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F State transition Jacobian matrix

H Measurement Jacobian matrix
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Uzp

Uyp

Vwind

wr

WR

Wprop

Kalman gain

State covariance matrix
Process noise matrix
Noise covariance matrix
Innovation covariance
Control input vector

Lower bound control input constraint

Upper bound control input constraint

Wind Velocity

State noise

Measurement noise

State vector

Lower bound state constraint
Upper bound state constraint
Measurement vector

Bolza component of cost function
Mayer component of cost function
Advance ratio

IMM mixing probability

Left wheel angular rate

Right wheel angular rate
Propeller angular speed

Roll angle

Heading angle
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Yo

Uy

CT

ap
ap
anN
ax
ay

az

Heading angle

Initial point conditions

Final point conditions

Air density

Non-dimensional thrust coefficient

Pitch angle

System State Matrix

Accleration in navigation frame, down-direction
Acceleration in navigation frame, east-direction
Acceleration in navigation frame, north-direction
Acceleration in body axis, x-direction
Acceleration in body axis, y-direction
Acceleration in body axis, z-direction

System Input Matrix

Distance from C to centre of wheel

Wing span

Geometric centre of mobile robot

Body to navigation frame direction cosine matrix
Non-dimensional rolling moment coefficient
Non-dimensional pitching moment coefficient
Non-dimensional yawing moment coefficient

Navigation to body frame direction cosine matrix

Non-dimensional force coefficient in body axis, x-direction

Non-dimensional force coefficient in body axis, y-direction
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Cz

Djk

gr

gu

Qy

Non-dimensional force coefficient in body axis, z-direction

Differentiation matrix
Gravity

Lower bound path constraints
Upper bound path constraints
Prediction horizon

Control horizon

Integral error in roll

Integral error in pitch
Integral error in yaw

Cost function

Current time

Derivative gain

Integral gain

Propotional gain

Number of sub-intervals
Number of coincidence points
Control points

Number of input states

State points

Number of states

Roll rate

Pitch rate

MPC wheel angular rate weighting matrix
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Q1
Q@p
Qu
Qv
Qa

Ry,

Rg

uo

Vb
Ve
Vn
Vs

Vr

MPC integral error weighting matrix
MPC aircraft angular rate weighting
MPC control input weighting matrix
MPC velocity weighting matrix
MPC state weighting matrix

MPC yaw rate weighting matrix
Radius of robot wheel

Yaw rate

Left wheel radius

Right wheel radius

Wing area

Thrust

Time

Initial time

Final time

Sample time

Velocity in body frame, x-direction
Nominal input value

Velocity in body frame, y-direction
Down velocity

East velocity

North velocity

Speed of sound

True airspeed

matrix
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Lo

D

TE

xf

TN

Stall speed

Velocity in body frame, z-direction
LGL weights

x-coordinate

y-coordinate

Nominal state value

Down direction coordinate
East direction coordinate
Final x-coordinate

North direction coordinate
y-coordinate

Speed



Summary

Safety and reliability of air vehicles is of the utmost importance. This is particularly true for

large civil transport aircraft where a large number of human lives depend on safety critical

design. With the increase in the use of autonomous junmanned aerial vehicles (UAVs)| in our

airspace it is essential that [UAV] safety is also given attention to prevent devastating failures
which could ultimately lead to loss of human lives. While civil aircraft have human operators,
the pilot, to counteract any unforeseen faults, autonomous [UAVs| are only as good as the on
board flight computer. Large civil aircraft also have the luxury of weight hence redundant
actuators (control surfaces) can be installed and in the event of a faulty set of actuators the
redundant actuators can be brought into action to negate the effects of any faults. Again weight
is a luxury that do not have. The main objective of this research is to study the design
of a fault tolerant flight controller that can exploit the mathematical redundancies in the flight
dynamic equations as opposed to adding hardware redundancies that would result in significant

weight increase. This thesis presents new research into fault tolerant control for flight vehicles.

Upon examining the flight dynamic equations it can be seen, for example, that an aileron, which
is primarily used to perform a roll manoeuvre, can be used to execute a limited pitch moment.
Hence a control method is required that moves away from the traditional fixed structure model

where control surface roles are clearly defined. For this reason, in this thesis, I have chosen to

study the application of model predictive control (MPC)|to fault tolerant control systems. MPC

is a model based method where a model of the plant forms an integral part of the controller. An
optimisation is performed based on model estimations of the plant and the inputs are chosen

via an optimisation process.

Linear model predictive control (LMPC) has been studied for more than three decades and is
a well established control methodology commonly used in the process industry but is only now
making headway into industries such as aerospace. Nonlinear model predictive control (NMPC)

on the other hand has not received much attention due to limitations in computing power, but

with the advancements in computing power the application of nonlinear model predictive controll

(NMPC)|is now becoming more viable and it forms the main focus of my research. One of the

main contributions of this thesis is the development of a non-linear model predictive controller
for fault tolerant flight control. An aircraft is a highly non-linear system hence if a nonlinear

model can be integrated into the control process the cross-coupling effects of the control surface



contributions can be easily exploited. Another reason for choosing nonlinear model predictive
control over linear model predictive control is that the linear method requires small perturba-
tions to work efficiently and effectively. However, if a fault occurs it is likely to take the system
out of the linear region where the perturbations from the nominal are quite large, hence the
underlying assumptions would be violated causing the solution to diverge. Nonlinear techniques,
on the other hand, are better able to handle these situations as they encompass the whole system

operating envelope.

Non-linear MPC requires the solution of an optimal control problem which is most commonly
solved via a direct solution method using a finite parameterisation of the control and/or con-
straints. The most commonly used parameterisation methods are single direct shooting and
direct multiple shooting. The method proposed in this thesis uses a Pseudospectral discretisa-
tion method. It is shown through an illustrative example that the Pseudospectral discretisation
method used within an [NMPC] framework can achieve the same level of accuracy as the most

commonly used methods using fewer number of discretisation points.

Finally an active fault tolerant control system comprises not only of the fault tolerant controller
but also a fault detection and isolation subsystem. A common fault detection method is based

on parameter estimation using filtering techniques with the most commonly used filter being the

lextended Kalman filter (EKF)| The solution proposed in this thesis uses an junscented Kalman|

filter (UKF )| for parameter estimation and controller updates.

In summary the main contribution of this thesis is the development of a new active fault tolerant
flight control system. This new innovative controller exploits the idea of analytical redundancy as
opposed to hardware redundancy. It comprises of a non-linear model predictive based controller
using pseudospectral discretisation to solve the nonlinear optimal control problem. Furthermore
a [UKF] is incorporated into the design of the active fault tolerant flight control system. The

filter provides fault estimations and model parameter updates to the controller.



Chapter 1

Introduction

1.1 Motivation

The increase in cost and complexity of autonomous junmanned aerial vehicles (UAVs)| has re-

sulted in a shift in the design philosophy away from expendable systems towards systems with
a high level of robustness and survivability. Traditionally, survivability is increased through
redundancy of critical systems, but this increases weight, complexity, and cost. Although sys-
tem redundancy is inevitable in developing a commercial product, most systems are not robust
beyond first failure. Some other means needs to be found that will allow the vehicle to navigate

to a specified point and land safely after a system or actuator failure.

The overall objective of this research is to develop and implement an innovative flight control
system applicable to whereby the system is capable of reconfiguring the controller to
adapt to identified faults in the system. In so doing, the reconfigured controller is able to
recover adequate authority on the aircraft and automatically bring it back to the ground in
a safe and controlled manner, thus avoiding a crash or catastrophic loss of equipment. More

specifically the aims are to:

1. Develop autonomous[UAV]control technologies that have the capability to reconfigure their
structures and adapt to a new operational environment in the case of fault occurrence,

while respecting system operational constraints.

2. Apply model predictive control (MPC)|technologies to a test bench by model-in-the-

loop simulation.



1.2 Outline

This chapter puts into context the scope of this research and briefly outlines its importance.
The main application of this research is the development and improvement of [UAV] technolo-
gies hence it is important to understand what a [UAV]is, therefore section [I.3] concisely defines
unmanned aerial vehicles. This is followed by details of the contributions of this thesis towards

the advancement of [UAV] technologies in section [I.4

Finally an overview of the thesis is given in section

1.3 Unmanned Aerial Vehicles (UAVs)

By definition [UAV§g| are aerial vehicles capable of sustained fight without a human operator on
board [63]. Many are remotely piloted. However, to be truly autonomous, sophisticated
control systems need to be integrated into the [JAV] to enable the vehicle to fly without any

human intervention.

An important feature for true autonomy is the ability of to “think on their own”. This
includes the ability to respond quickly to system failures. [UAVs, unfortunately, are currently
deemed to be unsafe due to the fact that they are unreliable [31], mainly because the crash
rate is higher than that of manned aircraft. In [31] the leading cause of accidents was
found to be human error due to a lack of situational awareness by the remote pilot. In addition a
number of [UAV]accidents are caused by component failures or operator error. Similarly Bateman
[12] argues that poor reliability records, absence of certification standards and regulations with
regards to UAV systems have hindered their integration into the civil airspace. At present, more
emphasis is placed on reducing the unit cost per [UAV] rather on reliability, but if we are to

increase trust in it is imperative that we increase reliability /predictability.

1.4 Thesis Contributions

The main contribution of this thesis is the development of a new active fault tolerant control sys-
tem for comprising of a non-linear model predictive based controller using pseudospectral
discretisation to solve the nonlinear optimal control problem along with an Unscented Kalman
Filter for fault detection and identification. The controller has been demonstrated to work

effectively on a 2D robot model, a generic aircraft model and an actual model.



1.5 Thesis Overview

The thesis is divided into seven chapters. Each chapter begins with an introduction giving the
motivation behind the contents of the chapter followed by a brief outline. The following is a

synopsis of the chapters herein.

Chapter 1 - Introduction

Chapter 1, this chapter, places the research into context, summarising the thesis contributions

and providing a brief overview of the thesis structure.

Chapter 2 - Review of Recent Advances in Fault Tolerant Flight Control

Chapter 2 provides a detailed description of the problem addressed in this thesis, namely fault
tolerant control for and aims to explain in detail why this research is important. This
chapter takes an in depth look at what has been achieved in the area of fault tolerant control

thus far.

Chapter 3 - Design of a Nonlinear Model Predictive Controller

Model predictive control is an advanced control methodology. The aim of Chapter 3 is to
explore this technique for use as a fault tolerant controller. Both the theoretical and practical

aspects of linear and nonlinear [MPC]| are explored.

In this Chapter, a number of the numerical techniques used in the implementation of

imodel predictive control (NMPC)|will be investigated, to gain a thorough understanding of their

capabilities as well as their limitations. As a result of this analysis one method will be chosen to
design both linear and nonlinear [MPC]| controllers for a simple 2D robot model and performance

results compared.

Initially the numerical techniques will be applied to the well known Brachistochrone problem,
with the pseudospectral discretisation method turning out to be the most promising in terms of
accuracy and savings in computational time. The pseudospectral method will then be used to
design both linear and nonlinear [MPC] controllers. In general MPC]|solves an open loop problem
at each time step hence initially the controllers will be set up for the 2D robot to solve the
open loop problem and a sensitivity analysis conducted. From the analysis a prediction window

length of 5 seconds along with 50 coincidence points are chosen to carry out the remainder of the



research. The chapter concludes with performance comparisons between linear and nonlinear
[MPC]| applied to the closed loop problem where the robot is required to follow a demanded
trajectory. From the analysis, it will be evident that for small perturbations the performance of
both linear and nonlinear [MPC]is similar however as the perturbations increase the performance

of NMPC] becomes far superior.

Chapter 4 - Fault Tolerant Control System Design

Fault detection and identification is an integral part of fault tolerant design. Chapter 4 is ded-
icated to investigating various fault detection techniques with the 2D robot model used again

as an illustrative example to test the selected methods. The chapter concludes with a full

ftolerant control (FTC)|system design.

The controller design of chapter 3 is integrated with a number of [fault detection and identifica-|

tion (FDI)|filtering techniques to develop a full active system. As a result of the analysis
the design of the [FTC| system to be implemented as a fault tolerant flight control system is

finalised. This final design comprises a pseudosepectral [NMPC]| based controller integrated with

an funscented Kalman filter (UKF)|filter for fault detection and identification.

Chapter 5 - Fault Tolerant Flight Control System Design

In Chapter 5 the fault tolerant controller designed in Chapter 4 is applied to flight control. A
generic aircraft model is used to explore the feasibility of the proposed design as a fault tol-

erant flight controller. Parts of section [5.4{and [5.5| of this chapter have appeared as [72] and [73].

Initially thesystem is applied to the longitudinal (or motion of the aircraft assuming
followed by a look at the full 6DoF motion of flight. Several problems were encountered
during the design of the [FD]| subsystem for the 6DoF motion and further research in this area
was identified as beyond the scope of the current research. Thus the research is redefined by
narrowing the scope and demonstrating the concept of the proposed system design on the
longitudinal motion of the aircraft. The chapter concludes with the successful application of the

proposed active [FTC| control system design to flight control.



Chapter 6 - UAV Case Study

The fault tolerant flight control system of Chapter 5 is applied to an actual model in
Chapter 6. In this chapter the feasibility of the application of the proposed design on a[UAV]is

effectively demonstrated via model-in-the-loop simulation.

Chapter 7 - Conclusion and Recommendations for Further Work

The final chapter of the thesis summarises the main findings and contributions of this research.

The chapter ends with recommendations for further work.

The next chapter (Chapter presents a thorough literature survey on fault tolerant flight

control.



Chapter 2

Review of Recent Advances in Fault

Tolerant Flight Control

2.1 Introduction

2.1.1 Motivation

This thesis studies the design of fault tolerant flight control systems for unmanned aerial vehicles|

(UAVs)| to prevent catastrophic failures. It is important to place this study in context and this

chapter aims to do just that, looking at past research into fault tolerance, in particular, for flight

control, at the various components of a [fault tolerant control (FTC)|system and the application

of model predictive control (MPC)|to fault tolerant flight control.

2.1.2 Outline

Beginning with a discussion on the role of UAVs and the need for fault tolerance (section ,
I move on to look at the history of flight control systems in section This is followed
by a review of the current state of research in fault tolerant control systems, and the control
techniques currently used therein (section . Fault detection and identification, an important
part of is touched on briefly in section as a detailed description is provided in the
introduction of chapter 4] Section presents the state of the art in with respect to flight
control, while section describes the use of in Finally, the last section (section
outlines the methodology and the research questions I tackle in this thesis.



2.1.3 UAVs and the Need for Fault Tolerance

There has been a gradual evolution of [UAV] mission roles from expendable target drones to
expandable multi-mission aircraft with mission specifications extending to the more elaborate
such as missile decoys, military reconnaissance, maritime surveillance, and even combat missions.
are increasingly being used in front-line combat, that is, battlefield missions, to reduce hu-
man casualties. In parallel, there are many civilian applications of in meteorological and
atmospheric research, border patrol, agricultural spraying and bush fire surveillance. A charac-
teristic feature of current [UAV] flight missions is the decreasing reliance on human intervention
to control the flight vehicle with a significant shift towards autonomous flight whereby the flight
control decisions are executed by an on-board computer according to some pre-programmed
flight plan. This autonomous characteristic has been made possible with the development of
advanced flight control systems and autopilots capable of operating the aircraft with minimal
human input. Thus, the mission requirements have been further extended to include the capa-

bility of to fly long endurance flights in different environments.

These advanced flight control systems and autopilots are referred to as flight controllers and,
under operational conditions, it is necessary for the flight controller to be robust enough to
handle any uncertainties that might arise due to unexpected changes in the system parameters.
Commonly used flight controllers are explicitly designed to accommodate predictable external
disturbances, for example, wind turbulence, and maintain a stable flight path on the set tra-
jectory. However, the resilience of the controller to hardware malfunction or faults is implicit,
in the sense that it is a desirable feature rather than a requirement. Most controllers currently
in service are not intrinsically fault-tolerant with respect to failures associated with aerody-
namic control surfaces, electro-hydraulic actuators and diverse motion measurement sensors.
Fault tolerance in modern flight control is achieved through the design and implementation of
multiply-redundant systems, specifically through the addition of supplementary actuators and
sensors, which are brought into action in the event of the failure of a member of the principal set
of components. This improves general system reliability and flight safety, but incurs not only
the direct cost of added hardware, but also the cost associated with the extra weight penalty
and additional system complexity. This means of achieving increased fault tolerance is valid
for larger conventional aircraft that can physically accommodate the multiple-redundancy hard-
ware, however the compactness of makes multiple-redundancy of hardware impractical

and costly.



An alternative solution is the design and implementation of a re-configurable flight controller
that can exploit so-called analytic redundancy, as discussed in [70] and [119]. Analytical redun-

dancy arises from the existence of inherent redundancies in the system dynamics. The focus of

this thesis is model predictive control (MPC)| since it has the potential (as illustrated by Kale

and Chipperfield [70]) to correctly exploit these inherent redundancies.

A typical flight-control system is usually separated into outer- and inner-loops. The outer-loop
guides the plane on a pre-specified path and generates a set of speed and rate demands. These
demands are passed on to an inner-loop controller, which determines the requisite control surface
deflections for achieving the demanded rate values. The inner-loop control structure is usually
defined a priori, with specific functions that tell the plane how to fly. Furthermore, in the case
of redundant control surfaces, some form of control allocation is performed to blend the actions
of the multiple surfaces. This two-tiered process almost always assumes a fixed structure of the
control, for example, the use of ailerons to control roll and the use of an elevator to control
pitch. In contrast, the approach proposed in this project circumvents the need for a two-tiered,
fixed structure process. In many ways, the proposed methodology is a paradigm shift in aircraft

control.

In [MPC] the focus is on designing a controller where the inputs into the controller design are
what to control, instead of how to control. This is a subtle, but illuminating, difference, meaning
inherent system characteristics such as non-linearities and cross-coupling effects can be exploited
by the controller, rather than trying to minimize their influence. For example, [94], the primary
function of the rudder of an aircraft is to provide yaw or sideways control. However, the rudder
can also have some effect on the roll of the aircraft. Therefore, in the event of a failure of an
aileron actuator, the primary control surface for roll, it is still possible to execute a limited
roll manoeuvre with the rudder. In order to achieve this degree of fault-tolerance in the flight
control system, a suitable re-configurable architecture is required to be purposefully designed
and implemented. As part of this fault-tolerant control scheme there is a need to, initially,
detect and identify the failure. Once the failure is identified, the controller must be able to
compute a reconfigured /adaptive control law capable of exploiting, optimally, the available an-
alytic redundancies, such that the effect of the failure is adequately counteracted or negated.

Subsequently, upon implementation, the reconfigured controller should be able to re-establish
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control, albeit with limited capacity, and execute the required manoeuvres. The mission can
then either be continued with the failed component or aborted. The primary objective is to
avert a catastrophic failure or the loss of the aircraft, and to ensure that it is brought back to

ground safely.

The key to the design of reconfigurable control systems is exploiting the analytical redundancy of
the[UAV] In this context, the most promising approach to re-configurable and fault-tolerant con-
trol is or variants thereof (see [70], [I8], [55], [88]). Predictive control systems are designed
by utilising real-time optimization techniques, where a defined objective (or multi-objective)
function is optimized subject to plant operational constraints. The problem is formulated in
terms of the current control inputs, states of the system and the previously computed controlled
outputs. As the solution converges, the controlled outputs are expected to be the ones required

to achieve the control objectives or desired trajectory. This is the context of this research.

The rest of this chapter details the current state of research in fault tolerant control systems

and begins with a very brief look at flight control systems (section .

2.2 Flight Control Systems

Flight control systems (FCSs) are essentially the brains of an aircraft [42], as they control the
direction of flight. Over the years there have been many variants of FCSs. Since the successful
motorised flight by the Wright brothers there have been many improvements with three main
types of flight control systems currently in existence [42]; mechanical, hydro-mechanical and fly-
by-wire systems. The main objective of all three is the generation of the aerodynamic moments

and forces required to deflect the control surfaces for flying the aircraft.

Statistics provided by Cieslak et al. [29] (2010) show that loss of control accounts for over 25%

of aircraft accidents worldwide. In manned aircraft the [flight control system (FCS)|is operated

by the pilot, however in a the pilot is taken out of the loop (unless the UAV is remotely

controlled). As such, in the event of a fault, the must have the intelligence to handle system
degradations, something that can be addressed with fault tolerant control systems, detailed in

the following section.
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2.3 Fault Tolerant Control Systems - A Brief History
A fault has been defined as [39]:

“an unpermitted deviation of at least one characteristic property of the system from the

acceptable, usual, standard condition”
A failure on the other hand is [39]:

“a permanent interruption of a system’s ability to perform a required function under specified

operating conditions”

From the definitions above, a fault causes a system to behave abnormally but does not cause
the system to shut down, while the latter is highly likely in the presence of a system failure.
However, if left unattended, a fault may lead to a system failure, hence the importance of a

ffault tolerant controll (FTC) system. The main characteristic of an System is the ability

to automatically cope with system faults before the fault turns into a serious system failure.
While faults can cause instability in a system, the integration of an [FTC| scheme significantly
increases the ability of the system to maintain overall system stability in the presence of a fault.
This is of the utmost importance in safety critical systems such as aircraft, spacecraft, nuclear
power plants and chemical process plants. Hence a system that has an integrated fault tolerant

controller is defined as [14§]:

“A closed loop system which can tolerate component malfunctions (faults), while maintaining

desirable performance and stability properties, is said to be an[FT( system.”
Throughout the literature control system faults are categorised into 3 main types [42]:

1. Actuator Faults - can mean partial or complete loss of control action.

2. Sensor Faults - malfunction of control system sensors provide erroneous measurements of

the system’s current status. This results in incorrect operation of the system.

3. Component Faults - all system faults other than sensor and actuator faults. These faults
change the dynamics of the system as they involve changes to the physical parameters of

the system due to structural damage.

In this work only actuator faults|Loss of Control (LoC)|and engine failures are modelled as they

are the primary causes for the most serious failures in aircraft. Such faults cause changes in
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aircraft parameters. It should be noted that aircraft parameters are also affected by unsteady
aerodynamic and propulsive forces and moments, and are not limited to [LoC| conditions. Such
phenomena can be seen when an aircraft is flying in the presence of environmental disturbances
(such as windshear). For this reason online parameter estimation/identification is a vital part
of any adaptive and reconfigurable controller, as even though the aircraft may not be suffering
from the aircraft will be affected. Hence any online estimation/identification techniques
must be able to distinguish whether this change is due to a fault or environmental disturbance.
For this work however this phenomena is not investigated as limits needed to be placed on the

research.

The past three decades have seen a significant amount of research in [FTC|l One of the very
early survey papers is the 1985 one by Eterno et. al [44]. The paper’s main focus is
within an aerospace context and it discusses the improvement in reliability, maintainability and
fault tolerance that a restructurable FCS could provide for the next generation aircraft, by tak-
ing advantage of the redundant control authority available on-board. The fault types of most
concern for aircraft include those of the flight control components themselves i.e. the sensors
and actuators (aerodynamic surfaces), which are usually random and are the result of battles,
collisions or sabotage. Eterno et. al [44] go on to state that robustness is the goal of any control
system and is defined as the ability of the aircraft to maintain performance in the presence of
uncertainty. One way of achieving this is through adaptive control, the technology of continu-
ally identifying system parameters and adjusting the control parameters in accordance with the
identified parameters. Continuous adaption is supported by well developed theory and numer-
ous successful applications. If circumstances are ideal it provides graceful degradation and [FCS|
recovery. However, most adaptive control algorithms can produce catastrophic instabilities and
very high bandwidths when confronted with unmodelled dynamics and disturbance signals. In
addition, the most successful applications have been on systems with long time constants and
widely separated dynamics, that allow the adaptive system bandwidth to be artificially limited.
The concept of the “dead zone” was introduced to address these shortcomings and involves the
monitoring of the control (servo) error with the aim of determining if these errors are the result
of normal command following disturbance rejection or due to plant parameter variations. Under
normal operation i.e. servo errors within the dead zone, no adaption occurs; however when

errors become unacceptable an adaptive scheme is applied.
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Another highly influential survey paper, written by Patton in 1997 [97], classifies the prob-
lem as a complex control system requiring inter-control-disciplinary information and expertise.
Patton argues for new controllers that can tolerate component malfunctions whilst maintaining
desirable and robust performance and stability properties. Patton [97] concurs with Eterno et
al. [44] that the main requirement of an system is either the maintenance of an acceptable
level of performance, or graceful degradation following a malfunction. For a real time application
Patton suggests the comparison of several methods on the basis of cost, robust stability, degree
of predictability of the behaviour of the system and whether or not the system could degrade
gracefully without loss of life/injury and/or significant economic loss. Other important factors
in the decision making process include computational burden as well as the complexity of the
system as a highly complex system could decrease overall system reliability. Patton comes to
the conclusion that the main objective of fault tolerance should be the design of a controller able
to guarantee stability and satisfactory performance, not only during healthy operations but also
during component malfunctions. Such structures are referred to as control loops that possess
loop integrity or reliable control. Hence is a strategy for reliable and highly efficient control
law design. According to Patton, research in [FTC|during the 1970s and 1980s has concentrated

on:
e Supervision - which manages the controller reconfiguration.

e Fault detection and identification (FDI) - a very mature field that provides very powerful

quantitative and/or qualitative modelling tools and artificial intelligence.

e Robust control - very popular since late 1970s. Until 1997 very little research had been
carried out in regards to the effects of faults upon the control process. The few cases
dealing with faults are referred to as the passive approach which will be discussed in a

later section.

e Reconfigurable control - very popular amongst researchers, with methods including feed-
back linearisation, pseudo-inverse, adaptive control and model following, just to name a

few.

Patton believed it was important to combine [fault detection and identification (FDI)| recon-

figurable control and robust control and that the biggest challenge in [FTC| design was the
integration of the design and implementation of a reconfigurable control scheme based on robust
controller designs, and an [FD] unit. He highlights the most important mathematical challenges

as:
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e The need for [FTC]|to be implemented via a systematic and integrated approach to design

and,

e The need to understand the structure of the system, the reliability of the different compo-
nents, the types of redundancies available or those that can be generated, and the types

of controller functions which might be required and are available.

Patton [97] introduces the concept of analytical redundancy (AR)|as a means of using functional

relationships between system variables to accommodate fault tolerant control. The underlying
idea of [AR] is the use of the functional relationships between system signals. For many years
physical redundancy was the basis for but with the use of digital computers on board
aircraft has received a great deal of interest [36]. Here the redundancy is provided by incor-
porating the aircraft model into the controller; hence [FTC| that uses [AR] could be considered a

model-based approach.

Zhang and Jiang’s 2008 paper [148] also identifies as the future of The authors claim

that over the previous three decades the increase in demand for safety, reliability, maintainabil-

ity and survivability significantly expanded research into [fault detection and diagnosis (FDD)|

Simultaneously research into reconfigurable fault tolerant control systems also increased.

Thus, the last three decades have seen a significant amount of research in with the surveys
by Eterno et. al (1985) [44], Patton (1997) [07] and most recently, Zhang and Jiang (2008)
[148] giving a very good overview of the current state of the art. In summary Eterno et. al felt
that the best solution to was to have two separate controllers, one that handles the no
fault case, and another that comes into action once a fault has occurred, while Patton in 1997
deduced that [AR] was the way forward in [FTC| This was further recognised in 2008 by Zhang
and Jiang who also identified the interaction of the and subsystems as an important

area of research.

The literature shows that developments in have been largely motivated by the aerospace
industry. In particular, two commercial aircraft accidents that occurred in the 1970s highlighted
the need for equipping aircraft control design with self-repairing capabilities to assist the pilot
in landing the aircraft safely. In the first incident, the pilot of DELTA flight 1080 was able to
reconfigure the aircraft’s lateral control elements and land the aircraft safely when a fault in

the elevator caused it to jam at 19 up. In the second, the American Airlines DC-10 Flight
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191 crashed, as the pilot had only 15 seconds to react. Subsequent investigations into the latter

accident found that the crash could have been avoided if there had been an[F'TC|system on board.

As previously mentioned [FTC| has expanded to many industrial and academic communities due
to the increase in safety and reliability demands, including aerospace [60], wind turbines [113],
chemical process industry [149], automotive [47] and nuclear power [77]. Consequently, there are
numerous solutions to the [FTC| design problem with the [FTC| research community classifying
these designs as either passive or active. The following two subsections discuss this important

distinction.

2.3.1 Passive [FTC

Also known as reliable control of systems with integrity, passive [FTC|systems are based on fixed
controllers and are designed to be resilient against known faults. They are designed using robust
control techniques and are often designed for worst case scenarios. In a passive [FTC| system
the main objective is the maintenance of the original system performance, with the biggest
advantage being low computational cost as no fault detection is performed. Other advantages
of a fixed controller include minimal hardware and software requirements, and with their low
complexity they can be designed to be more reliable than an active system. However, since no
fault detection is performed this approach is often ineffective as only a small subset of possible
faults can be considered. Another disadvantage of the passive approach is that increased ro-

bustness against certain faults is only possible at the expense of decreased nominal performance.

2.3.2 Active [FTC

Also known as self-repairing, self-designing or fault detection, identification (diagnosis) and
accommodation schemes, active [FTC|systems contain an [FDI component and are based on con-
troller redesign, or selection/mixing of pre-designed controllers [42]. The element monitors
the health of the system, with the aim of detecting and isolating system faults. This information
is then sent to the controller which reconfigures based on this new information to best represent

the current state of the system. Active systems can be further broken down into two types [49]:

1. Projection based methods - based on a number of controllers with each representing a

different fault. Once the [FDIl detects and isolates a fault a selection must be made of
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the controller that best suits the current state. Like passive systems these methods can

account for only a subset of faults.

2. Online redesign methods - recalculate controller parameters and are referred to as recon-
figurable control. Online redesign methods have the best performance, however they are

the most computationally demanding.

When comparing active and passive schemes, the drawbacks of active control include false
alarms, non-detection delays and complexity of control laws. On the other hand passive systems
can be overly conservative and are designed to handle a certain disturbance set with the fault
tolerant controller unable to handle any disturbance not within this set. Another disadvantage
of passive systems is a result of utilising robust control techniques with Wu et al. [129] main-
taining that a robust system often masks failures. A recent review paper written by Jiang and
Xiang [68] provides an excellent qualitative and quantitative comparison between active and
passive approaches. Both papers [129] and [68] suggest combining the two strategies to form a
hybrid approach that can exploit the advantages of each whilst at the same time eliminating the

disadvantages.

The following section briefly discusses the various mathematical control techniques that have

been used in [FTC| The main focus is on [MPC| the method used in this research. As will be
clarified later, [MPC| with its inherent fault tolerant capabilities can be utilised to form a hybrid

[F'TC] system.

2.3.3 Control Techniques used for - Model Predictive Control

Various mathematical control techniques have been used throughout the literature for both pas-
sive and active approaches. [MPC| has been chosen for this research as a method for further
investigation and this subsection briefly outlines [MPC]| which is described in further detail in
subsequent chapters. A table of other approaches used for [FTC]| are listed at the end of this

subsection along with their advantages and disadvantages.

Model Predictive Control - has many characteristics that make it ideal for fault tolerant

flight control. [MPC]is an optimal control technique and is the only advanced control technique

to have had a significant impact on industrial process control [90], mainly because it is the only
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generic control technology that can handle system constraints.

[MPC]is a model-based approach that utilises an internal model to generate predictions of future
plant behaviour. [MPC]| also has excellent fault tolerant potential, however there is a reluctance
to use [MPC] for flight control because of the use of fast time constants in comparison with
traditional applications. The features of [MPC| that make it a promising candidate for fault

tolerant flight control design are:

e Faults are easily modelled; for example a stuck actuator can be modelled by appropriate

choice of constraints.

e In the event of a system fault the objective function and/or the constraints are easily

modifiable as the control signal is recomputed at every time-step.

e [MPC]| possesses particular fault tolerant properties, allowing the handling of faults up to

a certain degree even in the absence of fault knowledge.

The basic idea behind is to minimise a cost function subject to the system dynamics and
input and output constraints. This optimisation takes place over a predefined prediction hori-

zon. More details on will be provided at the start of the appropriate chapter.
While MPC] is the method of choice in this research project, for the sake of completeness it

is important to consider other popular approaches to The following table lists the most

commonly used approaches for [FTC| along with their advantages and disadvantages.
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2.4 Fault Detection and Identification

As Patton [97] points out, one of the biggest challenges to designing fault tolerance is incor-

porating an appropriate [fault detection and identification (FDI)| unit. is a very mature

area of study and provides many powerful quantitative and qualitative modelling tools yielding
artificial intelligence regarding any given fault. The [FDI|module is an integral part of the active
system and can mean the difference between complete system failure and system recovery.
is the most difficult aspect of FTC [26] and due to the excessive costs involved and increase
in system weight, hardware redundancy and full self diagnosis equipment are not always viable
solutions, particularly for As a consequence other means for [FD]| are necessary, such as

using the available data and the mathematical model of the plant; this is referred to as model-

based FDI, and as [analytical redundancy] This approach to [FD]] is based on the belief that

when a fault occurs the physical parameters change and as a result the dynamical model of the
plant also changes. The residual generation approach, using observers such as the Kalman filter,
the Unscented Kalman Filter and Multiple Model Filters, is the most researched area in [FD]|
[8] and is investigated as part of this research. Observer based schemes are highly dependent on
the models upon which the scheme is designed. False alarms or missed faults can occur due to

plant model mismatches, hence robustness issues in [FD]] are critical.

Patton [97] identified the role of an system as the ability to gather information about the
changes occurring in the system parameters (or in the system operating point) due to faults.
There have been many kinds of approaches developed [97]; quantitative, qualitative and
knowledge based. Quantitative [FDI| can be further classified as state estimation, parameter
estimation and parity equation approaches. However, [FDI] research has more commonly been
conducted in isolation to controller design and there is a huge gap in integrated [FTC|and [FDI] de-
sign. The reliability of the [FDI]system is required to be higher than the system being monitored
as the better the model used to represent the dynamic behaviour of the system, the higher the
chance of improving the reliability and performance of detection and isolation of faults thereby

reducing the number of false alarms.

