithms are coded together in a combined manner and executed on a common processor

platform. However, in reality, only the controller and the fault detection methodologies are

executed on an embedded processor since the rest of the simulation software mimics the

actual physical behavior of the system (plant). For this reason, the location of the control

action computations was analyzed carefully in assembly level code and faults were injected

into the registers involved in control action computations. The range of least significant bits

of the registers which are affected by error injection is referred to as the ‘injection range’.

1000 injection experiments for single and multiple bit error each were performed and for

each set of experiments, the number of errors detected and number of experiments that

resulted in silent data corruption (SDC) are shown in Tables 5.1 and 5.2 respectively. As

seen in this case, the lower value of injection range for both multiple and single bit-flips

resulted in low value of errors detected (52.2% and 0% respectively) and potential crashes,

142

Table 5.1: Error detection experiments on quadcopter system

Multiple bit-flip Single bit-flip

Injection range
Potential crashes

with 100%
detection

of
SDC

Potential crashes
with 100%
detection

of
SDC

32 846 154 542 458
16 576 424 68 932
8 522 478 0 1000

Table 5.2: Error detection experiments on SbW system

Multiple bit-flip Single bit-flip
Injection range Errors detected # of SDC Errors detected # of SDC

32 864 136 627 373
16 766 234 421 579
8 100 900 21 979

as these bit-flips did not have strong manifestation into system failure. Additionally, single

bit-flips resulted in fewer errors in all experiments. For silent data corruption, the errors do

not change the performance of the system and hence the proposed check did not detect those

events. However, as the injection range increases, the system failure also increases which

are detected by the proposed approach. As seen from the Table 5.1, the error detection

accuracy increases to 84.6% (for multiple bit error) and 54.2% (for single bit error) when

injection range is 32. For the SbW case, similar to the quadcopter case, fewer multiple and

single bit-flip errors were detected at low injection range of 8 (10% and 2.1% respectively),

which increases to 86.4% and 62.7%, respectively when injection range is 32 as reported

in Table 5.2.

5.6.6 Comparison with state of the art detection methods

In the following, we compare the proposed error detection methodology using Kalman fil-

ter checks with variable coding vectors and variable thresholds against three most relevant

error detection techniques: (a) use of Kalman filter checks with constant coding vector and

constant threshold [175], (b) use of a machine learning based state encoding technique pro-

posed in [83], and (c) use of an encoded residual generator [184]. In all of (a), (b), and (c),

143

linear sums of the system states were used for state encoding and the state encoding was

constant over time. Also, in all of (a), (b), and (c), fixed time-independent error detection

thresholds were used. The error threshold was set to worst case magnitude of the coding

error determined for a fault free system under anticipated operating conditions. We consid-

ered faults in sensors (accelerometer and gyroscope, selected in random), actuators, control

action computation, and EKF computation. We performed 1000 experiments for each of

these failure modes and simulated each of the above error detection techniques under the

same set of operating conditions. For each of these combinations, we determined detection

accuracy (defined as Number of true events detected
Number of total events

) and average detection latency. The results

are given in Table 5.3.

As observed from Table 5.3, our proposed approach had superior or comparable per-

formance to the two other state of the art error detection methods in the majority of metrics

considered. In each case, the proposed technique was overwhelmingly superior to the

machine learning based checking approach of [83]. In only one case, the Steer-by-Wire

actuator detection latency was 44.2 ms vs. 27.2 ms for the Kalman check with constant

coding vector. This is due to the extra computations needed by the proposed approach (can

be fine tuned by code optimization) but allows significant improvements in failure coverage

(98.2% vs. 7.5%).

We also performed a comparative study or detection accuracy and latency among all

four checks - State update check, Algorithmic state check, Variance update check and Sta-

tistical variance check for both quadcopter and steer-by-wire system. The results are shown

in Tables 5.5 and 5.6, respectively.

This clearly demonstrates that with proper design of coding vector and threshold bounds,

the check can be implemented with very low computation and memory overhead and can

perform in almost real-time.

144

Table 5.3: Comparative study for quadcopter system

Comparison
metric

This
research

[185]

Kalman
check

accross
time [175]

Kalman
check with

constant
CV and

Threshold
[175]

Machine
learning
based

approach
[83]

Encoded
residual

generator
[184]

Comparison of detection accuracy
Sensor fault 99.7% 99% 97.2% 99.1% 86%

Actuator
fault

83.7% 53.0% 12.5% 83.3% 57%

Control
program

fault
95% 50 % 97.2% 88% 85%

EKF
computation

fault
100% 100 % 37.0% NA 89%

Comparison of average detection latency
Sensor fault < 1 ms 4ms 3.8 ms 1.9 sec 1.08 sec

Actuator
fault

0.28 sec 1.61 sec 1.9 sec 1.4 sec 2.78 sec

Control
program

fault
0.21 sec 2.78 sec 0.28 sec 0.2 sec 1.65 sec

EKF
computation

fault
10 ms 16 ms 2.32 s NA 1.89 sec

Other comparisons
Training time
for machine

learned
model*

NA NA NA 15 min NA

Computation
Overhead

21.17 % 20.21 % 21.05 % 646.88 % 0.1%

Memory
Overhead

15.81 % 15.81% 15.81 % 4842.79 % 1.4%

*Training was done in Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 16GB RAM, without
GPU

5.6.7 Hardware validation

We implemented the Kalman Filter Check on a ‘Crazyflie 2.1’ [142] quadcopter system

(see Figure 5.25). The hardware configuration of the system is shown in Table 5.7. The

145

Table 5.4: Comparative study for Steer-by-Wire system

Comparison
metric

This
research

[185]

Kalman
check

accross
time [175]

Kalman
check with

constant
CV and

Threshold
[175]

Machine
learning
based

approach
[83]

Encoded
residual
sensor
[184]

Comparison of detection accuracy
Sensor fault 100% 100% 76.2% 99.6% 60 %

Actuator
fault

98.2 % 98% 7.5% 9.2% 98 %

Control
program

fault
100% 94% 2% 2.2% 21 %

EKF
computation

fault
100% 100 % 11.2% NA 93%

Comparison of average detection latency
Sensor fault 4 ms 135 ms 40.9 ms 501 ms 61 ms

Actuator
fault

44.2 ms 146 ms 27.2 ms 252 ms 176 ms

Control
program

fault
65 ms 194 ms 146.5 ms 605 ms 654 ms

EKF
computation

fault
4 ms 6 ms 36 ms NA 167 ms

Other comparisons
Training time
for machine

learned
model*

NA NA NA
9 min 10

sec
NA

Computation
Overhead

61.76 % 60.56 % 60.56 % 589.44% 0.67%

Memory
Overhead

43.75 % 43.75 % 43.75 % 4902.08% 2.1%

*Same computer mentioned in Table 5.3 was used here
Crazyflie quadcopter communicates with a PC via Bluetooth interface and a propriety

Crazy RealTime Communication Protocol (CRTP). The server and client platforms for the

setup were implemented using python and C respectively. The server was used only to send

commands to the client and all the necessary computations related to control action gen-

146

Table 5.5: Comparative study among different checks for quadcopter system

Comparison
metric

State update
check

Algorithmic
state check

Variance
update check

Statistical
variance

check
Comparison of detection accuracy

Sensor fault 99.7% 99% 0% 0%
Actuator fault 83.7 % 53% 0% 0%

Control
program fault

95% 50% 0% 0%

EKF
computation

fault
100% 98 % 100% 100%

Comparison of average detection latency
Sensor fault 1 ms 4 ms NA NA

Actuator fault 0.28 sec 1.61 sec NA NA
Control

program fault
0.21 sec 2.78 sec NA NA

EKF
computation

fault
33 ms 165 ms 10 ms 16 ms

Table 5.6: Comparative study among different checks for Steer-by-Wire system

Comparison
metric

State update
check

Algorithmic
state check

Variance
update check

Statistical
variance

check
Comparison of detection accuracy

Sensor fault 100% 100% 0% 0%
Actuator fault 98.2 % 98% 0% 0%

Control
program fault

100% 94% 0% 0%

EKF
computation

fault
100% 100 % 100% 100%

Comparison of average detection latency
Sensor fault 4 ms 135 ms NA NA

Actuator fault 44.2 ms 146 ms NA NA
Control

program fault
65 ms 194 ms NA NA

EKF
computation

fault
8 ms 311 ms 4 ms 6 ms

147

Figure 5.25: Hardware setup

Table 5.7: Hardware configuration of Crazyflie 2.1

Physical parameters/Components Specification/Model
System mass 27 gm

Size (W×H×D) 92× 92× 29 mm
Radio Band 2.4 GHz

Coomunication type Bluetooth
Coomunication protocol Crazy RealTime Protocol (CRTP)

