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Summary

Safety and reliability of air vehicles is of the utmost importance. This is particularly true for

large civil transport aircraft where a large number of human lives depend on safety critical

design. With the increase in the use of autonomous unmanned aerial vehicles (UAVs) in our

airspace it is essential that UAV safety is also given attention to prevent devastating failures

which could ultimately lead to loss of human lives. While civil aircraft have human operators,

the pilot, to counteract any unforeseen faults, autonomous UAVs are only as good as the on

board flight computer. Large civil aircraft also have the luxury of weight hence redundant

actuators (control surfaces) can be installed and in the event of a faulty set of actuators the

redundant actuators can be brought into action to negate the effects of any faults. Again weight

is a luxury that UAVs do not have. The main objective of this research is to study the design

of a fault tolerant flight controller that can exploit the mathematical redundancies in the flight

dynamic equations as opposed to adding hardware redundancies that would result in significant

weight increase. This thesis presents new research into fault tolerant control for flight vehicles.

Upon examining the flight dynamic equations it can be seen, for example, that an aileron, which

is primarily used to perform a roll manoeuvre, can be used to execute a limited pitch moment.

Hence a control method is required that moves away from the traditional fixed structure model

where control surface roles are clearly defined. For this reason, in this thesis, I have chosen to

study the application of model predictive control (MPC) to fault tolerant control systems. MPC

is a model based method where a model of the plant forms an integral part of the controller. An

optimisation is performed based on model estimations of the plant and the inputs are chosen

via an optimisation process.

Linear model predictive control (LMPC) has been studied for more than three decades and is

a well established control methodology commonly used in the process industry but is only now

making headway into industries such as aerospace. Nonlinear model predictive control (NMPC)

on the other hand has not received much attention due to limitations in computing power, but

with the advancements in computing power the application of nonlinear model predictive control

(NMPC) is now becoming more viable and it forms the main focus of my research. One of the

main contributions of this thesis is the development of a non-linear model predictive controller

for fault tolerant flight control. An aircraft is a highly non-linear system hence if a nonlinear

model can be integrated into the control process the cross-coupling effects of the control surface



contributions can be easily exploited. Another reason for choosing nonlinear model predictive

control over linear model predictive control is that the linear method requires small perturba-

tions to work efficiently and effectively. However, if a fault occurs it is likely to take the system

out of the linear region where the perturbations from the nominal are quite large, hence the

underlying assumptions would be violated causing the solution to diverge. Nonlinear techniques,

on the other hand, are better able to handle these situations as they encompass the whole system

operating envelope.

Non-linear MPC requires the solution of an optimal control problem which is most commonly

solved via a direct solution method using a finite parameterisation of the control and/or con-

straints. The most commonly used parameterisation methods are single direct shooting and

direct multiple shooting. The method proposed in this thesis uses a Pseudospectral discretisa-

tion method. It is shown through an illustrative example that the Pseudospectral discretisation

method used within an NMPC framework can achieve the same level of accuracy as the most

commonly used methods using fewer number of discretisation points.

Finally an active fault tolerant control system comprises not only of the fault tolerant controller

but also a fault detection and isolation subsystem. A common fault detection method is based

on parameter estimation using filtering techniques with the most commonly used filter being the

extended Kalman filter (EKF). The solution proposed in this thesis uses an unscented Kalman

filter (UKF) for parameter estimation and controller updates.

In summary the main contribution of this thesis is the development of a new active fault tolerant

flight control system. This new innovative controller exploits the idea of analytical redundancy as

opposed to hardware redundancy. It comprises of a non-linear model predictive based controller

using pseudospectral discretisation to solve the nonlinear optimal control problem. Furthermore

a UKF is incorporated into the design of the active fault tolerant flight control system. The

filter provides fault estimations and model parameter updates to the controller.
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Chapter 1

Introduction

1.1 Motivation

The increase in cost and complexity of autonomous unmanned aerial vehicles (UAVs) has re-

sulted in a shift in the design philosophy away from expendable systems towards systems with

a high level of robustness and survivability. Traditionally, survivability is increased through

redundancy of critical systems, but this increases weight, complexity, and cost. Although sys-

tem redundancy is inevitable in developing a commercial product, most systems are not robust

beyond first failure. Some other means needs to be found that will allow the vehicle to navigate

to a specified point and land safely after a system or actuator failure.

The overall objective of this research is to develop and implement an innovative flight control

system applicable to UAVs, whereby the system is capable of reconfiguring the controller to

adapt to identified faults in the system. In so doing, the reconfigured controller is able to

recover adequate authority on the aircraft and automatically bring it back to the ground in

a safe and controlled manner, thus avoiding a crash or catastrophic loss of equipment. More

specifically the aims are to:

1. Develop autonomous UAV control technologies that have the capability to reconfigure their

structures and adapt to a new operational environment in the case of fault occurrence,

while respecting system operational constraints.

2. Apply model predictive control (MPC) technologies to a UAV test bench by model-in-the-

loop simulation.
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1.2 Outline

This chapter puts into context the scope of this research and briefly outlines its importance.

The main application of this research is the development and improvement of UAV technolo-

gies hence it is important to understand what a UAV is, therefore section 1.3 concisely defines

unmanned aerial vehicles. This is followed by details of the contributions of this thesis towards

the advancement of UAV technologies in section 1.4.

Finally an overview of the thesis is given in section 1.5.

1.3 Unmanned Aerial Vehicles (UAVs)

By definition UAVs are aerial vehicles capable of sustained fight without a human operator on

board [63]. Many UAVs are remotely piloted. However, to be truly autonomous, sophisticated

control systems need to be integrated into the UAV to enable the vehicle to fly without any

human intervention.

An important feature for true autonomy is the ability of UAVs to “think on their own”. This

includes the ability to respond quickly to system failures. UAVs, unfortunately, are currently

deemed to be unsafe due to the fact that they are unreliable [31], mainly because the UAV crash

rate is higher than that of manned aircraft. In [31] the leading cause of UAV accidents was

found to be human error due to a lack of situational awareness by the remote pilot. In addition a

number of UAV accidents are caused by component failures or operator error. Similarly Bateman

[12] argues that poor reliability records, absence of certification standards and regulations with

regards to UAV systems have hindered their integration into the civil airspace. At present, more

emphasis is placed on reducing the unit cost per UAV rather on reliability, but if we are to

increase trust in UAVs it is imperative that we increase reliability/predictability.

1.4 Thesis Contributions

The main contribution of this thesis is the development of a new active fault tolerant control sys-

tem for UAVs comprising of a non-linear model predictive based controller using pseudospectral

discretisation to solve the nonlinear optimal control problem along with an Unscented Kalman

Filter for fault detection and identification. The controller has been demonstrated to work

effectively on a 2D robot model, a generic aircraft model and an actual UAV model.
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1.5 Thesis Overview

The thesis is divided into seven chapters. Each chapter begins with an introduction giving the

motivation behind the contents of the chapter followed by a brief outline. The following is a

synopsis of the chapters herein.

Chapter 1 - Introduction

Chapter 1, this chapter, places the research into context, summarising the thesis contributions

and providing a brief overview of the thesis structure.

Chapter 2 - Review of Recent Advances in Fault Tolerant Flight Control

Chapter 2 provides a detailed description of the problem addressed in this thesis, namely fault

tolerant control for UAVs and aims to explain in detail why this research is important. This

chapter takes an in depth look at what has been achieved in the area of fault tolerant control

thus far.

Chapter 3 - Design of a Nonlinear Model Predictive Controller

Model predictive control MPC is an advanced control methodology. The aim of Chapter 3 is to

explore this technique for use as a fault tolerant controller. Both the theoretical and practical

aspects of linear and nonlinear MPC are explored.

In this Chapter, a number of the numerical techniques used in the implementation of nonlinear

model predictive control (NMPC) will be investigated, to gain a thorough understanding of their

capabilities as well as their limitations. As a result of this analysis one method will be chosen to

design both linear and nonlinear MPC controllers for a simple 2D robot model and performance

results compared.

Initially the numerical techniques will be applied to the well known Brachistochrone problem,

with the pseudospectral discretisation method turning out to be the most promising in terms of

accuracy and savings in computational time. The pseudospectral method will then be used to

design both linear and nonlinear MPC controllers. In general MPC solves an open loop problem

at each time step hence initially the controllers will be set up for the 2D robot to solve the

open loop problem and a sensitivity analysis conducted. From the analysis a prediction window

length of 5 seconds along with 50 coincidence points are chosen to carry out the remainder of the

5



research. The chapter concludes with performance comparisons between linear and nonlinear

MPC applied to the closed loop problem where the robot is required to follow a demanded

trajectory. From the analysis, it will be evident that for small perturbations the performance of

both linear and nonlinear MPC is similar however as the perturbations increase the performance

of NMPC becomes far superior.

Chapter 4 - Fault Tolerant Control System Design

Fault detection and identification is an integral part of fault tolerant design. Chapter 4 is ded-

icated to investigating various fault detection techniques with the 2D robot model used again

as an illustrative example to test the selected methods. The chapter concludes with a full fault

tolerant control (FTC) system design.

The controller design of chapter 3 is integrated with a number of fault detection and identifica-

tion (FDI) filtering techniques to develop a full active FTC system. As a result of the analysis

the design of the FTC system to be implemented as a fault tolerant flight control system is

finalised. This final design comprises a pseudosepectral NMPC based controller integrated with

an unscented Kalman filter (UKF) filter for fault detection and identification.

Chapter 5 - Fault Tolerant Flight Control System Design

In Chapter 5 the fault tolerant controller designed in Chapter 4 is applied to flight control. A

generic aircraft model is used to explore the feasibility of the proposed design as a fault tol-

erant flight controller. Parts of section 5.4 and 5.5 of this chapter have appeared as [72] and [73].

Initially the FTC system is applied to the longitudinal (or 3DoF) motion of the aircraft assuming

FDI followed by a look at the full 6DoF motion of flight. Several problems were encountered

during the design of the FDI subsystem for the 6DoF motion and further research in this area

was identified as beyond the scope of the current research. Thus the research is redefined by

narrowing the scope and demonstrating the concept of the proposed FTC system design on the

longitudinal motion of the aircraft. The chapter concludes with the successful application of the

proposed active FTC control system design to flight control.

6



Chapter 6 - UAV Case Study

The fault tolerant flight control system of Chapter 5 is applied to an actual UAV model in

Chapter 6. In this chapter the feasibility of the application of the proposed design on a UAV is

effectively demonstrated via model-in-the-loop simulation.

Chapter 7 - Conclusion and Recommendations for Further Work

The final chapter of the thesis summarises the main findings and contributions of this research.

The chapter ends with recommendations for further work.

The next chapter (Chapter 2) presents a thorough literature survey on fault tolerant flight

control.
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Chapter 2

Review of Recent Advances in Fault

Tolerant Flight Control

2.1 Introduction

2.1.1 Motivation

This thesis studies the design of fault tolerant flight control systems for unmanned aerial vehicles

(UAVs) to prevent catastrophic failures. It is important to place this study in context and this

chapter aims to do just that, looking at past research into fault tolerance, in particular, for flight

control, at the various components of a fault tolerant control (FTC) system and the application

of model predictive control (MPC) to fault tolerant flight control.

2.1.2 Outline

Beginning with a discussion on the role of UAVs and the need for fault tolerance (section 2.1.3),

I move on to look at the history of flight control systems in section 2.2. This is followed

by a review of the current state of research in fault tolerant control systems, and the control

techniques currently used therein (section 2.3). Fault detection and identification, an important

part of FTC, is touched on briefly in section 2.4 as a detailed description is provided in the

introduction of chapter 4. Section 2.5 presents the state of the art in FTC with respect to flight

control, while section 2.6 describes the use of FTC in UAVs. Finally, the last section (section

2.7) outlines the methodology and the research questions I tackle in this thesis.
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2.1.3 UAVs and the Need for Fault Tolerance

There has been a gradual evolution of UAV mission roles from expendable target drones to

expandable multi-mission aircraft with mission specifications extending to the more elaborate

such as missile decoys, military reconnaissance, maritime surveillance, and even combat missions.

UAVs are increasingly being used in front-line combat, that is, battlefield missions, to reduce hu-

man casualties. In parallel, there are many civilian applications of UAVs, in meteorological and

atmospheric research, border patrol, agricultural spraying and bush fire surveillance. A charac-

teristic feature of current UAV flight missions is the decreasing reliance on human intervention

to control the flight vehicle with a significant shift towards autonomous flight whereby the flight

control decisions are executed by an on-board computer according to some pre-programmed

flight plan. This autonomous characteristic has been made possible with the development of

advanced flight control systems and autopilots capable of operating the aircraft with minimal

human input. Thus, the mission requirements have been further extended to include the capa-

bility of UAVs to fly long endurance flights in different environments.

These advanced flight control systems and autopilots are referred to as flight controllers and,

under operational conditions, it is necessary for the flight controller to be robust enough to

handle any uncertainties that might arise due to unexpected changes in the system parameters.

Commonly used flight controllers are explicitly designed to accommodate predictable external

disturbances, for example, wind turbulence, and maintain a stable flight path on the set tra-

jectory. However, the resilience of the controller to hardware malfunction or faults is implicit,

in the sense that it is a desirable feature rather than a requirement. Most controllers currently

in service are not intrinsically fault-tolerant with respect to failures associated with aerody-

namic control surfaces, electro-hydraulic actuators and diverse motion measurement sensors.

Fault tolerance in modern flight control is achieved through the design and implementation of

multiply-redundant systems, specifically through the addition of supplementary actuators and

sensors, which are brought into action in the event of the failure of a member of the principal set

of components. This improves general system reliability and flight safety, but incurs not only

the direct cost of added hardware, but also the cost associated with the extra weight penalty

and additional system complexity. This means of achieving increased fault tolerance is valid

for larger conventional aircraft that can physically accommodate the multiple-redundancy hard-

ware, however the compactness of UAVs makes multiple-redundancy of hardware impractical

and costly.
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An alternative solution is the design and implementation of a re-configurable flight controller

that can exploit so-called analytic redundancy, as discussed in [70] and [119]. Analytical redun-

dancy arises from the existence of inherent redundancies in the system dynamics. The focus of

this thesis is model predictive control (MPC) since it has the potential (as illustrated by Kale

and Chipperfield [70]) to correctly exploit these inherent redundancies.

A typical flight-control system is usually separated into outer- and inner-loops. The outer-loop

guides the plane on a pre-specified path and generates a set of speed and rate demands. These

demands are passed on to an inner-loop controller, which determines the requisite control surface

deflections for achieving the demanded rate values. The inner-loop control structure is usually

defined a priori, with specific functions that tell the plane how to fly. Furthermore, in the case

of redundant control surfaces, some form of control allocation is performed to blend the actions

of the multiple surfaces. This two-tiered process almost always assumes a fixed structure of the

control, for example, the use of ailerons to control roll and the use of an elevator to control

pitch. In contrast, the approach proposed in this project circumvents the need for a two-tiered,

fixed structure process. In many ways, the proposed methodology is a paradigm shift in aircraft

control.

In MPC, the focus is on designing a controller where the inputs into the controller design are

what to control, instead of how to control. This is a subtle, but illuminating, difference, meaning

inherent system characteristics such as non-linearities and cross-coupling effects can be exploited

by the controller, rather than trying to minimize their influence. For example, [94], the primary

function of the rudder of an aircraft is to provide yaw or sideways control. However, the rudder

can also have some effect on the roll of the aircraft. Therefore, in the event of a failure of an

aileron actuator, the primary control surface for roll, it is still possible to execute a limited

roll manoeuvre with the rudder. In order to achieve this degree of fault-tolerance in the flight

control system, a suitable re-configurable architecture is required to be purposefully designed

and implemented. As part of this fault-tolerant control scheme there is a need to, initially,

detect and identify the failure. Once the failure is identified, the controller must be able to

compute a reconfigured/adaptive control law capable of exploiting, optimally, the available an-

alytic redundancies, such that the effect of the failure is adequately counteracted or negated.

Subsequently, upon implementation, the reconfigured controller should be able to re-establish
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control, albeit with limited capacity, and execute the required manoeuvres. The mission can

then either be continued with the failed component or aborted. The primary objective is to

avert a catastrophic failure or the loss of the aircraft, and to ensure that it is brought back to

ground safely.

The key to the design of reconfigurable control systems is exploiting the analytical redundancy of

the UAV. In this context, the most promising approach to re-configurable and fault-tolerant con-

trol is MPC or variants thereof (see [70], [18], [55], [88]). Predictive control systems are designed

by utilising real-time optimization techniques, where a defined objective (or multi-objective)

function is optimized subject to plant operational constraints. The problem is formulated in

terms of the current control inputs, states of the system and the previously computed controlled

outputs. As the solution converges, the controlled outputs are expected to be the ones required

to achieve the control objectives or desired trajectory. This is the context of this research.

The rest of this chapter details the current state of research in fault tolerant control systems

and begins with a very brief look at flight control systems (section 2.2).

2.2 Flight Control Systems

Flight control systems (FCSs) are essentially the brains of an aircraft [42], as they control the

direction of flight. Over the years there have been many variants of FCSs. Since the successful

motorised flight by the Wright brothers there have been many improvements with three main

types of flight control systems currently in existence [42]; mechanical, hydro-mechanical and fly-

by-wire systems. The main objective of all three is the generation of the aerodynamic moments

and forces required to deflect the control surfaces for flying the aircraft.

Statistics provided by Cieslak et al. [29] (2010) show that loss of control accounts for over 25%

of aircraft accidents worldwide. In manned aircraft the flight control system (FCS) is operated

by the pilot, however in a UAV the pilot is taken out of the loop (unless the UAV is remotely

controlled). As such, in the event of a fault, the FCS must have the intelligence to handle system

degradations, something that can be addressed with fault tolerant control systems, detailed in

the following section.
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2.3 Fault Tolerant Control Systems - A Brief History

A fault has been defined as [39]:

“an unpermitted deviation of at least one characteristic property of the system from the

acceptable, usual, standard condition”

A failure on the other hand is [39]:

“a permanent interruption of a system’s ability to perform a required function under specified

operating conditions”

From the definitions above, a fault causes a system to behave abnormally but does not cause

the system to shut down, while the latter is highly likely in the presence of a system failure.

However, if left unattended, a fault may lead to a system failure, hence the importance of a

fault tolerant control (FTC) system. The main characteristic of an FTC System is the ability

to automatically cope with system faults before the fault turns into a serious system failure.

While faults can cause instability in a system, the integration of an FTC scheme significantly

increases the ability of the system to maintain overall system stability in the presence of a fault.