Fault detection is clearly an essential component of any active [FTC| system and hence will be

thoroughly examined in chapter
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2.5 Fault Tolerant Flight Control - The State of the Art

The many methods of control techniques given in subsection [2.3.3] have been used in fault tol-
erant flight control design by many authors. In this section, I detail the use of these methods

providing examples to illustrate their variety.

The past decade has seen a great deal of work in the area of fault tolerant flight control. For
instance the European Flight Mechanics Action Group FM-AG(16) on was in operation
from 2004 to 2008. A collaboration of thirteen European partners from industry, universities
and research establishments, FM-AG(16) was supported by the Group of Aeronautical Research
and Technology in Europe (GARTEUR) program [42]. The focus of this latter group was com-
mercial transport aircraft because statistics clearly indicated that many airliner accidents could
be attributed to Loss of Control In-Flight (LOC-1), caused by a piloting mistake (e.g. due to
spatial disorientation), technical malfunctions or unusual upsets due to external disturbances.
Hence the aim of the GARTEUR Flight Mechanics Action Group FM-AG(16) with regards to
fault tolerant flight control was the development of new fault tolerant control strategies within

the European aerospace research community in practical and real-time operational applications.

SImulation MOtion and NAvigation (SIMONA), a 6-DoF flight simulator provided by Delft
University (Netherlands) was used to assess the real time applications of the technologies
developed by the FM-AG(16) group. The research undertaken by the FM-AG(16) group, as
given in [5] and [6] includes an [FTC| scheme based on [liding mode control (SMC)| and [contro]

lallocation (CA)| has emerged as one of the leading techniques for dealing with systems

with redundancy such as large transport aircraft. A benefit of [CA] is that reconfiguration of
the controller is not required as [CA] schemes “automatically redistribute” the control signal.
Sliding mode control (SMC) is a non-linear control methodology and comes under the category

of robust control hence it has robustness properties against certain types of disturbances and

uncertainties that make it suitable for [FTC| However, since [sliding mode control (SMC)] cannot

deal directly with actuator failures, [CA] offers a solution by providing access to the redundant
actuators. Simulator results obtained by the FM-AG(16) group were good even in wind and gust
conditions. Alwi and Edwards in an earlier paper [7] presented the scheme applied to
the lateral and longitudinal axes of the non-linear B747 aircraft simulation model where they
showed that the sliding mode control allocation scheme could handle fault and total actuator

failures directly without reconfiguring the controller. Other formulations of [F'TC|that have come
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out of the FM-AG(16) group include an adaptive nonlinear dynamic inversion configuration for

manual and autopilot control [84], where the authors explain that the weakness of classical non-

linear [dynamic inversion (DI)| sensitivity to modelling errors, can be avoided by the use of a

real time identified physical model of the damaged aircraft.

Throughout the literature it was found that schemes are most commonly a combination of
the methods outlined in section The aim of the Intelligent Flight Control System (IFCS)

F-15 program at [National Aeronautics and Space Administration (NASA)|is the development

and evaluation of flight control schemes that assist the pilot in handling faults during the oc-

currence of a primary control surface failure. The [FTC| scheme developed under this program

([101], [99]) is based on nonlinear dynamic inversion and is augmented with a [neural network|

to compensate inversion errors and changes in aircraft dynamics due to damage or failure
of a primary control surface. Three different were investigated, the Extended Minimal
Resource Allocating Networks (EMRAN), Single Hidden Layer (SHL) and the Sigma Pi. The
simulations were conducted using the NASA F-15 aircraft and different fault scenarios of the
stabilator and canard were investigated. Results showed that EMRAN outperformed the other

two schemes in terms of angular rate tracking errors while requiring lower computational effort.

Other examples of combined methods for [FTC| include work conducted by Shin and Gregory
[112] where the method is based on robust [gain scheduling (GS)| control concepts using a

linear parameter varying (LPV)| control synthesis method to design fault tolerant controllers for

a civil transport aircraft. Both passive and active controllers were designed and implemented
for the longitudinal motion of the aircraft and the effect of time delays was investigated. It was
found that in the active [FTC] case controllability was not guaranteed for fault detection delay
times greater than ten seconds. The passive controller on the other hand used the elevator and

stabilisor for control even in healthy situations where only the elevator should have been used.

Yang and Lum [I34] tested a solution for on simulation models of the F-16 aircraft with
stuck actuator faults, with the [FTC| based on Hy, and peak-to-peak gain performance indices
in a multiobjective optimisation setting where the algorithms were based on linear matrix in-
equalities (LMIs). Zhang and Jiang [I47] on the other hand, tested an active design on
a model of the F-8 aircraft, finding that in the presence of a fault the degradation in dynamic

performance was accounted for through a degraded reference model. Zhang and Jiang [147]
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used an [eigenstructure assignment (EA)|algorithm to automatically design the controller once a

fault was detected. This was done in a model following framework so that the dynamics of the

closed-loop system follows that of the degraded reference model.

Yu and Jiang [143] developed an active method where the impairments were modelled

as a polytopic [LPV] system. Here, simulations look at inner elevon impairments and the

was based on techniques through the optimisation of [linear matrix inequalitys (LMIs)|
Ye et. al [I39] used a linearised model of the F-18 (longitudinal motion only) where the
was based on Hy, in an framework similar to Yang and Lum’s work [I34]. Ye et. al had

earlier produced a two part system [140] where the first part consisted of a nominal con-
troller based on iterative LMI] The second part of the system was a re-allocation scheme that

redesigned an optimal control law without reconfiguring the baseline controller and was based

on the pseudo inverse method (PIM)| Simulations were performed on ADMIRE (the Aerodata

Model in Research Environment), a non-linear, six degree of freedom simulation model of a rigid
small fighter aircraft with a delta-canard configuration developed by the Aeronautical Research

Institute of Sweden. A more recent paper by Gao and Wang [51] focuses on for an

[breathing hypersonic vehicle (AHV)|subject to actuator faults and limited measurements of the

states where the scheme is based on [feedback linearisation (FL)| and [SMC|

2.5.1 Sliding Mode Control Approach

Sliding mode control (SMC) was found to be one of the most popular methods for in the
literature. Alwi and Edwards [8] developed a sliding mode approach for of a civil aircraft
(model of the Boeing 747) where both actuator and sensor faults were considered. In [8], a state
feedback sliding mode controller is designed for actuator faults where the gain of the nonlinear
unit vector term is allowed to adaptively increase once a fault occurs. The adaption mechanism
is activated by unexpected deviations of the switching variables from their nominal condition.
A robust method for fault reconstruction using sliding mode observers is used for sensor faults.
The proposed method does not require controller reconfiguration because the corrupted mea-
sured signals are corrected via a sensor fault reconstruction signal before they are used by the
controller. In the nonlinear part of the control law, an adaptive gain is used which reacts to the
occurrence of a fault and attempts to keep the switching function as close as possible to zero,

thus trying to maintain nominal tracking performance. A switch is made to a back up control
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surface if total failure is detected. However, the linear component of the control law remains
unaltered. The novelty of this scheme is the design of the hyperplane, which minimises the effect
of unmatched uncertainty on the sliding motion arising from actuator failures and the simple
adaptive scheme for the nonlinear unit vector scaling gain. Hence the [F'TC| controller is based
around a state feedback sliding mode scheme and the gain associated with the nonlinear term

is allowed to adaptively increase when the onset of a fault is detected.

Another application of can be found in [49] where a passive scheme is developed for
the longitudinal motion of an F-18A aircraft. Pre-specified faults are handled via a variable
structure controller with a sliding surface and a Lyapunov function. The authors claim that
the main features of their proposed method are simplicity and robustness against uncertainties
and parameter variations due to some pre-specified faults. Peng et. al [98] have produced an
adaptive and conditional integral [SMC| As the authors points out, suffers from chatter-
ing which can excite unmodelled high-frequency dynamics, degradation of system performance
and result in instability. The authors develop an [SMC| formulation that reduces chattering and
guarantees zero-steady state error achieving this through a conditional integral term to attain
steady state error and an adaptive technique based on Lyapunov stability theory to compensate

for the effects of the disturbance generated by actuator faults.

Yang et. al. [I35] also produce a passive m scheme based on adaptive again using
the Lyapunov stability theorem, to ensure closed loop stability. Comparing adaptive to
classical [SMC] they found, through simulations of aircraft actuator faults, that adaptive [SMC]
performs better than the conventional [SMC] fault tolerant controller. The very same group also
produced [I36] a model following based controller, where proportional integral type sliding
surface was designed via pole placement to ensure the sliding mode had good dynamic charac-

teristics and to eliminate steady state error.

2.5.2 Multiple Model Techniques

Multiple Model techniques are another very popular method for however these are primar-
ily used as a means of predicting faults. Boskovic [I7] presents a decentralised and adaptive
reconfigurable control scheme to achieve the desired flight performance in the presence of mul-

tiple control effector failures that occur at different times. This decentralised scheme consists of
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multiple adaptive [FDI] observers and controllers and a suitably chosen decision making mecha-
nism. The proposed method [I7] was implemented on a model of the F/A-18A aircraft and the
decentralised system consisted of 3 subsystems: (1) FDI subsystem, (2) parameter estimation
subsystem and (3) decision making subsystem. In the event of an effector failure the decision
making subsystem uses estimates from the parameter estimation subsystem online to reset all
[FD] observers and controllers to the nominal regime which is established immediately following
the failure. In a later paper of Boskovic [24], only the is decentralised, i.e. an observer is run
at each of the actuators; and parameter estimations are adjusted using only local information. A
key aspect of this approach is that the observers do not use global state information, but rather
local signals. The main advantage of this method is that it can handle multiple simultaneous

faults and the controller uses parameter estimates from each of the observers.

Guo et. al [61] introduce an active scheme based on a combination of a direct adaptive
control algorithm with multiple model (MM)| switching. The in [61] is based on radial

basis function networks (RBFN) type neural networks to approximate model uncertainty and

adaptive parameters, while are used to describe all fault scenarios.

Intelligent control techniques have been widely used for Liu et. al [83] developed a passive
[FTC] scheme based on an model following adaptive inversion control that uses an adaptive
back propagation Li et. al [78] describe an technique for autolanding based on a
radial basis function network (RBFN) and traditional controllers. Due to the powerful ability
of to approximate nonlinear functions they are able to adapt to changes in system dynam-
ics quickly while still providing good performance hence in [78] is based on an aided
H, controller. Yan et. al. [I33] proposed an method using a nominal controller plus an
adaptive controller based on [NN] in particular the minimal radial basis function neural network
(MRANN), and were one of the first people to use MRANN on flight control. Simulations were
based on the longitudinal motion of the F8 aircraft. Other applications of [NN| based [FTC| can
be found in [92], [109], [146]. The fuzzy logic controller is used by Sami and Patton [I10] where
the goal was the design of a controller that could handle simultaneously occurring actuator and
sensor failures. The methodology in [I10] is based on a TS fuzzy controller and TS fuzzy ob-
server. Torabi et. al [I18] compare a fuzzy controller with as fault tolerant controllers for
the pitch rate command tracking of light aircraft. Results show that the effect of disturbances

is better handled by [MPC]|
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H has proven to be a very popular robust control method for Cieslak et. al [29] use
an Ho, base controller for the landing approach of the B747-100/200. Piloted flight simulations
analyse a faulty trimmable horizontal stabilisor and show that fault tolerance can be achieved
under the condition that there exists sufficient remaining control authority. Wu and Chen [129]
also incorporate H, for where the aircraft considered has redundancy in control authority
provided by both elevons and canards. Ye et al. [I38] look at mixed Hs/H., robust
with the [FTC| set up in an [LMI] framework where a multi-objective optimisation problem is
solved. Simulations are performed using the ADMIRE simulator. The Hs controller is adapted
to handle the transient performance while the H,, guarantees robust stability in the presence

of uncertainties and disturbances.

Adaptive Control techniques have been used by Boskovic et. al [I9] where the approach is
based on generating high frequency signals for actuators with suspected failures with the aim of
minimising the effect of these signals on the system state using the remaining healthy control
surfaces. This method was tested on simulations of the F/A-18. The preliminary results were
quite positive showing that the proposed technique was robust to false alarms, false failure infor-
mation and missed detections and it assured convergence of the failure parameter estimates to
their true values. Boskovic et. al also produce a method of adaptive control [16] for where
a suitable tracking error feedback (TEF) term is designed such that the plant is stabilised over
the entire uncertainty set. If such a term exists then the adaptive control part depends only on
the reference model state and reference input. This results in a stable linear time-varying system

rather than a nonlinear time-varying system which commonly arises in the context of standard

ladaptive control (AC)| and allows for simpler analysis of the system. Other applications of

can be found in Gayaka and Yao [53] and Idan et. al [65] where, in both cases, model reference

adaptive control is used as the basis for [F'TC|

Other methods that have surfaced in the area of include using off-line multi-objective
optimisation [14] to design an optimal gain tolerant to a control surface failure. This method

can only be applied to a known set of failures and in the paper [14], is applied to a model of

the F/A-18A aircraft. Ciabotaru and Staroswiecki [30] use a [linear quadratic regulator (LQR)|

design for [F'TC| of the short-period mode of the longitudinal model of the Boeing 747. When ac-

tuator faults occur, both fault accommodation and system reconfiguration procedures need the
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controller to be redesigned which means solving [algebraic Riccati equations (AREs)| associated

with the post fault model. To avoid the risks of system instability and/or control inadmissibility
which results from fault detection delays, the authors [30] utilise a progressive accommodation

strategy based on the Newton-Raphson algorithm for solving

An analytical based approach can be found in a very early paper written by Gross et.
al in 1986 [59], which points out that valuable information can be obtained about the status
of an actuator by examining the actual versus commanded position. Gross et. al suggest the
use of hinge moment residuals as an approach that could yield valuable information for damage
detection, isolation and estimation of effectiveness. Keating et. al [71] present a
lfeedback theory (QFT)| based system. uses a 2DoF arrangement that utilises unity

feedback, a cascade compensator and a prefilter to reduce variations of the plant output from
plant parameter variations and disturbances, rendering it necessary to make trade-offs between

compensator complexity and performance.

One area of [F'TC| that has not been thoroughly researched is the hybrid method, a combination
of the active and passive methods [148]. Fekih [48] developed a[FTC|method based on integrated
(active-passive) design combining with adaptive control with simulations carried out on a
model of the F-16. Here the sliding mode method is the nominal controller; if its performance
degrades such that the state evolves outside a given boundary then the adaptive controller is
added to the nominal controller to offset the actuator faults. Yu et. al [145] also propose a
scheme to combine active and passive approaches with the basic controller based on [LMI When
a fault occurs initial fault detection is performed by the autonomous robust reliable control
system and control is set to a robust control law selected from a set of reliable control laws
proposed off-line. In the background the [FDI| system is simultaneously reconfirming the fault,
and after it has been isolated the reconfigurable control law is developed. Simulations were con-
ducted on a helicopter rather than a fixed wing aircraft and the results showed that the system
could achieve optimal performance under the nominal condition and in the event of a failure the
system responded instantly, guaranteeing stability and a certain level of performance. Finally
Yu and Jiang [144] design both active and passive components of their hybrid scheme via
[CMI] describing the means by which a hybrid system is able to first slow down the rate of
fault induced system deterioration with minimal fault information such that the [FDI|subsystem

has a chance to correctly isolate the fault. Once detected the reconfigurable controller takes
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over from the passive robust controller. Through simulations, using both linear and nonlin-
ear case studies, Yu and Jiang [144] found that passive systems use more energy than active
systems. They also found that with correct [FDD] information the active system performance is

superior compared to the passive system. The passive system was found to be very conservative.

This section covered the state of the art in fault tolerant flight control. It discussed the techniques
presented in section [2.3.3| as applied to flight control for the purposes of fault tolerance. The
next section takes a more in depth look at the techniques that have been applied specifically to

the main application area of this research.

2.6 [UAVI[FTC Methods

As is evident from the literature review outlined so far, especially in the previous section, fault
tolerant flight control has been mainly utilised within the context of large manned aircraft.
Much of the literature on describes the application of [F'TC|to rotorcraft rather than fixed
wing aircraft. This section provides a brief overview of the work being conducted in [UAV] fault

tolerant control.

Bateman et. al. [II] believe that gaining airworthiness approval for in civil airspace
requires an increase in reliability and propose an active system to deal with control surface
failures for a The fault tolerant control scheme in [I1] consists of an method based on
a signal processing approach and a bank of linear quadratic controllers to handle all faults. Fault
detection is carried out by first detecting a fault, followed by an isolation process whereby each
control surface is excited with a specific signal that constitutes its signature. Hence isolation of
the fault involves identifying the presence or the absence of this signature. The authors explain
that in the presence of an actuator failure the equilibrium of forces and moments is broken and
significant couplings appear between the longitudinal and lateral axis of the aircraft. To find
a new equilibrium the fault free mode control surface deflection constraints are relaxed. [FTC]
systems exploit the redundancies offered by the control surface and control each one separately,
via a linear quadratic controller. A drawback of the proposed method in [11] is that it does not

allow faults to be detected in the rudder due to the lack of redundancy in this control surface.

In 2008 Bateman and the same co-authors [12] presented a paper investigating an strat-

egy for the nonlinear model of a [UAV] equipped with numerous redundant controls. Here the
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authors look at asymmetric actuator failures using a sequential quadratic programming (SQP)
algorithm that takes into account nonlinearities, aerodynamic and gyroscopic couplings, state
and control limitations as a means for [FTC| The algorithm calculates new trim conditions such
that the new operating point of the faulty linearised model remains near the fault free model.
The authors [12] examine asymmetric failures for which couplings appear between axes, possibly
changing the equilibrium of forces and moments. The time required to process the failure may
move the state vector far away from its operating point, so a nonlinear model of the aircraft
that takes into account aerodynamical effects of each control must be considered. Under this
scheme an system can be implemented if and only if a new operating point can be found.
To compute this new operating point the authors assume that the faulty controls and their
positions are known, i.e. [FD]is assumed. Re-allocation of the healthy actuators is expressed as
an optimisation problem with equality and inequality constraints. The optimisation returns the
new operating point in faulty mode at which point it is possible to calculate a linearised model
of the[UAV] Upon computing the new operating point a linear state feedback is calculated which
aims to steer the current state vector towards equilibrium. Hence in theory one controller has
to be designed for each fault situation; to achieve this the authors [12] use as the basis of

the controller design.

Other applications of [F'TC| for [TUAV] operations can be found in very early papers on the sub-
ject by Copeland and Rattan (1994) [32], Chen et. al (1998) [28] and Wu et. al (1999) [130)].
Copeland and Rattan [32] propose a fuzzy logic supervisor algorithm for a reconfigurable flight
control law. The authors claim that in the event of a fault the set of fuzzy logic rules obtained
ensure even distribution of control authority to the remaining healthy effectors. The [F'TC| sys-
tem described by Chen et. al [28] (1998), uses to address wing impairment faults on
The authors present a multi-objective approach for establishing a matrix inequality formulation.
The approach is designed to eliminate the rank constraints in the LMI] that occur in the presence
of a fault, which if left unattended may lead to a non-convex problem. Wu et. al [130] use
as the method of choice for on a remote pilotless aircraft. The approach described therein
[130] was applied to the longitudinal motion of the aircraft and results showed an increase in

stability and tracking performance compared to the existing [FCS]

In more recent work by Beainy et. al [13] is based on and a reconfigurable controller

based on [SMC]is designed to compensate for the degradation of the actuation on the occurrence
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of a fault. Krueger et. al [76], on the other hand, present an based on an expanded
nonlinear model inversion flight control strategy using sliding mode online learning for NN} An-
other based system was presented in [I02] where the proposed system had three main
components: (1) an [FDI] (2) a controller suite comprising of a nominal controller and an
based adaptive fault tolerant controller, and (3) a reconfiguration supervisor that makes deci-
sions regarding controller reconfiguration. In [122] fault tolerant control is done via a standalone
compensator which is added to the original system. are used to design the compensator
and it comes into effect after a fault occurs; it also consists of a state observer. Results show
that in the event of a disturbance due to a fault the new approach improves the closed loop

response.

Fan et. al [46] present a hybrid active/passive approach to a flying wing using an m
framework, discussing the importance of intelligently integrating the [FDD]system into the [FTC]
system as otherwise any delays in fault detection will result in system instability. The authors
claim that the unique feature of the proposed hybrid method is its ability to tackle the actuator
saturation problem, allowing full utilisation of the actuator power. If and when the effectiveness
of the actuator is at the limit for which tracking requirements cannot be met, then recover-
ing the maximal tracking performance is possible if the remaining actuator power can be fully
utilised by the system. The authors derive a set-invariance condition to guarantee the stability
of the post fault system, designing the reliable controller such that the resultant invariant set
includes the output from the nominal controller. However, stability is only guaranteed under

the assumption of zero detection delay.

Ahn et. al [2] look at an adaptive and sliding mode scheme for m The merits of adaptive
and are that (1) the magnitude of sliding mode controller gain can be reduced and (2) an
EF'DI| process is not required. Research in [2] is focused on however simulations are on a
generic 6DoF nonlinear aircraft model. Using the time-scale separation principle both the fast
inner-loop states and slow outer-loop states are simultaneously controlled. An online adaptive
parameter estimation scheme is considered in the pure sliding mode controller to overcome the

large control authority requirements and chattering problems of [SMC|
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2.6.1 Damage Tolerance Control

A series of flight tests were performed under the DARPA-sponsored Damage Tolerance Program
[69] in which four key technologies are discussed and illustrated with actual flight data. The
Rockwell Collins damage tolerant control (DTC) technology is designed to mitigate common
[UAV] failures such as primary control surface damage, airframe damage and complete engine
failure. A combination of all types of attitude control, MRAC, automatic supervisory adaptive
control (ASAC) and emergency mission system (EMMS) is shown to provide with an un-
precedented robustness to otherwise catastrophic failures. From April 2007 to June 2010 flight
data was collected on flights using a subscale F-18[UAV] The MRAC method was able to recover
the baseline controller after losing actuation, while ASAC returned an aircraft with catastrophic
wing damage to trimmed and controllable flight within seconds allowing the mission to be com-
pleted with a successful autonomous landing. The EMMS allowed the aircraft that had suffered

complete engine failure to glide back onto a feasible landing trajectory.

2.6.2 Use of MPC]|in the Process Industry

As mentioned before, the control methodology that I study in this thesis has been extensively
used in the process industry. Boskovic and Mehra [23] present an based fault tolerant

control scheme for the process industry where [MPC]| controllers are found to be sometimes bet-

ter suited to a given problem over [proportional integral derivative (PID)| controllers, since the

latter cannot take into account process characteristics such as nonlinearities, time variations,
loop interactions and constraints all of which are possible with [MPC| The same authors also ap-
ply to fault tolerant flight control in [22] where simulations are based on Boeing’s Tailless
Advanced Fighter aircraft, with based on multiple model switching and tuning (MMST)|

Camacho, Alamo and de la Pena [26] detail the extension of the receding control strategy of
IMPC] to the case of system identification by parameter bounding. Furthermore the authors
show that [MPCl can be used to determine if a model is consistent with the data obtained in a
receding horizon manner which implicitly enables fault detection. The paper by Camacho et. al
[26] shows the incorporation of concepts arising from fault detection and fault tolerant design
methods into an [MPC] framework and lists the advantages gained by utilising [MPC]| as a fault

tolerant control mechanism.

The versatility of is illustrated in [26], where the authors give a formulation of taking
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into account faults and uncertainties that allow the design of intrinsically safe controllers, mak-
ing this formulation of a type of passive Camacho et. al [26] point out that because
[MPC] can be used for set membership estimation it can also be used for [FDI} Once a fault has
been detected [MPC]|is capable of coping with the new situation by using the fault mode. Thus
[MPC|when used as a set membership estimator could be said to belong to the class of active[F'TC|

Applications of [MPC] for fault tolerant flight control date back to 1998 when Gopinathan et.
al [56] used for fault tolerant control, with for fault detection, applying their for-
mulation to simulations of the F/A-18A aircraft. Henson [64] proposes fault tolerant control
methodology for quad-rotor flight control, explaining that most active [FTC| need a post-fault
model updated by [FD]| followed by a reconfiguration process to handle the faults. However,
since post fault time is crucial Henson suggests combining [FDI] with the reconfiguration process.
[MPC] offers the most promise in this regard, as it calculates the control signal at every sampling
time. Henson clarifies that the biggest drawback of [MPC]is the need for an explicit model.
Henson’s paper [64] offers a data-driven architecture that performs model identification
and control signal calculation simultaneously using available post-fault input/output data. The
proposed architecture requires no reconfiguration, switching or online retuning of parameters

and the identification cost is added to the cost function.

Having looked at previous research into the use of [FTC|in I now outline the methodology

I used in my research and the research questions that were formulated.

2.7 Proposed Methodology and Research Questions

Guo, Zhang and Jiang [61] identify many difficulties with a number of systems. The main
difficulty with Dynamic Inversion, for example, is that an accurate mathematical nonlinear sys-
tem model is required and the inverse dynamics encompassing the full flight envelope have to be
evaluated. Neural Networks, on the other hand, require highly complex tuning for different flight
regimes due to the fact that they require on-line adjustment of a large number of parameters
(weights). Finally, standard adaptive control algorithms are found to require strong and often

unrealistic assumptions, such as, known relative degree, minimum phase etc. In my research I

will investigate [MPC] further, as a viable solution for [UAV] flight control.
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To establish the context of my methodology, I start with some details of existing research into
the flexibility of MPC|] Maciejowksi, a prominent figure in the area of [MPC]|for over two decades,
describes [86] the concept of daisy chaining, which occurs in systems with redundant actuators
and refers to the arrangement in which one actuator (manipulated variable) is used in normal
operations but if this actuator were to become saturated or to fail, another or several others are
brought into operation. In other words daisy chaining refers to the transfer of control action
from faulty actuators to healthy ones. A very important point highlighted by Maciejowski [86]
is that there is implicit daisy chaining capability inherent in [MPC| and hence it can exploit
any available redundancy even in situations unforeseen by the designer. Daisy chaining would
greatly enhance the robustness of constrained predictive control schemes in the event of actuator

saturation as well as increasing the tolerance to certain kinds of failures.

Following this Maciejowski [88] presented statistics surrounding the Vietnam war where the
US Air Force lost about 10,000 aircraft with 20% from damage to the control system. This
indicates that the engine and airframe were basically undamaged, and the aircraft may have
been recoverable if the pilots had been able to work out how to do so. In another paper
that same year, Maciejowski [89] had proposed that offered a promising basis for
due largely to the fact that relies on an explicit internal model. This he believed, was
plausible because failures could be dealt with by updating the internal model and then allowing
the on-line optimiser to work out “how to control” the system in its new condition. This however

relies on several assumptions not the least of which are:

1. The location of the fault can be determined and the effects can be modelled.
2. The model can be updated automatically.

3. The control objectives can be left unaltered after the failure.

Maciejowski [88] emphasised the importance of having a reliable and showed the importance
of to fault tolerant flight control in [87] when he and Jones demonstrated that the fatal
crash of EL AL flight 1862 could have been avoided by using [MPC| based fault tolerant control.
In [87], Maciejowski showed via simulation of a detailed nonlinear model that it would have been
possible to reconfigure the controller so that the aircraft could have been flown down to ground
level successfully without entering the condition in which it was lost. The method used by
Maciejowski [87] constituted a reference-model based approach in which an controller at-

tempts to restore the original functionality of the pilot’s controls. Simulations were based on the
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assumption that an [FDI| system delivers information about the actuator damage and about the
change in the aerodynamic coefficients in the failed condition and Maciejowski claimed, {MPC]
can provide effective solutions for fault tolerant control” [87]. Maciejowski maintains that
is a good framework for [F'TC| because many types of aircraft failures can be handled online in an
adaptive fashion via modifications to the internal model. It is stated in [87] that the achievable
performance of an aircraft will often be reduced after a failure but this too can be tackled via
[MPC] through modifications to the objective function or the use of a multi-objective formula-
tion. Maciejowski stresses that [FTC| should be used in conjunction with the pilot rather than
replacing the human operator, whereas the goal of my research is to take the human operator

out of the loop for true autonomy, at least for autonomous [UAVS

Unfortunately, despite the various methods being researched they have not been read-
ily adopted by the aerospace industry [80]. The level of maturity of this research is not high
enough for safety critical flight especially for all flight regimes. Other contributing factors are
the complexity of the designs and the very high likelihood of false alarms due to large modelling
uncertainties and/or disturbances. The majority of the methods are also based on linear control
techniques. The ever increasing demands placed on particularly by the military, will re-
quire an expansion of current flight envelopes, therefore it will be necessary for control systems

to evolve from simple linear based formulations to non-linear adaptive procedures.

Following this extensive literature review the following research questions were developed and

form the foundation for this research:

[y

. Is[MPC] applicable to [UAV] fault tolerant flight control?
2. Is nonlinear [MPC] a viable solution for fault tolerant flight control?
3. Can [MP(]reach a solution within an acceptable time frame for aircraft control?

4. In the event of a fault how sensitive is [MPC]| to controller tuning parameters such as the

prediction horizon and cost weightings?
5. Which method for will integrate easily with an controller configuration?
6. How sensitive is [MPC] to delays in fault detection?

7. How robust is [MPCl to actuator faults?
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8. Can [MPC] truly be considered a hybrid [FTC| scheme?

The results of my research into these questions will be presented in the remaining chapters of

this thesis, beginning with a detailed look (chapter [3|) at jmodel predictive control (MPC)| the

research leading to it and the current state of this research.
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Chapter 3

Design of a Nonlinear Model

Predictive Controller

3.1 Introduction

3.1.1 Motivation

Model predictive control falls under the category of advanced control techniques and is classi-

fied as an optimal control method. Chapter [3|is devoted to exploring numerical applications of

model predictive control (MPC)| and in particular [nonlinear model predictive control (NMPC))|

and both theoretical and numerical methods are utilised.

The potential of as a basis for a [fault tolerant control (FTC)| system for aircraft was
recognised by Maciejowski [87]. has inherent fault tolerant capability for certain fault

conditions and, because of the internal model used for prediction, [MPC| can be implemented as

a reconfigurable controller. This makes it ideal for both passive and active implementations.

3.1.2 Outline

Before developing an active system using[MPC|a thorough understanding of the theoretical
and practical aspects of [MPC] is necessary. For this reason section has been dedicated to
exploring the theory behind model predictive control. As[MPC|is the major focus of this thesis,
section provides a brief history and discusses the various characteristics of[MPC| A detailed
description of the internal workings of are provided followed by a discussion on
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Furthermore the implementation aspects of [MPC] are explored in section This section fo-
cuses on the methods commonly used for the conversion of a continuous time system to a discrete
time system. The objective of this chapter is to summarise the methods used in implementing

optimal control techniques.

Section presents an implementation of a number of the optimal control techniques discussed
in section The methods are applied to the well known Brachistochrone problem, posed by
Bernoulli back in 1696 [40]. The Brachistochrone problem is a nonlinear problem for which an an-

alytical solution exists, providing a means of checking the validity of numerical implementations.

The findings from the Brachistochrone problem are then used to implement using a
simple 2D robot model as an illustrative example in section [3.5 Both the open loop and closed
loop problems are addressed. The purpose of section [3.5| is the exploration of the practical

implementation issues associated with Comparisons are also made to linear [MPC]

Finally, in section3.6] the findings are summarised and the conclusion given.

3.2 Model Predictive Control

Model Predictive Control, also known as Receding Horizon Control, is an advanced control
technology developed by practitioners within the industrial process industry, that has had con-
siderable impact on industrial process control. The main reason for this is that [MPC]is the only
generic control technology capable of handling equipment and safety constraints [90], allowing
systems to operate at or near constraints, yielding a more efficient and profitable operation. It
took almost 20 years, for the academic community to pay serious attention to the theoretical

aspects of MPC.

Maciejowski and Jones were one of the first to recognise the value of presenting (in 2003)
[87] a numerical example showing that the 1992 crash of El Al Flight 1862 could have been pre-
vented by using based fault tolerant control. While the authors [87] do not claim to have
solved the problem of fault tolerant flight control, they do claim that [MPC| has great potential
for fault tolerant design. This, combined with the fact that [MPC]is a model based approach

capable of handling nonlinear models, makes it an ideal candidate for further investigation as

an [FTCl controller.
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This section details the underlying ideas behind [MPC| and its workings. A linear process model
has most commonly been used in [MPC| however interest in [NMPC]is increasing. Hence aspects
of both linear (section and nonlinear MPC] (section will be discussed followed by
practical applications of both methods to aid in the understanding of this advanced control

technique.

3.2.1 Linear Model Predictive Control

[MPC] is a model based optimal control methodology. Unlike many control systems where the
model of the plant is used only for design and analysis purposes, in[MPC|the model is an integral
part of the control algorithm. The model is used to predict future behaviour of the plant in

order to calculate the optimal control trajectory.

3.2.1.1 How Does MPC| Work?

Time domain, input/output, step or impulse response models were all used in early work.

Today linear models are more commonly represented in state space form.

Linear represented in state space form has the following advantages:
e Multivariable systems are easily handled.
e Closed loop properties are easily analysed.

e Online computation is possible.

e Linear systems theory such as [linear quadratic regulator (LQR)[and Kalman filtering can

be used.