5*Main microcontroller Unit STM32F405
Cortex-M4

Clock frequency: 168MHz
RAM: 192KB
Flash: 1MB

Radio and power management unit nRF51822
3 axis accelerometer / gyroscope BMI088

Pressure sensor BMP388
Actuator 4 DC coreless motors

eration, necessary system level consistency check for the client, Kalman filter based state

estimation, our proposed checks etc. were implemented in the CrazyFlie Microcontroller

148

unit (MCU). The client performed the necessary maneuver according to its objective and

the check values were read back from the client in the form of a log variable. The minimum

period for a log variable to be read from the client was 10 ms. Failures were injected into

the accelerometer, gyroscope, actuator circuit, and control program of the quadcopter and

the obtained results are discussed below:

Gyroscope fault

(a) (b)

Figure 5.26: (a) Trajectory of the quadcopter under gyroscope fault and (b) corresponding
error plot

Offsets in gyroscope readings (the most common form of gyroscope faults) were used

to emulate gyroscope failures. The planned trajectory of the quadcopter under nominal

conditions and with gyroscope fault are shown in Figure 5.26a. The corresponding state

check, ex(k) is shown in the Figure 5.26b. From the error plot, it is seen that the fault was

injected at time t = 7.11 sec and the check produced a non-zero output above the threshold

at time t = 7.12 sec and the error was detected.

The trajectories and state checks are shown for gyroscope failure in Figures 5.27 and

5.28 where the system is going through relatively idle (hovering) condition to more sharp

turn. As seen from these plots, the proposed check was able to detect the failure real-time

for hovering condition at time t = 5.50 sec and for sharp turn at time t = 6.02 sec

149

(a) (b)

Figure 5.27: (a) Trajectory of the quadcopter under gyroscope fault and (b) corresponding
error plot at hovering condition

(a) (b)

Figure 5.28: (a) Trajectory of the quadcopter under gyroscope fault and (b) corresponding
error plot at sharp turn

Accelerometer fault

Accelerometer faults were emulated and an offset (the most common form of accelerometer

faults) was introduced in the accelerometer reading at t = 5.4 sec. It was successfully

detected at t = 5.71 sec as seen at Figure 5.29b with an error detection latency of 0.31 sec.

Similar to gyroscope case, we introduced failure in the accelerometer during hover-

ing condition and sharp turn. The trajectories and checks are shown in Figures 5.30 and

5.31, respectively. The fault in accelerometer introduced non-zero error value which was

150

(a) (b)

Figure 5.29: (a) Trajectory of the quadcopter under Accelerometer fault and (b) corre-
sponding error plot

(a) (b)

Figure 5.30: (a) Trajectory of the quadcopter under Accelerometer fault and (b) corre-
sponding error plot at hovering condition
detected instantaneously at time t = 5.99 sec and t = x5.99 sec, respectively.

Actuator fault

The quadcopter system has DC motors which produces necessary thrust from its input

voltage. The generated thrust from the actuator can vary due to numerous reasons which

include change in terminal resistance of the motor or temporary variations at the propeller

driven by the DC motors. In this experiment, we introduced temporary speed changes in

one of the DC motors which results in change of thrust. The fault was injected at t = 8 sec

151

(a) (b)

Figure 5.31: (a) Trajectory of the quadcopter under Accelerometer fault and (b) corre-
sponding error plot at sharp turn
and was detected by the state check at t = 8.25 sec as seen in Figure 5.32b.

(a) (b)

Figure 5.32: (a) Trajectory of the quadcopter under Actuator fault and (b) corresponding
error plot

The error detection experiment was repeated for actuator failure during hovering condi-

tion and sharp maneuver in Figures 5.33 and 5.34, respectively. The system shows different

trajectories in presence of failure which is detected by the proposed check successfully at

time t = 4.75 sec and t = 6.41 sec, respectively.

152

(a) (b)

Figure 5.33: (a) Trajectory of the quadcopter under Actuator fault and (b) corresponding
error plot at hovering condition

(a) (b)

Figure 5.34: (a) Trajectory of the quadcopter under Actuator fault and (b) corresponding
error plot at sharp turn

Control program fault

We introduced failure in control program execution in the form of spurious bit-flips in

the processor core. Introduction of spurious bit-flips results in incorrect quadcopter control

action. In this experiment, a fault was introduced at time t = 8.23 sec and caused unwanted

deviation of the quadcopter from its desired trajectory. As seen from the Figure 5.35b, the

proposed check was able to capture this at t = 8.69 sec and the fault was successfully

detected. The same experiment was repeated for different trajectories as sown in Figures

153

(a) (b)

Figure 5.35: (a) Trajectory of the quadcopter under Control program fault and (b) corre-
sponding error plot

(a) (b)

Figure 5.36: (a) Trajectory of the quadcopter under Control program fault and (b) corre-
sponding error plot at hovering condition
5.36 and 5.37 for hovering condition and sharp maneuvers, respectively. The proposed

check was able to detect the failure at t = 6.31 sec and t = 5.90 sec, respectively.

5.6.8 Simulation result: error correction

Error diagnosis

The methodology of the error diagnosis is explained in Subsection 5.4.1. A support vector

machine based model was trained with γ = 0.1 and C = 1 was used which results into a

classification score of 100%. The observation window length of the check was determined

154

(a) (b)

Figure 5.37: (a) Trajectory of the quadcopter under Control program fault and (b) corre-
sponding error plot at sharp turn
from a trade-off study and was found to be 100 samples (equivalent to 0.100 sec) as shown

in Figure 5.38.

Figure 5.38: Error diagnosis trade-off study

155

Sensor fault

Gyroscope offset [186] was considered as the first failure model for this experiment. An

offset was introduced in the sensor which corrupts the sensor behavior resulting into in-

correct behavior of the whole system. Figure 5.39 shows the trajectories of the system at

fault-free, faulty without correction and faulty with correction cases. The fault was intro-

duced at t = 4.5 sec which introduces deviation in the flight path. However, it was detected

and diagnosed in real-time and the parameter estimation was performed by solving the op-

timization problem explained before. Once the estimated parameter value is known, the

sensor reading is corrected and the proposed correction approach was able to improve the

system behavior in presence of fault.

Figure 5.39: Error correction of gyroscope parametric failure

Accelerometer fault was investigated as the next failure model. Failure was introduced

as the form of offset which made the quadcopter go totally different (possibly dangerous)

direction. Figure 5.40 shows the trajectories of the quadcopter in fault-free, faulty without

156

correction and faulty with correction cases. Once the error was detected and diagnosed, the

already saved check data was used to estimate the changed parameter value and correction

was performed. As can be observed from these plots, the faulty system goes through differ-

ent trajectories; however, the proposed approach was able to restore the system behavior.

Figure 5.40: Error correction of accelerometer parametric failure

For the SbW test-case, system has a single Hall effect sensor to measure the absolute

angle of steering in the wheels. The SbW sensor measures angle using two Hall sensors

placed perpendicular to one another on the steering shaft [187]. The Hall effect uses the

rotation of a ferromagnetic wheel on the shaft to induce voltages in the sensors’ probes.

We have injected faults into the Hall sensors of the SbW, considering scaling and offset

errors in the current or voltage values measured by the sensors propagating to their final

computed angle or angular velocity values. Figure 5.41a shows the trajectories of the SbW

system in presence of sensor failure. As shown in the plot, the system behavior changes

(lateral acceleration is observed) in presence of failure which can dangerous in high speed

maneuvers. However, once the error was detected and diagnosed, the parameter estimation

157

was performed and the corrective action is applied. The corrected trajectory is shown in

Figure 5.41b, and as can be observed from this plot, the system behavior was compensated.

(a) (b)

Figure 5.41: (Left) Trajectory of the steer-by-wire system under sensor fault and (right)
corrected trajectory

Actuator error

We consider the parametric deviation of actuator as the third example. For parametric

failures of actuators, the back emf constant was gradually reduced to 70% as the failure

model. This gradually changed the behavior of the actuator which results in change in

control input as well as the output speed of the actuator, and the system trajectory changes.