This is of the utmost importance in safety critical systems such as aircraft, spacecraft, nuclear

power plants and chemical process plants. Hence a system that has an integrated fault tolerant

controller is defined as [148]:

“A closed loop system which can tolerate component malfunctions (faults), while maintaining

desirable performance and stability properties, is said to be an FTC system.”

Throughout the FTC literature control system faults are categorised into 3 main types [42]:

1. Actuator Faults - can mean partial or complete loss of control action.

2. Sensor Faults - malfunction of control system sensors provide erroneous measurements of

the system’s current status. This results in incorrect operation of the system.

3. Component Faults - all system faults other than sensor and actuator faults. These faults

change the dynamics of the system as they involve changes to the physical parameters of

the system due to structural damage.

In this work only actuator faults Loss of Control (LoC) and engine failures are modelled as they

are the primary causes for the most serious failures in aircraft. Such faults cause changes in
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aircraft parameters. It should be noted that aircraft parameters are also affected by unsteady

aerodynamic and propulsive forces and moments, and are not limited to LoC conditions. Such

phenomena can be seen when an aircraft is flying in the presence of environmental disturbances

(such as windshear). For this reason online parameter estimation/identification is a vital part

of any adaptive and reconfigurable controller, as even though the aircraft may not be suffering

from LoC the aircraft will be affected. Hence any online estimation/identification techniques

must be able to distinguish whether this change is due to a fault or environmental disturbance.

For this work however this phenomena is not investigated as limits needed to be placed on the

research.

The past three decades have seen a significant amount of research in FTC. One of the very

early survey papers is the 1985 one by Eterno et. al [44]. The paper’s main focus is FTC

within an aerospace context and it discusses the improvement in reliability, maintainability and

fault tolerance that a restructurable FCS could provide for the next generation aircraft, by tak-

ing advantage of the redundant control authority available on-board. The fault types of most

concern for aircraft include those of the flight control components themselves i.e. the sensors

and actuators (aerodynamic surfaces), which are usually random and are the result of battles,

collisions or sabotage. Eterno et. al [44] go on to state that robustness is the goal of any control

system and is defined as the ability of the aircraft to maintain performance in the presence of

uncertainty. One way of achieving this is through adaptive control, the technology of continu-

ally identifying system parameters and adjusting the control parameters in accordance with the

identified parameters. Continuous adaption is supported by well developed theory and numer-

ous successful applications. If circumstances are ideal it provides graceful degradation and FCS

recovery. However, most adaptive control algorithms can produce catastrophic instabilities and

very high bandwidths when confronted with unmodelled dynamics and disturbance signals. In

addition, the most successful applications have been on systems with long time constants and

widely separated dynamics, that allow the adaptive system bandwidth to be artificially limited.

The concept of the “dead zone” was introduced to address these shortcomings and involves the

monitoring of the control (servo) error with the aim of determining if these errors are the result

of normal command following disturbance rejection or due to plant parameter variations. Under

normal operation i.e. servo errors within the dead zone, no adaption occurs; however when

errors become unacceptable an adaptive scheme is applied.

13



Another highly influential survey paper, written by Patton in 1997 [97], classifies the FTC prob-

lem as a complex control system requiring inter-control-disciplinary information and expertise.

Patton argues for new controllers that can tolerate component malfunctions whilst maintaining

desirable and robust performance and stability properties. Patton [97] concurs with Eterno et

al. [44] that the main requirement of an FTC system is either the maintenance of an acceptable

level of performance, or graceful degradation following a malfunction. For a real time application

Patton suggests the comparison of several methods on the basis of cost, robust stability, degree

of predictability of the behaviour of the system and whether or not the system could degrade

gracefully without loss of life/injury and/or significant economic loss. Other important factors

in the decision making process include computational burden as well as the complexity of the

system as a highly complex system could decrease overall system reliability. Patton comes to

the conclusion that the main objective of fault tolerance should be the design of a controller able

to guarantee stability and satisfactory performance, not only during healthy operations but also

during component malfunctions. Such structures are referred to as control loops that possess

loop integrity or reliable control. Hence FTC is a strategy for reliable and highly efficient control

law design. According to Patton, research in FTC during the 1970s and 1980s has concentrated

on:

• Supervision - which manages the controller reconfiguration.

• Fault detection and identification (FDI) - a very mature field that provides very powerful

quantitative and/or qualitative modelling tools and artificial intelligence.

• Robust control - very popular since late 1970s. Until 1997 very little research had been

carried out in regards to the effects of faults upon the control process. The few cases

dealing with faults are referred to as the passive approach which will be discussed in a

later section.

• Reconfigurable control - very popular amongst researchers, with methods including feed-

back linearisation, pseudo-inverse, adaptive control and model following, just to name a

few.

Patton believed it was important to combine fault detection and identification (FDI), recon-

figurable control and robust control and that the biggest challenge in FTC design was the

integration of the design and implementation of a reconfigurable control scheme based on robust

controller designs, and an FDI unit. He highlights the most important mathematical challenges

as:
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• The need for FTC to be implemented via a systematic and integrated approach to design

and,

• The need to understand the structure of the system, the reliability of the different compo-

nents, the types of redundancies available or those that can be generated, and the types

of controller functions which might be required and are available.

Patton [97] introduces the concept of analytical redundancy (AR) as a means of using functional

relationships between system variables to accommodate fault tolerant control. The underlying

idea of AR is the use of the functional relationships between system signals. For many years

physical redundancy was the basis for FTC, but with the use of digital computers on board

aircraft AR has received a great deal of interest [36]. Here the redundancy is provided by incor-

porating the aircraft model into the controller; hence FTC that uses AR could be considered a

model-based approach.

Zhang and Jiang’s 2008 paper [148] also identifies AR as the future of FTC. The authors claim

that over the previous three decades the increase in demand for safety, reliability, maintainabil-

ity and survivability significantly expanded research into fault detection and diagnosis (FDD).

Simultaneously research into reconfigurable fault tolerant control systems also increased.

Thus, the last three decades have seen a significant amount of research in FTC with the surveys

by Eterno et. al (1985) [44], Patton (1997) [97] and most recently, Zhang and Jiang (2008)

[148] giving a very good overview of the current state of the art. In summary Eterno et. al felt

that the best solution to FTC was to have two separate controllers, one that handles the no

fault case, and another that comes into action once a fault has occurred, while Patton in 1997

deduced that AR was the way forward in FTC. This was further recognised in 2008 by Zhang

and Jiang who also identified the interaction of the FDI and FTC subsystems as an important

area of research.

The literature shows that developments in FTC have been largely motivated by the aerospace

industry. In particular, two commercial aircraft accidents that occurred in the 1970s highlighted

the need for equipping aircraft control design with self-repairing capabilities to assist the pilot

in landing the aircraft safely. In the first incident, the pilot of DELTA flight 1080 was able to

reconfigure the aircraft’s lateral control elements and land the aircraft safely when a fault in

the elevator caused it to jam at 190 up. In the second, the American Airlines DC-10 Flight
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191 crashed, as the pilot had only 15 seconds to react. Subsequent investigations into the latter

accident found that the crash could have been avoided if there had been an FTC system on board.

As previously mentioned FTC has expanded to many industrial and academic communities due

to the increase in safety and reliability demands, including aerospace [60], wind turbines [113],

chemical process industry [149], automotive [47] and nuclear power [77]. Consequently, there are

numerous solutions to the FTC design problem with the FTC research community classifying

these designs as either passive or active. The following two subsections discuss this important

distinction.

2.3.1 Passive FTC

Also known as reliable control of systems with integrity, passive FTC systems are based on fixed

controllers and are designed to be resilient against known faults. They are designed using robust

control techniques and are often designed for worst case scenarios. In a passive FTC system

the main objective is the maintenance of the original system performance, with the biggest

advantage being low computational cost as no fault detection is performed. Other advantages

of a fixed controller include minimal hardware and software requirements, and with their low

complexity they can be designed to be more reliable than an active system. However, since no

fault detection is performed this approach is often ineffective as only a small subset of possible

faults can be considered. Another disadvantage of the passive approach is that increased ro-

bustness against certain faults is only possible at the expense of decreased nominal performance.

2.3.2 Active FTC

Also known as self-repairing, self-designing or fault detection, identification (diagnosis) and

accommodation schemes, active FTC systems contain an FDI component and are based on con-

troller redesign, or selection/mixing of pre-designed controllers [42]. The FDI element monitors

the health of the system, with the aim of detecting and isolating system faults. This information

is then sent to the controller which reconfigures based on this new information to best represent

the current state of the system. Active systems can be further broken down into two types [49]:

1. Projection based methods - based on a number of controllers with each representing a

different fault. Once the FDI detects and isolates a fault a selection must be made of
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the controller that best suits the current state. Like passive systems these methods can

account for only a subset of faults.

2. Online redesign methods - recalculate controller parameters and are referred to as recon-

figurable control. Online redesign methods have the best performance, however they are

the most computationally demanding.

When comparing active and passive FTC schemes, the drawbacks of active control include false

alarms, non-detection delays and complexity of control laws. On the other hand passive systems

can be overly conservative and are designed to handle a certain disturbance set with the fault

tolerant controller unable to handle any disturbance not within this set. Another disadvantage

of passive systems is a result of utilising robust control techniques with Wu et al. [129] main-

taining that a robust system often masks failures. A recent review paper written by Jiang and

Xiang [68] provides an excellent qualitative and quantitative comparison between active and

passive approaches. Both papers [129] and [68] suggest combining the two strategies to form a

hybrid approach that can exploit the advantages of each whilst at the same time eliminating the

disadvantages.

The following section briefly discusses the various mathematical control techniques that have

been used in FTC. The main focus is on MPC, the method used in this research. As will be

clarified later, MPC with its inherent fault tolerant capabilities can be utilised to form a hybrid

FTC system.

2.3.3 Control Techniques used for FTC - Model Predictive Control

Various mathematical control techniques have been used throughout the literature for both pas-

sive and active approaches. MPC has been chosen for this research as a method for further

investigation and this subsection briefly outlines MPC which is described in further detail in

subsequent chapters. A table of other approaches used for FTC are listed at the end of this

subsection along with their advantages and disadvantages.

Model Predictive Control - has many characteristics that make it ideal for fault tolerant

flight control. MPC is an optimal control technique and is the only advanced control technique

to have had a significant impact on industrial process control [90], mainly because it is the only
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generic control technology that can handle system constraints.

MPC is a model-based approach that utilises an internal model to generate predictions of future

plant behaviour. MPC also has excellent fault tolerant potential, however there is a reluctance

to use MPC for flight control because of the use of fast time constants in comparison with

traditional applications. The features of MPC that make it a promising candidate for fault

tolerant flight control design are:

• Faults are easily modelled; for example a stuck actuator can be modelled by appropriate

choice of constraints.

• In the event of a system fault the objective function and/or the constraints are easily

modifiable as the control signal is recomputed at every time-step.

• MPC possesses particular fault tolerant properties, allowing the handling of faults up to

a certain degree even in the absence of fault knowledge.

The basic idea behind MPC is to minimise a cost function subject to the system dynamics and

input and output constraints. This optimisation takes place over a predefined prediction hori-

zon. More details on MPC will be provided at the start of the appropriate chapter.

While MPC is the method of choice in this research project, for the sake of completeness it

is important to consider other popular approaches to FTC. The following table lists the most

commonly used approaches for FTC along with their advantages and disadvantages.
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2.4 Fault Detection and Identification

As Patton [97] points out, one of the biggest challenges to designing fault tolerance is incor-

porating an appropriate fault detection and identification (FDI) unit. FDI is a very mature

area of study and provides many powerful quantitative and qualitative modelling tools yielding

artificial intelligence regarding any given fault. The FDI module is an integral part of the active

FTC system and can mean the difference between complete system failure and system recovery.

FDI is the most difficult aspect of FTC [26] and due to the excessive costs involved and increase

in system weight, hardware redundancy and full self diagnosis equipment are not always viable

solutions, particularly for UAVs. As a consequence other means for FDI are necessary, such as

using the available data and the mathematical model of the plant; this is referred to as model-

based FDI, and as analytical redundancy. This approach to FDI is based on the belief that

when a fault occurs the physical parameters change and as a result the dynamical model of the

plant also changes. The residual generation approach, using observers such as the Kalman filter,

the Unscented Kalman Filter and Multiple Model Filters, is the most researched area in FDI

[8] and is investigated as part of this research. Observer based schemes are highly dependent on

the models upon which the scheme is designed. False alarms or missed faults can occur due to

plant model mismatches, hence robustness issues in FDI are critical.

Patton [97] identified the role of an FDI system as the ability to gather information about the

changes occurring in the system parameters (or in the system operating point) due to faults.

There have been many kinds of FDI approaches developed [97]; quantitative, qualitative and

knowledge based. Quantitative FDI can be further classified as state estimation, parameter

estimation and parity equation approaches. However, FDI research has more commonly been

conducted in isolation to controller design and there is a huge gap in integrated FTC and FDI de-

sign. The reliability of the FDI system is required to be higher than the system being monitored

as the better the model used to represent the dynamic behaviour of the system, the higher the

chance of improving the reliability and performance of detection and isolation of faults thereby

reducing the number of false alarms.

Fault detection is clearly an essential component of any active FTC system and hence will be

thoroughly examined in chapter 4.
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2.5 Fault Tolerant Flight Control - The State of the Art

The many methods of control techniques given in subsection 2.3.3 have been used in fault tol-

erant flight control design by many authors. In this section, I detail the use of these methods

providing examples to illustrate their variety.

The past decade has seen a great deal of work in the area of fault tolerant flight control. For

instance the European Flight Mechanics Action Group FM-AG(16) on FTC was in operation

from 2004 to 2008. A collaboration of thirteen European partners from industry, universities

and research establishments, FM-AG(16) was supported by the Group of Aeronautical Research

and Technology in Europe (GARTEUR) program [42]. The focus of this latter group was com-

mercial transport aircraft because statistics clearly indicated that many airliner accidents could

be attributed to Loss of Control In-Flight (LOC-1), caused by a piloting mistake (e.g. due to

spatial disorientation), technical malfunctions or unusual upsets due to external disturbances.

Hence the aim of the GARTEUR Flight Mechanics Action Group FM-AG(16) with regards to

fault tolerant flight control was the development of new fault tolerant control strategies within

the European aerospace research community in practical and real-time operational applications.

SImulation MOtion and NAvigation (SIMONA), a 6-DoF flight simulator provided by Delft

University (Netherlands) was used to assess the real time applications of the FTC technologies

developed by the FM-AG(16) group. The research undertaken by the FM-AG(16) group, as

given in [5] and [6] includes an FTC scheme based on sliding mode control (SMC) and control

allocation (CA). CA has emerged as one of the leading techniques for dealing with systems

with redundancy such as large transport aircraft. A benefit of CA is that reconfiguration of

the controller is not required as CA schemes “automatically redistribute” the control signal.

Sliding mode control (SMC) is a non-linear control methodology and comes under the category

of robust control hence it has robustness properties against certain types of disturbances and

uncertainties that make it suitable for FTC. However, since sliding mode control (SMC) cannot

deal directly with actuator failures, CA offers a solution by providing access to the redundant

actuators. Simulator results obtained by the FM-AG(16) group were good even in wind and gust

conditions. Alwi and Edwards in an earlier paper [7] presented the SMC/CA scheme applied to

the lateral and longitudinal axes of the non-linear B747 aircraft simulation model where they

showed that the sliding mode control allocation scheme could handle fault and total actuator

failures directly without reconfiguring the controller. Other formulations of FTC that have come
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out of the FM-AG(16) group include an adaptive nonlinear dynamic inversion configuration for

manual and autopilot control [84], where the authors explain that the weakness of classical non-

linear dynamic inversion (DI), sensitivity to modelling errors, can be avoided by the use of a

real time identified physical model of the damaged aircraft.

Throughout the literature it was found that FTC schemes are most commonly a combination of

the methods outlined in section 2.3.3. The aim of the Intelligent Flight Control System (IFCS)

F-15 program at National Aeronautics and Space Administration (NASA) is the development

and evaluation of flight control schemes that assist the pilot in handling faults during the oc-

currence of a primary control surface failure. The FTC scheme developed under this program

([101], [99]) is based on nonlinear dynamic inversion and is augmented with a neural network

(NN) to compensate inversion errors and changes in aircraft dynamics due to damage or failure

of a primary control surface. Three different NNs were investigated, the Extended Minimal

Resource Allocating Networks (EMRAN), Single Hidden Layer (SHL) and the Sigma Pi. The

simulations were conducted using the NASA F-15 aircraft and different fault scenarios of the

stabilator and canard were investigated. Results showed that EMRAN outperformed the other

two schemes in terms of angular rate tracking errors while requiring lower computational effort.

Other examples of combined methods for FTC include work conducted by Shin and Gregory

[112] where the FTC method is based on robust gain scheduling (GS) control concepts using a

linear parameter varying (LPV) control synthesis method to design fault tolerant controllers for

a civil transport aircraft. Both passive and active controllers were designed and implemented

for the longitudinal motion of the aircraft and the effect of time delays was investigated. It was

found that in the active FTC case controllability was not guaranteed for fault detection delay

times greater than ten seconds. The passive controller on the other hand used the elevator and

stabilisor for control even in healthy situations where only the elevator should have been used.

Yang and Lum [134] tested a solution for FTC on simulation models of the F-16 aircraft with

stuck actuator faults, with the FTC based on H∞ and peak-to-peak gain performance indices

in a multiobjective optimisation setting where the algorithms were based on linear matrix in-

equalities (LMIs). Zhang and Jiang [147] on the other hand, tested an active FTC design on

a model of the F-8 aircraft, finding that in the presence of a fault the degradation in dynamic

performance was accounted for through a degraded reference model. Zhang and Jiang [147]
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used an eigenstructure assignment (EA) algorithm to automatically design the controller once a

fault was detected. This was done in a model following framework so that the dynamics of the

closed-loop system follows that of the degraded reference model.

Yu and Jiang [143] developed an active FTC method where the impairments were modelled

as a polytopic LPV system. Here, simulations look at inner elevon impairments and the FTC

was based on LPV techniques through the optimisation of linear matrix inequalitys (LMIs).