Figure [3.1] illustrates the workings of [MPC| The [MPC] controller has an internal model used to

predict the behaviour of the plant over a future prediction Horizon, H,. The idea is to select
the best input that will produce the best predicted behaviour. A number of coincidence points
are placed over the horizon, distance k time steps apart and the aim is to bring the predicted
output as close as possible to the reference trajectory. This is achieved by optimising a cost
function, commonly a quadratic cost which is solved via quadratic programming in the case of
linear Only the first input of the calculated trajectory is applied to the plant and the

prediction window slides along by the sampling time, ¢s, where ¢y is much smaller than H,,.
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Once the window slides to the next time step and the calculated input is applied to the plant,
the new plant states are fed back to the controller and the whole cycle begins again. The length
of the prediction window remains fixed but slides forward by one sampling interval at each step;
a process referred to as the receding horizon strategy. To reduce the computational burden a
control horizon, H,, can be defined which is smaller than H,. The control inputs are calculated
only along the control horizon, beyond which point the value of u remains constant. Perfor-

mance stability increases as the length of H, approaches the length of H,,.

-
Sy
L

- e wm m Reference Trajectory

Predicted Trajectory

Hp = Prediction Horizon

Hu = Control Harizon

Time

];

;

-~
+
I -
=
-~

=
-

¥

= jrrem-———

=
=

Time

Figure 3.1: Linear MPC

3.2.1.2 Techniques

There are many variants of [MPC| however the overall process is the same. The models used
in [MPC] are often black-box, linear input-output models developed via plant tests or through
system identification methods applied to plant data. Some variants of the basic [MPC]| technique

[1] are listed below along with their main features:

e Model algorithmic control (MAC) - initially called model predictive heuristic controll
(MPHC)

— Uses an impulse response model.
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— Is valid only for open-loop stable processes.

— Variance of the error between the output and a reference trajectory, computed as a

first order system, is minimised.

e Dynamic matrix control (DMC|),

— Similar tojmodel algorithmic control (MAC)| however a step response model is utilised.

— Techniques employed by Shell Oil as early as 1973 come into this category.

— Input and output constraint handling using quadratic programming is incorporated

leading to quadratic dynamic matrix control (QDMC).

— Method can also be derived for a general discrete state-space model.
e Extended prediction self adaptive control (EPSAC)),

— Model is based on either discrete with z-transform or continuous with s-transform.
— Control law structure is simple and is calculated analytically.

— Disturbances are included in the process model.
e Generalised predictive control (GPC)),

— Uses a quadratic performance function with weighting of control effort and an auto-

regression moving average with exogenous variable model.

— Able to provide an analytic solution for optimal control in the absence of constraints.

The most popular methods in current use are [dynamic matrix control (DMC)| and |generalised)

Ipredictive control (GPC)| [1]. has been modified over the years to guarantee stability

through end-point equality constraints by stabilising the process prior to the objective function
optimisation. Most of the work in[GPC|has been carried out in discrete time, however continuous

time models have also been developed.
3.2.1.3 Advantages and Disadvantages of [MPC|
[MPC] is very popular in industrial practice because:

e The basic idea behind it is relatively simple,

e Very little or no modification is required to the basic formulation of [MPC| to handle

multivariable plants, and
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e It can be more powerful than [proportional integral derivative (PID)|control.

The potential ofMPC|has been realised by many industries such as the chemical, food processing,
automotive and aerospace industries [104]. As a result its use has increased over the years

because:

e It can easily incorporate actuator limitations.
e The plant is able to operate closer to the constraints.

e It is able to handle input constraints thereby never generating inputs that violate system
limitations. As a result integrator wind-up is no longer an issue (integrator wind-up is
present in conventional controllers when long duration set-point errors cause integrator

outputs to exceed the saturation limits leading to larger overshoots and possible instabil-

ity).

e [t has the ability to control a great variety of processes including those with minimum

phase, long time delay or open loop unstable characteristics.

e It is able to handle large complex systems with hundreds of controlled and manipulated

variables.

The major disadvantage of [MPC|is the requirement of an accurate model. Another issue is that
to handle constraints, predictive controllers require the online solution of quadratic programs
which can be computationally very demanding. The computational burden of repeatedly solv-
ing optimisation problems often limits achievable sample rates to slower than desired. This can
be a significant issue in aerospace systems where the sample rates are quite high. The leading

theoretical challenges for [MPC| have been to guarantee feasibility and stability.

The performance success of [MPC]| is highly dependent on the accuracy of the open loop pre-
dictions which are provided by the process model. Inaccuracies in the process model can often
lead to predicted trajectories which differ from actual plant behaviour. This difference in the
plant and model is referred to as plant-model mismatch or model uncertainty which can result in
sluggish or unstable control performance. Some[MPC|controllers explicitly handle process model
uncertainties when calculating the optimal control policies; these are termed robust predictive
controllers. The general idea behind these controllers is similar to Hy,, where the worst case

disturbance effect is minimised.
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3.2.2 Nonlinear Model Predictive Control

There has been a recent rise in interest in nonlinear model predictive control (NMPC)| within

the control community mainly due to the increase in available computing power which is now
capable of handling the computing demands of solving nonlinear optimization problems. The
overall structure of is the same as that of linear MPC] in that the same receding horizon
principle is adopted. The big advantage of [NMPC]| is the incorporation of a nonlinear process
model for highly-nonlinear systems. These nonlinear models are based on “first principles” and

are obtained from an understanding of the physical nature of the system [90].

Linear [MPC]| has been popular since the 70s whereas the interest in [NMPC| began in the 90s
and has been driven by the fact that today’s processes need to be operated under tighter per-
formance specifications, with more and more constraints being imposed from environmental
and safety considerations. More often than not, these demands can only be met when process
nonlinearities and constraints are explicitly considered in the controller design [4]. The major
limitation of linear MPC|is that plant behaviour is described by a linear dynamic model making
it unsuitable for both moderately as well as highly nonlinear processes which have large oper-
ating regimes [64]. Conceptually is similar to linear One of the reasons for the
more frequent use of [NMPC| in the process industry is the time scales encountered which are

in the order of minutes, making real-time requirements less severe than in aerospace applications.

The main characteristics of many of which are shared by linear [MPC] are:

e Prediction is based on non linear models.

State and input constraints are explicitly handled.

A specified performance criteria can be minimised on-line.

In general, predicted behaviour is different from closed loop behaviour.

The application of [NMPC] requires the online solution of an open loop optimal control

problem.

The system states must be measured or estimated to carry out the predictions.

[NMPC] has the potential to improve process operation, however, at the same time it offers the-

oretical and practical problems that are more challenging than those associated with its linear
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counterpart. Most of these challenges are related to the nonlinear program which must be solved
online at each sampling period. In addition, nonconvex nonlinear programs have several local
minima, hence methods for obtaining the global minimum have to be applied (which increases

the computational cost) [105].

One of the main issues in [NMPC] is ensuring the stability of the closed loop system from the
utilisation of a finite horizon. The problem with a finite prediction and control horizon is that
the predicted open-loop and the resulting closed-loop behaviours are in general different. The
most obvious means of achieving stability is to use an infinite horizon, but the main drawback
then is that at every sampling instance an infinite dimensional problem must be solved. An
important characteristic of [NMPC] is that it possesses inherent robustness as it can deal with
input model uncertainties without taking them directly into account. However, a problem with
the standard setup is the open-loop nature of the control scheme, because essentially no

feedback is used during the sampling periods.

The next section discusses optimal control techniques that can be used to solve[NMPC]| problems.

3.2.2.1 Optimal Control Techniques

Nonlinear model predictive control involves finding the online solution of a receding horizon
optimization problem. For the solution to be practically feasible the optimisation must be
performed within the time constraints governed by the sampling period of the application [27].
A consequence of using a nonlinear dynamic model, as opposed to a linear dynamic model
as done in MPC, is the need to solve a nonconvex nonlinear programming problem with a
dramatic increase in complexity. Hence when designing and implementing NMPC strategies,
consideration must be given to computational efficiency [27]. Long et. al [85] show that globally
optimal NMPC methods can provide benefits over local techniques and can be successfully used

for online control. As per Cannon [27], NMPC| methods are generally based around:

1. Tailoring nonlinear programming algorithms to fit the structure of the online optimization.

2. Parametrising the predictions in terms of degrees of freedom. This directly affects the size
of the online optimisation problem and in turn the computational burden of the

strategy.

Cannon [27] provides an excellent review of all currently available computationally efficient
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NMPC|strategies, (described below), dividing them into two categories: development of optimi-
sation algorithms or methods based on modifying the formulations. In my work I seek

to modify the formulations.

NMPC strategies fall into the following types:

e Direct method optimisation. Here the aim is to apply nonlinear programming algorithms
to make them fit within the NMPC|receding horizon structure. In general a direct solution
uses a finite parametrisation of the controls and/or constraints and the goal is to find an
approximation of the original open-loop optimal control problem. The resulting finite
dimensional optimization problem is solved using standard static optimization techniques

that can be applied either sequentially or simultaneously.

— Sequentially [27]: The model trajectories are predicted at each iteration, including
methods based on successive linearisation, of the prediction model. In this method
numerical integration is used in every iteration step of the optimization strategy to
exactly solve the differential equations (or difference equations in the discrete time
case). This means that the solution of the system dynamics is implicitly sought
during the integration of the cost function and only the input vector at discrete

points appears in the optimization problem as optimisation degrees of freedom.

— Simultaneously [27]: The system states along with the controls are treated as opti-
mization variables and the model dynamics form a part of the system constraints.
Hence the system dynamics enter the optimisation as nonlinear constraints at each
sampling point such that, at each such point the constraint s = (¢, u) must be sat-
isfied, where s is an additional degree of freedom in the optimization problem and
is the initial condition for the sampling interval, ¢ is time, u refers to the control
inputs and x is a vector of states. One requirement of this constraint is that all the
state trajectory pieces must fit together once the optimization has converged. The
two most popular versions of this method are direct collocation and direct multiple

shooting.

e Hamilton-Jacobi-Bellman (HJB) [4]: These optimal control methods do not utilise direct
optimisation of predicted control trajectories used by conventional MPC solutions. Instead

they search online for numerical solutions to optimal control formulations of the
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receding horizon problem. The approach is based on the direct solution of the Hamilton-

Jacobi-Bellmann |partial differential equations (PDEs)|[27]. Thus, rather than seeking the

optimal wu(t) trajectory the problem is solved by finding the solution for all x(¢) where
again u(t) are the control inputs at time ¢ and x(t) are the states at time ¢. The solution
is a state feedback law of the form u* = k(x) and is valid for all initial conditions. The
main disadvantage of this method is the requirement of a complete solution, making it
computationally demanding in addition to suffering from the curse of dimensionality, which

means it can only be solved for small systems.

e Euler-Lagrange [differential equations (DEs)|/ Calculus of Variations / Maximum Principle

[27]: Again an explicit solution is sought of the input as a function of time wu(t) using
calculus of variations. In this case the solution is not a feedback law, therefore it is
only valid for the specified initial condition. This approach can be thought of as the
application of the necessary conditions for constrained optimization with the optimization

being infinite dimensional. The optimal control problem then becomes the seeking of a

solution for aboundary value problem (BVP)|where the approach is often to first optimise

then discretise [37]. Due to the fact that an infinite dimensional problem must be solved

this approach is not suitable for real-time applications.

e Modification or approximation of cost and constraints [27]: These methods are based
on the modification or the approximation of the cost and constraints of the receding
horizon optimization problem and involve the use of feasible sets (computed offline) for
optimization variables in conjunction with cost approximations. Feasible sets are also used
in combination with cost bounds corresponding to partitions of the states space which are

determined offline.

e Reparameterisation [27]: The degrees of freedom in predictions are reparameterised to
reduce the size of the receding horizon optimisation. One strategy uses the interpolation

between feedback laws computed offline.

requires repeated computation of solutions to the optimal control problems on a finite
prediction horizon in order to generate feedback controls for dynamical processes. The given
optimal control problems are approximations to an infinite-horizon counterpart, hence the choice
of the prediction horizon is critical [75]. To achieve closed-loop stability long horizons are prefer-

able, however they are computationally expensive.
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Schafer et. al [I11] present an extended partially reduced [sequential programming problem|
(SQP)|method within the direct shooting framework to a thermally coupled distillation column.

Schaffer et. al claim that there are two main reasons why [NMPC]| is not popular for real time
applications; firstly it requires a rigorous physical model of the process based on first principles
which can be time consuming and expensive. Secondly requires successive online solu-
tions of constrained nonlinear optimization problems. Schafer et. al reduce computational time
for the optimisation problems with low degrees of freedom by introducing a new direct shooting
method that diminishes the number of directions for which directional derivatives are evaluated

with this number being independent of the state dimension.

Direct methods are normally applied for online solutions hence only direct methods will be

investigated further.

3.2.2.2 Direct Methods

Direct methods involve reformulating the original infinite dimensional optimization problem as a

finite nonlinear programming problem (NLP)| by parameterising the controls and states (referred

to as a simultaneous strategy). Typical parameterizations include collocation, finite differences

or direct multiple shooting and this approach is based on the idea of discretise first, then opti-

mise [37].

The[NMPCapplications investigated in this research all involve solving a[BVP} The most popular

direct methods are called shooting methods where the [BVP|is reduced to finding the solution

to an [initial value problem (IVP)| by assuming initial values which would have been provided

if the given |ordinary differential equation (ODE)| were an The calculated boundary value

is compared to the real boundary value and based on a trial and error method (or some other
scientific approach) with the aim being to come as close as possible to the boundary value [3]. In
other words two boundary values must be satisfied in a two-point BVP|[ODE] but a[BVP]is much
more difficult to solve than an because in a second order x(0) and 2/(0) are given but
for a only z(0) and z(a) (where a is the end point) are given. Another initial condition is
required to solve the hence in shooting methods guesses are made for z'(0) with the hope
that the computed solution satisfies the second boundary condition. If the boundary condition
cannot be satisfied another shot (or guess) is made [74]. Variations on this theme are described

below:
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3.2.2.2.1 Direct Single Shooting Direct Single Shooting is also known as control vector
parameterization [62]. As previously mentioned, shooting methods are solutions for solving
with the concept being to take the more complicated [BVP] and convert it into a simpler
[VP] Single shooting methods are the simplest to implement with the idea being to shoot at
different angles until the boundary value is reached. The solution is achieved numerically via an
iterative scheme. However single shooting methods cannot always be applied and the numerical
results obtained are not always reliable. Furthermore numerical integration introduces discreti-
sation errors leading to the major disadvantage of round off error accumulation which occurs

when unstable have to be integrated.

3.2.2.2.2 Direct Multiple Shooting Direct multiple shooting, first introduced by Bock
and Plitt [I5] in 1983, is a fast off-line method for optimization problems in and differ-
ential algebraic equations (DAEs). It is a refinement of the single shooting method, with the
horizon being divided into elements and each segment integrated separately. This method was
introduced to reduce round off errors inherent in the single shooting method, which it achieves
by subdividing the solution interval by a mesh with integrations being performed over each
subinterval. That is, the are integrated numerically resulting in a two-level discretisation
process; the first level consisting of a coarse mesh and the second a finer discretisation in each
subinterval. The more the shooting points the lower the round off error, however there is a
point of diminishing returns [9]. Multiple shooting is said to have better numerical proper-
ties compared to single shooting due to decoupling and state constraints at segment junctions.

Advantages include [38]:

e The fact that it is a simultaneous strategy means suitable embedding techniques can be
used to exploit the solution information previously obtained in controls and states and

derivatives in subsequent optimization problems.

e State-of-the-art [differential algebraic equation (DAE)|solvers can be utilised to calculate

the function values and derivatives quickly.

e Integrations are decoupled on different multiple shooting intervals making it suitable for

parallel computation.
e Control and path constraints as well as boundary conditions are easily handled.
Multiple shooting methods are very popular for NMPC]| applications.
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3.2.2.2.3 Collocation In 2010 Tamimi and Li [116] proposed a new algorithm for a
combination of the multiple shooting method and the collocation method, used to compute the
function values and gradients in the In collocation methods a finite-dimensional space of
candidate solutions is required to satisfy a differential equation exactly at the nodal points. The
motivation behind collocation methods is that integrating differential equations is expensive (as
is done in shooting methods). Also, sophisticated integrators are accurate but not necessarily
consistent, and noisy derivatives means poor m convergence. In collocation methods are
not explicitly integrated and approximate solution representations are sought over the predic-
tion horizon. The basic idea entails discretising the controls AND the state variables, hence the
problem is transcribed into discrete form in one step. Collocation methods can be implemented
using a variety of numerical techniques such as the forward Euler method or more sophisticated
one-step methods such as Runge-Kutta. The forward Euler method is conceptually simple and
easy to implement but is numerically unstable and requires a small step length to achieve an
accurate solution. Collocation methods can also make use of Lagrange Polynomials, which is
equivalent to an implicit Runge-Kutta method with good numerical stability properties making
it attractive for solving stiff (numerically unstable) systems. These techniques allow straightfor-

ward handling of state and control constraints.

In this section, linear and nonlinear model predictive control along with optimal control tech-
niques used to implement [MPC|were detailed. In the next section the optimal control techniques

necessary for the implementation of in this research are specifically discussed.

3.3 Numerical Methods: Discretisation

Numerical methods are an important component in the solution of optimal control problems.
Since the problem at hand is often given in continuous time, it is necessary to discretise the
problem for computer implementation and numerical analysis. The discretised solution will
never provide the exact solution as it only gives the solution at discrete points and not over all
time, leading to errors between the exact solution and the approximate solution provided by
the discretised model. Thus, when choosing a discretisation method many factors need to be

considered.

In this section a discussion of the discretisation methods commonly used in the solution of

optimal control problems is presented with an emphasis on direct methods.
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3.3.1 Problem Formulation

The path-constrained trajectory optimisation problem forms the essence of this research. An
excellent exposition given by Williams [124] is summarised below. Note that the vector of un-

known parameters, p in [124], has been omitted from this summary.

3.3.1.1 Primal Optimal Control Problem: Problem A

Generally speaking the aim of optimal control is to determine the state and control pair that
minimises the cost functional J. That is, if a state and control pair is represented by {x(¢),u(¢)}

then the aim is to minimise:

ty
J = Mx(t)] + / £ (x(t), u(t), )] dt, (3.1)

to

subject to the nonlinear state equations:

x(t) = fx(t),u(t),1], (3.2)

the initial and terminal constraints

Yo [x (to)] = 0, (3.3)

Yy [x(tp)] =0, (3.4)

the mixed state-control path constraints

gr <glx(t),u(t),t] <gv, (3.5)

and the box constraints

x, <x(t) <xy, ur<u(t)<uy, (3.6)

where:
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x € R4 are the state variables,

u € R% the control inputs,

teR the time,

M :R"™ xR —=R the terminal, non-integral cost, also known as Mayer component,
L:R" xR™ xR —R the integral cost known as the Bolza component,

Py € R x R — R™ the initial point conditions,

Yy € R"™ x R — R/ the final point conditions,

gr, € R x R"™ x R — R" the lower bounds on the path constraints, and

gy € R"™ x R™ x R — R™ the upper bounds on the path constraints.

Williams [124] explains that problem A exists in a primal space, where the optimal triplet
{x*(t),u*(t),t}} (Here  stands for optimal solution) is not easily found except for possibly

trivial (zero) solutions.

Methods used to solve optimal control problems commonly fall under two categories; direct
and indirect. Research in this area has focused mainly on direct rather than indirect methods
as direct methods have better convergence properties than indirect methods and can be used
quickly to solve a number of practical trajectory optimisation problems. A major drawback of

certain indirect methods is having to derive the necessary conditions for optimality using

tryagin’s maximum principle (PMP)| [124]. In addition many indirect methods require a priori

information of the switching structure of the constrained and unconstrained subarcs in problems
with state inequalities, a problem that has been addressed by utilising Homotopy methods to
estimate the switching structure. This, however, leads to a significant increase in computational
time. Direct methods, on the other hand, do not require derivation of the necessary conditions
or estimates of the switching structure of the costates and the region of convergence is greatly
increased compared to indirect methods. Direct methods solve Problem A directly by applying a
discretisation process and using standard algorithms to solve the resulting optimisation problem.
The direct methods have many advantages over indirect methods [124], especially with regards
to the research questions under consideration in this thesis, and these advantages are detailed

below in subsection 3.3.21

For this research, it is necessary for the continuous time problem, Problem A, to be converted

to a finite dimensional problem before attempting to solve it.
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3.3.2 Direct Methods - Numerical Techniques

A multitude of discretisation techniques exist for converting the infinite dimensional problem to
a finite dimensional one. In direct methods the mathematical programming problem, equations
to , is solved by considering either discretised inputs, or a combination of discretised
inputs and states, as decision variables. The most common direct methods in practice are
where control and state parameters are used as optimisation parameters. They can be further

separated into the following two categories:

1. Local - Also known as direct collocation or direct transcription methods. Here a number
of node points with arbitrary spacing are defined where both the state and control vec-
tors are collocated. The state equations are enforced as equality constraints at internal

collocation points between the nodes via implicit integration methods such as Simpson’s

rule or by |Gauss-Lobatto (GL)| quadrature rules. In other words the state equations are

enforced locally.

2. Global - Also known as Pseudospectral Methods. For this approach globally orthogonal
interpolating polynomials are utilised to approximate the state and control variables. Dis-
cretisation is based on the [GI] points for Legendre or Chebyshev polynomials. The state
equations are enforced by differentiating the approximating polynomial at the correspond-
ing [GL] points rather than through numerical integration. The [GL] points are the zeros
of the derivative of the interpolating polynomial. Global methods are generally more ac-
curate than local methods because the discrete adjoint multipliers retain the same order
of accuracy as the state equations. This is not the case for certain classes of local meth-
ods, for example when Hermite-Simpson and particularly Runge-Kutta discretisations are

employed.

The ease and speed with which difficult problems can be solved make direct methods highly
appealing. The most popular discretisation methods include Hermite-Simpson and Legendre
Pseudospectral which utilise different choices of basis functions to be used as decision variables

in the optimisation. Such a selection determines different discretisations, that is node points.
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When deciding on a discretisation process many important factors need to be considered as have

been identified by Williams [124]:

e How accurate is the solution for a particular discretisation method given a number of

optimisation variables?

What is the computational expense of a particular discretisation method?

How robust is a discretisation method to the initial guess?

How are the answers to the previous questions influenced by problem complexity and the

types of problems being considered?

How are the answers to the previous questions affected by the choice of [NLP] solvers?

Williams [124] explains that the choice of the solver affects the speed and robustness of
solutions obtained using particular discretisations. For example a dense solver can result in
significant increases in CPU time since, in this case, the constraint Jacobian and Hessian are

treated as dense matrices and this increases the number of optimisation/decision variables.

The preceding information was a general overview of the area of discretisation. The area of
numerical methods for a given application is an extensive research topic by itself. However,
since the aim of this research is to explore fault tolerant control schemes, in the following

section only the particular methods chosen for further investigation will be explored.

3.4 Implementation of Optimal Control Techniques

The previous section presented a discussion on the various discretisation techniques used to solve
optimal control problems. The aim of this section is to investigate a few of these optimal con-
trol techniques in greater detail as well as to implement one of these methods in the situations

encountered in this research on a 2-D robot model, to gain a thorough understanding of the

fundamental workings of

As mentioned previously in section [3.3.2] direct methods used to solve optimal control problems
are classified according to the unknown parameters used in the optimisation. For this research
one method from each of the categories listed in section [3.2.2.2] will be considered. There are

many methods that fall under each category, and since bounds need to be placed on the research
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being conducted, I have chosen only one from each of the categories in order to understand how

they can be used to implement

3.4.1 Optimisation Parameters: Controls Only -

Direct Single Shooting

Shooting methods solve a two point [BVP] for example:

y// = f(%, Y, y/)7 Yy (CL) =Y, Y (b) = Yb- (37)

A [BVP]is an [ODE] where information is given on the boundaries, a and b. Numerical methods
designed for solving for example, Euler’s method and the Runge Kutta method, are

generally used to solve However, to solve an [[VP] a sufficient number of initial condi-
tions must be provided, which for equation (3.7)) includes the derivative at the initial boundary.
Shooting methods convert two point [BVPs|into [[VPs| by guessing the value of the derivative at

the initial boundary. Every time a guess is made a “shot” is fired in an attempt to hit the end
boundary. This “shot” involves using differential equation solvers to find a solution. It is an
iterative process where “shots” are made until the end boundary is reached to within a desired

tolerance.

Direct single shooting optimal control takes this concept and evaluates the optimal inputs for
any given control system. In direct single shooting optimal control, only the controls are used
as optimisation parameters with optimisation being performed from an initial time, tg, to the
final time ¢y. The time interval is divided into N equally spaced intervals. On this grid the
controls, u(t), are discretised and are piecewise constant, u(t) = ¢; where ¢ = 0,1,..., N, and

the following initial value problem is solved:

x(0) =xo, Xx(t) = f(x(t),u(t,q)), t€lto,ty]. (3-8)

A nonlinear program of the following form is constructed by including the cost function equation
(3.1) on the decision variables x and wu:
ty

min L(x(t,q),u(t,q),t) dt + M (x(tr,q)), (3.9)

q to

subject to:
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h(x(ti,q),u(ti,q)) >0, 1=0,...,N (discretised path constraints), (3.10)

r(x(ty,q)) =0, (terminal constraints). (3.11)

The optimisation procedure calculates the optimal control inputs which minimise the cost func-
tion given in .
The advantages of this method are:

e Fully adaptive, error controlled state-of-the-art [ODE] or [DAE] solvers can be utilised.

e It has only a few optimisation degrees of freedom even for large [ODE]| or [DAE] systems.

e Only initial guesses for the control degrees of freedom are needed.

e There is simplicity of design and implementation.
However there are weaknesses in this method:

e Knowledge of the state trajectory, x, cannot be used in the initialisation.

e Unstable systems are difficult to handle.

e The solution z(t¢,q) can depend very non-linearly on q.

In regards to [NMPC| N equally spaced discretisations points are placed along the prediction
horizon length, H,. A full nonlinear process model is used by the optimal controller to integrate

the states between each of the discretisation points.

Figure shows an illustrative description of the Direct Single Shooting Method.
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Figure 3.2: Direct Single Shooting - Diagram of the division of the time interval in the single

shooting method.

3.4.2 Optimisation Parameters: Controls and Some States -

Direct Multiple Shooting

Direct Multiple Shooting is based on the same idea as that of Single Shooting, i.e. converting a
[BVP|to an[[VP|and “shooting” from the initial boundary until the end boundary is reached. The
main difference is that, rather than converting a [BVP]to a single [VP] the problem is converted
into multiple This is achieved by dividing the interval of computation, [to,tf], into M
subintervals and solving an [[VP]over each subinterval. All of the solutions over the subintervals
can be pieced together to form a continuous trajectory/solution, if and only if the solutions to
the match at the beginning and end of each subinterval, referred to as matching conditions.
These matching conditions introduce algebraic equations which must be satisfied along with the

boundary conditions.

The optimisation parameters in this case are the controls as well as the states at the beginning
and end of each interval. The controls are discretised in each subinterval over N, points, hence
u(t) = ¢; where i = 0,1,...N,. An solver is used to integrate the states over each
subinterval. Let z(t;) = s; represent the solution at the beginning and end of each subinterval,

where 5 =0,1,... M. Then:
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ti; = flwij(t),q5), tE€tity], (3.12)

.’L‘i(tj) = Sy, (3.13)

where the x; ; is the solution at the i*" node in the j*® subinterval.

The resulting is the same as that given in the direct single shooting method except with

extra continuity /matching constraints:

min ttf £(x(t,q),ult,q),t) dt+ M (x(ty,q), (3.14)
’ 0
subject to:
so —x0 =0, (initial value) (3.15)
8j — Ty, 5,45 = 0, j=0,...,M (continuity) (3.16)
h(sj,q;) >0, i=0,...,N—1 (discretised path constraints) (3.17)
r(sy) = 0. (terminal constraints) (3.18)

Advantages of Direct Multiple Shooting include:
e Knowledge of some of the states is included in the optimisation.
e It can robustly handle unstable systems and path state and terminal constraints.

e It is able to exploit advantages of using [ODE] and [DAE] solvers.

In regards to[NMPC]| the prediction window is divided into smaller subintervals and the full non-

linear process model is used for integration between discretisation points in every subinterval.

Figure 3.3 shows an illustrative description of the Direct multiple shooting method.
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Figure 3.3: Direct Multiple Shooting - Diagram of the division of the time interval in the multiple

shooting method

3.4.3 Optimisation Parameters: Controls and All States -

Direct Transcription

Direct Transcription involves fully discretising the problem (all controls and all states) and then
solving the discrete problem numerically. Numerous direct transcription methods exist for solv-
ing optimal control problems differing only in the way in which they approximate the state
equations. The discretisation method used to approximate the state equations must be com-
bined with a method for approximating the integral in the generalised Bolza problem and such
discretisation techniques are either integration or differentiation based. Pseudospectral meth-
ods, for example, are all differentiation based methods; they rely on differentiating Lagrange
Polynomial expansions of the approximating polynomials for the states. Hermite-Simpson based
techniques are often thought of as integration methods. A comparison of various methods has
been given in [124]. For this research an integration based method as well as a differentiation
based method will be investigated, hence these two methods are described in detail in the next

couple of sub-sections.
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3.4.3.1 Integration Based Methods (Euler)

Both the controls and the states are discretised on a fine grid. The controls are selected to be

piecewise constant with values ¢;, where i = 0,1,..., N, at each point on the interval [tg,?s] and

the states are denoted by s; = x(t;) at each of the grid points along the time interval. In the

collocation method the infinite dimensional [ODE]

is replaced by a finite number of equality constraints:

¢i(qi, siySit1) =0, 1=0,1,...,N —1,

where

Sit1 — S
¢i (Gis 8i» Sit1) = ﬁ — [ (si, @) -
7 (2

The integrals on the collocation intervals are approximated by:

tit1
l; (giy 565 8i41) = / L(xz(t),u(t)) dt =L (si,q) (tig1 —ti)-
ti

After discretisation the following sparse is obtained:

N-1
min z; li (gis 8i,5i41) + M (sn)
i—
subject to:

so—xg =0, (fixed inital value
¢i (qiy 8iy Siv1) =0, 1=0,...,N—1, (discretised ODE model
h(siyqi) >0, 1=0,...,N, (discretised path constraints
r(sn)=0. (terminal constraints

Advantages of collocation are:
e Knowledge of the state trajectory, x, can be used in the initialisation.
e A sparse [NLP]is obtained.
e Fast local convergence is possible.
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e Can treat unstable systems well.
e Can easily cope with state and terminal constraints.

A major disadvantage of the collocation method is that adaptive discretisation error control
needs regridding and thus changes the dimensions. Hence collocation often does not ad-

dress the question of proper discretisation error control.

In regards to with direct transcription the prediction horizon is divided into N discreti-
sation or collocation points. The optimisation vector comprises the states and controls at ALL
node points. Points are equally spaced in the same fashion as that given by figure [3.2] with At

the time between collocation points.

3.4.3.2 Derivative Based Methods

Derivative based methods, also known as pseudospectral methods, differ from many traditional
discretisation methods. The difference lies in that the focus is shifted from the DE]to the tangent
bundle, which comprises all tangent vectors, together with information of the point at which
they are tangent. For this reason they can be seen to resemble finite element methods; however
they provide a better convergence rate. The underlying idea is to represent the solution f via
a truncated series expansion and to use analytic differentiation of the series to obtain spatial
derivatives of f. The spectral differentiation matrix, Dy, is a linear mapping of a vector of N
function values {f (z;)} to a vector of N derivative values {f’ (z;)}. The calculation of Dy is
dependent on the choice of the approximating series and the location of the points {z;}. An
example is the use of the discrete Fourier transform with equally spaced nodes for analysis pur-
poses, which is based on the idea of using (sums of) periodic functions to approximate given
functions. A Chebyshev or Legendre series is used for bounded domains where the derivatives
are calculated at Chebyshev or Legendre nodes or extreme points. If f is infinitely differen-
tiable then the remainder of the truncated series will go to zero super-algebraically; that is, it
will decrease faster than any finite power of % [57] with the rate restricted only by the global
smoothness of the function; this is referred to as spectral accuracy [58]. Hence pseudospectral
methods offer a very good convergence rate (spectral accuracy) and for smooth problems spec-

tral accuracy means an exponential convergence rate [107].

One advantage pseudospectral methods have over finite element or finite difference methods is

that the underlying polynomial space is spanned by orthogonal polynomials that are infinitely
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differentiable global functions. Traditional pseudospectral methods use global Lagrange inter-
polating polynomials to expand the state and control trajectories. These polynomials are based
on orthogonal polynomials from the Jacobi family such as Legendre or Chebyshev polynomials,
which are orthogonal with respect to a specific weight function over a fixed interval. The idea
of expanding the state and control variables in terms of Lagrange interpolating polynomials at
suitably chosen points can be seen in the work of Elnagar et. al [43], Fahroo and Ross [45]
and Ross and Fahroo [107], where pseudospectral methods are used for solving fluid dynamics

problems.

Generally speaking there are two ways of constructing a polynomial approximation to the output

solution y(t):

1. Use an interpolating polynomial between the values y(t;) at node points t;, or

2. Use a series expansion in terms of orthogonal polynomials.

Most commonly the nodes chosen for approximating the optimal control problem in both of the

cases given above are [Legendre Gauss Lobatto (LGL)| points and, together with the properties of

the Lagrange polynomials, the state equations and the state and control constraints, can easily
be transformed in to algebraic equations in terms of values of the state and control variables
at the nodes. The constraints are imposed as differential constraints at the [LGL] points via a
differentiation matrix. As Fahroo and Ross [45] explain, an arbitrary choice of node points can
lead to very poor results in interpolation of a function. Hence Gauss quadrature points (such as
LGL| points) are chosen to give the best accuracy and then the derivatives of the interpolating
polynomials at these node points are given exactly by a differentiating matrix. [LGIL] points
minimise the Ly norm of the approximation error. One of the features of the LGL] points is that
the nodes cluster around the end points. The node points obtained via Gauss quadrature cluster
around the endpoints of the interval resulting in the avoidance of the Runge phenomenon. The
Runge phenomenon is a term given to the divergence of the approximating solution at the end

points of interpolation on equispaced interpolation points.