Figure 5.42: Block diagram of MAB framework

We correct this failure by reconfiguring the controller parameter by ‘Multi-Armed Ban-

dit’ (MAB) based learner. A block diagram of the approach is shown in Figure 5.42, and

in Figures 5.43 and 5.44, we show the reward per episode plot of MAB experiments. Here,

we have implemented a epsilon-greedy MAB framework [188] with learning rate = 0.25,

158

Figure 5.43: Reward per episode plot of MAB learner for ‘cold start configuration’

Figure 5.44: Reward per episode plot of MAB learner for ‘hot start configuration’

159

discount rate = 0.99, control action granularity = 0.1 × nominal controller parameter. The

framework starts by selecting purely random control parameter at ‘Cold start configura-

tion’ and tries to match the sensor readings with ideal behavior. However, it learns the

best control parameter very quickly when we see the framework is selecting the best con-

troller parameter and achieving best reward/episode. After the learner is deployed, the

learning still continues and it re-adapts to new control parameter once the actuator param-

eter changes. This later process happens in ‘Hot start configuration’ to save learning time.

Due the epsilon-greedy nature of the framework, in both cases, the learner is still selecting

some random action some time and in those trials, the rewards are reduced. We show these

experiments for two parametric failures in Figures 5.43 for ‘Cold start configuration’ and

5.44 for ‘Hot start configuration’, and as can be seen from these Figures and the required

iterations, for both cases, the MAB framework was able to find the best control parameters

rapidly with minimal number of iterations. The trajectories of fault-free, faulty without

correction and faulty with correction cases are shown in Figure 5.45.

Figure 5.45: Error correction of actuator parametric failure

160

For the SbW case, the steer by wire subsystem relies on a three-phase induction motor

to drive the steering axle to a required steering angle, which is in turn fed by an automotive

alternator [189]. Fault was introduced in the co-efficient of wheel viscous friction, which

happens in the real system due to repetitive use. Figure 5.47a shows the system behavior

increased viscous friction. The reward per episode plot is shown in Figure 5.46 and the

system behavior faulty without correction and with correction are shown in Figure 5.47.

As seen from the plot, there is considerable behavior change from the system command

due to this fault. However, MAB based controller reconfiguration was performed as the

corrective measure and as can be observed from Figure 5.47b, the system behavior was

restored when controller reconfiguration was performed.

Figure 5.46: Reward per episode plot of MAB learner for SbW system

Table 5.8 shows the average number of episode required to obtain the correct controller

parameter. 20 experiments were performed where the MAB learner was run for 100 ex-

periments. As can be observed from this table, the proposed approach was rap[idly able to

obtain the correct controller parameter.

161

(a) (b)

Figure 5.47: (Left) Trajectory of the steer-by-wire system under actuator parametric fault
and (right) corrected trajectory

Table 5.8: Average number of trial required to learn controller parameter

Quadcopter system SbW system
14 40

Control program error

Figure 5.48: Error correction of control program failure

The control program error was introduced as a form of transient and spurious bit-flips

in the data of the controller. The failure was introduced at time t = 2 sec when the system

162

goes through unknown trajectory. However, the control program value was restored to

its last known value and by this way system trajectory was improved. Three trajectories,

namely - fault-free, faulty without correction and faulty with correction are shown in Figure

5.48 which the efficacy of the proposed approach.

Similar to quadcopter case, transient fault in the form of spurious bit-flips were intro-

duced for SbW case. Figure 5.49a shows the system behavior in presence of failure in the

data of the control program. When the error was detected and diagnosed, the faulty action

was skipped and last control action was applied to the system as the corrective measure. As

can be observed from Figure 5.49b, the proposed correction approach was able to restore

system behavior.

(a) (b)

Figure 5.49: (Left) Trajectory of the steer-by-wire system under control program transient
fault and (right) corrected trajectory

5.6.9 Hardware validation: Error correction

We implemented the proposed correction approach in the ‘Crazyflie 2.1’ [142] quadcopter

system. A data-driven model was generated with the works found in [190–193]. As shown

in Table 5.7, this system has very limited hardware resource and timing cycle available,

and for this reason, extensive code optimization was performed to accommodate the cor-

rection approach. In the error correction experiments, faults were injected into the sensor

(gyroscope), and actuator circuit of the quadcopter and the obtained results are discussed

below:

163

Sensor fault

Figure 5.50: Error correction of sensor failure

We look at the failure at sensor as the first test case. The MEMS gyroscope experiences

a systemic drift in time which is a common form of failure for this kind of sensor. This drift

introduces incorrect reading at the gyroscope. The check error was recorded, followed by

optimization and correction. Three trajectories of the quadcopter namely - at fault-free or

nominal condition (black), with sensor fault when no correction is performed (blue), and

finally with correction approach applied (orange) are showed in Figure 5.50. These plots

show that after ‘fault injection time point, tp’, the proposed correction approach was able

to correct the behavior of the quadcopter which demonstrates the efficacy of the proposed

approach.

164

Actuator fault

Figure 5.51: Error correction of actuator parametric failure

Epsilon-greedy MAB based control reconfiguration approach has been applied for ac-

tuator parametric correction. As stated in previous chapter, the quadcopter system has DC

motors which produces necessary thrust from its input voltage, and the crazyflie system

has an internal pulse-width modulator (PWM) circuit which effectively controls the gen-

erated torque of an arbitrary motor. When actuator goes through a parametric failure, it is

needed to change the actuator excitation (through the PWM circuitry) to compensate for

this. A previously learned MAB based learner was deployed which was trained for its nom-

inal value. After the deployment, the torque constant was reduced to 80%, and the MAB

learner reconfigured the correct control parameter, restoring the behavior. The trajectories

165

during fault-free, faulty without correction, and faulty with correction are shown in Figure

5.51.

5.7 Summary

An encoded Extended Kalman Filter based internal anomaly detection, and correction

framework has been presented in this research. The proposed approach has been success-

fully implemented for detection and correction in two different test cases: (a) a quadcopter

and (b) a steer-by-wire system. A detailed comparative study has been performed and it is

found that the implementation overhead is very low compared to earlier machine learning

based checking schemes for nonlinear systems. At the same time, higher coverage of errors

and failures is achieved. Simulation data and hardware validation experiments obtained for

different failure mechanisms in different subsystems corroborate the efficacy of the pro-

posed technique. Future work will focus on extending this approach to other pervasive

failure mechanisms and external security attacks.

166

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this dissertation, a framework for real-time detection and correction of errors in linear

and nonlinear systems is presented. The state-space encoding based checking methodology

efficiently detects system errors due to component malfunctions in control systems as well

as security attacks in cyber-physical systems.

Chapter 2 provided the theoretical basis of error detection and correction of switched

capacitor circuits for multiple failure modes. The feedback of the constructed checksum

error to the erroneous state was shown to accurately compensate the effects of faults on

the system performance in real-time, and the error surface of different failure modes were

shown.

Chapter 3 provided the foundational theory of system level state-space encoding for

detection, diagnosis and correction of parametric failures for multiple linear autonomous

systems. The theory of error detection, and diagnosis is developed, designed and imple-

mented. It is also shown how a linear encoding can be used for error correction with the

help of control reconfiguration. Simulation results on a linear system are presented to il-

lustrate the detection and correction capabilities.

Chapter 4 demonstrated how the state encoding based error checking infrastructure can

be extended to nonlinear state variable system. A properly learned machine learning model

has been employed in hierarchical manner to diagnose the health of a nonlinear autonomous

system decomposing the system down to individual subsystems. Error was detected and

corrected in each of these subsystems.

Chapter 5 presented computationally inexpensive methods to detect and correct failures

for nonlinear autonomous systems where the encoded checking scheme dynamically adapt

to the operating condition of the system by adjusting its threshold. The proposed approach

167

was been applied to quadcopter and ‘Steer-by-wire’ automotive system.

6.1 Future Work

The future endeavors from this research can be summarized as:

1. Pervasive deployment of autonomous vehicles will depend on their safety and trust-

worthiness. Risks to such vehicles from hazardous operation of all vehicles on the

road need to be detected and diagnosed with low latency and high coverage across

dynamic traffic conditions. A low-cost, dynamically adaptive schemed is needed to

mitigate the anomalies for modern autonomous system on-the-fly. More research is

required to address the trade-off among performance, robustness, and hardware and

memory overhead of the control of modern autonomous vehicles.