Ye et. al [139] used a linearised model of the F-18 (longitudinal motion only) where the FTC

was based on H∞ in an LMI framework similar to Yang and Lum’s work [134]. Ye et. al had

earlier produced a two part FTC system [140] where the first part consisted of a nominal con-

troller based on iterative LMI. The second part of the system was a re-allocation scheme that

redesigned an optimal control law without reconfiguring the baseline controller and was based

on the pseudo inverse method (PIM). Simulations were performed on ADMIRE (the Aerodata

Model in Research Environment), a non-linear, six degree of freedom simulation model of a rigid

small fighter aircraft with a delta-canard configuration developed by the Aeronautical Research

Institute of Sweden. A more recent paper by Gao and Wang [51] focuses on FTC for an air

breathing hypersonic vehicle (AHV) subject to actuator faults and limited measurements of the

states where the scheme is based on feedback linearisation (FL) and SMC.

2.5.1 Sliding Mode Control Approach

Sliding mode control (SMC) was found to be one of the most popular methods for FTC in the

literature. Alwi and Edwards [8] developed a sliding mode approach for FTC of a civil aircraft

(model of the Boeing 747) where both actuator and sensor faults were considered. In [8], a state

feedback sliding mode controller is designed for actuator faults where the gain of the nonlinear

unit vector term is allowed to adaptively increase once a fault occurs. The adaption mechanism

is activated by unexpected deviations of the switching variables from their nominal condition.

A robust method for fault reconstruction using sliding mode observers is used for sensor faults.

The proposed method does not require controller reconfiguration because the corrupted mea-

sured signals are corrected via a sensor fault reconstruction signal before they are used by the

controller. In the nonlinear part of the control law, an adaptive gain is used which reacts to the

occurrence of a fault and attempts to keep the switching function as close as possible to zero,

thus trying to maintain nominal tracking performance. A switch is made to a back up control
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surface if total failure is detected. However, the linear component of the control law remains

unaltered. The novelty of this scheme is the design of the hyperplane, which minimises the effect

of unmatched uncertainty on the sliding motion arising from actuator failures and the simple

adaptive scheme for the nonlinear unit vector scaling gain. Hence the FTC controller is based

around a state feedback sliding mode scheme and the gain associated with the nonlinear term

is allowed to adaptively increase when the onset of a fault is detected.

Another application of SMC can be found in [49] where a passive FTC scheme is developed for

the longitudinal motion of an F-18A aircraft. Pre-specified faults are handled via a variable

structure controller with a sliding surface and a Lyapunov function. The authors claim that

the main features of their proposed method are simplicity and robustness against uncertainties

and parameter variations due to some pre-specified faults. Peng et. al [98] have produced an

adaptive and conditional integral SMC. As the authors points out, SMC suffers from chatter-

ing which can excite unmodelled high-frequency dynamics, degradation of system performance

and result in instability. The authors develop an SMC formulation that reduces chattering and

guarantees zero-steady state error achieving this through a conditional integral term to attain

steady state error and an adaptive technique based on Lyapunov stability theory to compensate

for the effects of the disturbance generated by actuator faults.

Yang et. al. [135] also produce a passive FTC scheme based on adaptive SMC again using

the Lyapunov stability theorem, to ensure closed loop stability. Comparing adaptive SMC to

classical SMC, they found, through simulations of aircraft actuator faults, that adaptive SMC

performs better than the conventional SMC fault tolerant controller. The very same group also

produced [136] a model following based SMC controller, where proportional integral type sliding

surface was designed via pole placement to ensure the sliding mode had good dynamic charac-

teristics and to eliminate steady state error.

2.5.2 Multiple Model Techniques

Multiple Model techniques are another very popular method for FTC, however these are primar-

ily used as a means of predicting faults. Boskovic [17] presents a decentralised FDI and adaptive

reconfigurable control scheme to achieve the desired flight performance in the presence of mul-

tiple control effector failures that occur at different times. This decentralised scheme consists of
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multiple adaptive FDI observers and controllers and a suitably chosen decision making mecha-

nism. The proposed method [17] was implemented on a model of the F/A-18A aircraft and the

decentralised system consisted of 3 subsystems: (1) FDI subsystem, (2) parameter estimation

subsystem and (3) decision making subsystem. In the event of an effector failure the decision

making subsystem uses estimates from the parameter estimation subsystem online to reset all

FDI observers and controllers to the nominal regime which is established immediately following

the failure. In a later paper of Boskovic [24], only the FDI is decentralised, i.e. an observer is run

at each of the actuators; and parameter estimations are adjusted using only local information. A

key aspect of this approach is that the observers do not use global state information, but rather

local signals. The main advantage of this method is that it can handle multiple simultaneous

faults and the controller uses parameter estimates from each of the observers.

Guo et. al [61] introduce an active FTC scheme based on a combination of a direct adaptive

control algorithm with multiple model (MM) switching. The FTC in [61] is based on radial

basis function networks (RBFN) type neural networks to approximate model uncertainty and

adaptive parameters, while MMs are used to describe all fault scenarios.

Intelligent control techniques have been widely used for FTC. Liu et. al [83] developed a passive

FTC scheme based on an NN model following adaptive inversion control that uses an adaptive

back propagation NN. Li et. al [78] describe an FTC technique for autolanding based on a

radial basis function network (RBFN) and traditional controllers. Due to the powerful ability

of NNs to approximate nonlinear functions they are able to adapt to changes in system dynam-

ics quickly while still providing good performance hence in [78] FTC is based on an NN aided

H∞ controller. Yan et. al. [133] proposed an FTC method using a nominal controller plus an

adaptive controller based on NN, in particular the minimal radial basis function neural network

(MRANN), and were one of the first people to use MRANN on flight control. Simulations were

based on the longitudinal motion of the F8 aircraft. Other applications of NN based FTC can

be found in [92], [109], [146]. The fuzzy logic controller is used by Sami and Patton [110] where

the goal was the design of a controller that could handle simultaneously occurring actuator and

sensor failures. The methodology in [110] is based on a TS fuzzy controller and TS fuzzy ob-

server. Torabi et. al [118] compare a fuzzy controller with MPC as fault tolerant controllers for

the pitch rate command tracking of light aircraft. Results show that the effect of disturbances

is better handled by MPC.
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H∞ has proven to be a very popular robust control method for FTC. Cieslak et. al [29] use

an H∞ base controller for the landing approach of the B747-100/200. Piloted flight simulations

analyse a faulty trimmable horizontal stabilisor and show that fault tolerance can be achieved

under the condition that there exists sufficient remaining control authority. Wu and Chen [129]

also incorporate H∞ for FTC where the aircraft considered has redundancy in control authority

provided by both elevons and canards. Ye et al. [138] look at mixed H2/H∞ robust FTC,

with the FTC set up in an LMI framework where a multi-objective optimisation problem is

solved. Simulations are performed using the ADMIRE simulator. The H2 controller is adapted

to handle the transient performance while the H∞ guarantees robust stability in the presence

of uncertainties and disturbances.

Adaptive Control techniques have been used by Boskovic et. al [19] where the approach is

based on generating high frequency signals for actuators with suspected failures with the aim of

minimising the effect of these signals on the system state using the remaining healthy control

surfaces. This method was tested on simulations of the F/A-18. The preliminary results were

quite positive showing that the proposed technique was robust to false alarms, false failure infor-

mation and missed detections and it assured convergence of the failure parameter estimates to

their true values. Boskovic et. al also produce a method of adaptive control [16] for FTC where

a suitable tracking error feedback (TEF) term is designed such that the plant is stabilised over

the entire uncertainty set. If such a term exists then the adaptive control part depends only on

the reference model state and reference input. This results in a stable linear time-varying system

rather than a nonlinear time-varying system which commonly arises in the context of standard

adaptive control (AC) and allows for simpler analysis of the system. Other applications of AC

can be found in Gayaka and Yao [53] and Idan et. al [65] where, in both cases, model reference

adaptive control is used as the basis for FTC.

Other methods that have surfaced in the area of FTC include using off-line multi-objective

optimisation [14] to design an optimal gain tolerant to a control surface failure. This method

can only be applied to a known set of failures and in the paper [14], is applied to a model of

the F/A-18A aircraft. Ciabotaru and Staroswiecki [30] use a linear quadratic regulator (LQR)

design for FTC of the short-period mode of the longitudinal model of the Boeing 747. When ac-

tuator faults occur, both fault accommodation and system reconfiguration procedures need the
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controller to be redesigned which means solving algebraic Riccati equations (AREs) associated

with the post fault model. To avoid the risks of system instability and/or control inadmissibility

which results from fault detection delays, the authors [30] utilise a progressive accommodation

strategy based on the Newton-Raphson algorithm for solving AREs.

An analytical based FTC approach can be found in a very early paper written by Gross et.

al in 1986 [59], which points out that valuable information can be obtained about the status

of an actuator by examining the actual versus commanded position. Gross et. al suggest the

use of hinge moment residuals as an approach that could yield valuable information for damage

detection, isolation and estimation of effectiveness. Keating et. al [71] present a quantitative

feedback theory (QFT) based FTC system. QFT uses a 2DoF arrangement that utilises unity

feedback, a cascade compensator and a prefilter to reduce variations of the plant output from

plant parameter variations and disturbances, rendering it necessary to make trade-offs between

compensator complexity and performance.

One area of FTC that has not been thoroughly researched is the hybrid method, a combination

of the active and passive methods [148]. Fekih [48] developed a FTC method based on integrated

(active-passive) design combining SMC with adaptive control with simulations carried out on a

model of the F-16. Here the sliding mode method is the nominal controller; if its performance

degrades such that the state evolves outside a given boundary then the adaptive controller is

added to the nominal controller to offset the actuator faults. Yu et. al [145] also propose a

scheme to combine active and passive approaches with the basic controller based on LMI. When

a fault occurs initial fault detection is performed by the autonomous robust reliable control

system and control is set to a robust control law selected from a set of reliable control laws

proposed off-line. In the background the FDI system is simultaneously reconfirming the fault,

and after it has been isolated the reconfigurable control law is developed. Simulations were con-

ducted on a helicopter rather than a fixed wing aircraft and the results showed that the system

could achieve optimal performance under the nominal condition and in the event of a failure the

system responded instantly, guaranteeing stability and a certain level of performance. Finally

Yu and Jiang [144] design both active and passive components of their hybrid FTC scheme via

LMI, describing the means by which a hybrid FTC system is able to first slow down the rate of

fault induced system deterioration with minimal fault information such that the FDI subsystem

has a chance to correctly isolate the fault. Once detected the reconfigurable controller takes
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over from the passive robust controller. Through simulations, using both linear and nonlin-

ear case studies, Yu and Jiang [144] found that passive systems use more energy than active

systems. They also found that with correct FDD information the active system performance is

superior compared to the passive system. The passive system was found to be very conservative.

This section covered the state of the art in fault tolerant flight control. It discussed the techniques

presented in section 2.3.3 as applied to flight control for the purposes of fault tolerance. The

next section takes a more in depth look at the techniques that have been applied specifically to

UAVs, the main application area of this research.

2.6 UAV FTC Methods

As is evident from the literature review outlined so far, especially in the previous section, fault

tolerant flight control has been mainly utilised within the context of large manned aircraft.

Much of the literature on UAVs describes the application of FTC to rotorcraft rather than fixed

wing aircraft. This section provides a brief overview of the work being conducted in UAV fault

tolerant control.

Bateman et. al. [11] believe that gaining airworthiness approval for UAVs in civil airspace

requires an increase in reliability and propose an active FTC system to deal with control surface

failures for a UAV. The fault tolerant control scheme in [11] consists of an FDI method based on

a signal processing approach and a bank of linear quadratic controllers to handle all faults. Fault

detection is carried out by first detecting a fault, followed by an isolation process whereby each

control surface is excited with a specific signal that constitutes its signature. Hence isolation of

the fault involves identifying the presence or the absence of this signature. The authors explain

that in the presence of an actuator failure the equilibrium of forces and moments is broken and

significant couplings appear between the longitudinal and lateral axis of the aircraft. To find

a new equilibrium the fault free mode control surface deflection constraints are relaxed. FTC

systems exploit the redundancies offered by the control surface and control each one separately,

via a linear quadratic controller. A drawback of the proposed method in [11] is that it does not

allow faults to be detected in the rudder due to the lack of redundancy in this control surface.

In 2008 Bateman and the same co-authors [12] presented a paper investigating an FTC strat-

egy for the nonlinear model of a UAV equipped with numerous redundant controls. Here the
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authors look at asymmetric actuator failures using a sequential quadratic programming (SQP)

algorithm that takes into account nonlinearities, aerodynamic and gyroscopic couplings, state

and control limitations as a means for FTC. The algorithm calculates new trim conditions such

that the new operating point of the faulty linearised model remains near the fault free model.

The authors [12] examine asymmetric failures for which couplings appear between axes, possibly

changing the equilibrium of forces and moments. The time required to process the failure may

move the state vector far away from its operating point, so a nonlinear model of the aircraft

that takes into account aerodynamical effects of each control must be considered. Under this

scheme an FTC system can be implemented if and only if a new operating point can be found.

To compute this new operating point the authors assume that the faulty controls and their

positions are known, i.e. FDI is assumed. Re-allocation of the healthy actuators is expressed as

an optimisation problem with equality and inequality constraints. The optimisation returns the

new operating point in faulty mode at which point it is possible to calculate a linearised model

of the UAV. Upon computing the new operating point a linear state feedback is calculated which

aims to steer the current state vector towards equilibrium. Hence in theory one controller has

to be designed for each fault situation; to achieve this the authors [12] use EA as the basis of

the controller design.

Other applications of FTC for UAV operations can be found in very early papers on the sub-

ject by Copeland and Rattan (1994) [32], Chen et. al (1998) [28] and Wu et. al (1999) [130].

Copeland and Rattan [32] propose a fuzzy logic supervisor algorithm for a reconfigurable flight

control law. The authors claim that in the event of a fault the set of fuzzy logic rules obtained

ensure even distribution of control authority to the remaining healthy effectors. The FTC sys-

tem described by Chen et. al [28] (1998), uses LMI to address wing impairment faults on UAVs.

The authors present a multi-objective approach for establishing a matrix inequality formulation.

The approach is designed to eliminate the rank constraints in the LMI that occur in the presence

of a fault, which if left unattended may lead to a non-convex problem. Wu et. al [130] use QFT

as the method of choice for FTC on a remote pilotless aircraft. The approach described therein

[130] was applied to the longitudinal motion of the aircraft and results showed an increase in

stability and tracking performance compared to the existing FCS.

In more recent work by Beainy et. al [13] FDI is based on NN and a reconfigurable controller

based on SMC is designed to compensate for the degradation of the actuation on the occurrence
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of a fault. Krueger et. al [76], on the other hand, present an FTC based on an expanded

nonlinear model inversion flight control strategy using sliding mode online learning for NN. An-

other NN based FTC system was presented in [102] where the proposed system had three main

components: (1) an FDI, (2) a controller suite comprising of a nominal controller and an NN

based adaptive fault tolerant controller, and (3) a reconfiguration supervisor that makes deci-

sions regarding controller reconfiguration. In [122] fault tolerant control is done via a standalone

compensator which is added to the original system. NNs are used to design the compensator

and it comes into effect after a fault occurs; it also consists of a state observer. Results show

that in the event of a disturbance due to a fault the new approach improves the closed loop

response.

Fan et. al [46] present a hybrid active/passive approach to a flying wing UAV using an LMI

framework, discussing the importance of intelligently integrating the FDD system into the FTC

system as otherwise any delays in fault detection will result in system instability. The authors

claim that the unique feature of the proposed hybrid method is its ability to tackle the actuator

saturation problem, allowing full utilisation of the actuator power. If and when the effectiveness

of the actuator is at the limit for which tracking requirements cannot be met, then recover-

ing the maximal tracking performance is possible if the remaining actuator power can be fully

utilised by the system. The authors derive a set-invariance condition to guarantee the stability

of the post fault system, designing the reliable controller such that the resultant invariant set

includes the output from the nominal controller. However, stability is only guaranteed under

the assumption of zero detection delay.

Ahn et. al [2] look at an adaptive and sliding mode scheme for FTC. The merits of adaptive

and SMC are that (1) the magnitude of sliding mode controller gain can be reduced and (2) an

FDI process is not required. Research in [2] is focused on UAVs; however simulations are on a

generic 6DoF nonlinear aircraft model. Using the time-scale separation principle both the fast

inner-loop states and slow outer-loop states are simultaneously controlled. An online adaptive

parameter estimation scheme is considered in the pure sliding mode controller to overcome the

large control authority requirements and chattering problems of SMC.
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2.6.1 Damage Tolerance Control

A series of flight tests were performed under the DARPA-sponsored Damage Tolerance Program

[69] in which four key technologies are discussed and illustrated with actual flight data. The

Rockwell Collins damage tolerant control (DTC) technology is designed to mitigate common

UAV failures such as primary control surface damage, airframe damage and complete engine

failure. A combination of all types of attitude control, MRAC, automatic supervisory adaptive

control (ASAC) and emergency mission system (EMMS) is shown to provide UAVs with an un-

precedented robustness to otherwise catastrophic failures. From April 2007 to June 2010 flight

data was collected on flights using a subscale F-18 UAV. The MRAC method was able to recover

the baseline controller after losing actuation, while ASAC returned an aircraft with catastrophic

wing damage to trimmed and controllable flight within seconds allowing the mission to be com-

pleted with a successful autonomous landing. The EMMS allowed the aircraft that had suffered

complete engine failure to glide back onto a feasible landing trajectory.

2.6.2 Use of MPC in the Process Industry

As mentioned before, the control methodology that I study in this thesis has been extensively

used in the process industry. Boskovic and Mehra [23] present an MPC based fault tolerant

control scheme for the process industry where MPC controllers are found to be sometimes bet-

ter suited to a given problem over proportional integral derivative (PID) controllers, since the

latter cannot take into account process characteristics such as nonlinearities, time variations,

loop interactions and constraints all of which are possible with MPC. The same authors also ap-

ply MPC to fault tolerant flight control in [22] where simulations are based on Boeing’s Tailless

Advanced Fighter aircraft, with FDI based on multiple model switching and tuning (MMST).

Camacho, Alamo and de la Pena [26] detail the extension of the receding control strategy of

MPC to the case of system identification by parameter bounding. Furthermore the authors

show that MPC can be used to determine if a model is consistent with the data obtained in a

receding horizon manner which implicitly enables fault detection. The paper by Camacho et. al

[26] shows the incorporation of concepts arising from fault detection and fault tolerant design

methods into an MPC framework and lists the advantages gained by utilising MPC as a fault

tolerant control mechanism.