The choice of collocation points is crucial in pseudospectral methods. The three most common
sets of collocation points are the Legendre-Gauss, Legendre-Gauss-Radau and Legendre-Gauss-
Lobatto. These three sets are the roots of a Legendre polynomial and/or linear combinations of

Legendre polynomials and their derivatives. The three sets are defined on the domain [—1, 1] and
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differ according to which end points are included. The Legendre-Gauss points do not include ei-
ther end points, Legendre-Gauss-Radau include only the endpoint —1, and the Legendre-Gauss-
Lobatto points include both end points. Ross and Karpenko [I0§] state that Gauss-Radau is
best used for an infinite horizon problem whereas Gauss-Lobatto is more suited for finite horizon

problems.

Another popular choice for collocation points are Chebyshev-Gauss-Lobatto points; these are
based on the roots of the derivatives of the Chebyshev polynomials [45]. Chebyshev and Legen-
dre polynomials are both from the Jacobi family of polynomials. For approximating the
Gauss-Lobatto points are a logical choice due to the combination of high interpolation accuracy

and high accuracy in quadrature approximations. [LGL] points minimise the Lo-norm of the ap-

proximation error whereas the [Chebyshev-Gauss-Lobatto (CGL)| points minimise the max-norm

of the approximation error. Williams [125] states that the points provide maximum accu-
racy for quadrature approximations whilst, at the same time, avoiding the Runge phenomenon

during interpolation.

While traditionally pseudospectral methods did utilise Lagrange interpolating polynomials,
Gauss-Lobatto quadrature rules with Jacobi polynomials as the interpolant have been used more
frequently. Jacobi polynomials are orthogonal over the interval (—1,1) with respect to the weight
function, w (7) = (1 —7)*(1+7)”. The Legendre polynomials are obtained when a = 3 = 0
and, when o = 8 = —0.5 the Chebyshev polynomials are produced, hence by varying o and 8 a
different set of Jacobi polynomials are produced. Williams [123] generalises the pseudospectral
method to consider collocation based on the roots of the derivatives of general Jacobi polynomi-
als. Williams clarifies that the Legendre and Chebyshev are particular cases of the more general

formulation and finds that by varying o and S there is a significant impact on computation time.

A pseudospectral method based on non classical orthogonal and weighted interpolating poly-
nomials is presented in a more recent paper by Williams [I126]. Here the author highlights the
fact that the location of collocation points in traditional pseudospectral methods are more or
less fixed. The method presented by Williams [126] generalises the existing methods to allow a
much more flexible selection of grid points via an arbitrary selection of the orthogonal weight
function and interval. This freedom of choice leads to a greater range of collocation points and

differentiation matrices which in turn affects computation time. Over the years, the use of LGIL]
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points for optimal control, has been seen as the most natural choice for Quadrature points, the
main reason being their derivation on the basis of a unit weight function, which provides the

highest accuracy for polynomial integrands.

Pseudospectral methods are collocation based methods, hence the optimisation parameter vector
comprises the states and controls at ALL nodes. One of the main differences is the selection
of node points that are not equally spaced. The nodes are carefully selected so as to avoid the
Runge phenomena, to increase accuracy (providing spectral accuracy) and, to avoid numerical ill
conditioning. As mentioned previously the most commonly used node points are the Chebyshev
Gauss Lobatto points or the Legendre Gauss Lobatto points. For this work the Legendre Gauss
Lobatto (LGL) points were chosen for implementation. The nodal points 74, & = 0,..., N,
lie in the interval [—1,1] where the endpoints are included. These node points are the zeros
of the derivatives of the Legendre polynomials. A linear transformation is needed to map the
computational domain, 7 € [—1,1], to the physical domain, ¢ € [to,t¢]:
(ty —to)7 | (tf +to)

t= : 3.28

The central idea behind pseudospectral methods is the approximation of the states and controls

with Lagrange interpolating polynomials of degree N such that:

N

XN (T) =Y &6 (1), (3.29)
=0
jN

uy (1) = i (1), (3.30)
=0

where Z; (7;) and 4; (1) are the coefficients of the interpolating polynomial. It is necessary
that the coefficients £; = x(7;) and @; = u(7;), hence ¢; (1), are the Lagrange interpolating

polynomials that interpolate the states and controls at the [LGL] points, given by:

(72 — 1) L (1)
(r=7) N(N+1) Ly (15)’
where Ly represents the Nth degree Legendre polynomial. This leads to the following

¢ (T) = (3.31)

problem:

Minimise the cost function, J:
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(tr —to) &
JN:M[xN]—i-TZ [,[xj,uj,tj] Wy, (3.32)

§=0
subject to:
xo — X(tg) =0, Initial Condition (3.33)
Q D;rx(j) —%(j) =0, State Equations (3.34)
zr <x < ay, Upper and Lower bounds on states (3.35)
ur < u < uy, Upper and Lower bounds on control (3.36)

where w; are the [LGI] weights given by:

e 2 1
7NN+ [Ly ()]

and Djy, is a differentiation matrix of size (N 4 1) x (/N + 1) the entries of which are given by:

j=0,...,N, (3.37)

,

LN (7‘ ) 1 . .
Intr) (o) LI 7R
BCAR) Y if j =k =0,
Dy = (3.38)
NvED if j =k =N,
0 otherwise.

It can be seen from the above that the pseudospectral method uses a Gauss-Lobatto quadrature
rule to approximate the integral (or the Bolza component) in the performance index. The state
derivatives are approximated via analytical differentiation of the interpolating polynomials of

the states.

3.4.3.3 [NLPI| Solvers

Each of the methods stated above produce an [NLP| which must be solved at every time step
across the prediction horizon, H,. Once the optimisation is solved at the current time, ¢;, only
the first calculated control input is applied to the plant and the window is shifted by the sam-
pling time step, ts and the whole procedure begins again. Hence an [NLP|solver is required and

is an integral part of NMPC| Williams [124] points that the different discretisation methods
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are affected by the choice of [NLP] solvers in terms of speed and robustness of the solution ob-
tained. Williams [124] provides an example where if a dense solver is utilised, i.e. one where the
constraint Jacobian and Hessian are treated as dense matrices, then it can lead to significant
increases in CPU time due to the increase in the number of optimisation variables. For this
work SNOPT [54] is the solver of choice due to its popularity and because it is readily available.
SNOPT solves the quadratic programming subproblem with a quasi-Newton approximation to
the Hessian, via a large-scale sparse sequential quadratic programming algorithm. Please note
that there are other, more efficient solvers which could be used [124] but are not used in this

research because of the difficulty in gaining access to them.

In the next subsection, the optimal control methods given above, Direct Single Shooting, Di-
rect Multiple Shooting and Direct Transcription methods are implemented to solve the well
known Brachistochrone problem [40]. Based on the findings one of these methods is chosen for

implementing [NMPC] in this research.

3.4.4 Brachistochrone

The Brachistochrone problem is a well known nonlinear problem. It is chosen because it is a
nontrivial problem with an analytic solution and is very similar to the 2D robot problem that
is to be addressed later. The analytical solution allows accuracy of the implementation of each
method to be determined and is used as a benchmark in choosing a method to continue this
research. The Brachistochrone problem, simply stated, is to find the shape of a wire such that
a bead sliding on the wire without friction, in uniform gravity, will reach a given horizontal

displacement in minimum time.

The analytical solution is given by:

9

= —S (wt—sinwt 3.39
xp 2 (wt —sinwt), (3.39)
y = ER (1 —coswt) (3.40)

w2 ’

where:
g

=,/— 3.41
o=y (3.41)



xp and ¥, are the displacement values of the bead in the zy-plane, g is the gravitational force

and xy is the final x-displacement.

The optimal control problem is to minimise the cost function, J:

J =ty (3.42)

subject to the equations of motion of the bead:

& = Vsin6, (3.43)
y = Vcosb, (3.44)
V = gcosb, (3.45)
and the initial and terminal constraints:

z(0) = 0, (3.46)
y(0) = 0, (3.47)
V() = 0, (3.48)
z(ty) = xy (3.49)

(3.50)

Here 7 is the time taken to reach xy and V' is the speed of the bead.

The number of discretisation points was varied for each method to investigate their effect and
to determine the method most suitable for developing the fault tolerant controller. The value

of zy is set to 0.5m and the value of g for this work is 1m/s?.

For the direct single shooing method the control points were chosen to be:
N, =[5, 10, 25, 50, 150, 250, 500],
and for each control point the state points were varied:

N, = [10, 20, 50, 100, 300, 500, 1000].
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Similarly the number of sections for the direct multiple shooting method were set to:
M =2, 5, 10, 20, 30],

and the control points chosen for each section were:
N, =1[2, 5, 10, 20, 50].

The coincidence points for both the collocation methods (Euler integration and Pseudospectral)

were set to:

N =[5, 10, 50, 100, 300, 500, 800].

3.4.4.1 Accuracy of Solution Methods

I now assess the accuracy of each of the numerical methods by comparing the optimal solution
produced by the numerical method with the analytical solution given in equation (3.39)). For
each optimal control method the number of discretisation points is varied to assess the affect of

that level of discretisation on the solution.

3.4.4.1.1 Direct Single Shooting Results

The plots given in figures 3.4} [3-5] [3.6], 3.7, 3-8} 3-9 and show the solutions produced by the
direct single shooting method by varying N, and N,. The plots given are of the bead trajectory
ie. x vs y plots. The analytical solution is given in red and the numerical solution produced by
the direct single shooting method is given in blue. All the plots show that for a given N, the
difference between the numerical solution and the analytical solution decreases as NV, increases.
This is further exemplified by the individual error plots in the displacement in the z (figures

B.11] B-12 B-13) B.14, 315, 5.16) and B.17) and y (figures .18} B.19] B-20, B-21} 3-22, B.23] and

directions. The errors in these plots represent the magnitude of the displacement errors
in  and y between the analytical and numerical solutions. The results show that five control
points, N, = 5 are not enough to produce a smooth accurate solution. A minimum of ten control
points is required to produce a smooth solution. The results also show that there should be at

least twice as many state points NV, as control points to minimise the error.
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Brachistochrone - Direct Single Shooting, Nu=5
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Figure 3.4: Brachistochrone: Direct Single Shooting trajectory plots (z vs y), N,, = 5: Analytical
Solution (Red) and Numerical Solution (Blue).

Brachistochrone - Direct Single Shooting, Nu=10
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Figure 3.5: Brachistochrone: Direct Single Shooting trajectory plots (x vs y), N, = 10: Ana-
lytical Solution (Red) and Numerical Solution (Blue).
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Brachistochrone - Direct Single Shooting, Nu = 25
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Figure 3.6: Brachistochrone: Direct Single Shooting trajectory plots (z vs y), N, = 25: Ana-
lytical Solution (Red) and Numerical Solution (Blue).

Brachistochrone - Direct Single Shooting, Nu = 50
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Figure 3.7: Brachistochrone: Direct Single Shooting trajectory plots (z vs y), N, = 50: Ana-
lytical Solution (Red) and Numerical Solution (Blue).
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Brachistochrone - Direct Single Shooting, Nu =150
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Figure 3.8: Brachistochrone: Direct Single Shooting trajectory plots (z vs y), N, = 150: Ana-
lytical Solution (Red) and Numerical Solution (Blue).

Brachistochrone - Direct Single Shooting, Nu = 250

0.4 T T T T T T T T T
EpDzr M =20 q
0 . . . . . . . . .
. . . 0 008 01 01 02 025 03 03 04 045 05
®[m]  [m]

x[m] *[m]

0 0os 0t 015 02 025 03 035 04 045 05 i} oos o1 015 02 025 03 035 04 045 05
* [m]

« [m]

Iy = 1000

I ! I I I I I ! !
0 gos 01 015 02 02 03 038 04 045 05

*[m]

Figure 3.9: Brachistochrone: Direct Single Shooting trajectory plots (z vs y), N, = 250: Ana-
lytical Solution (Red) and Numerical Solution (Blue).
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Brachistochrone - Direct Single Shooting, Nu = 500
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Figure 3.10: Brachistochrone:
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Brachistochrone x Error - Direct Single Shooting, Nu=5
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Brachistochrone x Error - Direct Single Shooting, Nu =10
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Figure 3.12: Brachistochrone: Direct Single Shooting Absolute Error in Displacement, x-
Direction, N,, = 10.
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Figure 3.13: Brachistochrone:
Direction, N, = 25.
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Brachistochrone x Error - Direct Single Shooting, Nu = 50
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Figure 3.14: Brachistochrone:
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Figure 3.15: Brachistochrone:

Direction, N, = 150.
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Figure 3.16: Brachistochrone:

Direction, N,, = 250.
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Figure 3.17: Brachistochrone:

Direction, N, = 500.
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Figure 3.19: Brachistochrone:

Direction, N, = 10.
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Figure 3.20: Brachistochrone:
Direction, N,, = 25.
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Figure 3.21: Brachistochrone:

Direction, N, = 50.
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Figure 3.22: Brachistochrone:

Direction, N,, = 150.
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Figure 3.23: Brachistochrone:

Direction, N, = 250.
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Figure 3.24: Brachistochrone: Direct Single Shooting Absolute Error in Displacement, y-
Direction, N, = 500.

3.4.4.1.2 Direct Multiple Shooting Results
The trajectory plots produced by the multiple shooting method are presented in figures
3.26], [3.27] [3.28 and [3.29. The results show that increasing the number of sections increases

the accuracy of the numerical solution even when the number of control points is as low as two
per section. This is further indicated by the magnitude of the errors between the analytical

and numerical solutions in the displacement of x given in figures [3.30], [3.31], [3.32] [3.33] and [3.34]

The plots show that the errors significantly decrease with increasing M for a given value of N,,.
Furthermore given a value of M increasing IV, increases the accuracy of the numerical solution.
These trends are also visible in the magnitude of the y displacement errors between numerical

and analytical solutions given in figures [3.35] [3.36] [3.37], [3.38] and [3.39] The results indicate

that given the same number of discretisation points, the multiple shooting method outperforms
the single shooting method in terms of accuracy. In addition all the results pertaining to the
multiple shooting method show that there is a point of diminishing returns, as increasing the
number of sections beyond 10 can be seen to have very little impact on the accuracy of the

solution.
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Figure 3.25: Brachistochrone: Direct Multiple Shooting trajectory plots (z vs y), M

Analytical Solution (Red) and Numerical Solution (Blue).
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Figure 3.26: Brachistochrone: Direct Multiple Shooting trajectory plots (z vs
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Brachistochrone - Direct Multiple Shooting, M =10
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Figure 3.27: Brachistochrone: Direct Multiple Shooting trajectory plots (z vs y), M = 10:

Analytical Solution (Red) and Numerical Solution (Blue).
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Figure 3.31: Brachistochrone: Direct Multiple Shooting Absolute Error in z-Direction, M = 5.
Brachistochrone x Error - Direct Multiple Shooting, M =10
015 : . ; ‘ . . . . :
_oo3p
£ o S omt MNu=5
008 ot
i . = a
0 0.2 04 06 08 1 1.2 1] 02 0.4 06 08 1 1.2
Time [secs] Time [gecs]
ooal ; ; ; ; ; — ., ; ; ; ; ; ;
E E
oot Nu=10 1 5 oo2p Mu =20
= et g W 0ot
E g
0 ] 0
0 0.2 04 06 08 1 1.2 1] 02 0.4 06 08 1 1.2
Time [secs] Time [gecs]
ooal ; ; ; ; ; —
£
oot Ny = &0 4
= et 1
E
0
0 0.2 04 06 08 1 1.2
Time [secs]
Figure 3.32: Brachistochrone: Direct Multiple Shooting Absolute Error in Displacement, x-

Direction, M = 10.
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Figure 3.33: Brachistochrone:
Direction, M = 20.
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Figure 3.34: Brachistochrone:
Direction, M = 30.
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Figure 3.35: Brachistochrone: Direct Multiple Shooting Absolute Error in Displacement, y-

Direction, M = 2.
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Figure 3.36: Brachistochrone: Direct Multiple Shooting Absolute Error in Displacement, y-

Direction, M = 5.
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Figure 3.37: Brachistochrone:

Direction, M = 10.
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Figure 3.38: Brachistochrone: Direct Multiple Shooting Absolute Error in Displacement, y-

Direction, M = 20.
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Brachistochrone y Error - Direct Multiple Shooting, M = 30
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Figure 3.39: Brachistochrone: Direct Multiple Shooting Absolute Error in Displacement, y-
Direction, M = 30.

3.4.4.1.3 Collocation - Euler Integration Method

Trajectory plots obtained via the collocation Euler integration method are presented in figure
The results show a high level of compliance between the analytical and the numerical
solutions. The magnitude of the errors between the analytical and numerical solutions in the
displacement of x and y are provided in figures and respectively. Results show that the
solution converges to the analytical solution when N = 10. Increasing the value of N beyond

N =50 can be seen to have little or no effect on the accuracy of the results.

92




Brachistochrone

- Collocation, Euler Integration

04t g 04t 1
€ E
=02f N=5 B >D.2/ M=10 ]
! ! 1 1 1 1 ! ! L 0 L L 1 1 1 1 1 1 1
U om o1 o015 02 0% 03 0% 04 04 05 0 00s 01 015 02 025 03 03 04 0458 05
®[m]  [m]
D4t g 04t 1
E E
20.2/ N =50 i =02}k N =100 4
U om o1 015 02 0% 03 0% 04 0% 05 0 005 01 015 02 02 03 03 04 045 05
% [tm] [m]
04t g 04t J
E E
- 0.2/,/ N=300 g >D.2/ N = 500 J
o . . . . . . . . . o . . . . . . . . .
0 005 01 015 02 025 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05
% [m] [m]
E
0
0 005 01 015 02 025 03 035 04 045 05
x [m]
Figure 3.40: Brachistochrone: Collocation Trajectory Plots (z vs y), Analytical Solution (Red)
and Numerical Solution (Blue).
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Figure 3.41: Brachistochrone: Collocation Absolute Error
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Brachistochrone y Error - Collocation, Euler Integration
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Figure 3.42: Brachistochrone: Collocation Absolute Error in Displacement, y-Direction.

3.4.4.1.4 Pseudospectral Collocation The pseudospectral (derivative based collocation)
method produced the most accurate results as the error between the numerical and analytical
solutions decreased compared to the collocation Euler integration method for a given value of N.
This is evident from the trajectory plots provided in figure The magnitude of the errors
between the analytical and numerical solutions in the displacements of x and y shown in figures
and respectively help to further support this observation. Again increasing the value
of N beyond 50 was seen to have little or no effect on the accuracy of the numerical solution.
In fact the pseudospectral solution showed that even when N = 10 the numerical solution is in

compliance with the analytical solution.
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Brachistochrone - Collocation, Pseudospectral
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Figure 3.43: Brachistochrone: Pseudospectral Trajectory Plots (x vs y), Analytical Solution
(Red) and Numerical Solution (Blue).
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Figure 3.44: Brachistochrone: Pseudospectral Absolute Error in Displacement, x-Direction.
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Figure 3.45: Brachistochrone: Pseudospectral Absolute Error in Displacement, y-Direction.

3.4.4.2 Analysis of CPU Time

From the results given above the Pseudospectral method produced the most accurate solution

for the least number of discretisation points. For this reason the results produced by the Pseu-

dospectral method with N = 50 points is used as the nominal solution for the following analysis.

The time taken to reach xy = 0.5 in the solution of the analytical problem given by equation

(3-39) is t; = 1.2533secs. The nominal solution produced the same final time. Figures given
in through to show the [central processing unit (CPU)| time taken to reach an optimal

solution as a percentage of the nominal. The error plots show the percentage error between the

optimal solution produced by each method and the nominal solution.

3.4.4.2.1

Direct Single Shooting Results
Figure shows the [CPU|times and ¢y errors for the direct single shooting method for N, = 5.
The plots show that for N, = 5 the CPU time is less than the nominal for all NV, however the

correct final time is unattainable. The same trend was present when N, was increased to 10.

For N, = 25, 1000 state points were required to reach the correct final value however this took

twice as long as the nominal to reach the solution. As the values of N, increased it was found
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that the correct final time was only achievable for very large numbers of N, taking up to 5
times more CPU time compared to the nominal case to reach the correct solution. The [CPU|

percentages are also tabulated in table
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Figure 3.46: Brachistochrone: Direct Single Shooting time and tf, Ny =5
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Figure 3.47: Brachistochrone: Direct Single Shooting CPU time and ¢y, N, = 10
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Brachistochrone: Direct Single Shooting, Nu = 25
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Figure 3.48: Brachistochrone: Direct Single Shooting [CPU| time and tf, N, = 25
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Figure 3.49: Brachistochrone: Direct Single Shooting CPU time and ¢y, N, = 50

248 3 3.8 4 48 5 2.8
log{Nx)

98

6.5




Percentage [%]

Percentage [%]

Percentage [%]
o

Percentage [%]
o

1400
1200
1000
800
BO0
400
200

Brachistochrone: Direct Single Shooting, Nu = 150

CPU Time

4 ) g 7 g
log{Nx)

& Ermor

3.8 4 458 5 8.5 B 6.5 7
log{Nx)

Figure 3.50: Brachistochrone: Direct Single Shooting [CPU| time and tf, N, = 150
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Figure 3.51: Brachistochrone: Direct Single Shooting [CPU| time and tf, N, = 250
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Brachistochrone: Direct Single Shooting, Nu = 500
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Figure 3.52: Brachistochrone: Direct Single Shooting [CPU| time and tf, N, = 500

Table 3.1: Brachistochrone: Direct Single Shooting [CPU| Times
Direct Single Shooting - % |[CPU| Times
Nu

Nx 53 10 25 50 150 250 500
10 0.45% | 1.34% 1.34% 4.02% 17.41% 17.86% | 167.41%
20 0.89% | 1.79% 4.46% 8.04% 21.88% 28.57% 99.17%
50 2.68% | 5.80% | 11.16% | 20.98% 57.59% 85.27% | 104.46%
100 5.80% | 10.27% | 20.09% | 35.27% | 129.46% | 166.52% | 371.88%
300 | 14.73% | 28.57% | 58.93% | 132.14% | 352.23% | 736.61% | 1501.34%
500 | 24.55% | 48.21% | 99.55% | 218.75% | 586.61% | 1227.43% | 2494.20%
1000 | 35.71% | 70.54% | 197.77% | 338.39% | 1361.16% | 2429.02% | 4954.91%

3.4.4.2.2 Direct Multiple Shooting Results The time and ¢y error plots for the
direct multiple shooting method are given in figures to Figure shows that for
M = 2 the ty error decreases for increasing N,, however the correct final time is not achieved and
the time taken is almost 3 times the nominal. Overall the results show that as the number

of sections increases the error in the final time decreases however the time taken by the multiple
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shooting method is much higher than the nominal. For all values of M at least 10 control points
are required to reach a percentage error of below 1% and the time increases from 1 to 4000
times more than the nominal case. The percentages for the multiple shooting method are
tabulated in table 3.2
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Figure 3.53: Brachistochrone: Direct Multiple Shooting [CPU] time and ¢y, M = 2
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Figure 3.54: Brachistochrone: Direct Multiple Shooting time and ty, M =5
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Brachistochrone: Direct Multiple Shooting, M =10
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Figure 3.55: Brachistochrone: Direct Multiple Shooting [CPU]time and ¢7, M = 10

Brachistochrone: Direct Multiple Shooting, M = 20
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Figure 3.56: Brachistochrone: Direct Multiple Shooting [CPU]time and ¢7, M = 20
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Brachistochrone: Direct Multiple Shooting, M = 30

¥ 105 CPU Time
& T T
-
£
w 3
g
]
821
T
[N
1 —
0 | | ] | ! . |
] 04 1 15 2 25 3 348
log{Nu)
& Ermor
4
—_— 3 B
=
o
=
E 2
=
]
T
e L
il | | t ! 4 |
0a 1 18 2 28 3 38
log{Nu)

Figure 3.57: Brachistochrone: Direct Multiple Shooting [CPU]time and ¢7, M = 30

Table 3.2: Brachistochrone: Direct Multiple Shooting [CPU| Times

Direct Multiple Shooting - % |CPU| Times
M

Nu 2 5 10 20 30

2 3.57% 21.43% 141.07% 610.27% 1984.38%
5 40.18% 115.18% 149.55% 1184.38% 1598.66%
10 24.11% | 143.75% 310.27% | 1927.68% | 13069.20%
20 40.63% 191.07% 1262.95% | 4790.63% 8928.13%
50 | 275.89% | 1292.86% | 18788.84% | 31184.82% | 410166.52%

The [CPT]

and final time error plots for the collocation Euler integration and pseudospectral methods are

3.4.4.2.3 Collocation Results - Euler Integration and Pseudospectral

provided in figures and respectively. The accuracy in the final time can be seen to
be much higher for both of these methods as compared to both of the shooting methods. The
accuracy of the pseudospectral method is higher than for the collocation method. As expected
the time increases for both methods as the value of N increases. In general the time

taken by the pseudospectral method is higher compared to the collocation method for a given
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value of N greater than 10. For N = 800 the pseudospectral method takes 14000 times more
[CPU] time than the nominal while the collocation method takes only 1800 times more [CPU|
time (see tables and . The Pseudospectral method has a percentage error of 0.08% for
N = 5 compared to the collocation method which is 3 times higher at 0.3% while both take only
1.34% of the nominal time. Clearly the Pseudospectral method can reach a higher level of

accuracy with fewer points.

Brachistochrone: Collocation - Euler Integration
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Figure 3.58: Brachistochrone: Collocation - Euler Integration, [CPU]time and ¢

Table 3.3: Brachistochrone: Collocation - Euler Integration, [CPU| Times

Collocation, Euler Integration - % [CPU| Times
N 5 10 50 100 300 500 800
1.34% | 3.13% | 37.95% | 190.18% | 3608.04% | 12134.38% | 181751.34%
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Brachistochrone: Collocation - Pseudospectral
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Figure 3.59: Brachistochrone: Collocation - Pseudospectral [CPU| time and ¢

Table 3.4: Brachistochrone: Collocation - Pseudospectral [CPU| Times
Pseudospectral - % |[CPU| Times

N 5 10 50 100 300 500 800

1.34% | 3.13% | 100.00% | 14256.25% | 192790.63% | 1280342.86% | 1468914.29%

3.4.4.3 Findings and Conclusion

The results show that the pseusdospectral method can produce more accurate results with
fewer discretisation points consequently requiring less time. While, for large values of N, the
pseudospectral method results in a longer [CPU]| time, larger values of N are deemed unnecessary
to obtain a high level of accuracy. For this reason I use only the Pseudospectral method with

N = 50 points in the implementation of for the remainder of this research.

3.5 Illustrative Example: 2D Robot Model

Before designing an based fault tolerant flight controller for an junmanned aerial vehicle]
it is important to gain a thorough understanding of the fundamental workings of

To do this a simple 2D Robot Model is used for controller design and implementation as a simpler
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model enables the study of the proposed model and allows for trouble shooting. The focus here
is the implementation of the pseudospectral method to [NMPC] to recognise its strengths and
weaknesses. I also make comparisons of my solution with linear [MPC]in the solution of

both the open and closed loop control problems.

3.5.1 Equations of motion

Before the model predictive controller can be implemented it is necessary to develop the robot
model. The 2D robot model given in figure is used for both the linear and nonlinear
implementations of [MPC]

v

x
Figure 3.60: Robot Schematic
The relevant equations for this robot model are:
& = Vcos, (3.51)
= Vsin, (3.52)
. R _
P = (WB;bWL)? (3.53)

where:
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T z-coordinate of the point C,

Y y-coordinate of the point C,
heading angle,

wgr right wheel angular velocity,

wr,  left wheel angular velocity,

V' Speed and is given by:

R(wr + wr)

V= >

(3.54)

The next few sections detail the development of the linear and nonlinear [MPC| controllers. For a
fair comparison the pseudospectral method with 50 collocation points was chosen as the method

for discretisation.

3.5.2 Linear MPC

The linear problem is formulated using a linear process model, with linear constraints and
a quadratic cost function. The problem is convex with only one global minimum. A state space

representation has been chosen to implement the linear controller:

G(t)=A(t) x(t)+B () u(t). (3.55)

The model given in section clearly shows that the state equations for the the 2D robot are

nonlinear and have the general form:

T(t)=flz(t),u(t),t]. (3.56)

In this work a linear representation of the state equations is used. Hence the nonlinear state
equations given in (3.56) must be linearised before they can be converted to state space form.

To linearise the state equations we linearise around a nominal solution, {x¢ (-), ug (-)}:

x (t) = xo (t) + ox (t), u(t) =ug (t) +ou(t). (3.57)

Now assuming that f (-) is smooth and can be represented using a Taylor series expansion:

f [.’L‘ (t) , U (t) 7t] - f [.%'0 (t) » Uo (t) 7t] + fx (t> ox (t) + fu (t) ou (t) +o (51'7 6t) : (3'58)

Where:
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of of
Jo = o5 5 Ju = Du (3.59)
0,uo 0,0
After applying the Taylor series expansion the linearised equations become:
§ = fobz + fuou. (3.60)

Note that equation is in the form of the general state space representation given by equa-
tion , where the A matrix is the matrix of partial derivatives with respect to the states,
fr and the B matrix is a matrix of partial derivatives with respect to the inputs, f,. These
partial derivative matrices are known as Jacobian matrices. The state and input vectors here
are no longer the state and inputs themselves but are the perturbed states and inputs, dz and
du respectively. Perturbed states are defined as the difference between the actual states and
the nominal solution. Hence a nonlinear system is linearised by linearising the system around a
nominal trajectory and the resulting system is a linear system in the perturbed states and not
in the states per se. Linear techniques can then be applied. One major drawback, however, is

that the linear solution is only feasible within a small region around the point of linearisation.

For our robot system the linearised model is:

0% ox
5wR
5i A |ay| +B W) |, (3.61)
i dwr,
0 o

where the perturbed states are dz, dy and §¢ and the perturbed inputs are dwr and dwy. The

Jacobian matrices A and B were found to be:

0 0 —Vsiny %cosw %cosw
A=10 0 —Vecosy|, B=|Zsiny Lsiny]|. (3.62)
0 0 0 2% —2%

Note that this is a time varying system, hence the values of the A and B matrices are recalcu-

lated at each time step.

In my implementation of linear [MPC| pseudospectral discretisation will be used. Hence, given

N collocation points the optimization state vector x will be of length (n;+mn,)(N +1), where n,
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and n, are the number of states and inputs respectively. The aim is to have the robot follow a
pre-specified or “nominal” (also referred to as reference) trajectory. The states to be minimised
are the perturbed states, i.e. the difference between the actual and nominal. The system is
subject to the state dynamics, upper and lower bounds on the state, and initial and terminal

constraints:

(tf = to) ZN
JN:M[XN]—FT ' Oﬁ[Xj,Uj,tj] wy, (3.63)
]:

subject to:

(tf - to) D, 6x (1) — (A(t)6x (t) + B (t) Su (t)) = 0, 3.64

. (3.64)
0x; = x(to) — Xref(to), (3.65)

dxg = 0, (3.66)

xp < x < Xy, (3.67)

up < u < uy. (3.68)

As the system is time varying the A and B matrices are calculated at every time step for each

collocation point over the prediction horizon.

The linear [MPC| process works as follows: firstly the initial and terminal constraints are set. The
initial constraint is set to the difference between the actual state at time ¢ty and the reference
trajectory at time tg. The terminal constraint is set to zero, as it is desired to have a perturbation
of zero by the end of the prediction horizon. This is followed by calculations of the nominal
inputs uy = [wro,w LQ]T. These nominal values represent the control inputs required to achieve
the desired reference trajectory if the plant was perfectly situated on this trajectory. The
Jacobian matrices are then calculated using these nominal values for states and inputs. During
each sampling interval these calculations are performed for each collocation point along the
prediction horizon. Once all of the equality constraints are set up the SNOPT [54] optimisation
procedure is called on to calculate the optimal du which minimises the cost function while
satisfying all constraints. A vector of length (ng + n,)(N + 1) will be produced with each
solution corresponding to a collocation point. Only the first input from this vector is applied
to the plant. The optimisation vector is a vector of perturbed states hence the actual control

input which is to be applied to the plant must be calculated via:

u = up + ou. (3.69)
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The control input is applied to the plant which is then simulated forward in time, and the whole

procedure repeats until the end of the simulation time.

3.5.3 Nonlinear MPC|

The underlying concept of the nonlinear [MPC] controller is the same as its linear counterpart.
That is, an optimal control problem is solved over a finite prediction horizon, only the first
control input is applied to the plant, the prediction window slides along by the sampling time
interval and the whole procedure is repeated. The main difference is that the state vector

comprises actual states rather than the perturbed states. The cost function to be minimised is:

N
—t

In = M[xn]|+ f 0) Zﬁ X, w4, t;] wj, (3.70)

7=0

subject to:
tr—t

<f2°> D,;x(t)—% = 0, (3.71)
x(to) — Xref(to) = 0, (3.72)
X(tf) - Xref(tf> = 0, (373)
XIp <x< Xubs (374)
up < u < uy. (3.75)

The next section describes the results obtained by applying the controllers to an open loop

problem.

3.5.4 The Open Loop Problem

In [MPC| an open loop problem is solved at each time step. Hence before can be applied
to fault tolerant control it was important to understand the open loop problem. This provides

an insight into the factors that affect the solution.

There are many tuning parameters used to determine the performance of the controller; the
weighting factors on the cost function, the design of the cost function, the length of the prediction
horizon, the initial condition, the integration time step, and the number of discretisation points
required for an acceptable solution. From the previous analysis the numerical technique chosen
for the application of is the Pseudospectral method with 50 discretisation/coincidence

points. This section looks at the effect of the design of the cost function, the prediction window
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length, the integration time step and the affect of the initial condition on the solution.
The 2D robot is required to follow the given path:

Ve>0:y=25, (3.76)

travelling with a velocity of 1m/s and constraints of £1000deg/sec on the wheel speeds wg and
wr,.