2. The resilience of the cyber-physical system to external security attacks need to be ex-

tended to address malicious attacks on different systems. Developing a comprehen-

sive security framework also need to consider malware based attacks on the control

software present in the system and propose low cost algorithm based checking and

error recovery. Recent work [175] has started focusing on real-time monitoring of

control algorithms to check for any inconsistency induced by malware attacks or soft

errors.

3. Safety is also an important factor in the control of autonomous systems. Numerous

researches are addressing the need for performance and robustness for autonomous

systems; however, very few research considers safety in this analysis. This is an

important research direction.

4. Health of communication channel/medium which is responsible (vehicle to vehicle)

V2V or (vehicle to infrastructure) V2X communication is an important component to

ensure sound performance of fleets of autonomous vehicles/systems. A dynamically

168

changing infrastructure is need to spatio-temporally tune into appropriate direction in

presence of system traffic is needed. This is an interesting research direction which

recent work has started to look at [194].

169

REFERENCES

[1] K. Krewell. “The slowing of Moore’s law and its impact”. In: https://goo.gl/XVNbF1
(July 30, 2015).

[2] L. Eeckhout. “Is Moore’s Law Slowing Down? What’s Next?” In: IEEE Micro 37.4
(2017), pp. 4–5.

[3] Economist Quarterly. “After Moore’s Law”. In: https://goo.gl/RpZZaq (March 12,
2016).

[4] A. Oreskovic. “Intel admits the engine behind the tech industry’s amazing 50-year
run is slowing down”. In: https://goo.gl/TTwm5E (March 23, 2016).

[5] T. Simonite. “Intel puts the brakes on Moore’s law”. In: https://goo.gl/rpjBbP (June
23, 2014).

[6] R. McMillan. “Is the end of Moore’s law slowing the world’s supercomputing
race?” In: https://goo.gl/bgUsWj (June 23, 2014).

[7] P. Bright. “Moore’s law really is dead this time”. In: https://goo.gl/YJEJbS (Febru-
ary 2, 2016).

[8] J. Stokes. “Transistors go 3D as Intel re-invents the microchip”. In: https://goo.gl/JL8U18
(May 4, 2011).

[9] S. Borkar et al. “Parameter variations and impact on circuits and microarchitec-
ture”. In: Proceedings 2003. Design Automation Conference. June 2003, pp. 338–
342.

[10] W.S. Levine, T.L. Johnson, and M. Athans. “Optimal limited state variable feed-
back controllers for linear systems”. In: Automatic Control, IEEE Transactions on
16.6 (1971), pp. 785–793.

[11] C.J. Wenk and C. Knapp. “Parameter optimization in linear systems with arbitrarily
constrained controller structure”. In: Automatic Control, IEEE Transactions on 25.3
(1980), pp. 496–500.

[12] T. Soderstrom. “On some algorithms for design of optimal constrained regulators”.
In: Automatic Control, IEEE Transactions on 23.6 (1978), pp. 1100–1101.

[13] V. Gupta, B. Hassibi, and R. M. Murray. “On the synthesis of control laws for a
network of autonomous agents”. In: Proceedings of the 2004 American Control
Conference. Vol. 6. June 2004, 4927–4932 vol.6.

170

[14] V. Gupta, B. Hassibi, and R. M. Murray. “A sub-optimal algorithm to synthesize
control laws for a network of dynamic agents”. In: International Journal of Control
78.16 (2005), pp. 1302–1313.

[15] G. A. de Castro. “Convex methods for the design of structured controllers”. PhD
thesis. University of California, Los Angeles, 2001.

[16] C. Langbort, R.S. Chandra, and R. D’Andrea. “Distributed control design for sys-
tems interconnected over an arbitrary graph”. In: Automatic Control, IEEE Trans-
actions on 49.9 (2004), pp. 1502–1519.

[17] C. Langbort, V. Gupta, and R. M. Murray. “Distributed control over failing chan-
nels”. In: Networked embedded sensing and control. Springer, 2006, pp. 325–342.

[18] Huibert Kwakernaak. Linear Optimal Control Systems. Ed. by Raphael Sivan. New
York, NY, USA: John Wiley & Sons, Inc., 1972. ISBN: 0471511102.

[19] Mark Harris. The 2,578 Problems With Self-Driving Cars. Feb. 2017.

[20] Sensors Linked to Boeing 737 Crashes Vulnerable to Failure. Apr. 2019.

[21] Boeing’s Crashes Expose Reliance on Sensors Vulnerable to Damage. Apr. 2019.

[22] Report: Uber’s Self-Driving Car Sensors Ignored Cyclist In Fatal Accident. May
2018.

[23] John Von Neumann. “Probabilistic logics and the synthesis of reliable organisms
from unreliable components”. In: Automata studies 34 (1956), pp. 43–98.

[24] N. J. A. Sloane and Aaron D. Wyner. “Reliable Circuits Using Less Reliable Re-
lays”. In: Claude E. Shannon:Collected Papers. Wiley-IEEE Press, 1993, pp. 796–
813.

[25] Kuang-Hua Huang and J. A. Abraham. “Algorithm-Based Fault Tolerance for Ma-
trix Operations”. In: IEEE Transactions on Computers C-33.6 (June 1984), pp. 518–
528.

[26] J.-Y. Jou and J.A. Abraham. “Fault-tolerant matrix arithmetic and signal processing
on highly concurrent computing structures”. In: Proceedings of the IEEE 74.5 (May
1986), pp. 732–741.

[27] J.-Y. Jou and J.A. Abraham. “Fault-tolerant FFT networks”. In: Computers, IEEE
Transactions on 37.5 (May 1988), pp. 548–561.

171

[28] Rajamohana Hegde and Naresh R. Shanbhag. “Soft Digital Signal Processing”. In:
IEEE Trans. Very Large Scale Integr. Syst. 9.6 (Dec. 2001), pp. 813–823.

[29] N. Shanbhag. “Reliable and energy-efficient digital signal processing”. In: Design
Automation Conference, 2002. Proceedings. 39th. 2002, pp. 830–835.

[30] S. Byonghyo and N.R. Shanbhag. “Energy-efficient soft error-tolerant digital signal
processing”. In: Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on 14.4 (Apr. 2006), pp. 336–348.

[31] S. Byonghyo and N.R. Shanbhag. “Reduced precision redundancy for low-power
digital filtering”. In: Signals, Systems and Computers, 2001. Conference Record of
the Thirty-Fifth Asilomar Conference on. Vol. 1. Nov. 2001, 148–152 vol.1.

[32] Byonghyo Shim and N. R. Shanbhag. “Energy-efficient soft error-tolerant digital
signal processing”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 14.4 (Apr. 2006), pp. 336–348.

[33] B. Shim, N. R. Shanbhag, and S. Lee. “Energy-efficient soft error-tolerant digital
signal processing”. In: The Thrity-Seventh Asilomar Conference on Signals, Sys-
tems Computers, 2003. Vol. 2. Nov. 2003, 1493–1497 Vol.2.

[34] Rajamohana Hegde and Naresh R. Shanbhag. “Energy-efficient signal processing
via algorithmic noise-tolerance”. In: in Proc. IEEE/ACM Int. Symp. Low Power
Electron. Design. 1999, pp. 30–35.

[35] V.S.S. Nair and J.A. Abraham. “Real-number codes for fault-tolerant matrix opera-
tions on processor arrays”. In: Computers, IEEE Transactions on 39.4 (Apr. 1990),
pp. 426–435.

[36] A. Chatterjee and M. A. d’Abreu. “The design of fault-tolerant linear digital state
variable systems: theory and techniques”. In: IEEE Transactions on Computers
42.7 (July 1993), pp. 794–808.

[37] M. Ashouei and A. Chatterjee. “Checksum-Based Probabilistic Transient-Error
Compensation for Linear Digital Systems”. In: Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on 17.10 (2009), pp. 1447–1460.

[38] M.M. Nisar and A. Chatterjee. “Guided Probabilistic Checksums for Error Control
in Low-Power Digital Filters”. In: Computers, IEEE Transactions on 60.9 (Sept.
2011), pp. 1313–1326.