The versatility of MPC is illustrated in [26], where the authors give a formulation of MPC taking
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into account faults and uncertainties that allow the design of intrinsically safe controllers, mak-

ing this formulation of MPC a type of passive FTC. Camacho et. al [26] point out that because

MPC can be used for set membership estimation it can also be used for FDI. Once a fault has

been detected MPC is capable of coping with the new situation by using the fault mode. Thus

MPC when used as a set membership estimator could be said to belong to the class of active FTC.

Applications of MPC for fault tolerant flight control date back to 1998 when Gopinathan et.

al [56] used MPC for fault tolerant control, with MMST for fault detection, applying their for-

mulation to simulations of the F/A-18A aircraft. Henson [64] proposes fault tolerant control

methodology for quad-rotor flight control, explaining that most active FTC need a post-fault

model updated by FDI followed by a reconfiguration process to handle the faults. However,

since post fault time is crucial Henson suggests combining FDI with the reconfiguration process.

MPC offers the most promise in this regard, as it calculates the control signal at every sampling

time. Henson clarifies that the biggest drawback of MPC is the need for an explicit model.

Henson’s paper [64] offers a data-driven MPC architecture that performs model identification

and control signal calculation simultaneously using available post-fault input/output data. The

proposed architecture requires no reconfiguration, switching or online retuning of parameters

and the identification cost is added to the cost function.

Having looked at previous research into the use of FTC in UAVs, I now outline the methodology

I used in my research and the research questions that were formulated.

2.7 Proposed Methodology and Research Questions

Guo, Zhang and Jiang [61] identify many difficulties with a number of FTC systems. The main

difficulty with Dynamic Inversion, for example, is that an accurate mathematical nonlinear sys-

tem model is required and the inverse dynamics encompassing the full flight envelope have to be

evaluated. Neural Networks, on the other hand, require highly complex tuning for different flight

regimes due to the fact that they require on-line adjustment of a large number of parameters

(weights). Finally, standard adaptive control algorithms are found to require strong and often

unrealistic assumptions, such as, known relative degree, minimum phase etc. In my research I

will investigate MPC further, as a viable FTC solution for UAV flight control.
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To establish the context of my methodology, I start with some details of existing research into

the flexibility of MPC. Maciejowksi, a prominent figure in the area of MPC for over two decades,

describes [86] the concept of daisy chaining, which occurs in systems with redundant actuators

and refers to the arrangement in which one actuator (manipulated variable) is used in normal

operations but if this actuator were to become saturated or to fail, another or several others are

brought into operation. In other words daisy chaining refers to the transfer of control action

from faulty actuators to healthy ones. A very important point highlighted by Maciejowski [86]

is that there is implicit daisy chaining capability inherent in MPC and hence it can exploit

any available redundancy even in situations unforeseen by the designer. Daisy chaining would

greatly enhance the robustness of constrained predictive control schemes in the event of actuator

saturation as well as increasing the tolerance to certain kinds of failures.

Following this Maciejowski [88] presented statistics surrounding the Vietnam war where the

US Air Force lost about 10,000 aircraft with 20% from damage to the control system. This

indicates that the engine and airframe were basically undamaged, and the aircraft may have

been recoverable if the pilots had been able to work out how to do so. In another paper

that same year, Maciejowski [89] had proposed that MPC offered a promising basis for FTC

due largely to the fact that MPC relies on an explicit internal model. This he believed, was

plausible because failures could be dealt with by updating the internal model and then allowing

the on-line optimiser to work out “how to control” the system in its new condition. This however

relies on several assumptions not the least of which are:

1. The location of the fault can be determined and the effects can be modelled.

2. The model can be updated automatically.

3. The control objectives can be left unaltered after the failure.

Maciejowski [88] emphasised the importance of having a reliable FDI, and showed the importance

of MPC to fault tolerant flight control in [87] when he and Jones demonstrated that the fatal

crash of EL AL flight 1862 could have been avoided by using MPC based fault tolerant control.

In [87], Maciejowski showed via simulation of a detailed nonlinear model that it would have been

possible to reconfigure the controller so that the aircraft could have been flown down to ground

level successfully without entering the condition in which it was lost. The FTC method used by

Maciejowski [87] constituted a reference-model based approach in which an MPC controller at-

tempts to restore the original functionality of the pilot’s controls. Simulations were based on the
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assumption that an FDI system delivers information about the actuator damage and about the

change in the aerodynamic coefficients in the failed condition and Maciejowski claimed, “MPC

can provide effective solutions for fault tolerant control” [87]. Maciejowski maintains that MPC

is a good framework for FTC because many types of aircraft failures can be handled online in an

adaptive fashion via modifications to the internal model. It is stated in [87] that the achievable

performance of an aircraft will often be reduced after a failure but this too can be tackled via

MPC through modifications to the objective function or the use of a multi-objective formula-

tion. Maciejowski stresses that FTC should be used in conjunction with the pilot rather than

replacing the human operator, whereas the goal of my research is to take the human operator

out of the loop for true autonomy, at least for autonomous UAVs.

Unfortunately, despite the various FTC methods being researched they have not been read-

ily adopted by the aerospace industry [80]. The level of maturity of this research is not high

enough for safety critical flight especially for all flight regimes. Other contributing factors are

the complexity of the designs and the very high likelihood of false alarms due to large modelling

uncertainties and/or disturbances. The majority of the methods are also based on linear control

techniques. The ever increasing demands placed on UAVs, particularly by the military, will re-

quire an expansion of current flight envelopes, therefore it will be necessary for control systems

to evolve from simple linear based formulations to non-linear adaptive procedures.

Following this extensive literature review the following research questions were developed and

form the foundation for this research:

1. Is MPC applicable to UAV fault tolerant flight control?

2. Is nonlinear MPC a viable solution for fault tolerant flight control?

3. Can MPC reach a solution within an acceptable time frame for aircraft control?

4. In the event of a fault how sensitive is MPC to controller tuning parameters such as the

prediction horizon and cost weightings?

5. Which method for FDI will integrate easily with an MPC controller configuration?

6. How sensitive is MPC to delays in fault detection?

7. How robust is MPC to actuator faults?
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8. Can MPC truly be considered a hybrid FTC scheme?

The results of my research into these questions will be presented in the remaining chapters of

this thesis, beginning with a detailed look (chapter 3) at model predictive control (MPC), the

research leading to it and the current state of this research.
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Chapter 3

Design of a Nonlinear Model

Predictive Controller

3.1 Introduction

3.1.1 Motivation

Model predictive control falls under the category of advanced control techniques and is classi-

fied as an optimal control method. Chapter 3 is devoted to exploring numerical applications of

model predictive control (MPC), and in particular nonlinear model predictive control (NMPC)

and both theoretical and numerical methods are utilised.

The potential of MPC as a basis for a fault tolerant control (FTC) system for aircraft was

recognised by Maciejowski [87]. MPC has inherent fault tolerant capability for certain fault

conditions and, because of the internal model used for prediction, MPC can be implemented as

a reconfigurable controller. This makes it ideal for both passive and active implementations.

3.1.2 Outline

Before developing an active FTC system using MPC a thorough understanding of the theoretical

and practical aspects of MPC is necessary. For this reason section 3.2 has been dedicated to

exploring the theory behind model predictive control. As MPC is the major focus of this thesis,

section 3.2 provides a brief history and discusses the various characteristics of MPC. A detailed

description of the internal workings of MPC are provided followed by a discussion on NMPC.
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Furthermore the implementation aspects of MPC are explored in section 3.3. This section fo-

cuses on the methods commonly used for the conversion of a continuous time system to a discrete

time system. The objective of this chapter is to summarise the methods used in implementing

optimal control techniques.

Section 3.4 presents an implementation of a number of the optimal control techniques discussed

in section 3.3. The methods are applied to the well known Brachistochrone problem, posed by

Bernoulli back in 1696 [40]. The Brachistochrone problem is a nonlinear problem for which an an-

alytical solution exists, providing a means of checking the validity of numerical implementations.

The findings from the Brachistochrone problem are then used to implement NMPC using a

simple 2D robot model as an illustrative example in section 3.5. Both the open loop and closed

loop problems are addressed. The purpose of section 3.5 is the exploration of the practical

implementation issues associated with NMPC. Comparisons are also made to linear MPC.

Finally, in section3.6, the findings are summarised and the conclusion given.

3.2 Model Predictive Control

Model Predictive Control, also known as Receding Horizon Control, is an advanced control

technology developed by practitioners within the industrial process industry, that has had con-

siderable impact on industrial process control. The main reason for this is that MPC is the only

generic control technology capable of handling equipment and safety constraints [90], allowing

systems to operate at or near constraints, yielding a more efficient and profitable operation. It

took almost 20 years, for the academic community to pay serious attention to the theoretical

aspects of MPC.

Maciejowski and Jones were one of the first to recognise the value of MPC presenting (in 2003)

[87] a numerical example showing that the 1992 crash of El Al Flight 1862 could have been pre-

vented by using MPC-based fault tolerant control. While the authors [87] do not claim to have

solved the problem of fault tolerant flight control, they do claim that MPC has great potential

for fault tolerant design. This, combined with the fact that MPC is a model based approach

capable of handling nonlinear models, makes it an ideal candidate for further investigation as

an FTC controller.
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This section details the underlying ideas behind MPC and its workings. A linear process model

has most commonly been used in MPC, however interest in NMPC is increasing. Hence aspects

of both linear (section 3.2.1) and nonlinear MPC (section 3.2.2) will be discussed followed by

practical applications of both methods to aid in the understanding of this advanced control

technique.

3.2.1 Linear Model Predictive Control

MPC is a model based optimal control methodology. Unlike many control systems where the

model of the plant is used only for design and analysis purposes, in MPC the model is an integral

part of the control algorithm. The model is used to predict future behaviour of the plant in

order to calculate the optimal control trajectory.

3.2.1.1 How Does MPC Work?

Time domain, input/output, step or impulse response models were all used in early MPC work.

Today linear models are more commonly represented in state space form.

Linear MPC represented in state space form has the following advantages:

• Multivariable systems are easily handled.

• Closed loop properties are easily analysed.

• Online computation is possible.

• Linear systems theory such as linear quadratic regulator (LQR) and Kalman filtering can

be used.

Figure 3.1 illustrates the workings of MPC. The MPC controller has an internal model used to

predict the behaviour of the plant over a future prediction Horizon, Hp. The idea is to select

the best input that will produce the best predicted behaviour. A number of coincidence points

are placed over the horizon, distance k time steps apart and the aim is to bring the predicted

output as close as possible to the reference trajectory. This is achieved by optimising a cost

function, commonly a quadratic cost which is solved via quadratic programming in the case of

linear MPC. Only the first input of the calculated trajectory is applied to the plant and the

prediction window slides along by the sampling time, ts, where ts is much smaller than Hp.
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Once the window slides to the next time step and the calculated input is applied to the plant,

the new plant states are fed back to the controller and the whole cycle begins again. The length

of the prediction window remains fixed but slides forward by one sampling interval at each step;

a process referred to as the receding horizon strategy. To reduce the computational burden a

control horizon, Hu, can be defined which is smaller than Hp. The control inputs are calculated

only along the control horizon, beyond which point the value of u remains constant. Perfor-

mance stability increases as the length of Hu approaches the length of Hp.

Figure 3.1: Linear MPC

3.2.1.2 MPC Techniques

There are many variants of MPC, however the overall process is the same. The models used

in MPC are often black-box, linear input-output models developed via plant tests or through

system identification methods applied to plant data. Some variants of the basic MPC technique

[1] are listed below along with their main features:

• Model algorithmic control (MAC) - initially called model predictive heuristic control

(MPHC),

– Uses an impulse response model.
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– Is valid only for open-loop stable processes.

– Variance of the error between the output and a reference trajectory, computed as a

first order system, is minimised.

• Dynamic matrix control (DMC),

– Similar to model algorithmic control (MAC), however a step response model is utilised.

– Techniques employed by Shell Oil as early as 1973 come into this category.

– Input and output constraint handling using quadratic programming is incorporated

leading to quadratic dynamic matrix control (QDMC).

– Method can also be derived for a general discrete state-space model.

• Extended prediction self adaptive control (EPSAC),

– Model is based on either discrete with z-transform or continuous with s-transform.

– Control law structure is simple and is calculated analytically.

– Disturbances are included in the process model.

• Generalised predictive control (GPC),

– Uses a quadratic performance function with weighting of control effort and an auto-

regression moving average with exogenous variable model.

– Able to provide an analytic solution for optimal control in the absence of constraints.

The most popular methods in current use are dynamic matrix control (DMC) and generalised

predictive control (GPC) [1]. GPC has been modified over the years to guarantee stability

through end-point equality constraints by stabilising the process prior to the objective function

optimisation. Most of the work in GPC has been carried out in discrete time, however continuous

time models have also been developed.

3.2.1.3 Advantages and Disadvantages of MPC

MPC is very popular in industrial practice because:

• The basic idea behind it is relatively simple,

• Very little or no modification is required to the basic formulation of MPC to handle

multivariable plants, and
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• It can be more powerful than proportional integral derivative (PID) control.

The potential of MPC has been realised by many industries such as the chemical, food processing,

automotive and aerospace industries [104]. As a result its use has increased over the years

because:

• It can easily incorporate actuator limitations.

• The plant is able to operate closer to the constraints.

• It is able to handle input constraints thereby never generating inputs that violate system

limitations. As a result integrator wind-up is no longer an issue (integrator wind-up is

present in conventional controllers when long duration set-point errors cause integrator

outputs to exceed the saturation limits leading to larger overshoots and possible instabil-

ity).

• It has the ability to control a great variety of processes including those with minimum

phase, long time delay or open loop unstable characteristics.

• It is able to handle large complex systems with hundreds of controlled and manipulated

variables.

The major disadvantage of MPC is the requirement of an accurate model. Another issue is that

to handle constraints, predictive controllers require the online solution of quadratic programs

which can be computationally very demanding. The computational burden of repeatedly solv-

ing optimisation problems often limits achievable sample rates to slower than desired. This can

be a significant issue in aerospace systems where the sample rates are quite high. The leading

theoretical challenges for MPC have been to guarantee feasibility and stability.

The performance success of MPC is highly dependent on the accuracy of the open loop pre-

dictions which are provided by the process model. Inaccuracies in the process model can often

lead to predicted trajectories which differ from actual plant behaviour. This difference in the

plant and model is referred to as plant-model mismatch or model uncertainty which can result in

sluggish or unstable control performance. Some MPC controllers explicitly handle process model

uncertainties when calculating the optimal control policies; these are termed robust predictive

controllers. The general idea behind these controllers is similar to H∞, where the worst case

disturbance effect is minimised.
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3.2.2 Nonlinear Model Predictive Control

There has been a recent rise in interest in nonlinear model predictive control (NMPC) within

the control community mainly due to the increase in available computing power which is now

capable of handling the computing demands of solving nonlinear optimization problems. The

overall structure of NMPC is the same as that of linear MPC, in that the same receding horizon

principle is adopted. The big advantage of NMPC is the incorporation of a nonlinear process

model for highly-nonlinear systems. These nonlinear models are based on “first principles” and

are obtained from an understanding of the physical nature of the system [90].

Linear MPC has been popular since the 70s whereas the interest in NMPC began in the 90s

and has been driven by the fact that today’s processes need to be operated under tighter per-

formance specifications, with more and more constraints being imposed from environmental

and safety considerations. More often than not, these demands can only be met when process

nonlinearities and constraints are explicitly considered in the controller design [4]. The major

limitation of linear MPC is that plant behaviour is described by a linear dynamic model making

it unsuitable for both moderately as well as highly nonlinear processes which have large oper-

ating regimes [64]. Conceptually NMPC is similar to linear MPC. One of the reasons for the

more frequent use of NMPC in the process industry is the time scales encountered which are

in the order of minutes, making real-time requirements less severe than in aerospace applications.

The main characteristics of NMPC, many of which are shared by linear MPC, are:

• Prediction is based on non linear models.

• State and input constraints are explicitly handled.

• A specified performance criteria can be minimised on-line.

• In general, predicted behaviour is different from closed loop behaviour.

• The application of NMPC requires the online solution of an open loop optimal control

problem.

• The system states must be measured or estimated to carry out the predictions.

NMPC has the potential to improve process operation, however, at the same time it offers the-

oretical and practical problems that are more challenging than those associated with its linear
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counterpart. Most of these challenges are related to the nonlinear program which must be solved

online at each sampling period. In addition, nonconvex nonlinear programs have several local

minima, hence methods for obtaining the global minimum have to be applied (which increases

the computational cost) [105].

One of the main issues in NMPC is ensuring the stability of the closed loop system from the

utilisation of a finite horizon. The problem with a finite prediction and control horizon is that

the predicted open-loop and the resulting closed-loop behaviours are in general different. The

most obvious means of achieving stability is to use an infinite horizon, but the main drawback

then is that at every sampling instance an infinite dimensional problem must be solved. An

important characteristic of NMPC is that it possesses inherent robustness as it can deal with

input model uncertainties without taking them directly into account. However, a problem with

the standard NMPC setup is the open-loop nature of the control scheme, because essentially no

feedback is used during the sampling periods.

The next section discusses optimal control techniques that can be used to solve NMPC problems.

3.2.2.1 Optimal Control Techniques

Nonlinear model predictive control involves finding the online solution of a receding horizon

optimization problem. For the solution to be practically feasible the optimisation must be

performed within the time constraints governed by the sampling period of the application [27].

A consequence of using a nonlinear dynamic model, as opposed to a linear dynamic model

as done in MPC, is the need to solve a nonconvex nonlinear programming problem with a

dramatic increase in complexity. Hence when designing and implementing NMPC strategies,

consideration must be given to computational efficiency [27]. Long et. al [85] show that globally

optimal NMPC methods can provide benefits over local techniques and can be successfully used

for online control. As per Cannon [27], NMPC methods are generally based around:

1. Tailoring nonlinear programming algorithms to fit the structure of the online optimization.

2. Parametrising the predictions in terms of degrees of freedom. This directly affects the size

of the online optimisation problem and in turn the computational burden of the NMPC

strategy.

Cannon [27] provides an excellent review of all currently available computationally efficient

50



NMPC strategies, (described below), dividing them into two categories: development of optimi-

sation algorithms or methods based on modifying the NMPC formulations. In my work I seek

to modify the NMPC formulations.

NMPC strategies fall into the following types:

• Direct method optimisation. Here the aim is to apply nonlinear programming algorithms

to make them fit within the NMPC receding horizon structure. In general a direct solution

uses a finite parametrisation of the controls and/or constraints and the goal is to find an

approximation of the original open-loop optimal control problem. The resulting finite

dimensional optimization problem is solved using standard static optimization techniques

that can be applied either sequentially or simultaneously.