Both linear and nonlinear [MPC| methods were applied. The state and input vector for the linear
[MPC] controller are:

Xjin = [6z dy 0T, (3.77)

Ulin = [(5&13 &uR]T. (378)
The state and input vector for the nonlinear [MPC]| controller are:

X = [z y YT, (3.79)

u, = [OUR wL]T. (380)

The overall objective is to drive the robot back to the reference path from y = 6 to y = 5.

3.5.4.1 Effect of Different Cost Functions

I now look at the effect of selecting a cost function on the [MPC] solution. Five different cost

functions were developed:

Cost Type 1: Errors between the reference/nominal path and the robot path are minimised:

Tnt — (tf _tO) il . 2 ) 3.81
=L 3 ([ =%, ) wie (3.81)
j=0

Cost Type 2: Errors between the robot path and the nominal path, plus the error between

the actual wheel speeds, wr and w;, and the nominal wheel speeds are minimised:
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(t; —to) & 2 2
Ino = AN ([ = ety + Ju = ueelff, ) s (3.82)
j=0

Cost Type 3: Errors between the robot path and the nominal path, plus the difference between

the wheel speeds are minimised:

N
ty—t
Iva = SINS (e slf, + eom — ) w (3.83)
2

<

Cost Type 4: Errors between the nominal speed and robot speed as well as the errors between

the nominal angular acceleration and the robot’s angular acceleration are minimised:

N
tr—1 . .
gva=YUOUS (v Vil + (9 i) (3.80)
=0

Cost Type 5: Errors between the nominal speed and robot speed as well as the errors between
the nominal angular acceleration and the robot’s angular acceleration along with the errors be-

tween the nominal path and the robot path are minimised:

N
ty—t D
Is = LINS™ (e scutle, + 1V = Vel + 19— el s (3.85)
Jj=0

Each cost type was tested using both linear and nonlinear[MPC| The robot initial z, y and ¢ was
set to xg = [060]T for both controllers. The prediction window length was also varied and was
equal to Hy, = 1sec, H,, = 5secs and H), = 10secs. The cost function weights are square matrices

with the following diagonal values for each state: @), = 10, Q, =1, Qy = 1, qu =land Qv = 1.

The optimal trajectories produced by all the different cost functions for a prediction window
length of 1 sec are given in figures and for linear and nonlinear [MPC]respectively. Cost
types 1, 2, 3 and 5 were able to drive the robot back onto the desired path by the end of the

window for both the linear and nonlinear cases, however cost type 4 was unsuccessful in doing so.
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When the window length is increased to 5 seconds the optimal trajectories are seen to be much
smoother in driving the robot back to the path compared to the 1 second window length. Figures
and show the results for the linear and nonlinear controllers respectively for a window
length of 5 seconds. All cost function types were able to drive the robot back to the path by the
end of the window length in both linear and nonlinear cases. Cost type 1 took longer to bring
the robot back to the path with a linear controller when compared to the nonlinear controller.
The nonlinear controller drove the robot straight towards the path while the linear controller
brought the robot back smoothly. The nonlinear controller for cost type 3 initially drove the
robot away from the path before bringing it back on track while cost type 4 only brought the
robot back right at the end of the prediction window. This was not the case with the linear
controller, with the linear controller cost type 3 driving the robot back to the path. Cost types
2 and 5 behaved similarly for both controllers in that they both brought the robot back to the
path along a smooth path. However cost type 5 slightly overshot the path before bringing the

robot back on track with the linear controller.

Increasing the prediction window length further to a 10 second look ahead shows that all cost
types with both linear and nonlinear controllers were able to drive the robot back to the path.
The nonlinear controller (figure was able to bring the robot back within approximately 2
seconds for all cost types, except cost 1 which brought the robot back smoothly in approximately
0.5 secs and cost type 4 which only reached the path at the end of the window length. The linear
controller results show that the robot was back on track for all cost types by approximately 4.5

secs, other than cost type 1 which drove the robot to the path in 1.5 secs.

The error plots for all the prediction window lengths are given in figures [3.67] through to [3.69]
The plots show the magnitude of the error in the y-direction between the nominal path (y = 5)
and the actual robot path. The results show that for all cost types and all window lengths the
nonlinear controller produced lower error compared to the linear controller. The error between
the two controllers decreases as the robot approaches the path. The results show that as the
perturbation decreases the linear controllers performs equally as well as the nonlinear controller,
however for larger perturbations the nonlinear outperforms the linear controller. This is true
for all cost types except cost type 4. Cost type 4 results in higher errors compared to the linear
controller across all prediction window lengths and the nonlinear controller is only able to drive

the robot to the path at the end of the window, obeying the terminal constraint. Cost type 4
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is the only cost function which does not minimise the path errors instead minimising velocity
and angular acceleration only. The linear controller produces lower errors as the states are the
perturbed states from the nominal. Cost type 1 in the nonlinear case, brings the robot back to
the path in the least amount of time however the solution oscillates around the nominal path
once the path has been reached as is evident from figure The results show that for a path
following scenario it is best to not only minimise the path errors but to also follow a velocity
profile to obtain a smoother non oscillating solution. For this reason I will continue the remain-
der of this research using cost type 5 as the cost function of choice. In addition, the error plots
show that the difference in errors produced by the linear and nonlinear controllers are the least

for this cost function making it the best candidate for comparison purposes.
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Figure 3.69: Open Loop: Different Costs y-Displacement Errors, H, = 10

3.5.4.2 Effect of the Integration Time Step

Sub-section |3.5.4.1] investigated the effect of different cost functions on the solution. This

sub-section looks at the effect the integration time step has on the overall solution. Up until
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now only the optimal solution produced by the controller was investigated, however in an [MPC]|
framework only the first output is applied to the plant, with the plant then providing sensor
information to the navigation subsystem, for example, (on an aircraft) to calculate location and
orientation information. Hence its is important to understand the effect of the the integration

time step in conjunction with the optimal control input.

The integration time step was varied as follows:

dt =[0.1, 0.01, 0.001],

for varying H,, lengths namely 1 sec, 5 secs and 10 secs. The results are given in figures to
All results show that the integration time step has very little effect on the results. When
zooming in on the results the smallest integration time step of 0.001secs was shown to give a
solution closest to the optimal. The length of the prediction horizon was seen to have the greatest
effect on the integrated solution. The longer the look ahead the closer the integrated solution is
to the optimal solution. Another point to note is that the integrated solution produced with the

nonlinear controller more closely matches the optimal solution compared to the linear solution.
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Varying the length of the prediction window showed that it is always best to have a longer win-
dow. The longer window length produced the lowest errors particularly in the linear controller
case. In addition, the longer window allowed the robot to reach the nominal path quicker. The
accuracy of the integrated solution increases as the window length increases. Unfortunately a

longer window results in an increase in computation time.

From the results above a window length of 5 secs was chosen to continue this research. A window
length of 1 second proved to be too short to produce an accurate solution particularly in the
case of the integrated solution (see figures and . A window length of 10 secs produced
an integrated solution which closely matched the optimal solution in the nonlinear controller
case. The solution produced by a window length of 5 secs, while not as precise, still managed to
develop a solution closely resembling the optimal solution. For this reason a window length of 5
seconds is seen as a good compromise between efficiency and accuracy. Hence for the rest of this
research a window length of 5 seconds will be used along with cost type 5 and an integration

time step of 0.01secs.

The next sub-section will look at the effect the initial condition has on the overall solution.

122



3.5.4.3 Effect of Initial Condition

The initial condition is another factor which must be considered in the design and selection of
the controller. The sensitivity of the starting point on the overall solution is critical particu-
larly in the case on linear techniques. This sub-section investigates the difference between the
solutions produced by the linear and nonlinear controllers as a function of the initial condition.
Again the path is y = 5 and the initial y is varied from Om to 10m in steps of 0.1m. The errors
between the nominal path and the actual robot position are calculated at various points along
the prediction horizon namely at 1 sec, 2 secs, 3 secs, 4 secs and 5 secs for all initial y values.
Plots of errors versus initial y for the different time are given in figures [3.76] to [3.80] The plots
given in these figures show the errors between the optimal solution and the nominal path as
well as the errors between the integrated solution and the nominal path for both the linear and
nonlinear controllers. The errors arising from the integrated solution of the linear controller are
shown on a separate plot underneath the main plots as the errors were much higher compared to
the others and by plotting all errors on the one graph the errors produced by the other solutions
were not as clearly visible. The results show that as the time increases from 1 second to 5 secs
the errors decrease as the robot approaches the nominal path. The results clearly show that
the further away the robot is from the nominal path (i.e. the greater the perturbation) the
higher the error in the case of the linear controller. At the 1 second mark along the prediction
window (figure the errors between the solution produced by the nonlinear controller and

the nominal path (y = 5) are seen to be linear as a function of initial y. Moving further along

the prediction window (figures [3.77} [3.78 |3.79| and |3.80]) shows that these errors decrease and

are very close to zero for any yg. There is only a small region around the nominal path, y = 5,
during which the errors produced by the linear controller are zeros and match those produced

by the nonlinear solution at any time along the prediction window.

Figure [3.81] shows plots of the errors between the optimal solution and the integrated solutions
for both linear and nonlinear controllers. The integrated solution can be seen to be in compliance
with the optimal for the nonlinear controller solution however discrepancies are present between
the integrated and optimal solutions produced by the linear controller. The results show that
there is only a small region around y = 5 for which the solution produced by the linear and

nonlinear controllers overlap.
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y-Displacement Errors vs Initial y @ time = 1sec
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Figure 3.76: Open Loop: Initial Conditions vs y-Displacement Error, time = 1sec

y-Displacement Errors vs Initial y @ time = 2sec
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Figure 3.77: Open Loop: Initial Conditions vs y-Displacement Error, time = 2 secs
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Figure 3.78: Open Loop: Initial Conditions vs y-Displacement Error, time = 3 secs

y-Displacement Errors vs Initial y @ time = 4sec
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Figure 3.79: Open Loop: Initial Conditions vs y-Displacement Error, time = 4 secs
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y-Displacement Errors vs Initial y @ time = 5sec
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Figure 3.81: Initial Conditions vs y-Displacement Error Between Optimal and Integrated

The next subsection investigates the closed loop problem and compares the solution of both

linear and nonlinear IMPC]
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3.5.5 The Closed Loop Problem

The aim of these simulations is to implement and investigate the behaviour of both linear and
nonlinear [MP(] regarding the closed loop problem. The fault tolerant problem is essentially
closed loop hence to apply to fault tolerant control the pseudosepectral method
is first tested on the simpler 2D robot model.

To test the models the reference trajectory given in figure was used.

Closed Loop Trajectory

® ! ! ! !

x[m]

Figure 3.82: Reference Trajectory

Based on the analysis from the previous subsections a prediction window length of 5 seconds
was used with 50 collocation points, cost type 5 and and integration time step of 0.0lsecs.
Constraints of +1000deg/sec are placed on the control inputs which are the angular velocities

produced by the right and left wheels. Three different scenarios were set up:
Scenario 1: Robot begins on the path with initial conditions yo = [5,0,0]T.
Scenario 2: Robot begins slightly off the path with initial conditions yy = [—2,4,0]T.

Scenario 3: Robot begins well off the path with initial conditions yo = [0, 20, 0]T.

For stability H, = H, [4]. In many NMPC| formulations H,, is less than H,. While this

greatly reduces the computational expense it does however produce a suboptimal solution [105],
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hence for the purposes of this research the control horizon is equal to the prediction horizon.

The trajectory plot for scenario 1 is given figure [3.83] Here the robot begins on the path and
both the linear and nonlinear solution can be seen to produce the same solution, something that

is also clear from the plots of optimal inputs produced by both controllers as given in figure

The red lines in figure show the constraint boundaries.

The trajectory plots for scenario 2 are presented in figure Here the robot begins slightly
off the path. Both the linear and nonlinear controllers manage to bring the robot back onto the
path. The plots of the optimal inputs (figure show that initially both controllers work at
the maximum constraint to drive the robot back onto the path. Once the path is reached (i.e.

perturbations are small) both controllers exhibit the same performance.

The trajectory plots for scenario 3 presented in figure [3.87] show the robot starting completely
off the path (large perturbation). In this case only the nonlinear controller is able to bring
the robot back onto the path with the linear controller unable to drive the robot back to the
path. Figure shows the inputs produced by both controllers with the plots clearly showing
that the linear controller works very hard to take the robot back onto the path by consistently

working at the constraints however is still unable to return the robot back to the path.

Trajectory - Initial Conditions w0 = [5,0,0]
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Figure 3.84: Closed Loop: Scenario 1 - Angular Rates
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Figure 3.87: Closed Loop: Scenario 3 - Trajectory
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Figure 3.88: Closed Loop: Scenario 3 - Angular Rates

The results clearly show that the pseudospectral solution to the nonlinear model pre-
dictive controller is a viable choice outperforming its linear counterpart when the perturbations

are large.

3.6 Summary of Findings

This chapter was dedicated to the theoretical and practical implementation aspects of [MPC]
A viable solution was sought in particular for nonlinear [MPC|l The Pseudospectral numerical
method was found to be the best candidate. The solution was applied to a 2D robot model in
both open and closed loop settings. Comparisons were made between linear MPC| and the non-
linear solutions. For small perturbations the two controllers produced the same results.
However for large perturbations where nonlinearity effects are more significant the pseudospec-
tral nonlinear [MPC] controller was found to produce more accurate results than the linear MPC]|

controller.

The next chapter will investigate the application of this solution to fault tolerant control.
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Chapter 4

Fault Tolerant Control System
Design

4.1 Introduction

4.1.1 Motivation

After examining the various optimal control techniques for the implementation of

model predictive control (NMPC)|in chapter 3| it became clear that pseudospectral discreti-

sation provided the most viable solution. In order to develop this control technique into a

full-fledged fault tolerant control system, it is imperative for [fault detection and identification|

(FDI)| to be incorporated into the model. This is the aim of this chapter.

Fault tolerant control systems are classified as either Passive or Active (see sub-sections [2.3.1]

and [2.3.2)). A passive [fault tolerant control (FTC)|system “passively” handles faults, which are

not explicitly detected and isolated and about which no information is gathered. The controller
is, thus, designed to automatically counteract only particular faults. The benefit of a passive
controller is that performance is unaffected by fault detection delays or false alarms. However

the handling of only faults that are incorporated into its design is a major drawback of a pas-

sive [fault tolerant control (FTC)| system, as all other faults may cause the system to become

unstable. Another disadvantage of a passive [FTC| controller is its reliance on robust control
techniques that can be overly conservative. Active [FTC|systems, on the other hand, “actively”
seek the fault and try to gather as much information about it as possible to help the controller

overcome any consequential instabilities.
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Fault detection and identification (FDI) is a key component in an active [fault tolerant controll

(F'TC)[system and is the most difficult aspect of [26]. In his 1997 paper Patton [97] states

that most research on [FDI| has been done independent of the controller design and no combined

design exists. Since then there has been some research on the integration of [FDI] and [FTC}

however much remains to be done in this area.

According to Zhang and Jiang [14§], can be either parameter based or state based. State
based fault detection systems have shorter time delays but do not provide enough detail for fault
diagnosis, leading to parameter based systems being preferred. In general the [FDI] system has

three major tasks:

1. Fault detection indicates that something is wrong in the system i.e. the occurrence of a

fault and the time of its occurrence.

2. Fault isolation determines the location and the type of the fault (the manner in which the

component has failed).
3. Fault identification determines the magnitude (size) of the fault.

To design an active system, the aim of this thesis, it is essential that the final design
includes an [FD]] subsystem. I investigate existing [FD]| techniques in this chapter, and use the
knowledge to reconfigure the fault tolerant controller that I started designing in Chapter 3.

The simple 2D robot model introduced in section [3.5]is used as an illustrative example.

4.1.2 Outline

Section presents a brief literature survey of the techniques used in fault detection and iden-
tification as applied to flight control. This is followed by an in-depth investigation of the
methods chosen for the work in this thesis, namely the [extended Kalman filter (EKF)| the
iscented Kalman filter (UKF)| and the finteractive multiple model (IMM)| in section

An fextended Kalman filter (EKF)|filter, junscented Kalman filter (UKF)|filter, [EKF|based [inter-
lactive multiple model (IMM)|filter and a based filter are each designed in section
for the purposes of [FDI| using the 2D robot model of section [3.5] Hence four different active fault

tolerant control systems using as the controller design are formulated and implemented
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in MATLAB for the 2D robot model.

Each of the four different active [F'TC| systems developed in section [£.4] are tested under differ-
ent conditions in section The tests are designed to evaluate the performance of the filters
as well as the interaction of the filter and controller designs. The section provides a detailed
analysis of the test results and concludes with a summary of findings. Based on the findings

the filter chosen to continue the research is implemented for active [FTC|using linear

Idictive control (MPC)|as the controller and the results are compared to its nonlinear counterpart.

Finally a brief conclusion is given in section

4.2 Literature Review of FDI

Fault Detection and Identification is a very mature field of study and provides many powerful
quantitative and/or qualitative modelling tools as well as artificial intelligence. As Patton [97]
identified back in 1997, most [FD]] research does not include a combined controller and [FD]|
design. The main difficulty with active is on-line reconfiguration which requires detailed
information about changes in system parameters. Hence the main role of the [FD]] subsystem,
particularly in this research, is the gathering of information on parameter changes to assist in

controller reconfiguration.

Most reconfigurable controllers use real time estimates of the system parameters provided by
parameter estimation based FDI. These approaches to are thought to provide the controller
with system information in a more suitable format for on-line reconfiguration than the alter-
native approaches based on state estimation. Many difficulties still exist in parameter based
estimation techniques. For example, in order to get good estimates it may be necessary to
introduce perturbation signals to ensure all plant modes have been sufficiently excited; this is

particularly true for aircraft.

Observer based [FD]] schemes are very dependent on the models upon which the scheme is de-
signed. Hence the reliability of these [FDI] systems must be higher than the monitored system.
The better the model representing the dynamic behaviour of the system, the higher the chance
of improving the reliability and performance in detecting and isolating faults. Plant model mis-

matches can cause false alarms, or even miss faults, and hence robustness issues in [FDI] are very
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important [8]. One of the advantages of MPC is the easy incorporation of robust control ideas

126].

As mentioned in chapter 2] hardware redundancy and full self diagnosis equipment are not always

feasible, especially for junmanned aerial vehicles (UAVs)| because of their cost and associated

weight penalties. The system that I wish to design is based around |analytical redundancy|
(AR), which was discussed in sub-section an approach that utilises the available data and

mathematical model of the plant (model-based FDI) for fault tolerance. This approach is based
on the belief that a fault changes physical parameters and hence the dynamical model of the

plant.

The next section gives a brief overview of the current literature on the application of fault

detection and identification to flight control.

4.2.1 Application to Flight Control

Fault tolerance has been applied to many industries. The focus of this research is flight control,

and this section looks at the [FDI| schemes applied specifically to flight vehicles, in particular
[TAVY

Fault detection can be divided into three categories [96]:

1. Knowledge based - these techniques use artificial intelligence methods such as
works (NNs)|or fuzzy decision logic to detect and classify faults.

2. Signal processing - these techniques use signal characteristics such as spectrum information
or statistical information to enable the generation of signals that can be used to provide

an indication of the existence of a failure.

3. Model based - these techniques are similar to signal processing techniques except that a
model is utilised to estimate/measure the values provided by error signals (residuals) to

provide an indication of the existence of a failure.

A report by Cork et. al [33], presents an based sensor fault detection scheme to provide
lanalytical redundancy (AR)|from sensors already existing onboard a Artificial intelligence
schemes for flight control are described in Lin and Liu [81], with the based on detecting

immediate changes in the correlation between pitching, yawing and rolling moments. An
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is used for [FD]| and adaptive compensation, while failure tolerance is addressed by applying

a wavelet neural net-based [proportional integral derivative (PID)| control law. Perhinschi et.

al [1I00] present an scheme for flight control capable of detecting and identifying failures

affecting aircraft actuators, sensors, structural integrity and propulsion, using ideas from the

modelling of bioimmune systems, combined with other |artificial intelligence (Al)| techniques.

An immunity based fault detection system operates in a similar manner to the human immune
system whereby a distinction is made between the entities that belong to the organism and those

that do not.

Observer based [FD]|is the most common approach studied in recent literature. An application
to flight control can be found in Wang et. al [I2I] where the focus is on control surface failures.
Here the system encompasses two controllers; the main controller designed for the faultless
system with the second controller being a compensator designed to handle the faulty case. Fault
detection is then based on an extended state observer to estimate faults. Liu et. al [82] apply
an adaptive fault estimation observer based algorithm for linear discrete systems with actuator

faults to a model of the F-16 aircraft.

Boskovic et. al [20] suggest a viable approach to for air and space vehicles through the use

of jmultiple model switching and tuning (MMST)| The authors claim that most techniques are

based on treating failures and structural damage as parametric uncertainty and then design-
ing corresponding adaptive controllers that achieve the desired control response. The standard
approach to indirect adaptive control is based on certainty equivalence, where certain plant pa-
rameters are estimated online and the estimates are, in turn, used by the controller to assure
stability of the overall system (Boskovic et. al [20]). However such approaches, when applied to
a linearised aircraft model, can only handle small to moderate uncertainty and, with regards to
only a small set of failures can be tolerated. Boskovik and co-authors [20] suggest using a
[MPC| multiple model based method, where different models are used to describe the dynamics
of the system for different operating regimes. These are referred to as identification models as

they identify the current dynamics of the system.
Sliding mode observers for fault detection have been used by Edwards et. al [41]. Historically,

sliding mode methods have generated interest because of their strong robustness to a particular

class of uncertainty. This is achieved by using nonlinear control/injection signals to force the
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system trajectories to attain motion along a surface in the state-space in finite time. Sliding
mode observers are able to reconstruct unmeasurable signals within a process by appropriate
scaling and filtering of the so-called “equivalent output error injection”. The fault tolerant con-
troller in Edwards et. al [4I] is also based on a state feedback sliding mode scheme and was

tested on the GARTEUR flight simulator (Edwards et. al [41]).

Yee et. al [141] illustrate an scheme based on estimating the fault through matrix algebra.
Simulations are based on a combat aircraft and the scheme shows that it has the potential to
handle multiple faults. Meanwhile Xiao-song [132] claims that cannot be performed by a
single method and combines statistical and analytical redundancy approaches. A set of robust
adaptive observers are set up for residual generation (analytical) alongside a statistical method
of residual evaluation (statistical) to detect faults online (Xiao-song [132]), and the method is

applied to a model of a fighter aircraft.

Ducard’s book [39] details a fault tolerant control scheme for a small [UAV] The [FD]| presented

therein is based on a particular type of [multiple model adaptive estimation (MMAE)| called the

lextended multiple model adaptive estimation (EMMAE)l A bank of extended Kalman filters are

designed to monitor the health of each actuator, and the method allows estimation of the fault
control signal by the respective [EKF] By allowing actuator deflection estimates to be a part of
the system state vector, the EMMAE] method is able to work for all possible positions where an
actuator can be locked or floating. Ducard [39] discovered that failures near trim conditions are
harder to detect and isolate, so a control allocation scheme is used where estimates from the [FD]|
are used to solve a set of algebraic equations that, in turn, are used to describe the dimensionless
aerodynamic coefficients Cr,, Cjy and Cpy. Given five actuators the system is faced with three
equations and five unknowns, and to obtain a unique solution various behaviour modes are set
up. Ducard [39] states that this control allocation method is simple, fast and can be imple-
mented on a small processor or a microcontroller where computational power is limited. The
final overall solution is a reconfigurable guidance system where a new flight path is calculated

based on information about the fault.

The next section describes in detail the particular [FD]] techniques chosen for this research. The

selected methods are the [EKF] the [UKF|and the filters.
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4.3 Fault Detection Techniques Selected for Implementation:

Theoretical Description

The fault detection techniques considered here are all based on filtering techniques, namely the

[EKF] the [UKF} the [EKE| based [MM] and the [UKEF| based [MM] These filters are used to se-

quentially estimate the state of a dynamic system using a sequence of noisy measurements made

on the system. The state estimates are then utilised to aid in fault detection and control re-

configuration. A general overview and key mathematical concepts are provided for each method.

4.3.1 Extended Kalman Filter (EKF)

The [EKE] is an extension of the well known Kalman filter. One of the drawbacks of the Kalman
filter is that it does not provide good estimations for nonlinear systems [106]. The approx-
imates (or linearises) the nonlinear functions in the state dynamic and measurement models.
There are two main stages during an (and the general Kalman filter) cycle: predict and
update. During the prediction stage the filter states and covariances are predicted forward one
time step as are the measurement predictions. During the update stage corrections are made to

the state predictions via noisy measurements.

The extended Kalman filter is derived for nonlinear systems with additive noise. A summary of
the (Ristic et. al [I06]) equations are given below. The target state x; and measurement

zj, equations propagate according to:

xp = fro1(xp-1) v, (4.1)

zp = hy(xx) + Wy, (42)

where vi_1 and wj are random sequences and are mutually independent with zero-mean, white
Gaussian with covariances Qj—; and Ry, respectively. The [EKF]is based on the assumption
that local linearisation of the above equations may be a sufficient description of nonlinearity.
The mean and covariance of the underlying Gaussian density are computed recursively in a two

stage process (Ristic et. al [106]):
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Stage 1: Prediction

Rpp—1 = F(Bp—1jp—1) » (4.3)
Piiot = Qeo1+FraProqp Fyy. (4.4)
(4.5)

Stage 2: Update/Correction

ek = Rplk—1 + Kpvi, (4.6)
Pur = Prp-1— Ki:SiK;, (4.7)
where
v, = 2k —hy (Xep—1) (4.8)
K, = Py H{S " (4.10)

The parameter Kj is commonly known as the Kalman gain and Sk is referred to as the inno-
vation covariance. The innovation vy is the error between the predicted measurement and the
actual measurement of the system. The matrices Fi_; and Hj, are the local linearisation of
the nonlinear functions fi,_; and h;. The two matrices are defined as Jacobians evaluated at

Kj—1)k—1 and Xy, respectively (Ristic et. al [106]):

T T
Fr1 = [ka_lfk_l(xkfl)} ; (4.11)
Xk—1=Rp_1|k—1
N T
, = [kah;(xk)} , (4.12)
Xp=Rp|k—1
where:
) o 17
Vi [aka axk[nxd (4.13)

Since the Jacobians must be calculated analytically the [EKF]is often referred to as an analytic
approximation. If the functions f; or hy are discontinuous, analytical methods cannot be ap-

plied. A drawback of the is that it always approximates p (xx|Zj) to be Gaussian [106].
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If the model is highly nonlinear the non-Gaussianity of the true posterior density will be more
evident, for example, it could be bimodal or heavily skewed. In this event the performance of

the [EKF] will significantly degrade.

4.3.2 The Unscented Kalman Filter (UKF)

The [unscented Kalman filter (UKF)| addresses the issue of non-Gaussianity. The is a part

of a family of nonlinear filters, referred to as linear regression Kalman Filters, that are based
on statistical linearisation rather than analytical linearisation. The key concept behind these
filters is to perform nonlinear filtering using a Gaussian representation of the posterior p (xx|Zyg)
through a set of deterministically chosen sample points. The true mean and covariance of the
Gaussian density are completely captured by these sample points up to the second order of
nonlinearity, with errors introduced in the third and higher order when propagated through a
nonlinear transform. The on the other hand is only of first order with errors introduced
in the second and higher orders. The filters belonging to this family differ only by the method
used to select the sample points i.e. their number, weights and values in the filtering equations
are identical and are given below. The [UKF] uses an unscented transform for the selection of

points in an framework (Ristic et. al [106]).

We assume that at time k—1 the posterior is Gaussian: p (xx_1|Z;_1) & N (xk_l; ik,”k,ka_l‘k_l).
The very first step is to represent this density via a set of N sample points X,ﬁ_l and their weights

W,ﬁfl, 1=20,...,N — 1. The prediction step is as follows:

N—-1
ik\k—l = Z Wliflfk—l (Xlifl) ) (4-14)
i—1
N1
) I A i ~ T
Pir—1 = Qrp1+ Z Wiy [fe—1 (A1) — Rppe—1] [Foe—1 (X_1) — Rgpp—a] - (4.15)
=0

A set of N sample points:

X/i|k_1 = fr1 (X]i_1) ) (4.16)

are used to represent the predicted density: p (xg|Zk—1) =~ N (xk; Xplk—1 Pk|k_1) and the pre-

dicted measurement becomes:
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N-1

Zijr = > Wi (&) (4.17)
=0
The update step is defined as:
Xik—1 = Xpp—1 + Kgg, (4.18)
Pur = Pprpo1 — KiSeKy, (4.19)
where
K, = P..S. ", (4.20)
S, = Rpy+P,,, (4.21)
N-1 . . . T
Poo = > Wiy (¥y — %) (he(Xiy) — 2mi1) (4.22)
i=0
Nolo . . T
P = > Wiy () = 2o ) () = 215 ) (4.23)
i=0

As can be seen from the above filter equations there is no explicit calculation of Jacobians.
Consequently these filters can be utilised even when the nonlinear functions f and h have dis-

continuities.

The uses the unscented transform to select the sample points X,i_l and weights W,i_l as

described in the next subsection.

4.3.2.1 The Unscented Transform

The unscented transform is a means of calculating the statistics of a random variable which
undergoes a nonlinear transform (Ristic et. al [106]). For example, given a random variable a
with mean and covariance a and P, respectively, on propagation through an arbitrary nonlinear

function g : R™ — R™ it will produce a random variable b:

b = g(a).

The first two moments of b can be computed using the unscented transform by first determin-
istically choosing 2n, + 1 weighted samples points (A4;, W;) so that they completely capture the
true mean a and covariance P, of a. The following scheme satisfies this requirement (Ristic et.

al [100]):
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K

—a Wyp= ———— ;=0 4.24
AO a, 0 (na—kn)’ ? ) ( )
K
i:_ a Pa)a [ ’ >:17"‘7 as 4.2
A =a+ (/(na+ ) i W= i n (4.25)
K
—a— a Pa), W= | = 1,...,2n,, 4.26
A =a ( (ng + K) i e T 1) i=n+ n (4.26)

where k is a scaling factor such that x + n, # 0 and ( (ng + n)Pa) is the ith row of the
K3
matrix square root L of (n, + k)P, such that (n, + k)P, = LTL. The weights are normalised

(ZZS W = 1). Each sample point is then propagated through the nonlinear functions g:

Bi:g(Ai) (izO,l,...,2na),

and the first two moments of b are calculated via:

2Nq

=0

2Nq
P, = ) Wi(Bi—b)(Bi—b)T. (4.28)
=0

These estimates are accurate to the second order (third order if a is Gaussian) of the Taylor
series expansion of g (a). The distance A;, i = 1,...,n, from a increases with dimension n, but
this can be controlled by the choice of k. It should be noted that if s is negative P; can become

non-positive semidefinite.

4.3.3 Interacting Multiple Model (IMM)

The [MM] belongs to a class of filters called the Gaussian Sum Filters. The main concept is the

approximation of the required posterior density p (xx|Zy) by a Gaussian mixture (Ristic et. al

[106] ):

qk
P (xk1Z) = pa (el ) = S wh N (x4 Rl Phye) (4.29)
=1

where w}c are weights that are normalised, Y 7, wz = 1. Gaussian sum filters are ideal when
the posterior density is multimodal because for multimodal densities there is a performance

degradation in both the [EKF|and [UKF] The Gaussian Sum filter chosen for further investigation

is the [MM] At time k the state estimate is calculated for each possible current model using r
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filters, with each filter using a different combination of the previous model-conditioned estimates

called mixed initial condition. The algorithm as outlined in Bar-Shalom et. al [10] is:

Step 1:

Step 2:

Step 3:

Calculation of the mixing probabilities. The probability that mode M; was in effect at

time k — 1 given that Mj is in effect at k conditioned on Z k=1 is given by:

pig (e = 10k = 1) 2 P {0, (= 1) M (k) 2571} (4.30)
%P {Mj (k) |M; (k — 1), Zk_l} P {Mi (k- 1) ]Zk_l} . (431)

The above can be written as:

1 ..
i j (k—1|k—1):gpij,u,~ (k—1), L,i=1,...,r (4.32)
j

where the normalising constants are:

r

E]:Zpljﬂl(k_1)7 ’L',jZI,...,T'. (4'33)
i=1

Mixing. The mixed initial condition for the filter matched to M; (k) is calculated starting
with #¢ (k — 1|k — 1):

B9 (k—1k—1) =Y & (k—1k—py; (k—1k—1), ij=1,...,r, (434
=1

and the corresponding covariance is given by:
PY(k—1lk—1)=> p; (k= 1]k —1) {pi (k— 1]k —1)
i=1
+[# (k= 1k —1) — 2% (k — 1]k — 1)] (4.35)

~[i:i(k—1|k—1)—io(k:—1|k:—1)]T}, hi=1,...,r

Mode-Matched Filtering. The estimates of the states and covariances calculated in step
2 above are used as inputs to the filter matched to M; (k) which uses z (k) to determine

#7 (k|k) and P7 (k|k). The likelihood functions associated to the r filters:

Ay (k) =p |2 (k) M (k) 2 (4.36)

are calculated using the mixed initial condition and covariance from step 2:

Aj (k) =p[z(k)|M;(k), 2% (k—1]k—1),PY (k—1k—1)], j=1,...,r, (437)
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that is:

Aj (k) =N [z(k); 27 [klk —1;2% (k — 1|k — 1)] .87 [;; PY (k- 1k - 1)]], j=1,...,n
(4.38)

Step 4: Mode Probability Update. The mode probabilities are then updated via:
1 _
pi (k) = —A; (k) &, (4.39)
where c is the normalisation constant and is given by:

c=Y A;(k)e. (4.40)
j=1

Step 5: Estimations and Covariance Combination. The output is obtained by combining the

model-conditioned estimates and covariances:

#(klk) = Y@ (k|k) py (K), (4.41)
j=1

Pklk) = 3wy (k) {P7 (klR) + [7 (|R) = & (kIR)] (27 (kIR) — & (kIR)] T} (4.42)
j=1

Figure [4.1] illustrates the flow of the [MM] algorithm given above and has been taken from Bar-
Shalom et. al [10].