[39] A. Chatterjee. “Concurrent error detection and fault-tolerance in linear analog cir-
cuits using continuous checksums”. In: Very Large Scale Integration (VLSI) Sys-
tems, IEEE Transactions on 1.2 (June 1993), pp. 138–150.

172

[40] A Chatterjee. “Checksum-based concurrent error detection in linear analog systems
with second and higher order stages”. In: VLSI Test Symposium. 1992, pp. 286–291.

[41] Suvadeep Banerjee, Alvaro Gomez-Pau, and Abhijit Chatterjee. “Design of low
cost fault tolerant analog circuits using real-time learned error compensation”. In:
European Test Symposium. Paderborn, Germany: IEEE Computer Society, 2014,
pp. 1–2.

[42] Alvaro Gomez-Pau, Suvadeep Banerjee, and Abhijit Chatterjee. “Real-time tran-
sient error and induced noise cancellation in linear analog filters using learning-
assisted adaptive analog checksums”. In: IEEE 20th International On-Line Testing
Symposium (IOLTS). St Feliu de Guixols, Spain: IEEE Computer Society, 2014,
pp. 25–30.

[43] Gary D. Hachtel and Fabio Somensi. Logic Synthesis and Verification Algorithms.
Springer, 2012.

[44] Douglas Perry and Harry Foster. Applied Formal Verification. McGraw Hill, 2005.

[45] H.-G.D. Stratigopoulos and Y. Makris. “Concurrent detection of erroneous responses
in linear analog circuits”. In: Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on 25.5 (May 2006), pp. 878–891.

[46] H-G. D. Stratigopoulos and Y. Makris. “An Adaptive Checker for the Fully Differ-
ential Analog Code”. In: IEEE Journal of Solid-State Circuits 41.6 (2006), pp. 1421–
1429.

[47] A. Chatterjee, B.C. Kim, and N. Nagi. “DC Built-In Self-Test for Linear Analog
Circuits”. In: Design and Test of Computers, IEEE 13.2 (1996), pp. 26–33.

[48] A. Chatterjee and R.K. Roy. “Concurrent error detection in nonlinear digital cir-
cuits using time-freeze linearization”. In: Computers, IEEE Transactions on 46.11
(Nov. 1997), pp. 1208–1218.

[49] S. Banerjee, M. I. Momtaz, and A. Chatterjee. “Concurrent error detection in non-
linear digital filters using checksum linearization and residue prediction”. In: 2015
IEEE 21st International On-Line Testing Symposium (IOLTS). July 2015, pp. 53–
58.

[50] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[51] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection: A sur-
vey”. In: ACM computing surveys (CSUR) 41.3 (2009), p. 15.

173

[52] Dong Wei and Kun Ji. “Resilient industrial control system (RICS): Concepts, for-
mulation, metrics, and insights”. In: Resilient Control Systems (ISRCS), 2010 3rd
International Symposium on. IEEE. 2010, pp. 15–22.

[53] Christoffer Sloth, Thomas Esbensen, and Jakob Stoustrup. “Robust and fault-tolerant
linear parameter-varying control of wind turbines”. In: Mechatronics 21.4 (2011),
pp. 645–659.

[54] Quanyan Zhu and Tamer Başar. “Robust and resilient control design for cyber-
physical systems with an application to power systems”. In: Decision and Control
and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on.
IEEE. 2011, pp. 4066–4071.

[55] Peter F Odgaard, Jakob Stoustrup, and Michel Kinnaert. “Fault-tolerant control of
wind turbines: A benchmark model”. In: Control Systems Technology, IEEE Trans-
actions on 21.4 (2013), pp. 1168–1182.

[56] Shen Yin, Guang Wang, and Hamid Reza Karimi. “Data-driven design of robust
fault detection system for wind turbines”. In: Mechatronics 24.4 (2013), pp. 298–
306.

[57] Hailiang Sun, Yanyang Zi, and Zhengjia He. “Wind turbine fault detection using
multiwavelet denoising with the data-driven block threshold”. In: Applied Acoustics
77 (2014), pp. 122–129.

[58] Shen Yin, Hao Luo, and Steven X Ding. “Real-time implementation of fault-tolerant
control systems with performance optimization”. In: Industrial Electronics, IEEE
Transactions on 61.5 (2014), pp. 2402–2411.

[59] Marcos Orchard, George Vachtsevanos, and Kai Goebel. “A Combined Model-
Based and Data-Driven Prognostic Approach for Aircraft System Life Manage-
ment”. In: Machine Learning and Knowledge Discovery for Engineering Systems
Health Management (2011), p. 363.

[60] Bin Zhang et al. “A probabilistic fault detection approach: Application to bear-
ing fault detection”. In: IEEE Transactions on Industrial Electronics 58.5 (2010),
pp. 2011–2018.

[61] Lennon R Cork, Rodney A Walker, and Shane Dunn. “Fault detection, identifi-
cation and accommodation techniques for unmanned airborne vehicles”. In: Aus-
tralian International Aerospace Congress (AIAC). 2005.

[62] Balaje T Thumati and Sarangapani Jagannathan. “A model-based fault-detection
and prediction scheme for nonlinear multivariable discrete-time systems with asymp-

174

totic stability guarantees”. In: IEEE Transactions on Neural Networks 21.3 (2010),
pp. 404–423.

[63] Evangelia Lampiri. “Sensor anomaly detection and recovery in a nonlinear au-
tonomous ground vehicle model”. In: 2017 11th Asian Control Conference (ASCC).
IEEE. 2017, pp. 430–435.

[64] Kamel Bouibed, Abdel Aitouche, and Mireille Bayart. “Sensor fault detection by
sliding mode observer applied to an autonomous vehicle”. In: 2009 International
Conference on Advances in Computational Tools for Engineering Applications.
IEEE. 2009, pp. 621–626.

[65] Puneet Goel et al. “Fault detection and identification in a mobile robot using multi-
ple model estimation and neural network”. In: Proceedings 2000 ICRA. Millen-
nium Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No. 00CH37065). Vol. 3. IEEE. 2000, pp. 2302–2309.

[66] Lennon Cork and Rodney Walker. “Sensor fault detection for UAVs using a nonlin-
ear dynamic model and the IMM-UKF algorithm”. In: 2007 Information, Decision
and Control. IEEE. 2007, pp. 230–235.

[67] Douglas Brown et al. “Particle filter based anomaly detection for aircraft actuator
systems”. In: 2009 IEEE Aerospace conference. IEEE. 2009, pp. 1–13.

[68] Marcos Eduardo Orchard. “A particle filtering-based framework for on-line fault
diagnosis and failure prognosis”. PhD thesis. Georgia Institute of Technology, 2007.

[69] Marcos E Orchard and George J Vachtsevanos. “A particle-filtering approach for
on-line fault diagnosis and failure prognosis”. In: Transactions of the Institute of
Measurement and Control 31.3-4 (2009), pp. 221–246.

[70] M Orchard, F Tobar, and G Vachtsevanos. “Outer feedback correction loops in par-
ticle filtering-based prognostic algorithms: Statistical performance comparison”.
In: Studies in Informatics and Control 18.4 (2009), pp. 295–304.

[71] George J Vachtsevanos and George J Vachtsevanos. Intelligent fault diagnosis and
prognosis for engineering systems. Vol. 456. Wiley Hoboken, 2006.

[72] M Orchard et al. “Risk-sensitive particle-filtering-based prognosis framework for
estimation of remaining useful life in energy storage devices”. In: Studies in Infor-
matics and Control 19.3 (2010), pp. 209–218.

[73] Pinyao Guo et al. “RoboADS: Anomaly detection against sensor and actuator mis-
behaviors in mobile robots”. In: 2018 48th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN). IEEE. 2018, pp. 574–585.

175

[74] Hong Zhang, W Steven Gray, and Oscar R Gonzalez. “Performance analysis of
digital flight control systems with rollback error recovery subject to simulated
neutron-induced upsets”. In: IEEE Transactions on Control Systems Technology
16.1 (2007), pp. 46–59.

[75] Marcello R Napolitano, Younghwan An, and Brad A Seanor. “A fault tolerant flight
control system for sensor and actuator failures using neural networks”. In: Aircraft
Design 3.2 (2000), pp. 103–128.

[76] A Alessandri, M Baglietto, and Thomas Parisini. “Robust model-based fault diag-
nosis using neural nonlinear estimators”. In: Proceedings of the 37th IEEE Confer-
ence on Decision and Control (Cat. No. 98CH36171). Vol. 1. IEEE. 1998, pp. 72–
77.