– Sequentially [27]: The model trajectories are predicted at each iteration, including

methods based on successive linearisation, of the prediction model. In this method

numerical integration is used in every iteration step of the optimization strategy to

exactly solve the differential equations (or difference equations in the discrete time

case). This means that the solution of the system dynamics is implicitly sought

during the integration of the cost function and only the input vector at discrete

points appears in the optimization problem as optimisation degrees of freedom.

– Simultaneously [27]: The system states along with the controls are treated as opti-

mization variables and the model dynamics form a part of the system constraints.

Hence the system dynamics enter the optimisation as nonlinear constraints at each

sampling point such that, at each such point the constraint s = x(t, u) must be sat-

isfied, where s is an additional degree of freedom in the optimization problem and

is the initial condition for the sampling interval, t is time, u refers to the control

inputs and x is a vector of states. One requirement of this constraint is that all the

state trajectory pieces must fit together once the optimization has converged. The

two most popular versions of this method are direct collocation and direct multiple

shooting.

• Hamilton-Jacobi-Bellman (HJB) [4]: These optimal control methods do not utilise direct

optimisation of predicted control trajectories used by conventional MPC solutions. Instead

they search online for numerical solutions to optimal control formulations of the NMPC

51



receding horizon problem. The approach is based on the direct solution of the Hamilton-

Jacobi-Bellmann partial differential equations (PDEs) [27]. Thus, rather than seeking the

optimal u(t) trajectory the problem is solved by finding the solution for all x(t) where

again u(t) are the control inputs at time t and x(t) are the states at time t. The solution

is a state feedback law of the form u∗ = k(x) and is valid for all initial conditions. The

main disadvantage of this method is the requirement of a complete solution, making it

computationally demanding in addition to suffering from the curse of dimensionality, which

means it can only be solved for small systems.

• Euler-Lagrange differential equations (DEs) / Calculus of Variations / Maximum Principle

[27]: Again an explicit solution is sought of the input as a function of time u(t) using

calculus of variations. In this case the solution is not a feedback law, therefore it is

only valid for the specified initial condition. This approach can be thought of as the

application of the necessary conditions for constrained optimization with the optimization

being infinite dimensional. The optimal control problem then becomes the seeking of a

solution for a boundary value problem (BVP) where the approach is often to first optimise

then discretise [37]. Due to the fact that an infinite dimensional problem must be solved

this approach is not suitable for real-time applications.

• Modification or approximation of cost and constraints [27]: These methods are based

on the modification or the approximation of the cost and constraints of the receding

horizon optimization problem and involve the use of feasible sets (computed offline) for

optimization variables in conjunction with cost approximations. Feasible sets are also used

in combination with cost bounds corresponding to partitions of the states space which are

determined offline.

• Reparameterisation [27]: The degrees of freedom in predictions are reparameterised to

reduce the size of the receding horizon optimisation. One strategy uses the interpolation

between feedback laws computed offline.

NMPC requires repeated computation of solutions to the optimal control problems on a finite

prediction horizon in order to generate feedback controls for dynamical processes. The given

optimal control problems are approximations to an infinite-horizon counterpart, hence the choice

of the prediction horizon is critical [75]. To achieve closed-loop stability long horizons are prefer-

able, however they are computationally expensive.
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Schafer et. al [111] present an extended partially reduced sequential programming problem

(SQP) method within the direct shooting framework to a thermally coupled distillation column.

Schaffer et. al claim that there are two main reasons why NMPC is not popular for real time

applications; firstly it requires a rigorous physical model of the process based on first principles

which can be time consuming and expensive. Secondly NMPC requires successive online solu-

tions of constrained nonlinear optimization problems. Schafer et. al reduce computational time

for the optimisation problems with low degrees of freedom by introducing a new direct shooting

method that diminishes the number of directions for which directional derivatives are evaluated

with this number being independent of the state dimension.

Direct methods are normally applied for online solutions hence only direct methods will be

investigated further.

3.2.2.2 Direct Methods

Direct methods involve reformulating the original infinite dimensional optimization problem as a

finite nonlinear programming problem (NLP) by parameterising the controls and states (referred

to as a simultaneous strategy). Typical parameterizations include collocation, finite differences

or direct multiple shooting and this approach is based on the idea of discretise first, then opti-

mise [37].

The NMPC applications investigated in this research all involve solving a BVP. The most popular

direct methods are called shooting methods where the BVP is reduced to finding the solution

to an initial value problem (IVP) by assuming initial values which would have been provided

if the given ordinary differential equation (ODE) were an IVP. The calculated boundary value

is compared to the real boundary value and based on a trial and error method (or some other

scientific approach) with the aim being to come as close as possible to the boundary value [3]. In

other words two boundary values must be satisfied in a two-point BVP ODE, but a BVP is much

more difficult to solve than an IVP, because in a second order IVP x(0) and x′(0) are given but

for a BVP only x(0) and x(a) (where a is the end point) are given. Another initial condition is

required to solve the BVP, hence in shooting methods guesses are made for x′(0) with the hope

that the computed solution satisfies the second boundary condition. If the boundary condition

cannot be satisfied another shot (or guess) is made [74]. Variations on this theme are described

below:
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3.2.2.2.1 Direct Single Shooting Direct Single Shooting is also known as control vector

parameterization [62]. As previously mentioned, shooting methods are IVP solutions for solving

BVPs with the concept being to take the more complicated BVP and convert it into a simpler

IVP. Single shooting methods are the simplest to implement with the idea being to shoot at

different angles until the boundary value is reached. The solution is achieved numerically via an

iterative scheme. However single shooting methods cannot always be applied and the numerical

results obtained are not always reliable. Furthermore numerical integration introduces discreti-

sation errors leading to the major disadvantage of round off error accumulation which occurs

when unstable IVPs have to be integrated.

3.2.2.2.2 Direct Multiple Shooting Direct multiple shooting, first introduced by Bock

and Plitt [15] in 1983, is a fast off-line method for optimization problems in ODEs and differ-

ential algebraic equations (DAEs). It is a refinement of the single shooting method, with the

horizon being divided into elements and each segment integrated separately. This method was

introduced to reduce round off errors inherent in the single shooting method, which it achieves

by subdividing the solution interval by a mesh with integrations being performed over each

subinterval. That is, the IVPs are integrated numerically resulting in a two-level discretisation

process; the first level consisting of a coarse mesh and the second a finer discretisation in each

subinterval. The more the shooting points the lower the round off error, however there is a

point of diminishing returns [9]. Multiple shooting is said to have better numerical proper-

ties compared to single shooting due to decoupling and state constraints at segment junctions.

Advantages include [38]:

• The fact that it is a simultaneous strategy means suitable embedding techniques can be

used to exploit the solution information previously obtained in controls and states and

derivatives in subsequent optimization problems.

• State-of-the-art differential algebraic equation (DAE) solvers can be utilised to calculate

the function values and derivatives quickly.

• Integrations are decoupled on different multiple shooting intervals making it suitable for

parallel computation.

• Control and path constraints as well as boundary conditions are easily handled.

Multiple shooting methods are very popular for NMPC applications.
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3.2.2.2.3 Collocation In 2010 Tamimi and Li [116] proposed a new algorithm for NMPC, a

combination of the multiple shooting method and the collocation method, used to compute the

function values and gradients in the NLP. In collocation methods a finite-dimensional space of

candidate solutions is required to satisfy a differential equation exactly at the nodal points. The

motivation behind collocation methods is that integrating differential equations is expensive (as

is done in shooting methods). Also, sophisticated integrators are accurate but not necessarily

consistent, and noisy derivatives means poor NLP convergence. In collocation methods IVPs are

not explicitly integrated and approximate solution representations are sought over the predic-

tion horizon. The basic idea entails discretising the controls AND the state variables, hence the

problem is transcribed into discrete form in one step. Collocation methods can be implemented

using a variety of numerical techniques such as the forward Euler method or more sophisticated

one-step methods such as Runge-Kutta. The forward Euler method is conceptually simple and

easy to implement but is numerically unstable and requires a small step length to achieve an

accurate solution. Collocation methods can also make use of Lagrange Polynomials, which is

equivalent to an implicit Runge-Kutta method with good numerical stability properties making

it attractive for solving stiff (numerically unstable) systems. These techniques allow straightfor-

ward handling of state and control constraints.

In this section, linear and nonlinear model predictive control along with optimal control tech-

niques used to implement MPC were detailed. In the next section the optimal control techniques

necessary for the implementation of NMPC in this research are specifically discussed.

3.3 Numerical Methods: Discretisation

Numerical methods are an important component in the solution of optimal control problems.

Since the problem at hand is often given in continuous time, it is necessary to discretise the

problem for computer implementation and numerical analysis. The discretised solution will

never provide the exact solution as it only gives the solution at discrete points and not over all

time, leading to errors between the exact solution and the approximate solution provided by

the discretised model. Thus, when choosing a discretisation method many factors need to be

considered.

In this section a discussion of the discretisation methods commonly used in the solution of

optimal control problems is presented with an emphasis on direct methods.
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3.3.1 Problem Formulation

The path-constrained trajectory optimisation problem forms the essence of this research. An

excellent exposition given by Williams [124] is summarised below. Note that the vector of un-

known parameters, p in [124], has been omitted from this summary.

3.3.1.1 Primal Optimal Control Problem: Problem A

Generally speaking the aim of optimal control is to determine the state and control pair that

minimises the cost functional J . That is, if a state and control pair is represented by {x(t),u(t)}

then the aim is to minimise:

J =M [x(t)] +

∫ tf

t0

[L (x(t),u(t), t)] dt, (3.1)

subject to the nonlinear state equations:

ẋ (t) = f [x (t) ,u (t) , t] , (3.2)

the initial and terminal constraints

ψ0 [x (t0)] = 0, (3.3)

ψf [x (tf )] = 0, (3.4)

the mixed state-control path constraints

gL ≤ g [x (t) ,u (t) , t] ≤ gU , (3.5)

and the box constraints

xL ≤ x (t) ≤ xU , uL ≤ u (t) ≤ uU , (3.6)

where:
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x ∈ Rux are the state variables,

u ∈ Ruu the control inputs,

t ∈ R the time,

M : Rnx × R→ R the terminal, non-integral cost, also known as Mayer component,

L : Rnx × Rnu × R→ R the integral cost known as the Bolza component,

ψ0 ∈ Rnx × R→ Rn0 the initial point conditions,

ψf ∈ Rnx × R→ Rnf the final point conditions,

gL ∈ Rnx × Rnu × R→ Rng the lower bounds on the path constraints, and

gU ∈ Rnx × Rnu × R→ Rng the upper bounds on the path constraints.

Williams [124] explains that problem A exists in a primal space, where the optimal triplet

{x∗(t),u∗(t), t∗f} (Here ∗ stands for optimal solution) is not easily found except for possibly

trivial (zero) solutions.

Methods used to solve optimal control problems commonly fall under two categories; direct

and indirect. Research in this area has focused mainly on direct rather than indirect methods

as direct methods have better convergence properties than indirect methods and can be used

quickly to solve a number of practical trajectory optimisation problems. A major drawback of

certain indirect methods is having to derive the necessary conditions for optimality using Pon-

tryagin’s maximum principle (PMP) [124]. In addition many indirect methods require a priori

information of the switching structure of the constrained and unconstrained subarcs in problems

with state inequalities, a problem that has been addressed by utilising Homotopy methods to

estimate the switching structure. This, however, leads to a significant increase in computational

time. Direct methods, on the other hand, do not require derivation of the necessary conditions

or estimates of the switching structure of the costates and the region of convergence is greatly

increased compared to indirect methods. Direct methods solve Problem A directly by applying a

discretisation process and using standard algorithms to solve the resulting optimisation problem.

The direct methods have many advantages over indirect methods [124], especially with regards

to the research questions under consideration in this thesis, and these advantages are detailed

below in subsection 3.3.2.

For this research, it is necessary for the continuous time problem, Problem A, to be converted

to a finite dimensional problem before attempting to solve it.
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3.3.2 Direct Methods - Numerical Techniques

A multitude of discretisation techniques exist for converting the infinite dimensional problem to

a finite dimensional one. In direct methods the mathematical programming problem, equations

(3.1) to (3.6), is solved by considering either discretised inputs, or a combination of discretised

inputs and states, as decision variables. The most common direct methods in practice are

where control and state parameters are used as optimisation parameters. They can be further

separated into the following two categories:

1. Local - Also known as direct collocation or direct transcription methods. Here a number

of node points with arbitrary spacing are defined where both the state and control vec-

tors are collocated. The state equations are enforced as equality constraints at internal

collocation points between the nodes via implicit integration methods such as Simpson’s

rule or by Gauss-Lobatto (GL) quadrature rules. In other words the state equations are

enforced locally.

2. Global - Also known as Pseudospectral Methods. For this approach globally orthogonal

interpolating polynomials are utilised to approximate the state and control variables. Dis-

cretisation is based on the GL points for Legendre or Chebyshev polynomials. The state

equations are enforced by differentiating the approximating polynomial at the correspond-

ing GL points rather than through numerical integration. The GL points are the zeros

of the derivative of the interpolating polynomial. Global methods are generally more ac-

curate than local methods because the discrete adjoint multipliers retain the same order

of accuracy as the state equations. This is not the case for certain classes of local meth-

ods, for example when Hermite-Simpson and particularly Runge-Kutta discretisations are

employed.

The ease and speed with which difficult problems can be solved make direct methods highly

appealing. The most popular discretisation methods include Hermite-Simpson and Legendre

Pseudospectral which utilise different choices of basis functions to be used as decision variables

in the optimisation. Such a selection determines different discretisations, that is node points.

58



When deciding on a discretisation process many important factors need to be considered as have

been identified by Williams [124]:

• How accurate is the solution for a particular discretisation method given a number of

optimisation variables?

• What is the computational expense of a particular discretisation method?

• How robust is a discretisation method to the initial guess?

• How are the answers to the previous questions influenced by problem complexity and the

types of problems being considered?

• How are the answers to the previous questions affected by the choice of NLP solvers?

Williams [124] explains that the choice of the NLP solver affects the speed and robustness of

solutions obtained using particular discretisations. For example a dense solver can result in

significant increases in CPU time since, in this case, the constraint Jacobian and Hessian are

treated as dense matrices and this increases the number of optimisation/decision variables.

The preceding information was a general overview of the area of discretisation. The area of

numerical methods for a given application is an extensive research topic by itself. However,

since the aim of this research is to explore fault tolerant control schemes, in the following

section only the particular methods chosen for further investigation will be explored.

3.4 Implementation of Optimal Control Techniques

The previous section presented a discussion on the various discretisation techniques used to solve

optimal control problems. The aim of this section is to investigate a few of these optimal con-

trol techniques in greater detail as well as to implement one of these methods in the situations

encountered in this research on a 2-D robot model, to gain a thorough understanding of the

fundamental workings of NMPC.

As mentioned previously in section 3.3.2, direct methods used to solve optimal control problems

are classified according to the unknown parameters used in the optimisation. For this research

one method from each of the categories listed in section 3.2.2.2 will be considered. There are

many methods that fall under each category, and since bounds need to be placed on the research
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being conducted, I have chosen only one from each of the categories in order to understand how

they can be used to implement NMPC.

3.4.1 Optimisation Parameters: Controls Only -

Direct Single Shooting

Shooting methods solve a two point BVP, for example:

y′′ = f(x, y, y′), y (a) = ya, y (b) = yb. (3.7)

A BVP is an ODE where information is given on the boundaries, a and b. Numerical methods

designed for solving ODEs, for example, Euler’s method and the Runge Kutta method, are

generally used to solve IVPs. However, to solve an IVP a sufficient number of initial condi-

tions must be provided, which for equation (3.7) includes the derivative at the initial boundary.

Shooting methods convert two point BVPs into IVPs by guessing the value of the derivative at

the initial boundary. Every time a guess is made a “shot” is fired in an attempt to hit the end

boundary. This “shot” involves using differential equation solvers to find a solution. It is an

iterative process where “shots” are made until the end boundary is reached to within a desired

tolerance.

Direct single shooting optimal control takes this concept and evaluates the optimal inputs for

any given control system. In direct single shooting optimal control, only the controls are used

as optimisation parameters with optimisation being performed from an initial time, t0, to the

final time tf . The time interval is divided into N equally spaced intervals. On this grid the

controls, u(t), are discretised and are piecewise constant, u(t) = qi where i = 0, 1, . . . , N , and

the following initial value problem is solved:

x(0) = x0, ẋ (t) = f (x (t) ,u (t,q)) , t ∈ [t0, tf ] . (3.8)

A nonlinear program of the following form is constructed by including the cost function equation

(3.1) on the decision variables x and u:

min
q

∫ tf

t0

L (x(t,q),u(t,q), t) dt+M (x(tf ,q)) , (3.9)

subject to:
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h(x(ti,q),u(ti,q)) ≥ 0, i = 0, . . . , N (discretised path constraints), (3.10)

r(x(tf ,q)) = 0, (terminal constraints). (3.11)

The optimisation procedure calculates the optimal control inputs which minimise the cost func-

tion given in (3.9).

The advantages of this method are:

• Fully adaptive, error controlled state-of-the-art ODE or DAE solvers can be utilised.

• It has only a few optimisation degrees of freedom even for large ODE or DAE systems.

• Only initial guesses for the control degrees of freedom are needed.

• There is simplicity of design and implementation.

However there are weaknesses in this method:

• Knowledge of the state trajectory, x, cannot be used in the initialisation.

• Unstable systems are difficult to handle.

• The ODE solution x(t, q) can depend very non-linearly on q.

In regards to NMPC N equally spaced discretisations points are placed along the prediction

horizon length, Hp. A full nonlinear process model is used by the optimal controller to integrate

the states between each of the discretisation points.

Figure 3.2 shows an illustrative description of the Direct Single Shooting Method.
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Figure 3.2: Direct Single Shooting - Diagram of the division of the time interval in the single

shooting method.

3.4.2 Optimisation Parameters: Controls and Some States -

Direct Multiple Shooting

Direct Multiple Shooting is based on the same idea as that of Single Shooting, i.e. converting a

BVP to an IVP and “shooting” from the initial boundary until the end boundary is reached. The

main difference is that, rather than converting a BVP to a single IVP, the problem is converted

into multiple IVPs. This is achieved by dividing the interval of computation, [t0, tf ], into M

subintervals and solving an IVP over each subinterval. All of the solutions over the subintervals

can be pieced together to form a continuous trajectory/solution, if and only if the solutions to

the IVPs match at the beginning and end of each subinterval, referred to as matching conditions.