#E-1|k-1),P(k-1]k-1) #F(k-1k-1), P(k-1]k-1)

Interacting/ Mixing

'k —-11k-1), P"(k-1|k-1) 221k -1, PoE-11k-1)

Filter Filter
k) — M, — Afk) (k) —> M, —>AR)

i l

(k| k) P'(k| ) 22k k), P (k| k)

Mode probability (k&) P (k] &) —

AR — date and —> #(kl k) Stateestimate [ > #klk)
upda el:nb'l't k| PEID) —>  and covariance
mixing probability L
— — —
A, (%) calculation u(k) ) combination P(k|k)

Figure 4.1: IMM Algorithm Flow Chart [10]

144



This section provided a brief overview of FDI techniques as well as describing in detail the meth-

ods chosen for further investigation, the [EKF], the [UKF] and the [MM] filters. These techniques

are applied to the 2D robot model in the next section.

4.4 Problem Formulation

To test the different filtering techniques in an context the robot model (see figure in
section |3.5.1)) is used again for illustrative purposes.

The fault, which will be simulated and tested for, is a punctured wheel. If a wheel is punctured

the radius of the wheel will decrease and so the filters are set up to estimate the radius of the
wheel. Four different filters have been designed, the [EKF] the [UKF], the [EKF|[IMM] and the
[UKE TMML

The robot parameters used for all simulations are given in table

Table 4.1: Simulation parameters for 2D robot model for [FD]| simulations

Right wheel radius, Rp 2m
Left wheel radius, Ry, 2m
Distance between wheels, b 1m
Speed demand 10m/s
Input constraints on wg and wy, | £1000 deg / sec

The[NMPC] controller is constructed using the pseudospectral method with 50 coincidence points
and a prediction window length of 5 secs. The filters are updated at 100Hz while the controller
is updated at 10Hz.

All work was developed using MATLAB with SNOPT as the nonlinear programming problem|

(NLP)| solver.

4.4.1 EKF Fault Detection Filter

The state vector for the [EKF] consists of the following states:
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X = [LU, Y, 1/}7 RR7 RL]Tv (443)

where x, y and v are the robot states as defined in subsection and Rpr and R are the

right wheel and left wheel radii respectively.

The measurements are assumed to be of the speed, V', of the robot:

2=V (k) +w(k), (4.44)

where w(k) is additive white noise. The initial state vector and initial covariance matrix are:

052 0 0 0 0
0  (0.5)? 0 0 0
x(0) = [0, Yo, Yo, 2, 2|7,  PO)=| 0 0 (1x/180)2 0 0 |- (4.45)
0 0 0 052 0
|0 0 0 0 (0.5)%]

(5A1?2 0 0 0 0 |
0 (5 At)?%; 0 0 0
Q=1 0 0 (0.1AH)? 0 0 |, R=(05)7 (4.46)
0 0 0 (2 At)? 0
0 0 0 0 (2At)2)

where At is the update rate of the filter.

For the prediction cycle an Euler integration scheme is used to predict the states of the [EKF]

forward:
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v = o5 WR — Sy WL, (4.47)
Y(klk—1) = ¥k —1)+dt, (4.48)
VE-1) = Dot S, (1.9
t = Vecos(¢(klk —1)), (4.50)
zp(klk—1) = x(k—1)+zdt, (4.51)
y = Vsin(¢(klk —1)), (4.52)
y(klk—1) = y(k—1)+ydt, (4.53)
Rr(klk—1) = Rp(k—1), (4.54)
Rp(klk—1) = Rp(k—1). (4.55)
The predicted measurement 2 is given by:

z(k) =V (klk - 1), (4.56)

and the F transition matrix (Jacobian matrix) is given by:

1 0 <_—§RwR sin(y) — %wL sin(w)) At (“E cos(v)) 6t (“£ cos(v)) dt|

01 (Brwneos(v) + Brwpcos(w)) At (S sin(u(k|k — 1)) At (% sin(v)) At

F=10 0 | (92) At (o) At
0 0 0 1 0
00 0 0 1 |
(4.57)
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N.B. In the matrix above ¢ = 1(k|k — 1), Rp = Rr(k|k — 1) and Ry, = Rr(klk —1).

Here At is the prediction update rate of the filter and has been chosen as 100 Hz or At =

0.01secs. The Jacobian matrix H is given by:

H=10 0 0 Zrup %WL}. (4.58)

Given the above information the Kalman filter equations given in section are applied to

estimate the radius of each wheel in the experiments conducted in section

4.4.2 UKF Fault Detection Filter

The general structure of the [EKF| and [UKF| are very similar in that they both have a prediction

and update cycle and produce a single state vector and a corresponding covariance matrix. For
the robot model the state vector is the same as the one given in equation . The initial state
vector, initial covariance matrix, the process noise matrix () and the noise covariance matrix R
all remain the same as those given in subsection [£.4.1] The [UKF| algorithm given in subsection
is applied to the robot model with £ = 0.001 [120] (see subsection [4.3.2).

4.4.3 Interacting Multiple Model Fault Detection Filter

The interacting multiple model method, as the name suggests, is made up of multiple models
where each model tests a different hypothesis. Four different models (the terms mode and model
are used interchangeably and have the same meaning in the context of [MMSs)) have been designed

where:

Model 1: No Fault case.
Model 2: 50% right wheel deflation, left wheel no fault.
Model 3: Right wheel no fault, 50% left wheel deflation.

Model 4: 50% right wheel deflation, 50% left wheel deflation.

During Step 3 of the [MM] algorithm given in section a filter such as the [EKF] is used to
update the states and covariances. This study looks at both an based filter and a
[UKT] based IMM filter.
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The initial covariance matrix for each filter and each mode are the same as equation (4.45)). The
@ and R matrices are those given in equation (4.46|) and the initial state vectors for each filter

and mode are:

x1(0) = [0, yo %o 2 2], (4.59)
x2(0) = [0, yo Yo 1 2], (4.60)
x3(0) = [0, yo Yo 2 1], (4.61)
x4(0) = [0, yo Yo 1 1]T. (4.62)
(4.63)
The mixing probabilities or mode probabilities are initially set to:
o= [1/4,1/4,1/4,1/4]7, (4.64)

and the mode transition probabilities matrix p is set to:

(0.97 0.01 0.01 0.01
0.0 097 0.01 0.01
p= . (4.65)
0.0 001 097 0.01

10.01 0.01 0.01 0.97

4.5 Numerical Results and Analysis

The following reference trajectory is used to test the different fault detection techniques:
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Closed Loop Trajectory

&0 _ _ ! !

20

x[m]

Figure 4.2: FDI: Reference Trajectory

To simulate the measurement additive white noise is added to the speed of the robot which is

calculated as a part of the truth simulations of the robot movement.

To test the filters four different test cases were set up and each test case was run twice. During
the first run the feedback loop is not closed and the filters are used for estimation only.
The loop is closed during the second run to investigate the behaviour of the full active

controller. The test cases are as follows:

Scenario 1: No Fault. The objective is to investigate how well the filters estimate the radii

of the tyres in a no fault situation.

Scenario 2: Left wheel 50% puncture. In this case a puncture is simulated to occur 10 secs
into the simulation. The wheel is assumed to deflate to 50% of its original

value instantaneously.

Scenario 3: Left and Right Wheel puncture. In this test case a left wheel puncture is
simulated 5 secs into the run and a right wheel puncture is simulated to occur
10 secs into the simulation. Both punctures are assumed to cause an instan-
taneous reduction of the respective wheel radius to 50% of the original wheel

radius.
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Scenario 4: Left wheel linear puncture. In this test case once again the left wheel is
punctured 10 secs into the run however this time the puncture is assumed to
follow a linear reduction in wheel radius according to Ry = 2 —0.1t, where Ry,
represents the left wheel radius reduced from its original value of 2m down to
0.1m at a rate of 0.1m/s and t is the current time. The radius does not drop

to Om as this caused a complete system failure.

The results for each filter are presented in the next four subsections:

4.5.1 Scenario 1
4.5.1.1 Speed Errors (Innovations)

The plots given in figure show the speed innovation (speed errors or correction made as a re-
sult of the measurement update, blue solid lines) along with the 20 uncertainty bounds (dashed
red lines) for the The 20 uncertainty bounds are a 95% confidence interval and the so-
lution (errors in this case) must remain within the bounds 95% of the time. The figure shows
that the [EKF]| filter performs very well for the whole run as the speed errors remain well within

the uncertainty bounds throughout the duration of the run both with and without feedback.

The speed innovations produced by the are given in figure Similar to the the

[UKF] produces innovations which are well within the 20 bounds for the whole simulation run.
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Scenario 1 - EKF Speed Innovations
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Figure 4.3: Scenario 1 - EKF Speed Innovations, 20 Uncertainty Bounds (dashed lines), Speed

Innovations (solid line)
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Scenario 1 - UKF Speed Innovations

25

Mo Feedback

V Errors [m/s]
o

Time [secs]

25

With Feedback

V Errors [m/s]
o

Figure 4.4: Scenario 1 - UKF Speed Innovations, 20 Uncertainty Bounds (dashed lines), Speed

Innovations (solid line)

The speed error plots for the IMM EKF are given in figure for the no feedback case and in

Time [secs]
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figure for with feedback. Both figures show the innovation produced by each model, and the

plots show that the filter is able to very quickly detect the model of operation of the robot. In

both case, from the value of the uncertainty bounds, the correct model for scenario 1 is model 1

which has the least uncertainty. Compared to the other models, model 1 is the most confident

about its estimation of the radius.
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Scenario 1: Speed Innovations IMM EKF No Feedback
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Figure 4.5: Scenario 1 - IMM EKF Speed Innovations No Feedback, 20 Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)
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Scenario 1: Speed Innovations IMM EKF With Feedback
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Figure 4.6: Scenario 1 - IMM EKF Speed Innovations With Feedback, 20 Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)

Figure [4.7] and [4.8] are plots of the IMM UKF Speed errors with no feedback and with feedback
respectively. The same behaviour is present as that seen in the IMM EKF case where mode 1

has the most confident estimates.
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Scenario 1: Speed Innovation IMM UKF No Feedback

2r Model 1

V Errors [m/s]
o

] 5 10 15 20 25
Time [secs]
4 T T T T
2 4
=2
E
£ of Model 3 1
o
= 21 i
b s rm s et e e o 1 S i =
4 I L 1 L
] 5 10 15 20 25
Time [secs]

\ Errors [m/s]

\ Errors [m/s]

—F

Model 2 b

e e e iy i

) 10 15 20 25
Time [secs]
PR — J— o e e e g e ]
Model 4
e = A o e e i - ]
1 1 1 1
1] ) 10 15 20 25
Time [secs]

Figure 4.7: Scenario 1 - IMM UKF Speed Innovations No Feedback, 20 Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)

Scenario 1: Speed Innovations IMM UKF With Feedback
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Figure 4.8: Scenario 1 - IMM UKF Speed Innovations With Feedback, 20 Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)
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4.5.1.2 Wheel Radius Estimates

Figures [4.10] {.11] and [£.12] are plots of the wheel radius estimates produced by each of the

four filters respectively. The estimates are provided for both wheels with and without feedback
to the controller. In both cases the filter does a very good job of estimating the radius of the
tyres. The IMM filters initially have a higher error in the tyre estimate as the estimation is
based on a mixture of all the models, however as can be seen in figure [£.11] and it takes

only one update for the IMM to reach the correct estimate.

Scenario 1 - Wheel Radius, EKF
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Figure 4.9: Scenario 1 - EKF Radius Estimates, Right wheel (top), Left wheel (Bottom)
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Scenario 1 - Wheel Radius, UKF
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Figure 4.10: Scenario 1 - UKF Radius Estimates, Right wheel (top), Left wheel (Bottom)

Scenario 1 - Wheel Radius, IMM EKF
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Figure 4.11: Scenario 1 - IMM EKF Radius Estimates, Right wheel (top), Left wheel (Bottom)
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Scenario 1 - Wheel Radius, IMM UKF
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Figure 4.12: Scenario 1 - IMM UKF Radius Estimates, Right wheel (top), Left wheel (Bottom)

In figures and the estimates are very similar hence they are sitting one on top of the

other making the red and blue lines invisible.

4.5.1.3 Wheel Speeds

The wheel speeds are given in figures [4.17], [£.18] .19 and [4.20] for each of the four filters

respectively. For scenario 1 where there is no fault the wheel speeds for all four filters are very
similar. In the case where feedback is provided the wheel speeds are quite noisy, a result of

calculations based on noisy measurements which is a consequence of feedback.
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Scenario 1: Angular Rates - EKF
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Figure 4.13: Scenario 1 - EKF Angular Rates, Right wheel (top), Left wheel (Bottom)

Scenario 1: Angular Rates - UKF
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Figure 4.14: Scenario 1 - UKF Angular Rates, Right wheel (top), Left wheel (Bottom)
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Scenario 1: Angular Rates - IMM EKF
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Figure 4.16: Scenario 1 -

4.5.1.4 Trajectories

Time [secs]

IMM UKF Angular Rates, Right wheel (top), Left wheel (Bottom)

Plots of the robot trajectory are given in figures|4.17] [4.18] [4.19|and [4.20] for all four of the filters.

The robot is seen to remain on the path with and without feedback which is to be expected in
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the no fault case.
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Figure 4.17: Scenario 1 - EKF Trajectory
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4.5.2 Scenario 2
4.5.2.1 Speed Errors (Innovations)

The innovations for the Speed are given in figures [£.21] [4.22] [4.23] [4.24] [£.25] and [£.26] The fault

occurs at 10 secs into the run, and upon investigating the [EKF| and [UKF| innovation plots given
in figures and respectively this can be seen from the peak change in the innovation

curves. The corrections increase at the time the fault occurs and then settle again near zero
once the correct estimate is reached. The IMM filters also show this peak change. Mode 3 is
the correct match for scenario 2 and both of the IMM filters can be seen to find the correct
mode immediately as mode 3 is the most confident in its estimate. Mode 3 and Mode 4 both
hypothesise a failure in the left wheel of 50% which is why after the occurrence of the fault the
uncertainties do not increase. However because mode 1 and mode 2 do not hypothesise a fault
in the left wheel the uncertainties can be seen to increase once the fault has occurred. Mode 3
is seen to have more of a decrease in uncertainty than mode 4 after the fault occurrence because
mode 4 hypothesises that both wheels are punctured whereas mode 3 predicts the puncture of

only the left wheel. In both cases the [EKF| and [UKF| exhibited similar performance. Another

point to note is that in the single filter cases feedback did not have much of an effect on the
innovations. However, in the case of the IMM filters the results show that with feedback the
filter errors do not grow as rapidly between updates. The errors are seen to grow very quickly

when no feedback is present.
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Scenario 2 - EKF Speed Innovations
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Scenario 2: Speed Innovations IMM EKF No Feedback
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Figure 4.23: Scenario 2 - IMM EKF Speed Innovations No Feedback, 20 Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)
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4.5.2.2 Wheel Radius Estimates

The wheel radius estimates for [EKF| are given in figure and for in figure The
results show that the [UKEF] estimates are closer to the actual wheel radius compared to those
produced by the Turning on feedback results in the filters reaching a steady estimate
faster when compared to the no feedback case. The IMM filters produce better estimates than
the single filters as can be seen from figures and with feedback providing very little

improvement on the estimate.
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Figure 4.27: Scenario 2 - EKF Radius Estimates, Right wheel (top), Left wheel (Bottom)
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Scenario 2 - Wheel Radius, IMM UKF
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Figure 4.30: Scenario 2 - IMM UKF Radius Estimates, Right wheel (top), Left wheel (Bottom)

4.5.2.3 Wheel Speeds

The wheel speeds are given in figures [4.31] [4.32] 4.33] and [4.34l The results for all four filters

present the same trends. Without feedback there is much more activity present compared to
turning on the feedback. Once the fault occurs the robot yaws to the side with the punctured

wheel and demands a faster speed to compensate for the loss in radius.
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Scenario 2: Angular Rates - EKF
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Figure 4.31: Scenario 2 - EKF Angular Rates, Right wheel (top), Left wheel (Bottom)
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Figure 4.32: Scenario 2 - UKF Angular Rates, Right wheel (top), Left wheel (Bottom)
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Figure 4.34: Scenario 2 - IMM UKF Angular Rates, Right wheel (top), Left wheel (Bottom)

4.5.2.4 Trajectories

The trajectory for the filters given in figures [£.35] [£.36] [£.37] and [£.38| all show that the robot was

only able to remain on the path if feedback from the filter was provided to reconfigure the con-
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troller. Although the filters’ estimates without feedback were excellent, without reconfiguration

of the controller the robot could not be made to follow the desired path.
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Scenario 2: Trajectory - IMM EKF
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Figure 4.38: Scenario 2 - IMM UKF Trajectory

4.5.3 Scenario 3

4.5.3.1 Speed Errors (Innovations)

Figures [4.39] [4.40] [4.41] [4.42] [4.43] and [4.44] show plots of the speed innovations for scenario 3

for all four filters with and without feedback. All plots clearly indicate, from the sudden changes
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in innovations, the detection of both faults, left wheel at 5 secs and right wheel at 10 secs. The
[EKF] innovations were found to be consistent, however the innovations produced by the [UKF|
show that, with feedback, the innovation uncertainty begins to grow rapidly between updates
whereas without feedback the uncertainty remains constant. The IMM filters show that after 5
secs model 3 is the best model. However once the second fault occurs the filters do an excellent
job of recognising that mode 4 is the correct match and uncertainties in mode 4 are seen to
decrease. Again with no feedback the uncertainties on the IMM filters grow rapidly between

updates and many more corrections are required.
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Innovations (solid line)
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Scenario 3 - UKF Speed Innovations
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Scenario 3: Speed Innovations IMM UKF With Feedback
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Figure 4.44: Scenario 3 - IMM UKF Speed Innovations With Feedback, 20 Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)

4.5.3.2 Wheel Radius Estimates

The radius estimates produced by the filters, given in figures [£.45| [4.46] [£.47] and [4.48] show
that the IMM filters produce the best estimates of the radii. The [UKEF] performs slightly better

than the and turning feedback on results in a faster settling time.
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Figure 4.46: Scenario 3 - UKF Radius Estimates, Right wheel (top), Left wheel (Bottom)
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Scenario 3 - Wheel Radius, IMM EKF
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Figure 4.47: Scenario 3 - IMM EKF Radius Estimates, Right wheel (top), Left wheel (Bottom)
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Figure 4.48: Scenario 3 - IMM UKF Radius Estimates, Right wheel (top), Left wheel (Bottom)

4.5.3.3 Wheel Speeds

Figure [4.49] presents the angular rates achieved by the robot as a result of estimates

which show that once a fault occurs that particular wheel is required to spin faster in order to
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compensate for the loss in radius. The angular rates given in figure show that estimates

used by the [UKF] to reconfigure the controller resulted in operation at the constraints. Both

IMM filters displayed similar behaviour in that once a wheel was punctured it was required to

rotate faster to compensate for the loss in radius.
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Figure 4.51: Scenario 3 - IMM EKF Angular Rates, Right wheel (top), Left wheel (Bottom)
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Figure 4.52: Scenario 3 - IMM UKF Angular Rates, Right wheel (top), Left wheel (Bottom)

4.5.3.4 Trajectories

The trajectory produced by each filter for scenario 3 (figures [4.53] [4.54] |4.55| and [4.56]) show

that without feedback it is impossible to maintain the robot on the path. Reconfiguring the
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controller on the other hand with estimates from the filters allowed the robot to easily follow
the reference path. An anomaly occurred with the [UKE] filter where even turning the feedback
on did not result in the robot following the path after the occurrence of the second fault. This

could possibly be the result of poor tuning of the filter.
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4.5.4 Scenario 4
4.5.4.1 Speed Errors (Innovations)

Scenario 4 velocity innovations are presented in figures and for the [EKF] and [UKF]
respectively. The [EKF]|breaks down 5 seconds after the fault occurs, when feedback is turned on

as can be seen by the innovations exceeding the covariance bounds. Without feedback however
the innovations remain within the uncertainty bounds. The results from the [UKF| however are
much better as it produces innovations which remain well within the uncertainty bounds with
and without feedback. Both of the IMM filters failed, because the fault type of scenario 4 was
not modelled as a part of the filter design, i.e. the hypothesis for this type of failure is not

accounted for and so no model exists for this failure.
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Figure 4.57: Scenario 4 - EKF Velocity Innovations, 20 Uncertainty Bounds (dashed lines),

Velocity Innovations (solid line)
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Scenario 4 - UKF Speed Innovations
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Scenario 4: Speed Innovations IMM EKF With Feedback
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Figure 4.60: Scenario 4 - IMM EKF Velocity Innovations With Feedback, 20 Uncertainty Bounds

(dashed lines), Velocity Innovations (solid line)
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Figure 4.61: Scenario 4 - IMM UKF Velocity Innovations No Feedback, 20 Uncertainty Bounds

(dashed lines), Velocity Innovations (solid line)

186



Scenario 4: Speed Innovations IMM UKF With Feedback
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Figure 4.62: Scenario 4 - IMM UKF Velocity Innovations With Feedback, 20 Uncertainty Bounds

(dashed lines), Velocity Innovations (solid line)

4.5.4.2 Wheel Radius Estimates

The wheel radius estimates are given in figures [4.63] [£.64] [4.65] and [£.66] The results show
that without a hypothesis on the IMM filters the [UKF]| was the only filter able to produce

the correct estimates of the wheel radii. Figure [4.64] clearly indicates that reconfiguring the

controller resulted in a faster convergence to the correct estimate.
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Scenario 4 - Wheel Radius, IMM EKF
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Figure 4.65: Scenario 4 - IMM EKF Radius Estimates, Right wheel (top), Left wheel (Bottom)
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Figure 4.66: Scenario 4 - IMM UKF Radius Estimates, Right wheel (top), Left wheel (Bottom)

4.5.4.3 Wheel Speeds

Plots of wheel speed are presented in figures [£.67] [4.68], [4.69] and [£.70l The results produced
by all four filters with and without feedback show that with this type of fault both wheels are
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required to work at the constraints.
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Figure 4.67: Scenario 4 - EKF Angular Rates, Right wheel (top), Left wheel (Bottom)
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Scenario 4: Angular Rates - IMM EKF

1000

a00 —

-500

™ [deg/sec]
o
T

No Feedback
—With Feedback

m

-1000
0

1000

Time [secs]

a00 —

| ||| H“H“ \” I H“H“ \“ I

-600

® [deg/sec]
o
T

Mo Feedback
—With Feedback

l B ! M

-1000
0

Time [secs]

Figure 4.69: Scenario 4 - IMM EKF Angular Rates, Right wheel (top), Left wheel (Bottom)
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Figure 4.70: Scenario 4 - IMM UKF Angular Rates, Right wheel (top), Left wheel (Bottom)

4.5.4.4 Trajectories

Figures [4.71], [£.72] [£.73] and [4.74] display the robot trajectory as a result of the different filter

information. None of the filters show full compliance with the reference trajectory, however the
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was able to maintain the robot on the path the longest.
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4.5.4.5 Filter Re-Design

This section looks at the behaviour of the IMM filters by re-designing the filters to accommodate

the fault type covered by scenario 4. The filters were modified by adding a fifth model, which

hypothesises the left wheel puncturing in the manner described by scenario 4. The five different

models are:

Model 1: No Fault case

Model 2: 50% right wheel deflation, left wheel no fault

Model 3: Right wheel no fault, 50% left wheel deflation

Model 4: 50% right wheel deflation, 50% left wheel deflation

Model 5: Right wheel no fault, left wheel deflation according to Ry = 2 — 0.1¢, where ¢ is the

current time and once R reaches 0.1m it remains constant 0.1m.

The @ and R remain the same and the initial state vectors for each filter and mode are:

[z0,
[0,
[zo,
[0,

[.Z'(),

The mixing probabilities or mode probabilities become:

Yo o 2 2|7,
Yo Yo 1 2]T,
Yo o 2 1]7,
Yo Yo 117,

Yo o 2 2|T.

pw=1[1/5,1/5,1/5,1/5,1/5]T

and the mode transition probabilities matrix p is redefined as:

[0.96
0.01
p=[0.01
0.01
0.01

0.01
0.96
0.01
0.01
0.01

001 001 0.01]

0.01
0.96
0.01
0.01
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The speed innovations for the IMM EKF are presented in figures and [4.76) with no feedback
and with feedback respectively. As predicted the results show that if a hypothesis is made the
IMM performs very well. The [EKF] as part of IMM is able to predict this type of error which
it was unable to do as a single filter. The IMM UKF results are presented in figures and
without feedback and with respectively. The IMM UKEF shows a higher level of confidence
in its estimates compared to its [EKF| counterpart as the uncertainty is lower and consistent.
Providing feedback in both cases (EKF and UKF IMMs) was shown to increase confidence in

the filter estimates.
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Figure 4.75: Scenario 4 - 5 Model IMM EKF Velocity Innovations No Feedback, 20 Uncertainty

Bounds (dashed lines), Velocity Innovations (solid line)
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Scenario 4: Speed Innovations IMM UKF With Feedback, 5 Models
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Figure 4.78: Scenario 4 - 5 Model IMM UKF Velocity Innovations With Feedback, 20 Uncer-

tainty Bounds (dashed lines), Velocity Innovations (solid line)

The estimates of the wheel radii for the 5 mode IMMs are shown in figures and for
the EKF IMM and UKF IMM respectively. The results show that in both cases the filters do

an excellent job of making the correct estimatations on the radius of the wheel.
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Scenario 4 - Wheel Radius, IMM EKF, 5 Models
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Figure 4.80: Scenario 4 - 5 Model IMM UKF Radius Estimates, Right wheel (top), Left wheel

(Bottom)

The angular rate plots of the 5 mode again show that the control inputs are required to
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work at the constraints the majority of the time once the fault has occurred. This result is not

dependent on the filter type but rather the fault that has occurred makes it impossible for the

robot to achieve the desired task while at the same time respecting its constraints.
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Figure 4.81: Scenario 4 - 5 Model IMM EKF Angular Rates, Right wheel (top), Left wheel

(Bottom)
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Scenario 4: Angular Rates - IMM UKF, 5 Models
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Figure 4.82: Scenario 4 - 5 Model IMM UKF Angular Rates, Right wheel (top), Left wheel
(Bottom)

The trajectory plots (figures and |4.84]) further show that for this type of fault where the
wheel radius has almost approached zero, the wheels are unable to maintain the reference. The
IMM UKF is again able to keep the robot on the path for a longer time than the IMM EKF.
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Figure 4.83: Scenario 4 - 5 Model IMM EKF Trajectory
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Scenario 4: Trajectory - IMM UKF, 5 Models
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Figure 4.84: Scenario 4 - 5 Model IMM UKF Trajectory

4.5.5 Discussion

The results of this section reveal that all the filters considered exhibit excellent qualities for fault
detection and identification. In terms of performance the IMM filter is far superior, however
the drawback of this type of filter is that all possible scenarios must be accounted for. The
method used in this research illustrated the concept of the [MM] by showing easy adaptability
to different situations, and the speed with which it is able to identify and reach the correct esti-
mate. However predicting exactly how a fault will occur (in this case how a tyre will puncture)
is impractical. A more practical implementation would have been to develop a number of filters
each with different process noises that could adapt to all different situations. The number of
filters and the process noise values would have to be determined by trial and error. In either
case an performs well if and only if it is equipped to make a hypothesis on the current
situation. If the given situation is unaccounted for the filter breaks down. In terms of the single
filter, in general the [UKF] displayed better performance than the [EKF} especially in the case of
scenario 4 where the nonlinearities of the fault caused the single [EKF| to breakdown. For these

reasons the [UKF| has been chosen to develop the fault tolerant flight controller.
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4.5.6 Comparison to Linear MPC

As a result of the findings given in subsection only the [UKF] with feedback is implemented
to compare nonlinear [MPC| with linear [MPC| The results given in the next two sections are for

scenarios 2 and 4 respectively.

4.5.6.1 Scenario 2

The velocity innovation plots in figure .85 show that the innovations remain well within the un-

certainty bounds and are approximately zero. However the uncertainty is double that produced

by the nonlinear controller (figure 4.22)).

Scenario 2 - UKF Speed Innovations, Linear MPC
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o
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Figure 4.85: Scenario 2 - Linear MPC UKF Speed Innovations, 20 Uncertainty Bounds (dashed

lines), Speed Innovations (solid line)

The wheel radii plots give in figure [£.86] show that the estimations produced by a nonlinear
controller are the same as those produced by the linear controller. Hence the filter performs well

even with linear [MPC]
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Figure 4.86: Scenario 2 - Comparison of Linear and Nonlinear MPC UKF Radius Estimates,

Right wheel (top), Left wheel (Bottom)

The angular rate plots for the linear controller (figure 4.87)) show that five seconds after

the fault occurred the linear controller pushes the wheels to operate at their constraints and is

unable to tolerate the faulty condition. This is further illustrated in the trajectory plot given

in figure which clearly shows that the nonlinear controller does an excellent job of

keeping the robot on the path despite a faulty wheel whereas the solution produced by the linear

controller has diverged.
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Scenario 2: Angular Rates - UKF, Linear MPC
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Figure 4.88: Scenario 2 - Linear and Nonlinear MPC UKF Trajectory
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4.5.6.2 Scenario 4

The speed innovations plot (figure |4.89) shows similar trends to those above in that the inno-
vations are quite small however the uncertainties with the linear filter are higher than those
produced as a result of nonlinear (figure [4.58)). The estimates of the wheel radii however

are very good and can be seen to be the same for both linear and nonlinear controllers (figure

1.92).
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Figure 4.89: Scenario 4 - Linear MPC UKF Speed Innovations, 20 Uncertainty Bounds (dashed

lines), Speed Innovations (solid line)
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Scenario 4 - Wheel Radius, UKF, Linear and Nonlinear MPC
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Figure 4.90: Scenario 4 - Comparison of Linear and Nonlinear MPC UKF Radius Estimates,
Right wheel (top), Left wheel (Bottom)

As expected the linear controller was unable to maintain the robot on the path as is evident by the
trajectory plot of figure Neither of the controllers were able to drive the robot on the path
as the wheel radius had almost reached 0m making it infeasible for the robot to continue. The
angular rates given in figure [4.91] show that the linear controller constantly demands operation
at the constraints oscillating between the upper and lower limits continuously. The nonlinear
controller results for wheel angular rates (figure shows that the right wheel oscillates
between the upper and lower bounds, however the left wheel is required to constantly work at

the upper bound.
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Scenario 4: Angular Rates - UKF, Linear MPC
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4.6 Summary Of Findings

The analysis from this work has proven the feasibility of my [NMPC] controller design with filter

estimates for controller reconfiguration as a viable solution to fault tolerant control.
Comparisons were also made between the performance of nonlinear [MPC| and linear MPC| The
results clearly show that for the purposes of reconfigurable fault tolerant control the nonlinear

[MPC] controller has better performance.

The next chapter will implement the pseudospectral controller with a [UKF| based [FD]]|

subsystem to an aircraft, for fault tolerant flight control.
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Chapter 5

Fault Tolerant Flight Control

5.1 Introduction

Sections and of this chapter have appeared as [73] and [72] respectively.

5.1.1 Motivation

In the development of any type of controller it is necessary to develop a model of the plant that

is to be controlled. Plant model development is very important particularly in the design of a

imodel predictive control (MPC)|controller as a variant of the plant model also forms an integral

part of the controller design. As discussed in chapter [3| a linearised model of the plant is used in
the design of a linear [MPC]| controller. Nonlinear [MPC| however incorporates the full nonlinear
model of the plant. Hence, in this chapter, I discuss the development of the aircraft model used

for both the plant and controller design.

The results of chapters |3 and 4] show that my active [fault tolerant control (FTC)| design us-
ing pseudospectral nonlinear model predictive control (NMPC)| integrated with an

[Kalman filter (UKF)| filter is a viable solution. To address the research questions stated in

chapter 2] I now apply my [FTC| design to aircraft control to investigate the feasibility of my

design solution as a fault tolerant flight controller.

5.1.2 OQOutline

This chapter is dedicated to applying the knowledge gained from the application of my [FTC]

design to the 2D robot model, to an aircraft system. To begin, an overview is given in section
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including the details of the system to be modelled. It puts into context a general aircraft
flight control system and gives details of what will be developed for this research and where my

system will fit into the overall aircraft flight control system.

This is followed by a section on aircraft dynamics (section |5.3)), which outlines the equations
used to develop the plant model and ultimately the prediction model of the NMPC] controller.

The development of the system is divided into two parts, longitudinal motion (section
followed by the development of the full 6DoF model (section which involves combining both
the longitudinal and lateral motions of the aircraft. The build up to the combined motion model

is required because aircraft motion is highly complex. These two sections look at controller de-

velopment only and assume [fault detection and identification (FDI)|information is provided.

The design process of the [FD]| subsystem is depicted in section for the full 6DoF aircraft
model. The research results within this section show that a more thorough examination of this
area is required as many problems were encountered, most beyond the scope of this current
research. To remain within the scope of this research and to demonstrate the proof of concept
of the feasibility of my system design to flight control, section looks at a very specific
application, namely engine failure during longitudinal motion. Engine failure results in a loss of
power to the aircraft reducing its ability to maintain flight. Thus, section develops the full
fault tolerant controller plus system for flight control.

Finally the findings are summarised in section [5.8] and a conclusion given, based on the results.