[77] Marcello R Napolitano et al. “Sensor validation using hardware-based on-line learn-
ing neural networks”. In: IEEE transactions on aerospace and electronic systems
34.2 (1998), pp. 456–468.

[78] M Borairi and H Wang. “Actuator and sensor fault diagnosis of nonlinear dynamic
systems via genetic neural networks and adaptive parameter estimation technique”.
In: Proceedings of the 1998 IEEE International Conference on Control Applica-
tions (Cat. No. 98CH36104). Vol. 1. IEEE. 1998, pp. 278–282.

[79] M. I. Momtaz, S. Banerjee, and A. Chatterjee. “On-line diagnosis and compensa-
tion for parametric failures in linear state variable circuits and systems using time-
domain checksum observers”. In: 2017 IEEE 35th VLSI Test Symposium (VTS).
Apr. 2017, pp. 1–6.

[80] M. I. Momtaz et al. “Cross-Layer Control Adaptation for Autonomous System Re-
silience”. In: 2018 IEEE 24th International Symposium on On-Line Testing And
Robust System Design (IOLTS). July 2018, pp. 261–264.

[81] M. I. Momtaz and A. Chatterjee. “Hierarchical Check Based Detection and Diagno-
sisof Sensor-Actuator Malfunction in AutonomousSystems: A Quadcopter Study”.
In: 25th IEEE International Symposium on On-Line Testing and Robust System
Design (IOLTS). July 2019, pp. 316–321.

[82] Suvadeep Banerjee et al. “Real-Time Error Detection in Nonlinear Control Systems
Using Machine Learning Assisted State-Space Encoding”. In: IEEE Transactions
on Dependable and Secure Computing (2019).

[83] S. Banerjee, A. Chatterjee, and J. A. Abraham. “Efficient cross-layer concurrent
error detection in nonlinear control systems using mapped predictive check states”.
In: 2016 IEEE International Test Conference (ITC). Nov. 2016, pp. 1–10.

176

[84] M. I. Momtaz and A. Chatterjee. “Hierarchical State Space Checks for Errors in
Sensors, Actuators and Control of Nonlinear Systems: Diagnosis and Compen-
sation”. In: Proceedings of the IEEE Asian Test Symposium (ATS). Dec. 2019,
pp. 141–146.

[85] M. I. Momtaz and A. Chatterjee. “Diagnosis and Compensation of Control Pro-
gram, Sensor and Actuator Failures in Nonlinear Systems Using Hierarchical State
Space Checks”. In: Journal of Electronic Testing (2020), pp. 683–701.

[86] Manzar Abbas and George J Vachtsevanos. “A hierarchical framework for fault
propagation analysis in complex systems”. In: 2009 IEEE AUTOTESTCON. IEEE.
2009, pp. 353–358.

[87] Karl J Åström and Björn Wittenmark. Adaptive control. Courier Corporation, 2013.

[88] Naira Hovakimyan and Chengyu Cao. L1 Adaptive Control Theory: Guaranteed
Robustness with Fast Adaptation. SIAM, 2010.

[89] Petros A Ioannou and Jing Sun. Robust adaptive control. Courier Corporation,
2012.

[90] Chengyu Cao et al. “Stabilization of cascaded systems via L1 adaptive controller
with application to a UAV path following problem and flight test results”. In: 2007
American Control Conference. IEEE. 2007, pp. 1787–1792.

[91] I Ge Jin et al. “Risk-aware motion planning for automated vehicle among human-
driven cars”. In: 2019 American Control Conference (ACC). IEEE. 2019, pp. 3987–
3993.

[92] Jose E Naranjo et al. “Lane-change fuzzy control in autonomous vehicles for the
overtaking maneuver”. In: IEEE Transactions on Intelligent Transportation Sys-
tems 9.3 (2008), pp. 438–450.

[93] Jin Cui et al. “A review on safety failures, security attacks, and available counter-
measures for autonomous vehicles”. In: Ad Hoc Networks 90 (2019), p. 101823.

[94] M. I. Momtaz, S. Banerjee, and A. Chatterjee. “Real-time DC motor error detection
and control compensation using linear checksums”. In: 2016 IEEE 34th VLSI Test
Symposium (VTS). Apr. 2016, pp. 1–6.

[95] S. Banerjee and A. Chatterjee. “Real-time self-learning for control law adaptation
in nonlinear systems using encoded check states”. In: 2017 22nd IEEE European
Test Symposium (ETS). May 2017, pp. 1–6.

177

[96] Bardienus P Duisterhof et al. “Learning to seek: Autonomous source seeking with
deep reinforcement learning onboard a nano drone microcontroller”. In: arXiv preprint
arXiv:1909.11236 (2019).

[97] Felipe Codevilla et al. “End-to-end driving via conditional imitation learning”. In:
2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2018, pp. 4693–4700.

[98] Yunpeng Pan et al. “Agile autonomous driving using end-to-end deep imitation
learning”. In: arXiv preprint arXiv:1709.07174 (2017).

[99] Ahmed Hussein et al. “Imitation learning: A survey of learning methods”. In: ACM
Computing Surveys (CSUR) 50.2 (2017), pp. 1–35.

[100] Liting Sun et al. “A fast integrated planning and control framework for autonomous
driving via imitation learning”. In: Dynamic Systems and Control Conference. Vol. 51913.
American Society of Mechanical Engineers. 2018, V003T37A012.

[101] K Goebel and G Vachtsevanos. “Algorithms and their impact on integrated vehicle
health management”. In: Integrated Vehicle Health Management, Perspectives on
an Emerging Field. SAE International, 2011, pp. 67–76.

[102] George Vachtsevanos et al. “Resilient design and operation of cyber physical sys-
tems with emphasis on unmanned autonomous systems”. In: Journal of Intelligent
& Robotic Systems 91.1 (2018), pp. 59–83.

[103] George Vachtsevanos, George Georgoulas, and George Nikolakopoulos. “Fault di-
agnosis, failure prognosis and fault tolerant control of aerospace/unmanned aerial
systems”. In: 2016 24th Mediterranean Conference on Control and Automation
(MED). IEEE. 2016, pp. 366–371.

[104] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. “On a formal model
of safe and scalable self-driving cars”. In: arXiv preprint arXiv:1708.06374 (2017).

[105] Guotao Xie et al. “Situational assessments based on uncertainty-risk awareness in
complex traffic scenarios”. In: Sustainability 9.9 (2017), p. 1582.

[106] Jongsang Suh, Heungseok Chae, and Kyongsu Yi. “Stochastic model-predictive
control for lane change decision of automated driving vehicles”. In: IEEE Transac-
tions on Vehicular Technology 67.6 (2018), pp. 4771–4782.

[107] Stefano Di Cairano et al. “Stochastic MPC with learning for driver-predictive vehi-
cle control and its application to HEV energy management”. In: IEEE Transactions
on Control Systems Technology 22.3 (2013), pp. 1018–1031.

178

[108] Rahul Bhadani et al. “Real-time distance estimation and filtering of vehicle head-
ways for smoothing of traffic waves”. In: Proceedings of the 10th ACM/IEEE In-
ternational Conference on Cyber-Physical Systems. 2019, pp. 280–290.

[109] S. Banerjee, A. Chatterjee, and J. A Abraham. “Checksum based error detection
in linearized representations of non linear control systems”. In: 2016 17th Latin-
American Test Symposium (LATS). IEEE. 2016, pp. 182–182.

[110] M. I. Momtaz, S. Banerjee, and A. Chatterjee. “Probabilistic error detection and
correction in switched capacitor circuits using checksum codes”. In: 2017 IEEE
23rd International Symposium on On-Line Testing and Robust System Design (IOLTS).
2017, pp. 271–276.

[111] Maryam Ashouei and Abhijit Chatterjee. “Checksum-based Probabilistic Transient-
error Compensation for Linear Digital Systems”. In: IEEE Trans. Very Large Scale
Integr. Syst. 17.10 (Oct. 2009), pp. 1447–1460.

[112] Muhammad M. Nisar and Abhijit Chatterjee. “Guided Probabilistic Checksums for
Error Control in Low-Power Digital Filters”. In: IEEE Trans. Comput. 60.9 (Sept.
2011), pp. 1313–1326.