These matching conditions introduce algebraic equations which must be satisfied along with the

boundary conditions.

The optimisation parameters in this case are the controls as well as the states at the beginning

and end of each interval. The controls are discretised in each subinterval over Nu points, hence

u(t) = qi where i = 0, 1, . . . Nu. An ODE solver is used to integrate the states over each

subinterval. Let xj(tj) = sj represent the solution at the beginning and end of each subinterval,

where j = 0, 1, . . .M . Then:
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ẋi,j = f(xi,j(ti), qi,j), t ∈ [ti, tj ] , (3.12)

xi (tj) = sj , (3.13)

where the xi,j is the solution at the ith node in the jth subinterval.

The resulting NLP is the same as that given in the direct single shooting method except with

extra continuity/matching constraints:

min
s,q

∫ tf

t0

L (x(t, q),u(t, q), t) dt+M (x(tf , q)) , (3.14)

subject to:

s0 − x0 = 0, (initial value) (3.15)

sj − xtj ,sj ,qj = 0, j = 0, . . . ,M (continuity) (3.16)

h(sj , qj) ≥ 0, i = 0, . . . , N − 1 (discretised path constraints) (3.17)

r(sN ) = 0. (terminal constraints) (3.18)

Advantages of Direct Multiple Shooting include:

• Knowledge of some of the states is included in the optimisation.

• It can robustly handle unstable systems and path state and terminal constraints.

• It is able to exploit advantages of using ODE and DAE solvers.

In regards to NMPC the prediction window is divided into smaller subintervals and the full non-

linear process model is used for integration between discretisation points in every subinterval.

Figure 3.3 shows an illustrative description of the Direct multiple shooting method.
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Figure 3.3: Direct Multiple Shooting - Diagram of the division of the time interval in the multiple

shooting method

3.4.3 Optimisation Parameters: Controls and All States -

Direct Transcription

Direct Transcription involves fully discretising the problem (all controls and all states) and then

solving the discrete problem numerically. Numerous direct transcription methods exist for solv-

ing optimal control problems differing only in the way in which they approximate the state

equations. The discretisation method used to approximate the state equations must be com-

bined with a method for approximating the integral in the generalised Bolza problem and such

discretisation techniques are either integration or differentiation based. Pseudospectral meth-

ods, for example, are all differentiation based methods; they rely on differentiating Lagrange

Polynomial expansions of the approximating polynomials for the states. Hermite-Simpson based

techniques are often thought of as integration methods. A comparison of various methods has

been given in [124]. For this research an integration based method as well as a differentiation

based method will be investigated, hence these two methods are described in detail in the next

couple of sub-sections.
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3.4.3.1 Integration Based Methods (Euler)

Both the controls and the states are discretised on a fine grid. The controls are selected to be

piecewise constant with values qi, where i = 0, 1, . . . , N , at each point on the interval [t0, tf ] and

the states are denoted by si = x(ti) at each of the grid points along the time interval. In the

collocation method the infinite dimensional ODE:

ẋ (t)− f (x (t) , u (t)) = 0, t ∈ [t0, tf ] (3.19)

is replaced by a finite number of equality constraints:

ci (qi, si, si+1) = 0, i = 0, 1, . . . , N − 1, (3.20)

where

ci (qi, si, si+1) =
si+1 − si
ti+1 − ti

− f (si, qi) . (3.21)

The integrals on the collocation intervals are approximated by:

li (qi, si, si+1) ≈
∫ ti+1

ti

L (x (t) , u (t)) dt = L (si, qi) (ti+1 − ti) . (3.22)

After discretisation the following sparse NLP is obtained:

min
s,q

N−1∑
i=0

li (qi, si, si+1) +M (sN ) , (3.23)

subject to:

s0 − x0 = 0, (fixed inital value) (3.24)

ci (qi, si, si+1) = 0, i = 0, . . . , N − 1, (discretised ODE model) (3.25)

h (si, qi) ≥ 0, i = 0, . . . , N, (discretised path constraints) (3.26)

r (sN ) = 0. (terminal constraints) (3.27)

Advantages of collocation are:

• Knowledge of the state trajectory, x, can be used in the initialisation.

• A sparse NLP is obtained.

• Fast local convergence is possible.
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• Can treat unstable systems well.

• Can easily cope with state and terminal constraints.

A major disadvantage of the collocation method is that adaptive discretisation error control

needs regridding and thus changes the NLP dimensions. Hence collocation often does not ad-

dress the question of proper discretisation error control.

In regards to NMPC with direct transcription the prediction horizon is divided into N discreti-

sation or collocation points. The optimisation vector comprises the states and controls at ALL

node points. Points are equally spaced in the same fashion as that given by figure 3.2 with 4t

the time between collocation points.

3.4.3.2 Derivative Based Methods

Derivative based methods, also known as pseudospectral methods, differ from many traditional

discretisation methods. The difference lies in that the focus is shifted from the DE to the tangent

bundle, which comprises all tangent vectors, together with information of the point at which

they are tangent. For this reason they can be seen to resemble finite element methods; however

they provide a better convergence rate. The underlying idea is to represent the solution f via

a truncated series expansion and to use analytic differentiation of the series to obtain spatial

derivatives of f . The spectral differentiation matrix, DN , is a linear mapping of a vector of N

function values {f (xi)} to a vector of N derivative values {f ′ (xi)}. The calculation of DN is

dependent on the choice of the approximating series and the location of the points {xi}. An

example is the use of the discrete Fourier transform with equally spaced nodes for analysis pur-

poses, which is based on the idea of using (sums of) periodic functions to approximate given

functions. A Chebyshev or Legendre series is used for bounded domains where the derivatives

are calculated at Chebyshev or Legendre nodes or extreme points. If f is infinitely differen-

tiable then the remainder of the truncated series will go to zero super-algebraically; that is, it

will decrease faster than any finite power of 1
N [57] with the rate restricted only by the global

smoothness of the function; this is referred to as spectral accuracy [58]. Hence pseudospectral

methods offer a very good convergence rate (spectral accuracy) and for smooth problems spec-

tral accuracy means an exponential convergence rate [107].

One advantage pseudospectral methods have over finite element or finite difference methods is

that the underlying polynomial space is spanned by orthogonal polynomials that are infinitely
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differentiable global functions. Traditional pseudospectral methods use global Lagrange inter-

polating polynomials to expand the state and control trajectories. These polynomials are based

on orthogonal polynomials from the Jacobi family such as Legendre or Chebyshev polynomials,

which are orthogonal with respect to a specific weight function over a fixed interval. The idea

of expanding the state and control variables in terms of Lagrange interpolating polynomials at

suitably chosen points can be seen in the work of Elnagar et. al [43], Fahroo and Ross [45]

and Ross and Fahroo [107], where pseudospectral methods are used for solving fluid dynamics

problems.

Generally speaking there are two ways of constructing a polynomial approximation to the output

solution y(t):

1. Use an interpolating polynomial between the values y(tj) at node points tj , or

2. Use a series expansion in terms of orthogonal polynomials.

Most commonly the nodes chosen for approximating the optimal control problem in both of the

cases given above are Legendre Gauss Lobatto (LGL) points and, together with the properties of

the Lagrange polynomials, the state equations and the state and control constraints, can easily

be transformed in to algebraic equations in terms of values of the state and control variables

at the nodes. The constraints are imposed as differential constraints at the LGL points via a

differentiation matrix. As Fahroo and Ross [45] explain, an arbitrary choice of node points can

lead to very poor results in interpolation of a function. Hence Gauss quadrature points (such as

LGL points) are chosen to give the best accuracy and then the derivatives of the interpolating

polynomials at these node points are given exactly by a differentiating matrix. LGL points

minimise the L2 norm of the approximation error. One of the features of the LGL points is that

the nodes cluster around the end points. The node points obtained via Gauss quadrature cluster

around the endpoints of the interval resulting in the avoidance of the Runge phenomenon. The

Runge phenomenon is a term given to the divergence of the approximating solution at the end

points of interpolation on equispaced interpolation points.

The choice of collocation points is crucial in pseudospectral methods. The three most common

sets of collocation points are the Legendre-Gauss, Legendre-Gauss-Radau and Legendre-Gauss-

Lobatto. These three sets are the roots of a Legendre polynomial and/or linear combinations of

Legendre polynomials and their derivatives. The three sets are defined on the domain [−1, 1] and
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differ according to which end points are included. The Legendre-Gauss points do not include ei-

ther end points, Legendre-Gauss-Radau include only the endpoint −1, and the Legendre-Gauss-

Lobatto points include both end points. Ross and Karpenko [108] state that Gauss-Radau is

best used for an infinite horizon problem whereas Gauss-Lobatto is more suited for finite horizon

problems.

Another popular choice for collocation points are Chebyshev-Gauss-Lobatto points; these are

based on the roots of the derivatives of the Chebyshev polynomials [45]. Chebyshev and Legen-

dre polynomials are both from the Jacobi family of polynomials. For approximating BVPs the

Gauss-Lobatto points are a logical choice due to the combination of high interpolation accuracy

and high accuracy in quadrature approximations. LGL points minimise the L2-norm of the ap-

proximation error whereas the Chebyshev-Gauss-Lobatto (CGL) points minimise the max-norm

of the approximation error. Williams [125] states that the LGL points provide maximum accu-

racy for quadrature approximations whilst, at the same time, avoiding the Runge phenomenon

during interpolation.

While traditionally pseudospectral methods did utilise Lagrange interpolating polynomials,

Gauss-Lobatto quadrature rules with Jacobi polynomials as the interpolant have been used more

frequently. Jacobi polynomials are orthogonal over the interval (−1, 1) with respect to the weight

function, w (τ) = (1− τ)α (1 + τ)β. The Legendre polynomials are obtained when α = β = 0

and, when α = β = −0.5 the Chebyshev polynomials are produced, hence by varying α and β a

different set of Jacobi polynomials are produced. Williams [123] generalises the pseudospectral

method to consider collocation based on the roots of the derivatives of general Jacobi polynomi-

als. Williams clarifies that the Legendre and Chebyshev are particular cases of the more general

formulation and finds that by varying α and β there is a significant impact on computation time.

A pseudospectral method based on non classical orthogonal and weighted interpolating poly-

nomials is presented in a more recent paper by Williams [126]. Here the author highlights the

fact that the location of collocation points in traditional pseudospectral methods are more or

less fixed. The method presented by Williams [126] generalises the existing methods to allow a

much more flexible selection of grid points via an arbitrary selection of the orthogonal weight

function and interval. This freedom of choice leads to a greater range of collocation points and

differentiation matrices which in turn affects computation time. Over the years, the use of LGL
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points for optimal control, has been seen as the most natural choice for Quadrature points, the

main reason being their derivation on the basis of a unit weight function, which provides the

highest accuracy for polynomial integrands.

Pseudospectral methods are collocation based methods, hence the optimisation parameter vector

comprises the states and controls at ALL nodes. One of the main differences is the selection

of node points that are not equally spaced. The nodes are carefully selected so as to avoid the

Runge phenomena, to increase accuracy (providing spectral accuracy) and, to avoid numerical ill

conditioning. As mentioned previously the most commonly used node points are the Chebyshev

Gauss Lobatto points or the Legendre Gauss Lobatto points. For this work the Legendre Gauss

Lobatto (LGL) points were chosen for implementation. The nodal points τk, k = 0, . . . , N ,

lie in the interval [−1, 1] where the endpoints are included. These node points are the zeros

of the derivatives of the Legendre polynomials. A linear transformation is needed to map the

computational domain, τ ∈ [−1, 1], to the physical domain, t ∈ [t0, tf ]:

t =
(tf − t0) τ

2
+

(tf + t0)

2
. (3.28)

The central idea behind pseudospectral methods is the approximation of the states and controls

with Lagrange interpolating polynomials of degree N such that:

xN (τ) =

N∑
j=0

x̂jφj (τj) , (3.29)

uN (τ) =
N∑
j=0

ûjφj (τj) , (3.30)

where x̂j (τj) and ûj (τj) are the coefficients of the interpolating polynomial. It is necessary

that the coefficients x̂j = x (τj) and ûj = u (τj), hence φj (τ), are the Lagrange interpolating

polynomials that interpolate the states and controls at the LGL points, given by:

φj (τ) =

(
τ2 − 1

)
L̇ (τ)

(τ − τj)N (N + 1)LN (τj)
, (3.31)

where LN represents the Nth degree Legendre polynomial. This leads to the following NLP

problem:

Minimise the cost function, J:
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JN =M [xN ] +
(tf − t0)

2

N∑
j=0

L [xj ,uj , tj ] wj , (3.32)

subject to:

x0 − x(t0) = 0, Initial Condition (3.33)

tf − t0
2

Dj,k x(j)− ẋ(j) = 0, State Equations (3.34)

xL ≤ x ≤ xU , Upper and Lower bounds on states (3.35)

uL ≤ u ≤ uU , Upper and Lower bounds on control (3.36)

where wj are the LGL weights given by:

wj =
2

N (N + 1)

1

[LN (τj)]
2 , j = 0, . . . , N, (3.37)

and Dj,k is a differentiation matrix of size (N + 1)× (N + 1) the entries of which are given by:

Dj,k =



LN (τj)
LN (τk)

1
(τj−τk) , if j 6= k,

−N(N+1)
4 , if j = k = 0,

N(N+1)
4 , if j = k = N,

0 otherwise.

(3.38)

It can be seen from the above that the pseudospectral method uses a Gauss-Lobatto quadrature

rule to approximate the integral (or the Bolza component) in the performance index. The state

derivatives are approximated via analytical differentiation of the interpolating polynomials of

the states.

3.4.3.3 NLP Solvers

Each of the methods stated above produce an NLP which must be solved at every time step

across the prediction horizon, Hp. Once the optimisation is solved at the current time, tj , only

the first calculated control input is applied to the plant and the window is shifted by the sam-

pling time step, ts and the whole procedure begins again. Hence an NLP solver is required and

is an integral part of NMPC. Williams [124] points that the different discretisation methods

70



are affected by the choice of NLP solvers in terms of speed and robustness of the solution ob-

tained. Williams [124] provides an example where if a dense solver is utilised, i.e. one where the

constraint Jacobian and Hessian are treated as dense matrices, then it can lead to significant

increases in CPU time due to the increase in the number of optimisation variables. For this

work SNOPT [54] is the solver of choice due to its popularity and because it is readily available.

SNOPT solves the quadratic programming subproblem with a quasi-Newton approximation to

the Hessian, via a large-scale sparse sequential quadratic programming algorithm. Please note

that there are other, more efficient solvers which could be used [124] but are not used in this

research because of the difficulty in gaining access to them.

In the next subsection, the optimal control methods given above, Direct Single Shooting, Di-

rect Multiple Shooting and Direct Transcription methods are implemented to solve the well

known Brachistochrone problem [40]. Based on the findings one of these methods is chosen for

implementing NMPC in this research.

3.4.4 Brachistochrone

The Brachistochrone problem is a well known nonlinear problem. It is chosen because it is a

nontrivial problem with an analytic solution and is very similar to the 2D robot problem that

is to be addressed later. The analytical solution allows accuracy of the implementation of each

method to be determined and is used as a benchmark in choosing a method to continue this

research. The Brachistochrone problem, simply stated, is to find the shape of a wire such that

a bead sliding on the wire without friction, in uniform gravity, will reach a given horizontal

displacement in minimum time.

The analytical solution is given by:

xb =
g

ω2
(ω t− sinω t) , (3.39)

yb =
g

ω2
(1− cosω t) , (3.40)

where:

ω =

√
π g

xf
, (3.41)
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xb and yb are the displacement values of the bead in the xy-plane, g is the gravitational force

and xf is the final x-displacement.

The optimal control problem is to minimise the cost function, J :

J = tf , (3.42)

subject to the equations of motion of the bead:

ẋ = V sin θ, (3.43)

ẏ = V cos θ, (3.44)

V̇ = g cos θ, (3.45)

and the initial and terminal constraints:

x (0) = 0, (3.46)

y (0) = 0, (3.47)

V (0) = 0, (3.48)

x (tf ) = xf . (3.49)

(3.50)

Here tf is the time taken to reach xf and V is the speed of the bead.

The number of discretisation points was varied for each method to investigate their effect and

to determine the method most suitable for developing the fault tolerant controller. The value

of xf is set to 0.5m and the value of g for this work is 1m/s2.

For the direct single shooing method the control points were chosen to be:

Nu = [5, 10, 25, 50, 150, 250, 500],

and for each control point the state points were varied:

Nx = [10, 20, 50, 100, 300, 500, 1000].
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Similarly the number of sections for the direct multiple shooting method were set to:

M = [2, 5, 10, 20, 30],

and the control points chosen for each section were:

Nu = [2, 5, 10, 20, 50].

The coincidence points for both the collocation methods (Euler integration and Pseudospectral)

were set to:

N = [5, 10, 50, 100, 300, 500, 800].

3.4.4.1 Accuracy of Solution Methods

I now assess the accuracy of each of the numerical methods by comparing the optimal solution

produced by the numerical method with the analytical solution given in equation (3.39). For

each optimal control method the number of discretisation points is varied to assess the affect of

that level of discretisation on the solution.

3.4.4.1.1 Direct Single Shooting Results

The plots given in figures 3.4, 3.5, 3.6, 3.7, 3.8, 3.9 and 3.10 show the solutions produced by the

direct single shooting method by varying Nu and Nx. The plots given are of the bead trajectory

ie. x vs y plots. The analytical solution is given in red and the numerical solution produced by

the direct single shooting method is given in blue. All the plots show that for a given Nu the

difference between the numerical solution and the analytical solution decreases as Nx increases.

This is further exemplified by the individual error plots in the displacement in the x (figures

3.11, 3.12, 3.13, 3.14, 3.15, 3.16 and 3.17) and y (figures 3.18, 3.19, 3.20, 3.21, 3.22, 3.23 and

3.24) directions. The errors in these plots represent the magnitude of the displacement errors

in x and y between the analytical and numerical solutions. The results show that five control

points, Nu = 5 are not enough to produce a smooth accurate solution. A minimum of ten control

points is required to produce a smooth solution. The results also show that there should be at

least twice as many state points Nx as control points to minimise the error.
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Figure 3.4: Brachistochrone: Direct Single Shooting trajectory plots (x vs y), Nu = 5: Analytical

Solution (Red) and Numerical Solution (Blue).