5.2 System Overview

All autonomous [junmanned aerial vehicles (UAVs)| are equipped with an onboard

ligation and control (GNC)|system. The system flies the aircraft on the desired trajectory. Thus

the design of a fault tolerant controller necessarily starts with an understanding of a typical
system model (given in figure . A system usually comprises of an outer
loop subsystem which is provided with a set of way points (points used to define an aircraft
trajectory) and navigation information. The navigation subsystem provides information on the
current status of the aircraft and uses filtering techniques to estimate aircraft position, orien-

tation, velocities and angular rates based on GPS data and sensor data provided by the plant.
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Sensor information consists of data, including linear accelerations and angular rates, provided
by the inertial measurement unit on board the aircraft. The outer loops compare the current
position of the aircraft with the required position based on the waypoints, and calculate a set
of demands (typically velocity and angular rate demands) that are then passed to the inner
loops. Navigation information as well as the demands from the outer loops is supplied to the
inner loops, and based on this, the flight controller, which sits within the inner-loops subsystem,
calculates the necessary control inputs required to achieve the demands. The control inputs are
then applied to the aircraft (plant) and sensor information is fed to the navigation subsystem

and the whole process begins again.

Sensor Data

GPS
x(k k
Navigation ) Inner Loops (k] Plant

Initial ——— 3
states, X,

Rate or Velocity

xtk) Demands

QOuter Loops

|

Reference Trajectory
or Waypoints

Figure 5.1: System Block Diagram of a Typical Guidance and Navigation Loop

My objective is the development of an active fault tolerant flight control system. Hence the
typical guidance and navigation system given in figure becomes the system given in figure
The fault tolerant control system, the area enclosed by the dashed rectangle and comprising
of the innerloops and the [FD]| subsystems, is the focus of my research. The [NMPC]| controller
developed in chapter [3| sits within the inner-loops subsytem; and the filter used for fault detec-
tion lies inside the subsystem.
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Figure 5.2: System Block Diagram of a Guidance and Navigation Loop with an Active Fault
Tolerant Flight Control System

As is evident from the diagrams in figures [5.1] and it is necessary to derive a plant model
to develop the controller. Here, the navigation and guidance subsystems are not developed but
assumed. The plant model doubles as the navigation model and the guidance subsystem for the
6DoF work in section is provided by Williams [127]. The next section details the aircraft

model.

5.3 Aircraft Model

The aircraft model to be used as the plant model and ultimately the prediction model for the
NMPC]| controller is developed in this section. For any control system design the behaviour of
the system to be controlled, in this case an aircraft, is simulated by the plant model. Thus, for
flight controller development the plant must simulate an aircraft, governed by the equations of

motion for flight.

The equations of motion for an aircraft are well defined and well documented [115] [I14]. The
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orientation of an aircraft with respect to the airflow directly affects the forces and moments
produced on the body of the aircraft which act at the centre of gravity. In a uniform airflow the
aerodynamic forces and moments are unchanged after a rotation around the freestream velocity
vector, and only two orientation angles with respect to the relative wind are needed to calculate
them. These angles, known as aerodynamic angles, the angle of attack o and the angle of sideslip

B, are defined within the body-fixed coordinate frame denoted by the subscript b, (see ﬁgure.

Aircraft motion is defined by position coordinates, linear velocities, orientation angles and an-
gular velocities (or angular rates). The state vector of the aircraft plant model is therefore given
by:

x=[ry xg 2p Vv Vg VD ¢ 0 ¢ p q 7]T, (5.1)

where x,x g, xp are north, east and down position coordinates respectively, given in an earth

fixed tangent frame, called the navigation frame (or [North, East, Down (NED)|frame), denoted
by the subscript n, (see figure |5.3). The is an Earth fixed frame, with the origin located

at a point on the Earth. In practice this origin is defined at the point where the aircraft is
initialised for flight. The vectors Vi, Vg, Vp are the velocities in the north, east, and down
directions respectively, ¢, 0,1 are the aircraft orientation angles roll, pitch and yaw respectively

and, p, q,r are the roll, pitch and yaw angular rates respectively.

Xp

- Xz-plane

Figure 5.3: Aircraft Coordinate Frames
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The forces and moments used to derive the equations of motion act at the centre of gravity (c.g.)|

of the aircraft, which is also the location of the body fixed coordinate frame. All calculations

are performed in the body axis, with the position and velocities in the body axis then converted

to the frame. A conversion via multiplication with a |direction cosine matrix (DCM)| [115],

transforms the vectors in one axis system to another. The direction cosine matrix, Cy* [115], is
used to transform the body axis to the frame and is given by a 3-2-1 right-handed rotation

sequence, namely [115]:

e Right-handed rotation about the z-axis (positive 1),
e Right-handed rotation about the new y-axis (positive 0),

e Right-handed rotation about the new x-axis (positive ¢).

cosfcosy —cos@siniy + singsinfcosyy  sin¢siny + cos ¢ sin 6 cos Y
Cy = |cosfsinty  cospcosy +singsinfsiny  —singcosy + cos psinfsiny| - (5.2)

—sinf sin ¢ cos 6 cos ¢ cos

Note that, to go from the [NED] frame to the body frame the required [DCM]is the transpose of
Cy

Ch=(CPT. (5.3)

Up until this point the state vector of the plant has been described. The plant model is

initialised with information in the form of equation and the plant model must also provide

information in the same form. The first three elements of the state vector, xn, zg and xp are

propagated with time as follows:

in = Vu, (5.4)
ig = Vg, (5.5)
ip = Vp. (5.6)

The next three elements Vi, Vi and Vp are calculated via:

Ve = ag, (5.8)
Vb = ap+g. (5.9)
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Here an, agp and ap are the accelerations in the navigation frame, and g is acceleration due to
gravity equal to 9.81m/s?. All calculations are executed in the body axis hence the accelerations
are firstly found in the body axis then converted to the navigation frame. The body accelerations

ax,ay and ay are calculated via [52]:

_ T _ B
ax = Ox + T , ay = qSCY7 az = qSCZ, (5.10)
m m m

where ¢ is dynamic pressure and is given by:

1
q= 5pVT2, (5.11)

p is air density and has been taken at sea level which is 1.225kg/m?3, S is the aircraft wing
area and m is the mass of the aircraft. In the acceleration equations T is the total thrust
and it is assumed that the thrust acts along the X body-axis. The terms Cx, Cy and Cy are
the non-dimensional forces in the X, Y and Z directions, respectively, in the body coordinate
frame. The calculation of these forces vary from aircraft to aircraft but are always a function of

the angle of attack, a and the sideslip angle 8. The aerodynamic angles are calculated as follows:
To begin, the velocities from the state vector are converted from the navigation frame to the
body axis and are denoted by w,v and w in the xy,y, and z, directions respectively.

[u7 1}, w]T = C’Il;, [ereU UErel’ UDrel]T ° (512)

Where the subscript ‘rel’ indicates velocity relative to the wind. The angles o and 5 are

given by [52]:
w
a = arctan (E) , (5.13)
B = arctan <‘;)T) , (5.14)

where the true airspeed, Vr, is given by:

Vi =\ (0mp0)? + (v5,0)? + (00,0)°. (5.15)

The effects of wind and turbulence are considered in the plant model hence V) is given by [115]:

Vil = Vnav — Uwind,
_ T T
- [UN UE UD] - [UNwind vaind vaind] ’

= [UNrel vErel vDrel]T’ (516)
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and wye) is given by:

Wrel = W + Wwind,
= [p q r]T + [pwind Gwind rwind]Tv

= [prel Grel 7alrel].ra (517)

where Vygp is the aircraft velocity vector, Vg is the wind velocity vector with both being
measured in the NED] coordinate frame. w is the vector of angular rates of the aircraft and wying
is the angular rate (or turbulence) of the wind.

Finally the acceleration in the navigation frame is given by:

lan, ag, ap|T = [N, Ug, Op]T (5.18)
= Cy ax, ay, az]"+[0, 0, g]". (5.19)
The Euler angle (or aircraft orientation angles), ¢ (roll), 6 (pitch) and ¢ (yaw) are the next

three elements in the state vector (equation ([5.1))). These angles are given in the body axis and
are not converted to the frame. They are propagated in time via [52]:

¢ = p+tanf(gsing +rcosg), (5.20)
0 = gcos¢—rsing, (5.21)
: gsing+rcoso

b = e (5.22)

Finally the last three components of the state vector, equation ([5.1)), are the body angular rates

p, ¢ and r calculated using the following equations [52]:

p = (ar+cp+ciheng) ¢+3Sb(c3Cr+csCy), (5.23)
g = (c5p—crheng)T —Co (p2 — 7'2) +qScerCy, (5.24)
7 = (cgp—car+cgheng)q+qSb(caCr+cgCh), (5.25)
where:
o = (Iy —Iz) Iz — Ixz> ey — (Ix — Iy +1z) Ixz — Ixz? o = Iz
IxIz —Ixz*> IxIz —Ixz? ’ IxIz —Ixz*
= xz o1z - Ix o = Ixz
IxIz — Ixz* ° Iy T L
1 (I, — Iy) — Ixz? Ix
€7 =7 g = 5 Q= ———"7"%
Iy IxIz —Ixz IxIz —Ixz

216



The I terms are known as moments of inertia and Cj, C,, and C,, are known as moment coef-
ficients in roll, pitch and yaw respectively and vary from aircraft to aircraft. The term hepg4 is
the distance of the engine from the aircraft c.g. and for this work it is assumed to be zero. The
parameter ¢ is known as the mean aerodynamic chord of the wing. The values for p, ¢ and r are

provided as sensor measurements from the inertial measurement unit.

The general structure of the equations for the the non-dimensional force and moment coefficients
Cx, Cy, Cz, C;, Cpy, Cy, can be found in Stevens and Lewis [115]. The next section will discuss

in further detail the aircraft specific values used in this research.

5.3.1 Aircraft Specific Data

The equations of motion given thus far are the general equations of motion for a 6DoF air-
craft model. To develop the fault tolerant controller a specific aircraft model was required. A
collection of nonlinear aircraft simulation models complete with full mathematical equations,
for a number of aircraft, have been provided by NASA [52] in the open literature for research
purposes. The authors, Garza and Morelli [52], recognise that nonlinear aircraft simulations are
useful for dynamic analysis, control law design and validation, guidance and trajectory studies,
air combat investigations, pilot training, and many other tasks [52] and hence have provided
this valuable tool. All models given in [52] are based on manned aircraft, however the equations

supplied are non-dimensional, hence they can easily be modified represent a compact aircraft

such as a [JAV]

The generic aircraft model developed here for control law design and validation is based on
the McDonnell Douglas F-4 aircraft [52]. The aircraft specific data used for the modelling is

summarised next.

5.3.1.1 Dimensions and Weights

The aircraft model used for simulations and analysis is a fictional model with the aerodynamic
characteristics of the F-4 Phantom [52]. The properties given in tables and were used

for the simulated aircraft model.
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Table 5.1: Simulated Aircraft Dimensional Properties

Wing Area S 20 m

Mean Aerodynamic Chord ¢ 3m

C.G location w4 0 m

C.G reference location xc g rer 0m
Stall speed Viian 23 m/s

Table 5.2: Mass Properties of model used for simulation, in SI Units

Parameter

Weight (kg)

IX (kg.mQ)

IY (kg.mz)

IZ (kg.mQ)

IXZ (kg.mQ)

Value

1,177

2,257

11,044

12,636

106

The non-dimensional force and moment equations pertaining to the aircraft model can now be

detailed.

5.3.1.2 Force and Moment Coefficients

As previously mentioned the fictional aircraft has the aerodynamic characteristics (force and

moment properties) of the F-4 Phantom. At o < 15° the non-dimensional force and moment

coefficients are given by [52]:
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Cx

180qc

—85x10776.8% + <
T2 t

) (8.73 x 107 + 0.001c — 1.75 x 10~ *a?)

Cy = —0.0128 + 1.55 x 10738, — 8 x 107%5,.a

180D
" ( QV) (2.25 x 107%p + 0.0117r — 3.67 x 10~ *ra + 1.75 x 107%r6,) ,
TVt

Cy = —0.131 — 0.0538a — 4.76 x 10735, — 3.3 x 10 6.0 — 7.5 x 107°5,>
(180qc

i > (—0.111 4+ 5.17 x 10 %a — 1.1 x 10~%a?),
Cr= —598x10748 —2.83 x 107 % + 1.51 x 10°a?8
— 04 (6.1 x 107" +2.5 x 107°a — 2.6 x 107%?)

+6, (2.3 x 107" 4+ 4.5 x 10™°a)

1
+ 80b (4.2 x 107°p — 5.24 x 10~ *pa + 4.36 x 10~ pa’?
2V,

+4.36 x 107%r + 1.05 x 10" *ra + 5.24 x 107°r6,)

Cp= —6.61 x1072—2.67x 102 — 6.48 x 107°32
—2.65x107%B8% — 6.54 x 10735, — 8.49 x 10°5.x

+3.74 x 1079682 — 3.5 x 107°§,2

180qgc
w2V;

> (—0.0473 — 1.57 x 107°a) + (Teg.ref — Teg) Cz,

Cpn=228x10"36+1.79 x 107983 + 1.4 x 10754,

+7.0x107%,00 — 9.0 x 10745, + 4.0 x 10756,

1806
+ ( 2V> (—6.63 x 107°p — 1.92 x 10~°pa + 5.06 x 10~ %pa?
TTaVy

—6.06 x 107 — 8.73 x 10~°rd, + 8.7 x 107 %r5.q)

B (%) (Tegref — Teg) Cz.

—0.0434 +2.93 x 103 + 2.53 x 107°4% — 1.07 x 10 %a3? + 9.5 x 10746,

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

The 4,, 0. and ¢, terms are the control surface deflection angles, with details given in
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Note: In the plant model when calculating the forces and moments the velocity and angular rates
are as given by equations (5.16)) and (5.17) respectively, ie. the effects of wind and turbulence
are taken into account. However the prediction model used for the has no knowledge of

these disturbances and the wind and turbulence component is zero.

5.3.1.3 Thrust Model

The thrust force required to keep an aircraft in motion is generated by the engines. The thrust
term, T', appears in the velocity equations . The following thrust model taken from Bryson
[25] is used here:

H

- 5.32
"= 5o (5.32)
Trnae = ((30.21 — 0.668 hy — 6.877 hp? + 1.951 hy® — 0.1512 hyt)
1%
+ < T) (—33.8 4 3.347 hy + 18.13 hp? — 5.865 hy® + 0.4757 hyt)
Vr 2 2 3 4
+ < ) (100.8 — 77.56 hy + 5.441 hy? + 2.864 hy® — 0.3355 hr?) (5.33)
3
+ < T) —78.99 + 101.4 hy — 30.28 hp? + 3.236 hy® — 0.1089 hr)
4
4448.22
+ < T> (18.74 — 31.6 hy + 12.04 hp? — 1.785 hy® + 0.09417 hy*)) S
T = Traz Oth, (5.34)

where vy is the speed of sound, 340.3m/s, H the height or the —zp position of the aircraft, and
Otn, the amount of throttle applied, forms a part of the control vector (explained in subsection

5.3.9).

The derivatives of the states are integrated using fourth order Runge-Kutta integration to obtain

the position, orientation, speeds and angular rates of the aircraft.

The next section describes the aircraft controls and defines the terms dy,, e, d, and 9.

5.3.2 Aircraft Controls

The purpose of any control system is to manipulate the available controls to achieve a desired

outcome. For an aircraft the available controls are effected through the manipulation of the con-
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trol surfaces. Control surfaces are manipulated by deflecting them to achieve a desired response

and it is the job of the control system to calculate the amount of deflection required.

The three most common control surfaces are the elevators, ailerons and the rudder. Figure
shows the location of these control surfaces on an aircraft. The elevators are used to control
pitch (longitudinal motion), resulting in the nose of the aircraft going up or down. The ailerons
control roll movement causing one side of the aircraft wing to go down while the other goes up.
Finally the rudder controls the yaw angle of the aircraft, moving the nose of the aircraft right

or left. The rudder and the aileron together control the lateral motion of the aircraft

. Pitch 4 Yaw
Pai / -\\
[ ) Wl b
» N
\‘ \\
\ Elevators

\ Ailerons

Longitudinal axis !/ ~

1
\_4

Roll

Figure 5.4: Aircraft Control Surfaces

Another very important control input is the throttle, not given in the diagram as it is not located
on the outside body of the aircraft. The throttle controls the amount of thrust required with

the amount of throttle applied varying from 0% to 100%.

The equations given for the force and moment coefficients in section [5.3.1.2 contain the terms
Oe, 0, and 6. These terms represent the deflection angles for the elevator, aileron and rudder
respectively. The controls for the aircraft model are throttle (d¢,), de, 0, and 6,, and the control

vector is given by:
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w= [0, das O, &]T. (5.35)

The sign convention used for the control surfaces is given in

Table 5.3: Control Surface sign conventions.

Elevator trailing edge down positive negative pitching moment

Aileron  right-wing trailing edge down positive negative rolling moment

Rudder trailing edge left positive negative yawing moment

The equations presented above are used to model the plant in MATLAB/Simulink. Details of

the use of these equations in the modelling of the aircraft [F'TC| system are presented next.

5.4 Controller Design for Longitudinal Motion

Parts of this section have appeared as [73].

The design process of the controller is split into two parts. Initially a controller for only
the longitudinal motion of the aircraft is designed and then the model extended to the full 6DoF
model, presented in section

5.4.1 Model Description

The system given in figure is modelled in MATLAB/Simulink. The aircraft equations
given in section are used, for the plant and the prediction model for the [NMPC]| controller.
Note, however that when investigating longitudinal motion the following values are set to zero:
ba, O0ry p, 7, Cy, Ci, Cn, B, ¢ and . The plant doubles as a navigation system and guidance
information is assumed to be received in the form of a reference trajectory. Trajectory informa-
tion includes a desired height profile, required vertical speed and true airspeed. The effect of

wind is not considered for this part of the investigation.

The equations of motion are integrated forward in the plant model using a Runge-Kutta in-
tegration method with the MATLAB subroutine ode45. The controller runs at 10Hz and the
equations of motion are used as constraints to the optimal control problem. A pseudospectral

discretisation method is used with 50 collocation points and a prediction window H,, of 5 secs.
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The optimal control inputs are calculated via SNOPT. The aircraft is required to follow the

trajectory given in figure [5.5

Flight Trajectory - Longitudinal Motion

150 . ! ! . I : I

140

130

Height [m]
]
[=]
T

100

- i i i | i i i I I i
0

Time [secs]

Figure 5.5: Flight Trajectory for Longitudinal Motion

Adopting the pseudospectral discretisation method where both the states and controls are dis-

cretised, the optimisation vector is:

Xnmpc = [xDa VN; VD7 07 q7 6th7 667 Aatlﬁ Aée]Ta (536)

where Ady, is the rate of change of the throttle d;, and Ad. is the rate of change of the elevator
deflection 6.

The following optimal control problem is then solved:

H, " 2 2 2
s=uin 2% (Iol) - x5, + Vi) = Vi, + 8005, ) wii, 637
: =
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subject to

ty —to ,
<f2> D,;x(t)—% = 0,

x(to) — Xdem(to) = O,

Xip <X < Xyp,
up <u < Uy,

Abe,, < Ade < A6,

€1b

€ub?

5.38

ot
o

9

ot
e

ot
=

(5.38)
(5.39)
(5.40)
(5.41)
(5.42)

5.42

where xp and xp_, are the actual and reference heights respectively, and V; and V,;_, are the

actual and reference true airspeeds respectively. The cost function weights are square matrices

with the following diagonal values for each state: @), = 10, Qv = 5 and @, = 0.001 The con-

straints applied are given in table

Table 5.4: Constraints for longitudinal Motion

Variable | Upper Constraint | Lower Constraint
Tp 300 m 1m
%N 100 m/s 30m/s
Vb 3m/s —3m/s
0 None None
q None None
Oc 20 deg —20deg
Oth, 100% 0%
Adyp, 200 %/s —200%/s
Abe 200 deg/s —200deg/s

Note: the Control surface rates given in table are realistic for a high performance unstable

airframe or for a lower weight aircraft with a stable airframe, in either case a feasible fictional

aircraft model has been produced for simulation purposes to demonstrate proof of concept.

Given the above constraints in the event of no fault, the amount of throttle required is shown

in figure for the aircraft to maintain the height profile given in in figure
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Throttle - No Fault
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Figure 5.6: Throttle response - No Fault

It is also assumed that [FDIlinformation is available. This includes the time at which the throttle
becomes stuck and and the position at which it is stuck. This information is used to update the
constraint values of the NMPC]| controller. Providing the controller with the most accurate and

up to date information enables it to make better use of the healthy actuators.

5.4.2 Numerical Results
To illustrate the concept of the four different scenarios were set up:
Scenario 1: no fault case
Scenario 2: throttle stuck at 70% during entire flight,
Scenario 3: throttle stuck at 50% during entire flight,
Scenario 4: throttle stuck at 35% during entire flight,
Scenario 5: throttle stuck at 30% during entire flight,
Scenario 6: throttle stuck at 20% during entire flight,

Scenario 7: throttle stuck at 20% 80 secs into flight.

All plots given are of the optimal solution to illustrate proof of concept.
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5.4.2.1 True Airspeed

The aircraft was required to maintain a 50m/s true airspeed. The plots given in figure show
the aircraft true airspeed for each of the scenarios. When the aircraft is fault free it is able to
fly at the demanded true airspeed. However, when the throttle is stuck at 70% or even 50%
there is too much power continually being provided to the aircraft resulting in large airspeed
response. When the throttle is stuck at 35% the aircraft is able to maintain the demanded Vp
for only a short period of time, at the beginning of the flight mission. However at 30% throttle
the maximum deviation from the demanded airspeed is approximately 5m/s at any given time.
When the throttle drops below 30% the aircraft is unable to maintain the true airspeed which
drops to approximately between 35m/s and 30m/s. The plot for scenario 7 shows that once the
fault occurs at 80 secs the true airspeed immediately begins to drop, as expected. One main
point to note is that the NMPC controller ensures that the stall speed is never reached. This is

because the controller is designed to operate at 1.3 times the stall speed at a minimum.

5.4.2.2 Vertical Speed

The vertical speed response of the aircraft is shown in figure [5.8] The plots show the aircraft
response along with the constraints (in red) placed on the vertical speed. For high values of
throttle (70% and 50%) the vertical speed is continuously bouncing between the constraints in
an attempt to maintain the true airspeed demand. For the case when the throttle is stuck at
35% the vertical speed profile is seen to be similar to the no fault case, except in the descent
phase. During this phase, when the aircraft is descending and gaining speed, the vertical speed
response can be seen to continuously move between the constraints to regulate the speed. For
throttle values less than 30% there is insufficient power to maintain a climb hence the vertical
speed is seen to operate at the lower constraint or at zero. The plot for scenario 7 shows that
once the fault occurs at 80 secs the vertical speed moves between the constraints, working hard

to maintain the true airspeed.
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Vertical Speed - Stuck Throttle
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5.4.2.3 Elevator Activity

In regards to fault tolerance, the elevator activity is of the most interest. If the throttle is stuck
the elevator provides a level of redundancy to maintain the aircraft speed. Figure [5.9] shows
plots of elevator activity for the different scenarios. The plots clearly show that any change in
throttle increases the elevator activity when compared to the no fault case. The elevator activity
increases in an attempt to regulate the airspeed of the aircraft. In the case of the high throttle
values (70% and 50%) the elevator activity is the highest because a higher level of power is
continually being provided to the aircraft exceeding the amount required to fly at the demanded
speed. Hence the elevator constantly jumps between the constraints in an attempt to compen-
sate for the excess power. For the 30% stuck throttle case the elevator activity does increase
compared to the no fault case; however 35% throttle is closer to the amount required to maintain
the given height profile (refer to figure , hence the elevator does not need to work as hard
compared to the 70% and 50% cases. For the lower throttle values activity increases during the
climb and descent phases. In the climb phase of the mission there is not enough power available
to the aircraft, so it compensates by erratically deflecting the elevator. During the descent phase
however there is too much power; to regulate this and to stay within the velocity constraints
the activity again increases. The last scenario shows that at the fault occurrence time of 80 secs

the elevator increases activity to compensate for the faulty throttle.

It is difficult to assess whether the rate constraints on the elevator are respected over the entire
flight time. Hence the elevator activity for the first 10 seconds of flight for the elevator activity
is shown in figure [5.10] These plots zoom in on the elevator activity and show that the rate

constraints of 200 deg / sec are respected.
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Elevator Activity - Stuck Throttle
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Figure 5.9: Stuck Throttle - Elevator Activity, constraints (red lines), aircraft response (blue)

230



Elevator Activity - Stuck Throttle: First 10 secs of Flight
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Figure 5.10: Stuck Throttle - Elevator Activity: First 10 secs of Flight, constraints (red lines),

aircraft response (blue)
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5.4.2.4 Pith Angle and Pitch Rate

The figures given in and show the plots of pitch angle and pitch rate respectively. The
plots show that for the excessive power cases where the throttle is stuck at 70% and 50% the
pitch rate and pitch angle continuously oscillate to maintain the speed of the aircraft. For the
cases where little power is available the controller tries to maintain the pitch angle and pitch

rate at a relatively constant rate forcing the the aircraft to glide down to safety.

5.4.2.5 Angle of Attack

Another pertinent state which needs to be analysed is the |[Angle of Attack (AoA)l The model

used is valid only for o < 15 degrees and above this the equations of motion break down. The
non-dimensional force and moment coefficients valid for o > 15 degrees were provided by NASA
however I chose to limit the research to one model rather than multiple models. For future work
constraints should be placed on « or multiple models added. The plots given in figure show
the angle of attack during flight and it can be seen that at all times during the flight o remains

below 15 degrees for any given scenario.

5.4.2.6 g-Force, Body Acceleration

The g-forces experienced by the aircraft during all scenarios are given in figure It can be
seen that the maximum g-force experienced during flight for any given scenario is approximately
1.5g, except for the 70% throttle case. This was to be expected as there is too much power avail-
able to the aircraft. In this case the maximum g-force is 3g’s. The g-force is an important state

to consider when assessing the possible structural damage that the aircraft could experience.
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Figure 5.11: Stuck Throttle - Pitch Angle, 8

233



g [dey/s]

o
lj
9
<D

q [degs/s]
=

Pitch Rate - Stuck Throttle

No Fault Throttle 70%
T T T T T T 30 T T T T T T T T T

w
=

5]
[=]
T

1

20

[=]
T
1
=]

[=]
T
1
=]
T

|

g [degs/s]

20t 4
a0 1 1 1 L 1 1 L 1 1 L 30 1 L 1 1 1 1 1 L 1 1
] 10 20 30 40 a0 B0 70 80 90 100 110 1] 10 20 30 40 50 B0 70 50 90 100 110
Time [secs] Time [secs]
Throttle 50% Throttle 35%
30 T T T T T T T T T T 30 T T T T T T T T T T
20F |
10 —_
o
w
0 ! g
=
oH \I =
onlb
a0 1 1 1 L 1 1 L 1 1 | 30 1 L 1 1 1 1 1 L 1 1
] 10 20 30 40 a0 B0 70 80 90 100 110 1] 10 20 30 40 50 B0 70 50 90 100 110
Time [secs] Time [secs]
Throttle 30% Throttle 20%
30 T T T T T T T T T T 30 T T T T T

g [degs/s]

g [degs/s]

q [degs/s]

a0 . . . . a0
0 30 40 50 60 ]
Time [secs]
Throttle 20% @& 80 secs
30 T T T T T
200
10k
0 _'. Vv
10+
a0k
a0 1 I 1 1 I
0 10 20 30 40 50 60 70 a0 90 100 110

Time [secs]

Figure 5.12: Stuck Throttle - Pitch Rate, ¢
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Body Acceleration, a, [g-force] - Stuck Throttle
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Figure 5.14: Stuck Throttle - g Force (body acceleration, a,

236



5.4.2.7 Height Profile

The trajectory flown by the aircraft during the different scenarios is given in figure The
no fault case, as expected, follows the reference height profile perfectly. The 35% case is also
able to closely maintain the profile. In the 70% and 50% cases the aircraft continually tries
to regulate the airspeed to compensate for the excess power. The solutions produced by both
scenarios show the aircraft overshooting followed by an undershoot, so the solution oscillates
around the reference. When the throttle becomes stuck at 30% the aircraft begins the climb
phase of the mission but is only able to continue climbing for 20 secs before it begins gliding
towards the ground. In the 20% stuck throttle case the aircraft completes the straight and level
phase of the mission but does not have enough power to begin climbing, and descends to the
ground. The final scenario shows that the elevator is able to compensate for the stuck throttle

in mid-flight and successfully finish the mission.

5.4.3 Findings

The results given in this section illustrate that the nonlinear NMPC]|controller is a viable solution
for fault tolerant flight control. This is evident from the results which show that in the event of
a stuck throttle the controller is able to manipulate the movement of the elevator to compensate

for the fault.
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Height Profile - Stuck Throttle
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5.15: Stuck Throttle - Height Profile, reference (red lines), aircraft response (blue)

In the next section the full 6DoF model of an aircraft will be employed, and an controller

implemented.
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5.5 Six Degree of Freedom Aircraft Model with Fault Tolerant
Control

Parts of this section have appeared as [72].

In section the full 6DoF aircraft model was introduced and the longitudinal motion of the
aircraft was investigated for fault tolerant control in section In this section the full 6DoF
model is used and an controller is designed to control the aircraft and handle any un-

foreseen faults.

5.5.1 6DoF Controller Design

The system given in [5.2] is modelled in this section with the full 6DoF aircraft model. Again
the plant model doubles as the navigation model and the guidance system has been provided
by Williams [127]. The system was modelled in Simulink and the Dryden Wind Turbulence
model from the Aerospace Blockset [66] was used to model wind and turbulence. The guidance
subsystem is supplied with a series of way points and it provides the controller with angular
rate information, ie. it calculates the angular rates required to maintain the reference path and
are referred to as angular rate demands. The inner loops consists of two controllers, an
controller to control angular rates and a speed control loop which is a simple PI controller to
maintain a desired speed. An integrator is also implemented to calculate the integrated errors

in the angular rates.

A pseudospectral discretisation method is used and the state vector of the is given by:
Xnmpe = [p7 q, T, Ipv I(p I, ¢, 6ay Op, Abde, Adg, A(ST]T ) (543)

where p, ¢ and r are the roll rate, pitch rate and yaw rate respectively, I,, I, and I, are
respectively, the integrated errors in p, ¢ and r used to minimise the steady state errors, and Je,

04 and J, are the elevator, aileron and rudder deflections respectively.
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The prediction model of the nonlinear [MPC] controller is as follows:

p = (aar+cp+ciheng)q+qSb(csCr+caCh), (5.44)
g = (csp—crheng)T —cCs (p2 — 7"2) +gSecer Ch, (5.45)
7 = (cgp—car+cgheng)q+qSb(caCp+cyCh), (5.46)
I, = p—piem (5.47)
Iy = G- qaem (5.48)
I, = —Tdem, (5.49)

where p, ¢ and 7 are the predicted angular rates and pgem, Qdem and 7ger, are the demanded an-

gular rates. The remaining parameters given in the equations above are as defined in section [5.3

The following control problem is solved at each time step:

J=N+1

. H . NP N N .

s=nin Y (Iet) - caenly, + GG, + |AuG), ) wl) 550
b ]:1
subject to
tr—1t

<f20> Dx(t)—% = 0, (5.51)
w(to) - wdem(to) = 0, (5.52)
XIp <x< Xubs (553)
ujp S u S Uyp, (5.54)
Aulb < Au < Auub, (5.55)

with the constraints on the states as in table [£.5]
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Table 5.5: Constraints for 6DoF Motion

Variable | Upper Constraint | Lower Constraint
P None None
q None None
r None None
I, None None
P None None
I, None None
dA 20 deg —20deg
O 20 deg —20deg
OR 20 deg —20deg
Ady 200 deg / sec —200deg / sec
Adp 200 deg / sec —200 deg / sec
Adg 200 deg / sec —200 deg / sec

A prediction window length of 1 second was used with 16 coincidence points. A 1 second window
was deemed sufficient for the purposes of angular rate following as it is assumed that the angular
rate demands are constant across the window length. This is a reasonable assumption because
the angular rates do not change significantly after 1 second. The cost function weights are square

matrices with the following diagonal values for each state: @, = 1, @; = 0.001 and @, = 0.01.

5.5.1.1 Fault Simulation

The concept behind the fault tolerant controller design for the 6DoF model is based on moni-
toring the control derivatives. The non-dimensional aerodynamic coefficients for the forces and
moments given in section are made up of a series of aerodynamic and control derivatives.
For example the term —6.54 x 10736, in the pitching moment coefficient equation (5.30]) rep-
resents the pitch control derivative, Cp,;_, the contribution of the elevator control input on the
pitching moment coefficient. The contributions made by « and 5 are known as the aerodynamic

derivatives. In the example given (Cp,, = —6.54 x 1073) the value —6.54 x 1073 is specific

to the given aircraft as are all the derivative values given in equations (5.26)), (5.27)), (5.28)),

(5.29), (5.30) and (5.31)). For any aircraft these values are obtained via experimental testing or

computational fluid dynamic techniques, the derivatives are affected by any physical change in
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the control surface hence any change in a control derivative would indicate a fault.

For the simulation results given in subsection the faults are simulated by reducing the
efficiency of the control surface. The primary role of an elevator is to provide pitch control, so
its largest contribution is on the pitching moment, and therefore a change in the Cy,;_derivative
would indicate an elevator fault. The aileron contributes primarily to the rolling moment C;
and the control derivative associated with the aileron from equation (5.29) is C; 5, = 0.1 X 1074,
Finally the rudder has the biggest impact on the yawing moment, C,,, and the associated control
derivative from equation is Cps = —9.0 x 10~%. To simulate a fault in a control surface

the respective control derivative is reduced.