[113] Alvaro Gomez-Pau, Suvadeep Banerjee, and Abhijit Chatterjee. “Real-time tran-
sient error and induced noise cancellation in linear analog filters using learning-
assisted adaptive analog checksums”. In: IEEE 20th International On-Line Testing
Symposium (IOLTS). St Feliu de Guixols, Spain: IEEE Computer Society, 2014,
pp. 25–30.

[114] D. J. Allstot. “Prof. Temes and Switched-Capacitor Circuits?Thirty-Five Years and
Counting”. In: IEEE Solid-State Circuits Magazine 5.2 (Spring 2013), pp. 10–10.

[115] Biquad Active Filter. Accessed Mar. 7, 2017.

[116] Phillip E. Allen and Douglas R. Holberg. CMOS Analog Circuit Design. Oxford
University Press, 2011.

[117] O. Moseler and R. Isermann. “Application of model-based fault detection to a
brushless DC motor”. In: IEEE Transactions on Industrial Electronics 47.5 (2000),
pp. 1015–1020.

[118] “Process fault detection based on modeling and estimation methods—A survey”.
In: Automatica 20.4 (1984), pp. 387–404.

[119] Xiang-Qun Liu et al. “Fault detection and diagnosis of permanent-magnet DC mo-
tor based on parameter estimation and neural network”. In: IEEE Transactions on
Industrial Electronics 47.5 (2000), pp. 1021–1030.

179

[120] “Fuzzy logic-based decision-making for fault diagnosis in a {DC} motor”. In: En-
gineering Applications of Artificial Intelligence 18.4 (2005), pp. 423–450.

[121] M. Hajiaghajani, H. A. Toliyat, and I. M. S. Panahi. “Advanced fault diagnosis of a
DC motor”. In: IEEE Transactions on Energy Conversion 19.1 (2004), pp. 60–65.

[122] Distributed control systems and introduction to distributed control. 2009.

[123] V. Gupta, B. Hassibi, and R.M. Murray. “On the synthesis of control laws for a net-
work of autonomous agents”. In: American Control Conference, 2004. Proceedings
of the 2004. Vol. 6. 2004, 4927–4932 vol.6.

[124] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine learn-
ing 20.3 (1995), pp. 273–297.

[125] Kenneth Levenberg. “A method for the solution of certain non-linear problems in
least squares”. In: Quarterly of applied mathematics 2.2 (1944), pp. 164–168.

[126] Donald W Marquardt. “An algorithm for least-squares estimation of nonlinear pa-
rameters”. In: Journal of the society for Industrial and Applied Mathematics 11.2
(1963), pp. 431–441.

[127] International Organization for Standardization. “ISO 26262: Road Vehicles : Func-
tional Safety”. In: (2011).

[128] Remus C Avram. “Fault diagnosis and fault-tolerant control of quadrotor uavs”. In:
(2016).

[129] Juan-Pablo Afman et al. “Towards a New Paradigm of UAV Safety”. In: arXiv
preprint arXiv:1803.09026 (2018).

[130] Ding-Li Yu, T. K. Chang, and Ding-Wen Yu. “Fault tolerant control of multivariable
processes using auto-tuning PID controller”. In: IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics) 35.1 (Feb. 2005), pp. 32–43.

[131] Michael Margaliot and Gideon Langholz. “Fuzzy Lyapunov-based approach to the
design of fuzzy controllers”. In: Fuzzy sets and systems 106.1 (1999), pp. 49–59.

[132] Dale E Seborg et al. Process dynamics and control. John Wiley & Sons, 2010.

[133] Juan R Pimentel. An architecture for a safety-critical steer-by-wire system. Tech.
rep. SAE Technical Paper, 2004.

[134] Agoston Restas et al. “Drone applications for supporting disaster management”. In:
World Journal of Engineering and Technology 3.03 (2015), p. 316.

180

[135] Thomas Birtchnell and Chris Gibson. “Less talk more drone: Social research with
UAVs”. In: Journal of Geography in Higher Education 39.1 (2015), pp. 182–189.

[136] Francisco Klauser and Silvana Pedrozo. “Power and space in the drone age: a litera-
ture review and politico-geographical research agenda”. In: Geographica Helvetica
70.4 (2015), pp. 285–293.

[137] Bilal Taha and Abdulhadi Shoufan. “Machine learning-based drone detection and
classification: State-of-the-art in research”. In: IEEE Access 7 (2019), pp. 138669–
138682.

[138] S Radiansyah, MD Kusrini, and LB Prasetyo. “Quadcopter applications for wildlife
monitoring”. In: IOP Conference Series: Earth and environmental science. Vol. 54.
1. IOP Publishing. 2017, p. 012066.

[139] Disha Amrutlal Gandhi and Munmun Ghosal. “Novel low cost quadcopter for
surveillance application”. In: 2018 International Conference on Inventive Research
in Computing Applications (ICIRCA). IEEE. 2018, pp. 412–414.

[140] S Ahirwar et al. “Application of drone in agriculture”. In: International Journal of
Current Microbiology and Applied Sciences 8.01 (2019), pp. 2500–2505.

[141] F Sabatino. “Quadrotor control: modeling, nonlinear control design, and simula-
tion”. MA thesis. KTH Royal Institute of Technology, 2015.

[142] Bitcraze. Crazyflie 2.1. 2020.

[143] Gabriel Staples. Propeller Static Dynamic Thrust Calculation. Jan. 1970.

[144] Drone Motors: Choose the Best Motors for Your Quadcopter.

[145] MURUGANANTHAM N and Palani Subbiah. “State space modeling and simula-
tion of sensorless permanent magnet BLDC motor”. In: vol. 2. Oct. 2010.

[146] Randal W. Beard and Timothy W. McLain. Small unmanned aircraft: theory and
practice. Princeton University Press, 2012.

[147] Muhammad Tanveer et al. “Stabilized controller design for attitude and altitude
controlling of quad-rotor under disturbance and noisy conditions”. In: American
Journal of Applied Sciences 10 (Aug. 2013), pp. 819–831.

[148] Hava T. Siegelmann and Eduardo D. Sontag. “Turing computability with neural
nets”. In: Applied Mathematics Letters 4.6 (1991), pp. 77–80.

[149] A Neural Network for Machine Translation, at Production Scale. Sept. 2016.

181

[150] T. Mikolov et al. “Extensions of recurrent neural network language model”. In:
2011 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). May 2011, pp. 5528–5531.

[151] Ilya Sutskever, James Martens, and Geoffrey Hinton. “Generating Text with Re-
current Neural Networks”. In: Proceedings of the 28th International Conference
on International Conference on Machine Learning. ICML’11. Bellevue, Washing-
ton, USA: Omnipress, 2011, pp. 1017–1024. ISBN: 978-1-4503-0619-5.

[152] T. Mikolov et al. “Recurrent Neural Network Based Language Model”. In: INTER-
SPEECH. 2010, pp. 1045–1048.

[153] Deger Ayata, Murat Saraclar, and Arzucan Ozgur. “BUSEM at SemEval-2017 Task
4A Sentiment Analysis with Word Embedding and Long Short Term Memory RNN
Approaches”. In: Proceedings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017). Vancouver, Canada: Association for Computational
Linguistics, Aug. 2017, pp. 777–783.

[154] Quanzeng You et al. “Image Captioning With Semantic Attention”. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). June 2016.

[155] Junhua Mao et al. “Deep Captioning with Multimodal Recurrent Neural Networks
(m-RNN)”. In: arXiv e-prints, arXiv:1412.6632 (Dec. 2014), arXiv:1412.6632. arXiv:
1412.6632 [cs.CV].

[156] Y. Miao, M. Gowayyed, and F. Metze. “EESEN: End-to-end speech recognition
using deep RNN models and WFST-based decoding”. In: 2015 IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU). Dec. 2015, pp. 167–
174.

[157] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In: Neural
computation 9 (Dec. 1997), pp. 1735–80.

[158] Barry W. Johnson, ed. Design &Amp; Analysis of Fault Tolerant Digital Systems.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1988. ISBN:
0-201-07570-9.

[159] J. Kiefer. “Sequential Minimax Search for a Maximum”. In: Proceedings of the
American Mathematical Society 4.3 (1953), p. 502.

[160] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-decoder
for statistical machine translation”. In: arXiv preprint arXiv:1406.1078 (2014).