Figure 3.5: Brachistochrone: Direct Single Shooting trajectory plots (x vs y), Nu = 10: Ana-

lytical Solution (Red) and Numerical Solution (Blue).

74



Figure 3.6: Brachistochrone: Direct Single Shooting trajectory plots (x vs y), Nu = 25: Ana-

lytical Solution (Red) and Numerical Solution (Blue).

Figure 3.7: Brachistochrone: Direct Single Shooting trajectory plots (x vs y), Nu = 50: Ana-

lytical Solution (Red) and Numerical Solution (Blue).
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Figure 3.8: Brachistochrone: Direct Single Shooting trajectory plots (x vs y), Nu = 150: Ana-

lytical Solution (Red) and Numerical Solution (Blue).

Figure 3.9: Brachistochrone: Direct Single Shooting trajectory plots (x vs y), Nu = 250: Ana-

lytical Solution (Red) and Numerical Solution (Blue).
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Figure 3.10: Brachistochrone: Direct Single Shooting trajectory plots (x vs y), Nu = 500:

Analytical Solution (Red) and Numerical Solution (Blue).

Figure 3.11: Brachistochrone: Direct Single Shooting Absolute Error in Displacement, x-

Direction, Nu = 5.
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Figure 3.12: Brachistochrone: Direct Single Shooting Absolute Error in Displacement, x-

Direction, Nu = 10.

Figure 3.13: Brachistochrone: Direct Single Shooting Absolute Error in Displacement, x-

Direction, Nu = 25.
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Figure 3.14: Brachistochrone: Direct Single Shooting Absolute Error in Displacement, x-

Direction, Nu = 50.

Figure 3.15: Brachistochrone: Direct Single Shooting Absolute Error in Displacement, x-

Direction, Nu = 150.
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Figure 3.16: Brachistochrone: Direct Single Shooting Absolute Error in Displacement, x-

Direction, Nu = 250.

Figure 3.17: Brachistochrone: Direct Single Shooting Absolute Error in Displacement, x-

Direction, Nu = 500.
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Figure 3.18: Brachistochrone: Direct Single Shooting Absolute Error in Displacement, y-

Direction, Nu = 5.

Figure 3.19: Brachistochrone: Direct Single Shooting Absolute Error in Displacement, y-

Direction, Nu = 10.
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Figure 3.20: Brachistochrone: Direct Single Shooting Absolute Error in Displacement, y-

Direction, Nu = 25.

Figure 3.21: Brachistochrone: Direct Single Shooting Absolute Error in Displacement, y-

Direction, Nu = 50.
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Figure 3.22: Brachistochrone: Direct Single Shooting Absolute Error in Displacement, y-

Direction, Nu = 150.

Figure 3.23: Brachistochrone: Direct Single Shooting Absolute Error in Displacement, y-

Direction, Nu = 250.
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Figure 3.24: Brachistochrone: Direct Single Shooting Absolute Error in Displacement, y-

Direction, Nu = 500.

3.4.4.1.2 Direct Multiple Shooting Results

The trajectory plots produced by the multiple shooting method are presented in figures 3.25,

3.26, 3.27, 3.28 and 3.29. The results show that increasing the number of sections increases

the accuracy of the numerical solution even when the number of control points is as low as two

per section. This is further indicated by the magnitude of the errors between the analytical

and numerical solutions in the displacement of x given in figures 3.30, 3.31, 3.32, 3.33 and 3.34.

The plots show that the errors significantly decrease with increasing M for a given value of Nu.

Furthermore given a value of M increasing Nu increases the accuracy of the numerical solution.

These trends are also visible in the magnitude of the y displacement errors between numerical

and analytical solutions given in figures 3.35, 3.36, 3.37, 3.38 and 3.39. The results indicate

that given the same number of discretisation points, the multiple shooting method outperforms

the single shooting method in terms of accuracy. In addition all the results pertaining to the

multiple shooting method show that there is a point of diminishing returns, as increasing the

number of sections beyond 10 can be seen to have very little impact on the accuracy of the

solution.
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Figure 3.25: Brachistochrone: Direct Multiple Shooting trajectory plots (x vs y), M = 2:

Analytical Solution (Red) and Numerical Solution (Blue).

Figure 3.26: Brachistochrone: Direct Multiple Shooting trajectory plots (x vs y), M = 5:

Analytical Solution (Red) and Numerical Solution (Blue).
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Figure 3.27: Brachistochrone: Direct Multiple Shooting trajectory plots (x vs y), M = 10:

Analytical Solution (Red) and Numerical Solution (Blue).

Figure 3.28: Brachistochrone: Direct Multiple Shooting trajectory plots (x vs y), M = 20:

Analytical Solution (Red) and Numerical Solution (Blue).
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Figure 3.29: Brachistochrone: Direct Single Shooting trajectory plots (x vs y), M = 30: Ana-

lytical Solution (Red) and Numerical Solution (Blue).

Figure 3.30: Brachistochrone: Direct Multiple Shooting Absolute Error in x-Direction, M = 2.
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Figure 3.31: Brachistochrone: Direct Multiple Shooting Absolute Error in x-Direction, M = 5.

Figure 3.32: Brachistochrone: Direct Multiple Shooting Absolute Error in Displacement, x-

Direction, M = 10.
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Figure 3.33: Brachistochrone: Direct Multiple Shooting Absolute Error in Displacement, x-

Direction, M = 20.

Figure 3.34: Brachistochrone: Direct Multiple Shooting Absolute Error in Displacement, x-

Direction, M = 30.
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Figure 3.35: Brachistochrone: Direct Multiple Shooting Absolute Error in Displacement, y-

Direction, M = 2.

Figure 3.36: Brachistochrone: Direct Multiple Shooting Absolute Error in Displacement, y-

Direction, M = 5.
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Figure 3.37: Brachistochrone: Direct Multiple Shooting Absolute Error in Displacement, y-

Direction, M = 10.

Figure 3.38: Brachistochrone: Direct Multiple Shooting Absolute Error in Displacement, y-

Direction, M = 20.
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Figure 3.39: Brachistochrone: Direct Multiple Shooting Absolute Error in Displacement, y-

Direction, M = 30.

3.4.4.1.3 Collocation - Euler Integration Method

Trajectory plots obtained via the collocation Euler integration method are presented in figure

3.40. The results show a high level of compliance between the analytical and the numerical

solutions. The magnitude of the errors between the analytical and numerical solutions in the

displacement of x and y are provided in figures 3.41 and 3.42 respectively. Results show that the

solution converges to the analytical solution when N = 10. Increasing the value of N beyond

N = 50 can be seen to have little or no effect on the accuracy of the results.
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Figure 3.40: Brachistochrone: Collocation Trajectory Plots (x vs y), Analytical Solution (Red)

and Numerical Solution (Blue).

Figure 3.41: Brachistochrone: Collocation Absolute Error in Displacement, x-Direction.
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Figure 3.42: Brachistochrone: Collocation Absolute Error in Displacement, y-Direction.

3.4.4.1.4 Pseudospectral Collocation The pseudospectral (derivative based collocation)

method produced the most accurate results as the error between the numerical and analytical

solutions decreased compared to the collocation Euler integration method for a given value of N .

This is evident from the trajectory plots provided in figure 3.43. The magnitude of the errors

between the analytical and numerical solutions in the displacements of x and y shown in figures

3.44 and 3.45 respectively help to further support this observation. Again increasing the value

of N beyond 50 was seen to have little or no effect on the accuracy of the numerical solution.

In fact the pseudospectral solution showed that even when N = 10 the numerical solution is in

compliance with the analytical solution.
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Figure 3.43: Brachistochrone: Pseudospectral Trajectory Plots (x vs y), Analytical Solution

(Red) and Numerical Solution (Blue).

Figure 3.44: Brachistochrone: Pseudospectral Absolute Error in Displacement, x-Direction.
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Figure 3.45: Brachistochrone: Pseudospectral Absolute Error in Displacement, y-Direction.

3.4.4.2 Analysis of CPU Time

From the results given above the Pseudospectral method produced the most accurate solution

for the least number of discretisation points. For this reason the results produced by the Pseu-

dospectral method with N = 50 points is used as the nominal solution for the following analysis.

The time taken to reach xf = 0.5 in the solution of the analytical problem given by equation

(3.39) is tf = 1.2533 secs. The nominal solution produced the same final time. Figures given

in 3.46 through to 3.59 show the central processing unit (CPU) time taken to reach an optimal

solution as a percentage of the nominal. The error plots show the percentage error between the

optimal solution produced by each method and the nominal solution.

3.4.4.2.1 Direct Single Shooting Results

Figure 3.46 shows the CPU times and tf errors for the direct single shooting method for Nu = 5.

The plots show that for Nu = 5 the CPU time is less than the nominal for all Nx however the

correct final time is unattainable. The same trend was present when Nu was increased to 10.

For Nu = 25, 1000 state points were required to reach the correct final value however this took

twice as long as the nominal to reach the solution. As the values of Nu increased it was found
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that the correct final time was only achievable for very large numbers of Nx taking up to 5

times more CPU time compared to the nominal case to reach the correct solution. The CPU

percentages are also tabulated in table 3.1.

Figure 3.46: Brachistochrone: Direct Single Shooting CPU time and tf , Nu = 5

Figure 3.47: Brachistochrone: Direct Single Shooting CPU time and tf , Nu = 10
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Figure 3.48: Brachistochrone: Direct Single Shooting CPU time and tf , Nu = 25

Figure 3.49: Brachistochrone: Direct Single Shooting CPU time and tf , Nu = 50
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Figure 3.50: Brachistochrone: Direct Single Shooting CPU time and tf , Nu = 150

Figure 3.51: Brachistochrone: Direct Single Shooting CPU time and tf , Nu = 250
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Figure 3.52: Brachistochrone: Direct Single Shooting CPU time and tf , Nu = 500

Table 3.1: Brachistochrone: Direct Single Shooting CPU Times

Direct Single Shooting - % CPU Times

Nu

Nx 5 10 25 50 150 250 500

10 0.45% 1.34% 1.34% 4.02% 17.41% 17.86% 167.41%

20 0.89% 1.79% 4.46% 8.04% 21.88% 28.57% 99.17%

50 2.68% 5.80% 11.16% 20.98% 57.59% 85.27% 104.46%

100 5.80% 10.27% 20.09% 35.27% 129.46% 166.52% 371.88%

300 14.73% 28.57% 58.93% 132.14% 352.23% 736.61% 1501.34%

500 24.55% 48.21% 99.55% 218.75% 586.61% 1227.43% 2494.20%

1000 35.71% 70.54% 197.77% 338.39% 1361.16% 2429.02% 4954.91%

3.4.4.2.2 Direct Multiple Shooting Results The CPU time and tf error plots for the

direct multiple shooting method are given in figures 3.53 to 3.57. Figure 3.53 shows that for

M = 2 the tf error decreases for increasing Nu however the correct final time is not achieved and

the CPU time taken is almost 3 times the nominal. Overall the results show that as the number

of sections increases the error in the final time decreases however the time taken by the multiple
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shooting method is much higher than the nominal. For all values of M at least 10 control points

are required to reach a percentage error of below 1% and the CPU time increases from 1 to 4000

times more than the nominal case. The CPU percentages for the multiple shooting method are

tabulated in table 3.2.

Figure 3.53: Brachistochrone: Direct Multiple Shooting CPU time and tf , M = 2

Figure 3.54: Brachistochrone: Direct Multiple Shooting CPU time and tf , M = 5
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Figure 3.55: Brachistochrone: Direct Multiple Shooting CPU time and tf , M = 10

Figure 3.56: Brachistochrone: Direct Multiple Shooting CPU time and tf , M = 20
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Figure 3.57: Brachistochrone: Direct Multiple Shooting CPU time and tf , M = 30

Table 3.2: Brachistochrone: Direct Multiple Shooting CPU Times

Direct Multiple Shooting - % CPU Times

M

Nu 2 5 10 20 30

2 3.57% 21.43% 141.07% 610.27% 1984.38%

5 40.18% 115.18% 149.55% 1184.38% 1598.66%

10 24.11% 143.75% 310.27% 1927.68% 13069.20%

20 40.63% 191.07% 1262.95% 4790.63% 8928.13%

50 275.89% 1292.86% 18788.84% 31184.82% 410166.52%

3.4.4.2.3 Collocation Results - Euler Integration and Pseudospectral The CPU

and final time error plots for the collocation Euler integration and pseudospectral methods are

provided in figures 3.58 and 3.59 respectively. The accuracy in the final time can be seen to

be much higher for both of these methods as compared to both of the shooting methods. The

accuracy of the pseudospectral method is higher than for the collocation method. As expected

the CPU time increases for both methods as the value of N increases. In general the CPU time

taken by the pseudospectral method is higher compared to the collocation method for a given
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value of N greater than 10. For N = 800 the pseudospectral method takes 14000 times more

CPU time than the nominal while the collocation method takes only 1800 times more CPU

time (see tables 3.3 and 3.4) . The Pseudospectral method has a percentage error of 0.08% for

N = 5 compared to the collocation method which is 3 times higher at 0.3% while both take only

1.34% of the nominal CPU time. Clearly the Pseudospectral method can reach a higher level of

accuracy with fewer points.

Figure 3.58: Brachistochrone: Collocation - Euler Integration, CPU time and tf

Table 3.3: Brachistochrone: Collocation - Euler Integration, CPU Times

Collocation, Euler Integration - % CPU Times

N 5 10 50 100 300 500 800

1.34% 3.13% 37.95% 190.18% 3608.04% 12134.38% 181751.34%
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Figure 3.59: Brachistochrone: Collocation - Pseudospectral CPU time and tf

Table 3.4: Brachistochrone: Collocation - Pseudospectral CPU Times

Pseudospectral - % CPU Times

N 5 10 50 100 300 500 800

1.34% 3.13% 100.00% 14256.25% 192790.63% 1280342.86% 1468914.29%

3.4.4.3 Findings and Conclusion

The results show that the pseusdospectral method can produce more accurate results with

fewer discretisation points consequently requiring less time. While, for large values of N , the

pseudospectral method results in a longer CPU time, larger values of N are deemed unnecessary

to obtain a high level of accuracy. For this reason I use only the Pseudospectral method with

N = 50 points in the implementation of NMPC for the remainder of this research.

3.5 Illustrative Example: 2D Robot Model

Before designing an MPC based fault tolerant flight controller for an unmanned aerial vehicle

(UAV) it is important to gain a thorough understanding of the fundamental workings of MPC.

To do this a simple 2D Robot Model is used for controller design and implementation as a simpler
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model enables the study of the proposed model and allows for trouble shooting. The focus here

is the implementation of the pseudospectral method to NMPC, to recognise its strengths and

weaknesses. I also make comparisons of my NMPC solution with linear MPC in the solution of

both the open and closed loop control problems.

3.5.1 Equations of motion

Before the model predictive controller can be implemented it is necessary to develop the robot

model. The 2D robot model given in figure 3.60 is used for both the linear and nonlinear

implementations of MPC.

Figure 3.60: Robot Schematic

The relevant equations for this robot model are:

ẋ = V cosψ, (3.51)

ẏ = V sinψ, (3.52)

ψ̇ =
R(ωR − ωL)

2b
, (3.53)

where:
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x x-coordinate of the point C,

y y-coordinate of the point C,

ψ heading angle,

ωR right wheel angular velocity,

ωL left wheel angular velocity,

V Speed and is given by:

V =
R(ωR + ωL)

2
. (3.54)

The next few sections detail the development of the linear and nonlinear MPC controllers. For a

fair comparison the pseudospectral method with 50 collocation points was chosen as the method

for discretisation.

3.5.2 Linear MPC

The linear MPC problem is formulated using a linear process model, with linear constraints and

a quadratic cost function. The problem is convex with only one global minimum. A state space

representation has been chosen to implement the linear controller:

ẋ (t) = A (t) x (t) +B (t) u (t) . (3.55)

The model given in section 3.5.1 clearly shows that the state equations for the the 2D robot are

nonlinear and have the general form:

ẋ (t) = f [x (t) , u (t) , t] . (3.56)

In this work a linear representation of the state equations is used. Hence the nonlinear state

equations given in (3.56) must be linearised before they can be converted to state space form.

To linearise the state equations we linearise around a nominal solution, {x0 (·) , u0 (·)}:

x (t) = x0 (t) + δx (t) , u (t) = u0 (t) + δu (t) . (3.57)

Now assuming that f (·) is smooth and can be represented using a Taylor series expansion:

f [x (t) , u (t) , t] = f [x0 (t) , u0 (t) , t] + fx (t) δx (t) + fu (t) δu (t) + o (δx, δt) . (3.58)

Where:
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fx =
∂f

∂x

∣∣∣∣
x0,u0

, fu =
∂f

∂u

∣∣∣∣
x0,u0

. (3.59)

After applying the Taylor series expansion the linearised equations become:

δ̇ = fxδx+ fuδu. (3.60)

Note that equation (3.60) is in the form of the general state space representation given by equa-

tion (3.55), where the A matrix is the matrix of partial derivatives with respect to the states,

fx and the B matrix is a matrix of partial derivatives with respect to the inputs, fu. These

partial derivative matrices are known as Jacobian matrices. The state and input vectors here

are no longer the state and inputs themselves but are the perturbed states and inputs, δx and

δu respectively. Perturbed states are defined as the difference between the actual states and

the nominal solution. Hence a nonlinear system is linearised by linearising the system around a

nominal trajectory and the resulting system is a linear system in the perturbed states and not

in the states per se. Linear techniques can then be applied. One major drawback, however, is

that the linear solution is only feasible within a small region around the point of linearisation.

For our robot system the linearised model is:


δẋ

δẏ

δψ̇

 = A (t)


δx

δy

δψ

+B (t)

δωR
δωL

 , (3.61)

where the perturbed states are δx, δy and δψ and the perturbed inputs are δωR and δωL. The

Jacobian matrices A and B were found to be:

A =


0 0 −V sinψ

0 0 −V cosψ

0 0 0

 , B =


R
2 cosψ R

2 cosψ

R
2 sinψ R

2 sinψ

R
2b −R

2b

 . (3.62)

Note that this is a time varying system, hence the values of the A and B matrices are recalcu-

lated at each time step.