5.5.2 Numerical Results

To investigate the effectiveness of the NMPC] controller design as a fault tolerant controller the

aircraft was required to fly the trajectory given in figure [5.16

Reference Trajectory

-500
-1000

1500
207 -s000

North [m]

East [m]

Figure 5.16: 6DoF Reference Trajectory
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Three different scenarios were set up:

Scenario 1: faulty elevator: 70% reduction in efficiency 20 seconds into flight,

Scenario 2: faulty aileron: 80% reduction in efficiency 20 seconds into flight,

Scenario 3: faulty rudder: 60% reduction in efficiency 20 seconds into flight,

Each scenario is run with and without FDI information. FDI information is assumed and pro-

vides details on the time of fault and the efficiency of the control surface.

5.5.2.1 Scenario 1: Faulty Elevator

Figure [5.17) presents the plots for the control surface activity given an elevator with 70% re-

duction in efficiency. The plots show that without any knowledge of the fault the activity in

the elevator decreases after 20 seconds and there is very little change in the aileron and rudder

activity once the fault occurs. When [FD]| information is provided however the knowledge of

the fault prompts the control surfaces to work harder to compensate for the fault. This is seen

in all three control surfaces which at various times during the flight are all operating at the
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Figure 5.17: Faulty Elevator: Control Surface Activity, constraints (red), control surface activity

(blue). Left column: no FDI information, Right column: with FDI information
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Figure 5.18: Faulty Elevator: Control Surface Activity, constraints (red), control surface activity

(blue). Left column: no FDI information, Right column: with FDI information - Zoomed

Figure |5.18| shows the elevator activity between 110 secs and 120 secs. During this time large
amounts of oscillations can be observed (figure however by zooming in at this time the
plot shows that the rate constraints on the control surfaces are being respected. This is to be
expected as the actuator dynamics have been modelled in the controller as well as in the plant

model.

The angular rate plots are shown in figure A fault in the elevator directly affects the pitch
rate ¢, and without any FDI information the controller is unable to meet the pitch rate demands
however the roll rate and yaw rate demands are followed very closely. With knowledge of the
faults there is an increase in the demanded angular rates and the controller shows a significant

improvement in performance in being able to follow the demanded rates.
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Angular Rates - Faulty Elevator
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Figure 5.19: Faulty Elevator: Angular Rates, demanded (red), actual (blue). Left column: no

FDI information, Right column: with FDI information

Plots of [AoA] and g-force are give in and respectively. The AoA plots shows that

the 15 deg upper limit on [AoA] was never reached hence the equations of motion in the process

model were valid throughout the flight. The maximum g-force reached was only 1.5g which is

very unlikely to cause structural damage.
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The trajectories flown by the aircraft with a faulty elevator, with and without FDI information,

are provided in The results show that in the absence of FDI information the aircraft suc-

cessfully flies the trajectory, however providing FDI information caused the solution to diverge.

246



This result shows that the controller behaved exactly as expected. The controller has been
designed to maintain the angular rate demands not the reference trajectory. The angular rate
plots show that with the FDI information there is an increase in performance of the controller
in terms of tracking the angular rate demands. The trajectory plots show that the solution pro-
duced with FDI information causes the aircraft to drop below ground level which is physically
impossible. This is a result of not applying constraints on the aircraft position vector. Hence
unless a parameter is explicitly penalised in the cost function and/or constraints placed upon the
parameters the controller will use everything available to it to achieve what is being demanded
of it. A zoomed in plot of the NED states are given in figure The plot shows that upon
zooming in the case with no FDI the controller does a an excellent job of following the no-fault

situation however in the case where FDI information is available the solution diverges.
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Figure 5.22: Faulty Elevator: 6DoF Trajectory
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Figure 5.23: Faulty Elevator: NED

5.5.2.2 Scenario 2: Faulty Aileron

The plots given in figure show control surface activity with an 80% reduction in aileron

efficiency. The red lines show the constraints placed on the control surface and the blue the

actual activity. The aileron and rudder are primarily used to control the lateral motion of the

aircraft while the elevator controls the longitudinal motion. Thus there is very little change in

the behaviour of the elevator when FDI information is provided compared to no FDI information.

The rudder and aileron on the other hand increase their activity after the occurrence of the fault

to compensate for the loss in efficiency and operate closer to the constraints.
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Faulty Aileron
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Figure 5.24: Faulty Aileron: Control Surface Activity, constraints (red), control surface activity

(blue). Left column: no FDI information, Right column: with FDI information
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Figure 5.25: Faulty Aileron: Control Surface Activity, constraints (red), control surface activity

(blue). Left column: no FDI information, Right column: with FDI information - Zoomed

Figure [5.25

shows the elevator activity between 160 secs and 170 secs. During this time large
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amounts of oscillations can be observed (figure [5.24)) however by zooming in at this time the
plot shows that the rate constraints on the control surfaces are being respected. This is to be
expected as the actuator dynamics have been modelled in the controller as well as in the plant

model.

Similar results are present in the angular rate plots of figure [5.26] There is little or no change
in the pitch response of the aircraft once FDI information is provided compared when FDI is
absent. In the case of no FDI the actual roll rate is lower than the demand however once
information on the fault is provided tracking performance increases. This is also true for the
yaw rate response. In the presence of an aileron fault roll and yaw rate demands increase to

sustain lateral motion.
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Figure 5.26: Faulty Aileron: Angular Rates, demanded (red), actual (blue). Left column: no

FDI information, Right column: with FDI information

Plots of [AoA] and g-force are give in and respectively. Again, the [AoA]plots show that

the 15deg upper limit on [AoA] was never reached hence the equations of motion in the process
model were valid throughout the flight. Also the maximum g-force reached was only 1.5g which

is very unlikely to cause structural damage.
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Angle of Attack - Faulty Aileron
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Figure 5.27: Faulty Aileron: Angle of Attack
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Figure 5.28: Faulty Aileron: g-Force, Body Acceleration az
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The trajectory plots of the aircraft are given in figure [5.29] The case where [FD]] information

is provided the aircraft can be seen to deviate slightly off the path. The deviation is not

as significant in the event of an aileron fault as the rudder also helps to control the lateral
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motion of the aircraft hence providing an extra degree of redundancy. A closer look at the NED
states have been presented in figure The plots clearly show that upon zooming in on the
states there are differences in the no fault case and the with and without FDI cases. Although

the trajectory plot shows very good tracking, upon closer investigation there are discrepancies

especially in the Down direction.
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Figure 5.29: Faulty Aileron: 6DoF Trajectory
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Figure 5.30: Faulty Aileron: NED

5.5.2.3 Scenario 3: Faulty Rudder

With a 60% reduction in efficiency in the rudder the resulting control surface activity is provided
in figure Again, as the elevator has very little influence on lateral motion, there is very
little change in elevator activity with no difference between the no FDI and with FDI cases. The
rudder is pushed to its lower limit and the aileron deflection increases in the negative direction

causing the aircraft to bank more to the left.
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Faulty Rudder
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Figure 5.31: Faulty Rudder: Control Surface Activity, constraints (red), control surface activity

(blue). Left column: no FDI information, Right column: with FDI information
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Figure 5.32: Faulty Rudder: Control Surface Activity, constraints (red), control surface activity

(blue). Left column: no FDI information, Right column: with FDI information - Zoomed

Figure [5.32| shows the elevator activity between 100 secs and 110 secs, that is, 80 secs after the
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fault has occurred. Zooming in at this time the plot shows that the rate constraints on the
control surfaces are being respected. Again, this is as to be expected as the actuator dynamics

have been modelled in the controller as well as in the plant model.

A faulty rudder had no effect on the angular rate demands (figure . Tracking performance
was the same both with and without information. This is translated in the trajectory plots
of figure which show that the aircraft closely follows the flight path with and without
information. A closer look at the NED states (figure shows that tracking performance
is excellent in the North and East direction, however there are slight variations present in the

Down direction.
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Figure 5.33: Faulty Rudder: Angular Rates, demanded (red), actual (blue). Left column: no

FDI information, Right column: with FDI information
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Trajectory - Faulty Rudder
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Figure 5.35: Faulty Rudder: NED

Plots of [AoA] and g-force are give in and respectively. Again the [AoA| plots show that

the 15deg upper limit on [AoA] was never reached, so the equations of motion in the process

model were valid throughout the flight. Also the maximum g-force reached was only 1.5g which
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is very unlikely to cause structural damage.
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5.5.2.4 Findings

The results of the 6DoF analysis show that [NMPC| design as a fault tolerant controller is viable,
and that in the absence of FDI information the controller is capable of allocating control au-
thority to the appropriate actuators to fly the aircraft on the given flight path. This illustrates
the inherent fault tolerant capabilities of [MPC| Turning on [FDI updates improved the tracking
performance of the controller. The results did show however that unless a quantity is penalised
in the cost function, and/or constraints are applied, the controller will push the limits to achieve
the desired outcome. In this case the controller was specifically designed to track angular rate
demands, so providing [FD]| information resulted in an increase in tracking performance of an-

gular rates in the event of a control surface fault.

The next section will look at the design of an [FD]| filter to be incorporated into the [FTC]

developed in this section.

5.6 6DoF Fault Detection and Identification

The fault detection concepts covered in chapter [4 are implemented here for the full 6DoF air-

craft model and designs for the are presented. A [proportional integral derivative (PID)|

controller for the aircraft is designed and implemented.

A traditional [PID] controller was used to control the aircraft through the range of manoeuvres
required to test and tune the filter. The [PID] control method, although not optimal in terms of

performance, was quick to implement and tune to the level required.

5.6.1 PID Controller Design

The [PID] controller assumes a fixed structure where an aileron is the only control surface which
can produce a roll manoeuvre, pitch control is performed only by the elevators and yaw movement
is provided only by the rudder. The [PID]controller forms the inner-loops of the system given in
figure A Simulink diagram of the PID based inner loops is given in figure [5.38
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Figure 5.38: Inner Loop with PID Control
The height control loops and the throttle control also form a part of the inner loops.

5.6.1.1 Height Control Loop

The Simulink model of the height control loop is given in figure [5.39] There are four inputs, the
vertical speed Vp, the height demand Hgep,, the measured or actual height of the aircraft Hy,eas
and the true airspeed Vras. The objective of the height control loop is to calculate the pitch

angle required to maintain the height demand. The error between the measured and actual
height is given by:
eq = Haem — Hieas- (5'56)

The output of the [PID] controller is the rate of climb Vroc:

VRoC —KdPVD+Kp€H+K[/€H(t) dt, (5.57)
where:

K p=0.25, Proportional gain for vertical speed,
Kp = 0.5, Proportional error gain,

Ky =0.025, Integral error gain.

The climb rate to pitch angle conversion is given by:
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VRoC
0= . 5.58
Vras (5.58)

The pitch angle demand is constrained between 0 and 0.25rads hence 04ep, is given by:

0, if Orad < 6 < 0.25rads,
Odem = 4 Orad, if # < Orads, (5.59)

0.25rads, if # > 0.25rads.

D

X - thetaDem
3 Saturation
Hdem 1 climb rate to pitch angle
s [ conversion
Ki Integrator
Limited
Vtas

Figure 5.39: Height Control Loop

5.6.1.2 Throttle Control Loop

The throttle control loop is given in figure the objective of which is to calculate the throttle

needed to maintain the true airspeed demand. The error in true airspeed is given by:

eVras = (VTAS)dem — VTas. (5.60)
The output of the PID controller is up:
d(e
Uth = KP €Vras + KI /eVTAS (t) dt + KD ( ‘(;;AS) + 5th trim (561)
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where:

Speed is controlled by applying anywhere between 0% throttle to 100% throttle hence:

Kp =0.1, Proportional error gain,
K; =0.01, Integral error gain,
Kp = 0.05, Derivative error gain,

Sth trim= 0.5, Throttle trim.

ugp, if 0 < wugy < 1,
On =190, ifuy <O,

1, if ug > 1.

(5.62)

trimThrottle

05 P+

dufdt +

Kd Derivative > 7~C
1 = throttle
3 _/_ P+ Saturation
VtasDem Ki Integrator
50 +_ p 0.1 +
Kp
(12
Vtas

Figure 5.40: Throttle Control Loop

5.6.1.3 Roll Control

The roll control loop is given in figure The inputs are roll angle demand ¢gem, measured

roll angle ¢meas and measured roll rate ppeas- The overall aim of this loop is to calculate the

aileron deflection needed to maintain a roll angle demand. The error between the roll angle

demand and measured roll angle is given by:

€p = ®dem — Pmeas-
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The demanded roll rate is calculated via:

Pdem = K¢ €op, (564)

where K is a gain factor used to convert the roll angle error to a roll rate and is equal to 2.

The error in roll rate is:
€p = Pdem — Pmeas- (565)

The output of the controller is aileron deflection given by:

0a = KF¥F Pigem + Kp ep, (5.66)

where:

Kprp= 0.8, Feedforward gain,

Kp = 2.2, Proportional error gain.

phiMea

Figure 5.41: Roll Control Loop

5.6.1.4 Pitch Control

The pitch control loop is given in figure The inputs are measured roll angle ¢ eqs, true
airspeed Vrag, pitch angle demand 64em, measured pitch angle 0,6, and measured pitch rate
(meas- The overall objective is to calculate the correct elevator deflection required to maintain

the demanded pitch and pitch rate. The pitch angle error is given by:
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€9 = Odem — Omeas- (567)

The demanded pitch rate is given by:

qdem = Ko eg + [ f (¢, Vras) |, (5.68)

where:

_ _9 tan (¢meas) sin (¢meas)
f (QbmeaSa VTAS) - ¢dem — VTAS .

(5.69)

Here g is the acceleration due to gravity, 9.81 m/s2. The function given in equation ([5.69) cal-

culates the additional pitch rate required for a constant height coordinated turn.

The error in pitch rate is given by:

€q = Qdem — YQmeas- (570)

Finally the elevator deflection is given by:

0e = K¥F qdem + Kpeqg + Kp K; /eq(t) dt, (5.71)

where:

Kpp= 0.01, Feedforward gain,
Ky =2, Gain required to convert to pitch rate,

Kp =12, Proportional error gain.
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Figure 5.42: Pitch Control Loop

5.6.1.5 Yaw Control

The yaw control loop is given in figure The inputs are true airspeed Vrag, measured roll
angle @meas, measured yaw rate Tmeas, body acceleration a, and a speed scalar constant. The
overall objective of the yaw control loop is to maintain zero sideslip. The yaw rate error due to

a turn is given by:

Cr(turn) = (Tmeas - Tdem) *h (t> 5 (572)

where * indicates a convolution operation between the two functions, and the demanded yaw

rate is given by equation (5.73):

rdem = Ky £ (6, Viras) , (5.73)

f ;) (¢, Vrag) is the yaw rate required to turn and is given by

g tan ¢ cos ¢ (5.74)

fr¢; (¢7 VTAS) = Viras

and h (t) is a high pass filter whose Laplace transform is given by:

_ 5s
TR

H (s) (5.75)

The highpass filter is there to prevent measurement errors in airspeed and bank angle (roll)

producing a steady state sideslip condition.
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The yaw rate error is then given by:

er = —€p(turn) — Kp ay, (5.76)

where Kj is the gain due to sideslip and is equal to 0.1. Finally the rudder deflection is given
by:

op = Kdamp (KI €r — er(turn)) S, (577)
S =1, Speed scalar,
Ky =1, Integral error gain,

Kgamp= 3, Yaw damper.

oo — »C )
55

YAW2SRV_SUP YAWZSRV_INT

Integratort

- » , ) Fo+1 speed scalar
Rmes

HPF

YAWZ2SRV_RLL

Figure 5.43: Yaw Control Loop

5.6.2 Filter Design

The proposed fault detection scheme is based on the principle that a failure in any one of the
control surfaces would directly affect the corresponding control derivative. Hence changes in the
control derivatives would indicate a fault has occurred, while at the same time the filter would
provide the controller with estimates of the derivatives. Furthermore, up to date estimates of

the derivatives will allow the [MPC] controller to perform at its optimum.

The force and moment equations given in section|5.3.1.2|show that there are a total of 24 control
derivative. These are listed in Table 5.6l
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Table 5.6: Control Derivatives

Derivative Value Derivative Value
CXym 9.5 x 1074 Cliro 4.5 % 1076
CXapo 8.5 x 1077 Clam 5.24 x 1079

CYim 1.75 x 1074 Cmar 6.54 x 1073
CYim 1.55 x 1073 Cmggo 8.49 x 107°
CYyro 8 x 1076 Cmgps 3.74 x 1076

CZim1 4.76 x 1073 Cmgai 3.5 x 1075

CZapo 3.3x107° Cngm 1.4 x107°
CZgm 7.5 x 107 Cngaz 7.0 x 1076
Clam 6.1 x 1074 Cnapi 8.73 x 107°
Clgao 2.5 x107° Cnags 8.7x 1076
Claas 2.6 x 1076 Cngri 9.0 x 1074
Clam —2.3x 107 Cngrs 4.0 x 1076

To test the filters the aircraft was required to achieve the roll angle demands given in figure

b.44l
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Figure 5.44: 6DoF Motion Filter Tests - Roll Angle Demands

Initially a 30 state filter was designed where the states comprised of three accelerations

(az, ay, a.), three angular rates (p, ¢, r) and the 24 control derivatives given above. The mea-

surements were of the body acceleration and angular rates (as would be provided by an IMU

sensor). All the derivatives were normalised to 1 hence the states of the control derivative were

set to 1. The results of the acceleration and angular rate innovations are given in figures [5.45

and respectively. The results show that the filter does an excellent job of predicting the

accelerations and angular rates as the innovations filter predictions align perfectly with the mea-

surements of acceleration and angular rates. The estimates of the control derivatives are shown

in figure Since all derivatives were normalised the estimates should each have a value of

1. However, as the plot shows, the filter is unable to correctly estimate the value of all the

derivatives, as many of the states in the filter are unobservable.
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Figure 5.45: Accelerations - 30 State Vector, left column estimates (red measured, blue pre-
dicted), right column innovations (20 uncertainty bounds (red dashed) and innovations (blue).
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Figure 5.46: Angular Rates - 30 State Vector, left column estimates (red measured, blue pre-

dicted), right column innovations (20 uncertainty bounds (red dashed) and innovations (blue).
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Control Derivative Estimates - 30 State Vector
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Figure 5.47: Control Derivative Estimates - 30 State Vector. Each line corresponds to a nor-

malised value of a control derivative estimate and should have a value of 1.

To address the issue of observability the number of states was reduced to 19; 3 accelerations,
3 angular rates and 13 control derivatives. This was achieved by having one control derivative
estimate per force/moment for a particular control surface. For example, the control derivatives
given in table show that there are 2 CX control derivatives which are due to the elevator
CXg4r1 and CXggo; the 19 state filter has only one derivative C Xyg used to represent both of
the CX derivatives due to the elevator. Thus the contributions of each control surface in the
force and moment equations are grouped together in this manner reducing the number of control
derivative states from 24 to 13. Figures and show the acceleration and angular rate
estimates respectively produced by the 19 state filter. The results again show close to perfect
compliance between prediction and measurement. The control derivative estimates plot given
in figure show an improvement in estimates (again they should all be equal to 1), however

the issue of unobservable states is still evident.
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Accelerations - 19 State Vector
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Figure 5.48: Accelerations - 19 State Vector, left column estimates (red measured, blue pre-

dicted), right column innovations (20 uncertainty bounds (red dashed) and innovations (blue).
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Figure 5.49: Angular Rates - 19 State Vector, left column estimates (red measured, blue pre-

dicted), right column innovations (20 uncertainty bounds (red dashed) and innovations (blue).
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Control Derivative Estimates - 19 State Vector
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Figure 5.50: Control Derivative Estimates - 19 State Vector. Each line corresponds to a nor-

malised value of a control derivative estimate and should have a value of 1.

To further address this issue the number of filter states was again reduced, from 19 to 12. For
control surface failure the most important derivatives are deemed to be Clj1 for aileron, Cmgg1
for elevator and Cngpy for the rudder and the trim values Cly, Cmgy and Cng. From the equa-
tions given in section the trim values corresponding to aileron, elevator and rudder are,
Cly =0, Cmg = —6.61 x 1073 and Cng = 0 respectively.

The plots of acceleration and angular rate estimates for the 12 state filter are given in figures
and respectively. The results of angular rate estimation are excellent however the filter
is unable to make correct estimates of acceleration which is to be expected because the other
terms are unrelated to force, being all moment related terms. The control derivatives Clgaq,
Cmgg1 and Cngp are normalised to 1 as is the trim value for Cmg and the estimates of these
are given in figure [5.53] Results show big discrepancies between the actual and estimated values

for the elevator terms.
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Accelerations - 12 State Vector
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Figure 5.51: Accelerations - 12 State Vector, left column estimates (red measured, blue pre-
dicted), right column innovations (20 uncertainty bounds (red dashed) and innovations (blue).
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dicted), right column innovations (20 uncertainty bounds (red dashed) and innovations (blue).
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Control Derivative Estimates - 12 State Vector
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Figure 5.53: Control Derivative Estimates - 12 State Vector. Each line corresponds to a control
derivative estimate. Values for Clya, Cmgyr, Cmg and Cngr have been normalised to have a

value of 1, Cly and Cng should both be zero.

Due to the presence of unobservable states the state vector was once more reduced by removing
the acceleration terms resulting in a 9 state filter. The measurements supplied to the filter were
only of the angular rates. The acceleration terms were removed due to the errors present in
the estimates. The angular rate estimates and innovations are presented in figure [5.54] and as
expected, show that the filter predictions closely match the measurements. It is evident however
from the control derivative and trim estimate plot (figure that the observability issue is

still present.
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Figure 5.54: Angular Rates - 9 State Vector, left column estimates (red measured, blue pre-

dicted), right column innovations (20 uncertainty bounds (red dashed) and innovations (blue).
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Figure 5.55: Control Derivative Estimates - 9 State Vector. Values for Clga, Cmggr, C'mg and

Cngr have been normalised to have a value of 1, Clly and Cng should both be zero.

In a final attempt to solve the observability issue three separate filters were developed, one each
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for roll, pitch and yaw with each filter, a 3 state filter. The states for the roll only filter are

p, Clga1 and Cng, the pitch only filter states are q, Cmgg1 and Cmg and the yaw only filter

has r, Cngr1 and Cng as states. The angular rate estimates are given in figure and again

show compliance with the measurements. Separating the filters caused slight improvement in

the control derivative and trim estimates (figure[5.57), however the observability problem is still

present particularly for the C'mg term. This was to be expected as the aircraft lateral dynamics

have been excited by the demanded roll inputs given in figure hence the estimates of

the derivatives related to the later dynamics are more accurate than the longitudinal motion

derivatives. For good estimates it is necessary to excite the aircraft dynamics.
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Figure 5.56: Angular Rates - 3 Filters, left column estimates (red measured, blue predicted),

right column innovations (20 uncertainty bounds (red dashed) and innovations (blue).
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Control Derivative Estimates - 3 Filters
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Figure 5.57: Control Derivative Estimates - 3 Filters Vector. Values for Cl 4, Cmgg, Cmgy and

Cngr have been normalised to have a value of 1, Cly and Cng should both be zero.

5.6.3 Findings

The results of section illustrate that if the NMPC]| controller could be provided with es-
timates of the control derivatives it would assist the controller in allocating control authority
appropriately. For this reason a filter was designed in this section to provide real time
estimates. However results show that many of the control derivatives are unobservable. Many
attempts were made to tackle this issue, however all proved to be unsuccessful. The 3 filter
solution was integrated with the controller to test the full active fault tolerant control
system. Results for these tests have not been supplied as the incorrect estimates of the filter
caused the solution from the controller to diverge. Further investigations into the full 6DoF

fault tolerant controller are required.
As the main objective of this thesis is to demonstrate that my controller design can be utilised

for fault tolerant flight control, the next section looks at the longitudinal motion of the aircraft

with integrated [FDI] to form a full active fault tolerant flight control system.
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5.7 Narrowing of Scope: Engine Failure - Loss of Power

The loss of power on an aircraft due to engine failure can result in a catastrophic breakdown
of the system if left unattended. This section demonstrates the use of my active [FTC| system

design as a fault tolerant flight controller in the event of an engine failure.

The system is used to control the longitudinal motion of the aircraft. The design comprises
of a [UKF| filter to monitor the thrust level of the air vehicle. Fault detection logic is built into
the filter and once the decision is made that there is a loss of power the filter estimates are fed

to the controller for reconfiguration.

The filter design is detailed in the next subsection followed by the details of the controller design.

Finally numerical results are presented.

5.7.1 Filter Design

The filter design process consists of the development of a simple PID thrust controller. The
[NMPC] and filter designs were independently constructed and tested then integrated into the

final design.

5.7.1.1 PID Controller Design

Figure [5.58] is a block diagram of the inner loops developed for the filter design process. Lon-
gitudinal motion requires a height control loop and a thrust control loop, as well as a pitch
control loop which calculates the amount of elevator deflection required to achieve the desired

pitch angle.
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Figure 5.58: Thrust Controller Filter Design - Innerloops

The height controller is the same as that given in section and the pitch control loop is

as described in section [5.6.1.4l The thrust control loop is given in figure [5.59] and is

ViasDem
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Kd Derivative
i
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Ki Integrator

Kp
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Product

i

‘ Tmax

it calcThugd

Calculate Max. Thrust

Rate Limiter

thrust

Figure 5.59: Thrust Controller Filter Design - Thrust Control Loop

very similar to the throttle control loop of section [5.6.1.2] with the addition of the “calculate

maximum thrust” block. This block contains the maximum thrust expression given in equa-

tion (5.32). The maximum thrust value and the required throttle are multiplied to obtain the

amount of thrust required to maintain a desired true airspeed of 50m /s and the demanded height.
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The next subsection describes the design of the [UKF] filter.

5.7.1.2 UKEF FDI Filter

The UKF filter is designed to estimate the amount of thrust used by the aircraft. The filter
states are:

Xukf = [VNa VD7 97 T]a (578)
where T is thrust. The measurement vector is:

Xukf = [VEASa UD, 9], (579)

where VEag is equivalent airspeed of the aircraft at sea level whereas Vi is the true airspeed at

altitude. Vgag is the speed commonly used in measurements. The relationship between Vgags

VEAs = VT\/ﬁv
Po

where p is the air density at a given altitude and pg is the density of air at sea level (1.225 kg/ m?’).

and V7 is given by:

(5.80)

For this work the aircraft is assume to be flying low enough for Vgas = V7.

The weighting matrices () and R were set to:

(5 At0.05)? 0 0 0
(0.05)2 0 0
0 (5 At 0.05)? 0 0
Q= ; R = 0 (0.05)2 0
0 0 (0.1A1)? 0
0 0 (0.017)?
0 0 0 (6500 At 0.3)2
(5.81)

where At is the filter update rate 0.01 secs. The intial state vector and covariance matrix are:

[(0.5)2 0 0 |
0 (0.5) 0
x(0) = [50, 0 0.04247, 1507.7526]T, P(0) = (5.82)
0 0 (00172 0
| 0 0 (315)?]
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5.7.1.3 Numerical Results

The following test cases were carried out to examine the filter performance:
Test 1: no fault,
Test 2: 70% loss of power 70 secs into flight,
Test 3: 90% loss of power 35 secs into flight,

Test 4: 50% loss of power 20 secs into flight.

The aircraft was required to fly the trajectory given in figure [5.5 The effects of wind and tur-
bulence have been taken into account as well as the effect of noise on the measurements of Vgag,

vq and 0, which has been modelled as a normally distributed random white noise.

To analyse the performance of the filter the innovation covariance plots were examined and are

given in figures [5.60], [5.61] and [5.62] for Vgas, vqg and 0 respectively. The results show that for

all test cases the innovations are well within the 20 covariance bounds. The test case 3 where
the thrust level drops to 10% shows that after approximately 70 seconds the aircraft is unable
to maintain flight as there is not enough power hence the filter diverges. The thrust estimates
are given in figure [5.63] along with the actual thrust applied to the aircraft. In each test case

the filter does an excellent job of estimating the thrust levels.
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Figure 5.60: UKF Vgag Innovations - Longitudinal Model, +20
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Figure 5.61: UKF Vp Innovations - Longitudinal Model, +2¢ innovation covariance bounds (red

dashed lines), Vp innovations (solid blue line)
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Figure 5.63: UKF Thrust Estimates - Longitudinal Model
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5.7.1.4 Fault Detection Logic

The premise behind the [FTC| design is the provision of the updates of the power status to
the [NMPC] controller to enable controller reconfiguration. When an engine fails the amount of
thrust available decreases. If this level of thrust could be estimated and provided to the [NMPC|
controller the maximum constraint on thrust can be updated and the controller can then allocate
control authority to the control inputs accordingly. For this reason it is important to detect the
fault and to know when to begin feeding the controller with filter estimates of thrust, hence the

need for fault detection logic.

The controller is designed (section [5.7.2)) to calculate the optimal amount of thrust to maintain
a height demand and true airspeed. The filter on the other hand estimates the thrust level cur-
rently used by the aircraft, hence if the demand is greater than the estimate this would indicate

an engine failure.

The fault detection logic therefore checks whether the thrust demand is higher than the thrust
estimate. If this is true for a set period of time then a fault has occurred and a flag is turned
on, indicating that a fault has occurred, and consequently the constraints must be updated via
the filter estimates. The filter outputs an estimate of the state as well as the uncertainty on
the estimate, so the actual value of the state as predicted by the filter is within plus or minus
the uncertainty. For this reason a number of tests were performed to see whether the check
should include zero level of uncertainty, £1¢ uncertainty or £20, and the results are given in
figure 5.64] The results are based on a fault count of 200, i.e. when the demand is greater than
the thrust estimate the fault counter is incremented by one, and when this counter exceeds 200
the fault flag switches from 0 to 1 indicating to the controller that the maximum constraint on
thrust must be updated with the filter estimate. The number of counts being set to 200 is based
purely on trial and error. The results show that the filter estimate plus 20 uncertainty was able
to correctly identify the fault within approximately a couple of seconds of the fault occurring.
The other uncertainty bounds as well as the zero uncertainty case all indicated false detection
of the fault, that is the fault flag is set to true at the incorrect times. Note that a fault was not
detected for test case 4 even with a 20 uncertainty bound. This is because the thrust estimate
plots (as shown in figure indicate that in a no fault case the aircraft requires no more than
50% of the maximum thrust to maintain the given trajectory, hence the demand is at all times

less than the estimate.
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Figure 5.64: UKF Fault Flag - Longitudinal Model

In the next section the complete active system design for thrust control is detailed.

5.7.2 Controller Design

This section steps through the controller design for the active system for the longitudinal

motion of the aircraft.

Pseudospectral discretisation is applied to the controller design and the state vector is:

Xnmpec = [ny VNa VD, 03 q, 5thrusta 6ea A(Sthrust Aée]Tv (583)

The following optimal control problem is solved each time step:

H, "X 2 2
I}(111]l:l 712 Z <HXD(j) _}("Dref(j)HCQz + HVT(])_VTref(j)HQVT
’ j=1 (5.84)

+ HVD(]) - VDref(j)H2QVD + HA(SthrustHéT + HA(%Hi)&e) w(])a
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subject to

ty —to .
<f2> D,ix(t)—% = 0,

x(to) — Xdem (t0)
Xpp <X < Xyp,

up < u < uy,

Auy, < Au < Auyy,

0.85

(@)
0]

6

Ot
o

()
[00)

(5.85)
(5.86)
(5.87)
(5.88)
(5.89)

5.89

where V7 and Vr, , are the actual and reference true airspeeds respectively and @, Qvr, Qvp,

Qr and @Q;, are weighting parameters and the term w(j) are the pseudospectral node weights

as defined in chapter The constraints applied are given in Table The cost function

weights are square matrices with the following diagonal values for each state: Q. = 3, Qv = 3,

QVD = 5, QT = 0.001 and Q(;e =0.1.

Table 5.7: Constraints for Longitudinal Motion, Thrust Controller

Variable | Upper Constraint | Lower Constraint
Tp 300 m 1m
VN 100m/s 30m/s
%5 3m/s —3m/s
0 None None
q None None
Oe 20 deg —20deg
Adihrust 6500 N /s —6500N/s
Abe 200 deg/s —200deg/s

The lower limit on thrust is 0 N while the upper limit changes throughout the flight and is set to

the maximum value of thrust based on the height of the aircraft. Maximum thrust is calculated

via equation (5.32)). If a fault has been detected and the fault flag of section [5.7.1.4] is set to 1

the upper constraint is set to the filter estimate of thrust plus a 20 uncertainty.

The following scenarios were designed to test the fault tolerant control system:

Scenario 1: no fault case

Scenario 2: engine failure - 65% power loss 30 secs into flight,
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Scenario 3: engine failure - 70% power loss 30 secs into flight.

Note: all test runs take into account the effect of wind.

Figures [5.65] [5.66] and [5.67] show the control inputs for scenarios 1, 2 and 3 respectively. The

results for the thrust show a dip in the constraint value for the upper thrust limits for scenarios
2 and 3 just after 30 secs. This indicates that the fault was correctly identified and the
was reconfigured with the information provided by the [FD] filter. The uncertainty bounds
in both figures are slightly higher than the actual thrust applied due to the addition of the
20 uncertainty. Other values of o were found to cause the controller and hence the filter to
diverge. Although the estimate is slightly above the actual it is still in the vicinity of the actual
thrust level and prompts the controller to allocate more control authority to the other available
actuators. The results show that compared to the no fault case once a fault occurs the elevator
activity increases as the power decreases. Also the more severe the fault the faster the detection
time. This is evident from the fact that the fault is detected earlier in the 70% power loss case

compared to the 65% loss of power case.
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Figure 5.65: Active FTC Thrust Controller: Control Inputs - Scenario 1: No Fault Case

286



Active FTC Thrust Controller: Controls - 65% Loss of Power

Thrust

G000
s000
4000
3000
2000

Thrust [N]

1000

o e et

——— - - —-—
T e i T e o o e e e P e i g ——

~

— —