182

https://arxiv.org/abs/1412.6632

[161] Yunus Santur. “Sentiment analysis based on gated recurrent unit”. In: 2019 Interna-
tional Artificial Intelligence and Data Processing Symposium (IDAP). IEEE. 2019,
pp. 1–5.

[162] Guizhu Shen et al. “Deep learning with gated recurrent unit networks for financial
sequence predictions”. In: Procedia computer science 131 (2018), pp. 895–903.

[163] Dang Lien Minh et al. “Deep learning approach for short-term stock trends predic-
tion based on two-stream gated recurrent unit network”. In: Ieee Access 6 (2018),
pp. 55392–55404.

[164] Jihyun Kim, Howon Kim, et al. “Classification performance using gated recurrent
unit recurrent neural network on energy disaggregation”. In: 2016 international
conference on machine learning and cybernetics (ICMLC). Vol. 1. IEEE. 2016,
pp. 105–110.

[165] Wenchuan Yang, Wen Zuo, and Baojiang Cui. “Detecting malicious urls via a
keyword-based convolutional gated-recurrent-unit neural network”. In: IEEE Ac-
cess 7 (2019), pp. 29891–29900.

[166] Simon Andermatt, Simon Pezold, and Philippe Cattin. “Multi-dimensional gated
recurrent units for the segmentation of biomedical 3D-data”. In: Deep learning and
data labeling for medical applications. Springer, 2016, pp. 142–151.

[167] Yaodong Tang et al. “Question detection from acoustic features using recurrent neu-
ral network with gated recurrent unit”. In: 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2016, pp. 6125–6129.

[168] Kanwaldeep Kaur and Giselle Rampersad. “Trust in driverless cars: Investigating
key factors influencing the adoption of driverless cars”. In: Journal of Engineering
and Technology Management 48 (2018), pp. 87–96.

[169] Azim Eskandarian. Handbook of intelligent vehicles. Springer, 2012.

[170] C. N. Amarnath, M. I. Momtaz, and A. Chatterjee. “Encoded Check Driven Con-
current Error Detection in Particle Filters for Nonlinear State Estimation”. In: 2020
IEEE 26th International Symposium on On-Line Testing and Robust System Design
(IOLTS). 2020, pp. 1–6.

[171] R.E. Kalman. Contributions to the Theory of Optimal Control. 1960.

[172] Simon Haykin. Kalman filtering and neural networks. Vol. 47. John Wiley & Sons,
2004.

[173] Max A Woodbury. Inverting modified matrices. Statistical Research Group, 1950.

183

[174] E. L. Lehmann and Joseph P. Romano. Testing statistical hypotheses. Third. Springer
Texts in Statistics. New York: Springer, 2005. ISBN: 0-387-98864-5.

[175] Sujay Pandey, Suvadeep Banerjee, and Abhijit Chatterjee. “Concurrent error detec-
tion and tolerance in kalman filters using encoded state and statistical covariance
checks”. In: 2016 IEEE 22nd International Symposium on On-Line Testing and
Robust System Design (IOLTS). IEEE. 2016, pp. 161–166.

[176] Michael N Katehakis and Arthur F Veinott Jr. “The multi-armed bandit problem:
decomposition and computation”. In: Mathematics of Operations Research 12.2
(1987), pp. 262–268.

[177] H. Wang et al. “Sliding Mode Control for Steer-by-Wire Systems With AC Mo-
tors in Road Vehicles”. In: IEEE Transactions on Industrial Electronics 61.3 (Mar.
2014), pp. 1596–1611.

[178] Juan R Pimentel. An architecture for a safety-critical steer-by-wire system. Tech.
rep. SAE Technical Paper, 2004.

[179] Salem Haggag et al. “Modeling, control, and validation of an electro-hydraulic
steer-by-wire system for articulated vehicle applications”. In: IEEE/AsME Trans-
actions on Mechatronics 10.6 (2005), pp. 688–692.

[180] Omae Manabu et al. “The application of RTK-GPS and steer-by-wire technology to
the automatic driving of vehicles and an evaluation of driver behavior”. In: IATSS
research 30.2 (2006), pp. 29–38.

[181] Sheikh Muhamad Hafiz Fahami et al. “Modeling and simulation of vehicle steer by
wire system”. In: 2012 IEEE Symposium on Humanities, Science and Engineering
Research. IEEE. 2012, pp. 765–770.

[182] Chao Huang et al. “Fault tolerant steer-by-wire systems: An overview”. In: Annual
Reviews in Control 47 (2019), pp. 98–111.

[183] William H Levison et al. Development of a Driver Vehicle Module (DVM) for the
Interactive Highway Safety Design Model (IHSDM). Tech. rep. United States. Fed-
eral Highway Administration. Office of Research, Development, and Technology,
2007.

[184] Erik Frisk. “Residual generation for fault diagnosis”. PhD thesis. Linköpings uni-
versitet, 2001.

[185] M. I. Momtaz, C. N. Amarnath, and A. Chatterjee. “Concurrent Error Detection
in Embedded Digital Control of Nonlinear Autonomous Systems Using Adaptive

184

State Space Checks”. In: 2020 IEEE International Test Conference (ITC). 2020,
pp. 1–10.

[186] D Marano et al. “Modeling of a three-axes MEMS gyroscope with feedforward PI
quadrature compensation”. In: Advances on Mechanics, Design Engineering and
Manufacturing. Springer, 2017, pp. 71–80.

[187] Seong Tak Woo et al. “Angle sensor module for vehicle steering device based on
multi-track impulse ring”. In: Sensors 19.3 (2019), p. 526.

[188] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[189] Chao Huang and Liang Li. “Architectural design and analysis of a steer-by-wire
system in view of functional safety concept”. In: Reliability Engineering & System
Safety 198 (2020), p. 106822.

[190] Carlos Luis and Jérôme Le Ny. “Design of a trajectory tracking controller for a
nanoquadcopter”. In: arXiv preprint arXiv:1608.05786 (2016).

[191] William Hanna. “Modelling and control of an unmanned aerial vehicle”. In: (2014).

[192] Giri Prashanth Subramanian. “Nonlinear control strategies for quadrotors and Cube-
Sats”. In: (2015).

[193] Julian Förster. “System identification of the crazyflie 2.0 nano quadrocopter”. B.S.
thesis. ETH Zurich, 2015.

[194] S. Komarraju and A. Chatterjee. “Fast EVM Tuning of MIMO Wireless Systems
Using Collaborative Parallel Testing and Implicit Reward Driven Learning”. In:
2020 IEEE International Test Conference (ITC). 2020, pp. 1–10.

185

VITA

Md Imran Momtaz received the B.Sc. degree in Electrical and Electronic Engineering

from Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, in 2009

and the M.Sc. degree in Electrical and Computer engineering from the Georgia Institute of

Technology, Atlanta, USA in 2019. His current research interests include machine learning,

error resilience in signal processing and nonlinear autonomous systems and intelligent and

secure adaptive real-time systems.

186

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Motivation
	Prior Work
	Contributions of Dissertation
	Dissertation Overview

	2 | Probabilistic Error Detection and Correction in Switched Capacitor Circuits Using Checksum Codes
	Key Contributions and Approach
	Switched-Capacitor Circuits: Overview
	Proposed methodology on Error detection and probabilistic Error correction: A checksum based approach
	Real time error correction: experimental results
	Summary

	3 | On-Line Detection, Diagnosis, and Compensation for Failures in Linear State Variable Circuits and Systems Using Time-Domain Checksum Observers
	Real-Time Error Detection and Control Compensation From Steady State Checksum
	On-Line Error Diagnosis, and Compensation Linear State Variable Circuits and Systems Using Time-Domain Checksum Observers

	4 | Detection, Diagnosis and Compensation of Control Program, Sensor and Actuator Failures in Nonlinear Systems Using Hierarchical State Space Checks
	Introduction
	Key Contributions
	Preliminaries: Quadcopter and Brushless DC Motor Models and Control
	Hierarchical Checking Approach

	5 | Concurrent Error Detection in Embedded Digital Control of Nonlinear Autonomous Systems Using Adaptive State Space Checks
	Introduction and Key Contributions
	Preliminaries: Extended Kalman Filter
	Proposed Approach: State Encoding Based EKF Checks
	Resilience methodology
	Test Cases: Overview and EKF Checks
	Experimental Results
	Summary

	6 | Conclusion and Future Work
	Future Work

	References
	Vita