In my implementation of linear MPC, pseudospectral discretisation will be used. Hence, given

N collocation points the optimization state vector x will be of length (nx+nu)(N+1), where nx
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and nu are the number of states and inputs respectively. The aim is to have the robot follow a

pre-specified or “nominal” (also referred to as reference) trajectory. The states to be minimised

are the perturbed states, i.e. the difference between the actual and nominal. The system is

subject to the state dynamics, upper and lower bounds on the state, and initial and terminal

constraints:

JN =M [xN ] +
(tf − t0)

2

N∑
j=0

L [xj ,uj , tj ] wj , (3.63)

subject to: (
tf − t0

2

)
Dj,k δx (t)− (A (t) δx (t) +B (t) δu (t)) = 0, (3.64)

δxi = x(t0)− xref(t0), (3.65)

δxf = 0, (3.66)

xlb ≤ x ≤ xub, (3.67)

ulb ≤ u ≤ uub. (3.68)

As the system is time varying the A and B matrices are calculated at every time step for each

collocation point over the prediction horizon.

The linear MPC process works as follows: firstly the initial and terminal constraints are set. The

initial constraint is set to the difference between the actual state at time t0 and the reference

trajectory at time t0. The terminal constraint is set to zero, as it is desired to have a perturbation

of zero by the end of the prediction horizon. This is followed by calculations of the nominal

inputs u0 = [ωR0, ωL0]>. These nominal values represent the control inputs required to achieve

the desired reference trajectory if the plant was perfectly situated on this trajectory. The

Jacobian matrices are then calculated using these nominal values for states and inputs. During

each sampling interval these calculations are performed for each collocation point along the

prediction horizon. Once all of the equality constraints are set up the SNOPT [54] optimisation

procedure is called on to calculate the optimal δu which minimises the cost function while

satisfying all constraints. A vector of length (nx + nu)(N + 1) will be produced with each

solution corresponding to a collocation point. Only the first input from this vector is applied

to the plant. The optimisation vector is a vector of perturbed states hence the actual control

input which is to be applied to the plant must be calculated via:

u = u0 + δu. (3.69)
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The control input is applied to the plant which is then simulated forward in time, and the whole

procedure repeats until the end of the simulation time.

3.5.3 Nonlinear MPC

The underlying concept of the nonlinear MPC controller is the same as its linear counterpart.

That is, an optimal control problem is solved over a finite prediction horizon, only the first

control input is applied to the plant, the prediction window slides along by the sampling time

interval and the whole procedure is repeated. The main difference is that the state vector

comprises actual states rather than the perturbed states. The cost function to be minimised is:

JN =M [xN ] +
(tf − t0)

2

N∑
j=0

L [xj ,uj , tj ] wj , (3.70)

subject to: (
tf − t0

2

)
Dj,kx (t)− ẋ = 0, (3.71)

x(t0)− xref(t0) = 0, (3.72)

x(tf )− xref(tf ) = 0, (3.73)

xlb ≤ x ≤ xub, (3.74)

ulb ≤ u ≤ uub. (3.75)

The next section describes the results obtained by applying the controllers to an open loop

problem.

3.5.4 The Open Loop Problem

In MPC an open loop problem is solved at each time step. Hence before NMPC can be applied

to fault tolerant control it was important to understand the open loop problem. This provides

an insight into the factors that affect the solution.

There are many tuning parameters used to determine the performance of the controller; the

weighting factors on the cost function, the design of the cost function, the length of the prediction

horizon, the initial condition, the integration time step, and the number of discretisation points

required for an acceptable solution. From the previous analysis the numerical technique chosen

for the application of NMPC is the Pseudospectral method with 50 discretisation/coincidence

points. This section looks at the effect of the design of the cost function, the prediction window
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length, the integration time step and the affect of the initial condition on the solution.

The 2D robot is required to follow the given path:

∀x ≥ 0 : y = 5, (3.76)

travelling with a velocity of 1m/s and constraints of ±1000deg/sec on the wheel speeds ωR and

ωL.

Both linear and nonlinear MPC methods were applied. The state and input vector for the linear

MPC controller are:

xlin = [δx δy δψ]ᵀ, (3.77)

ulin = [δωR δωR]ᵀ. (3.78)

The state and input vector for the nonlinear MPC controller are:

xnl = [x y ψ]ᵀ, (3.79)

unl = [ωR ωL]ᵀ. (3.80)

The overall objective is to drive the robot back to the reference path from y = 6 to y = 5.

3.5.4.1 Effect of Different Cost Functions

I now look at the effect of selecting a cost function on the MPC solution. Five different cost

functions were developed:

Cost Type 1: Errors between the reference/nominal path and the robot path are minimised:

JN 1 =
(tf − t0)

2

N∑
j=0

(∥∥x− xref

∥∥2

Qx

)
wj . (3.81)

Cost Type 2: Errors between the robot path and the nominal path, plus the error between

the actual wheel speeds, ωR and ωL and the nominal wheel speeds are minimised:
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JN 2 =
(tf − t0)

2

N∑
j=0

(∥∥x− xref

∥∥2

Qx
+
∥∥u− uref

∥∥2

Qu

)
wj . (3.82)

Cost Type 3: Errors between the robot path and the nominal path, plus the difference between

the wheel speeds are minimised:

JN 3 =
(tf − t0)

2

N∑
j=0

(∥∥x− xref

∥∥2

Qx
+
∥∥ωR − ωL∥∥2

Qω

)
wj . (3.83)

Cost Type 4: Errors between the nominal speed and robot speed as well as the errors between

the nominal angular acceleration and the robot’s angular acceleration are minimised:

JN 4 =
(tf − t0)

2

N∑
j=0

(∥∥V − Vref

∥∥2

QV
+
∥∥ψ̇ − ψ̇ref

∥∥2

Qψ

)
wj . (3.84)

Cost Type 5: Errors between the nominal speed and robot speed as well as the errors between

the nominal angular acceleration and the robot’s angular acceleration along with the errors be-

tween the nominal path and the robot path are minimised:

JN 5 =
(tf − t0)

2

N∑
j=0

(∥∥x− xref

∥∥2

Qx
+
∥∥V − Vref

∥∥2

QV
+
∥∥ψ̇ − ψ̇ref

∥∥2

Qψ

)
wj . (3.85)

Each cost type was tested using both linear and nonlinear MPC. The robot initial x, y and ψ was

set to x0 = [0 6 0]ᵀ for both controllers. The prediction window length was also varied and was

equal to Hp = 1 sec, Hp = 5 secs and Hp = 10 secs. The cost function weights are square matrices

with the following diagonal values for each state: Qx = 10, Qu = 1, Qψ = 1, Qψ̇ = 1 and QV = 1.

The optimal trajectories produced by all the different cost functions for a prediction window

length of 1 sec are given in figures 3.61 and 3.62 for linear and nonlinear MPC respectively. Cost

types 1, 2, 3 and 5 were able to drive the robot back onto the desired path by the end of the

window for both the linear and nonlinear cases, however cost type 4 was unsuccessful in doing so.
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When the window length is increased to 5 seconds the optimal trajectories are seen to be much

smoother in driving the robot back to the path compared to the 1 second window length. Figures

3.63 and 3.64 show the results for the linear and nonlinear controllers respectively for a window

length of 5 seconds. All cost function types were able to drive the robot back to the path by the

end of the window length in both linear and nonlinear cases. Cost type 1 took longer to bring

the robot back to the path with a linear controller when compared to the nonlinear controller.

The nonlinear controller drove the robot straight towards the path while the linear controller

brought the robot back smoothly. The nonlinear controller for cost type 3 initially drove the

robot away from the path before bringing it back on track while cost type 4 only brought the

robot back right at the end of the prediction window. This was not the case with the linear

controller, with the linear controller cost type 3 driving the robot back to the path. Cost types

2 and 5 behaved similarly for both controllers in that they both brought the robot back to the

path along a smooth path. However cost type 5 slightly overshot the path before bringing the

robot back on track with the linear controller.

Increasing the prediction window length further to a 10 second look ahead shows that all cost

types with both linear and nonlinear controllers were able to drive the robot back to the path.

The nonlinear controller (figure 3.66) was able to bring the robot back within approximately 2

seconds for all cost types, except cost 1 which brought the robot back smoothly in approximately

0.5 secs and cost type 4 which only reached the path at the end of the window length. The linear

controller results show that the robot was back on track for all cost types by approximately 4.5

secs, other than cost type 1 which drove the robot to the path in 1.5 secs.

The error plots for all the prediction window lengths are given in figures 3.67 through to 3.69.

The plots show the magnitude of the error in the y-direction between the nominal path (y = 5)

and the actual robot path. The results show that for all cost types and all window lengths the

nonlinear controller produced lower error compared to the linear controller. The error between

the two controllers decreases as the robot approaches the path. The results show that as the

perturbation decreases the linear controllers performs equally as well as the nonlinear controller,

however for larger perturbations the nonlinear outperforms the linear controller. This is true

for all cost types except cost type 4. Cost type 4 results in higher errors compared to the linear

controller across all prediction window lengths and the nonlinear controller is only able to drive

the robot to the path at the end of the window, obeying the terminal constraint. Cost type 4
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is the only cost function which does not minimise the path errors instead minimising velocity

and angular acceleration only. The linear controller produces lower errors as the states are the

perturbed states from the nominal. Cost type 1 in the nonlinear case, brings the robot back to

the path in the least amount of time however the solution oscillates around the nominal path

once the path has been reached as is evident from figure 3.66. The results show that for a path

following scenario it is best to not only minimise the path errors but to also follow a velocity

profile to obtain a smoother non oscillating solution. For this reason I will continue the remain-

der of this research using cost type 5 as the cost function of choice. In addition, the error plots

show that the difference in errors produced by the linear and nonlinear controllers are the least

for this cost function making it the best candidate for comparison purposes.

Figure 3.61: Open Loop: Different Cost Functions, Hp = 1, Linear MPC
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Figure 3.62: Open Loop: Different Cost Functions, Hp = 1, Nonlinear MPC

Figure 3.63: Open Loop: Different Cost Functions, Hp = 5, Linear MPC
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Figure 3.64: Open Loop: Different Cost Functions, Hp = 5, Nonlinear MPC

Figure 3.65: Open Loop: Different Cost Functions, Hp = 10, Linear MPC
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Figure 3.66: Open Loop: Different Cost Functions, Hp = 10, Nonlinear MPC

Figure 3.67: Open Loop: Different Costs y-Displacement Errors, Hp = 1
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Figure 3.68: Open Loop: Different Costs y-Displacement Errors, Hp = 5

Figure 3.69: Open Loop: Different Costs y-Displacement Errors, Hp = 10

3.5.4.2 Effect of the Integration Time Step

Sub-section 3.5.4.1 investigated the effect of different cost functions on the MPC solution. This

sub-section looks at the effect the integration time step has on the overall solution. Up until
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now only the optimal solution produced by the controller was investigated, however in an MPC

framework only the first output is applied to the plant, with the plant then providing sensor

information to the navigation subsystem, for example, (on an aircraft) to calculate location and

orientation information. Hence its is important to understand the effect of the the integration

time step in conjunction with the optimal control input.

The integration time step was varied as follows:

dt = [0.1, 0.01, 0.001],

for varying Hp lengths namely 1 sec, 5 secs and 10 secs. The results are given in figures 3.70 to

3.75. All results show that the integration time step has very little effect on the results. When

zooming in on the results the smallest integration time step of 0.001secs was shown to give a

solution closest to the optimal. The length of the prediction horizon was seen to have the greatest

effect on the integrated solution. The longer the look ahead the closer the integrated solution is

to the optimal solution. Another point to note is that the integrated solution produced with the

nonlinear controller more closely matches the optimal solution compared to the linear solution.

Figure 3.70: Open Loop: Different dt, Hp = 1 sec, Linear MPC
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Figure 3.71: Open Loop: Different dt, Hp = 1 sec, Nonlinear MPC

Figure 3.72: Open Loop: Different dt, Hp = 5 secs, Linear MPC
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Figure 3.73: Open Loop: Different dt, Hp = 5 secs, Nonlinear MPC

Figure 3.74: Open Loop: Different dt, Hp = 10 secs, Linear MPC
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Figure 3.75: Open Loop: Different dt, Hp = 10 secs, Nonlinear MPC

Varying the length of the prediction window showed that it is always best to have a longer win-

dow. The longer window length produced the lowest errors particularly in the linear controller

case. In addition, the longer window allowed the robot to reach the nominal path quicker. The

accuracy of the integrated solution increases as the window length increases. Unfortunately a

longer window results in an increase in computation time.

From the results above a window length of 5 secs was chosen to continue this research. A window

length of 1 second proved to be too short to produce an accurate solution particularly in the

case of the integrated solution (see figures 3.70 and 3.71). A window length of 10 secs produced

an integrated solution which closely matched the optimal solution in the nonlinear controller

case. The solution produced by a window length of 5 secs, while not as precise, still managed to

develop a solution closely resembling the optimal solution. For this reason a window length of 5

seconds is seen as a good compromise between efficiency and accuracy. Hence for the rest of this

research a window length of 5 seconds will be used along with cost type 5 and an integration

time step of 0.01secs.

The next sub-section will look at the effect the initial condition has on the overall solution.
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3.5.4.3 Effect of Initial Condition

The initial condition is another factor which must be considered in the design and selection of

the controller. The sensitivity of the starting point on the overall solution is critical particu-

larly in the case on linear techniques. This sub-section investigates the difference between the

solutions produced by the linear and nonlinear controllers as a function of the initial condition.

Again the path is y = 5 and the initial y is varied from 0m to 10m in steps of 0.1m. The errors

between the nominal path and the actual robot position are calculated at various points along

the prediction horizon namely at 1 sec, 2 secs, 3 secs, 4 secs and 5 secs for all initial y values.

Plots of errors versus initial y for the different time are given in figures 3.76 to 3.80. The plots

given in these figures show the errors between the optimal solution and the nominal path as

well as the errors between the integrated solution and the nominal path for both the linear and

nonlinear controllers. The errors arising from the integrated solution of the linear controller are

shown on a separate plot underneath the main plots as the errors were much higher compared to

the others and by plotting all errors on the one graph the errors produced by the other solutions

were not as clearly visible. The results show that as the time increases from 1 second to 5 secs

the errors decrease as the robot approaches the nominal path. The results clearly show that

the further away the robot is from the nominal path (i.e. the greater the perturbation) the

higher the error in the case of the linear controller. At the 1 second mark along the prediction

window (figure 3.76) the errors between the solution produced by the nonlinear controller and

the nominal path (y = 5) are seen to be linear as a function of initial y. Moving further along

the prediction window (figures 3.77, 3.78, 3.79 and 3.80) shows that these errors decrease and

are very close to zero for any y0. There is only a small region around the nominal path, y = 5,

during which the errors produced by the linear controller are zeros and match those produced

by the nonlinear solution at any time along the prediction window.

Figure 3.81 shows plots of the errors between the optimal solution and the integrated solutions

for both linear and nonlinear controllers. The integrated solution can be seen to be in compliance

with the optimal for the nonlinear controller solution however discrepancies are present between

the integrated and optimal solutions produced by the linear controller. The results show that

there is only a small region around y = 5 for which the solution produced by the linear and

nonlinear controllers overlap.
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Figure 3.76: Open Loop: Initial Conditions vs y-Displacement Error, time = 1 sec

Figure 3.77: Open Loop: Initial Conditions vs y-Displacement Error, time = 2 secs
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Figure 3.78: Open Loop: Initial Conditions vs y-Displacement Error, time = 3 secs

Figure 3.79: Open Loop: Initial Conditions vs y-Displacement Error, time = 4 secs
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Figure 3.80: Open Loop: Initial Conditions vs y-Displacement Error, time = 5 secs

Figure 3.81: Initial Conditions vs y-Displacement Error Between Optimal and Integrated

The next subsection investigates the closed loop problem and compares the solution of both

linear and nonlinear MPC.
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3.5.5 The Closed Loop Problem

The aim of these simulations is to implement and investigate the behaviour of both linear and

nonlinear MPC regarding the closed loop problem. The fault tolerant problem is essentially

closed loop hence to apply NMPC to fault tolerant control the pseudosepectral NMPC method

is first tested on the simpler 2D robot model.

To test the models the reference trajectory given in figure 3.82 was used.

Figure 3.82: Reference Trajectory

Based on the analysis from the previous subsections a prediction window length of 5 seconds

was used with 50 collocation points, cost type 5 and and integration time step of 0.01secs.

Constraints of ±1000deg/sec are placed on the control inputs which are the angular velocities

produced by the right and left wheels. Three different scenarios were set up:

Scenario 1: Robot begins on the path with initial conditions y0 = [5, 0, 0]ᵀ.

Scenario 2: Robot begins slightly off the path with initial conditions y0 = [−2, 4, 0]ᵀ.

Scenario 3: Robot begins well off the path with initial conditions y0 = [0, 20, 0]ᵀ.

For stability Hu = Hp [4]. In many MPC \NMPC formulations Hu is less than Hp. While this

greatly reduces the computational expense it does however produce a suboptimal solution [105],
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hence for the purposes of this research the control horizon is equal to the prediction horizon.

The trajectory plot for scenario 1 is given figure 3.83. Here the robot begins on the path and

both the linear and nonlinear solution can be seen to produce the same solution, something that

is also clear from the plots of optimal inputs produced by both controllers as given in figure

3.84. The red lines in figure 3.84 show the constraint boundaries.

The trajectory plots for scenario 2 are presented in figure 3.85. Here the robot begins slightly

off the path. Both the linear and nonlinear controllers manage to bring the robot back onto the

path. The plots of the optimal inputs (figure 3.86) show that initially both controllers work at

the maximum constraint to drive the robot back onto the path. Once the path is reached (i.e.

perturbations are small) both controllers exhibit the same performance.

The trajectory plots for scenario 3 presented in figure 3.87 show the robot starting completely

off the path (large perturbation). In this case only the nonlinear controller is able to bring

the robot back onto the path with the linear controller unable to drive the robot back to the

path. Figure 3.88 shows the inputs produced by both controllers with the plots clearly showing

that the linear controller works very hard to take the robot back onto the path by consistently

working at the constraints however is still unable to return the robot back to the path.

Figure 3.83: Closed Loop: Scenario 1 - Trajectory

128



Figure 3.84: Closed Loop: Scenario 1 - Angular Rates

Figure 3.85: Closed Loop: Scenario 2 - Trajectory
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Figure 3.86: Closed Loop: Scenario 2 - Angular Rates

Figure 3.87: Closed Loop: Scenario 3 - Trajectory
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Figure 3.88: Closed Loop: Scenario 3 - Angular Rates

The results clearly show that the pseudospectral NMPC solution to the nonlinear model pre-

dictive controller is a viable choice outperforming its linear counterpart when the perturbations

are large.

3.6 Summary of Findings

This chapter was dedicated to the theoretical and practical implementation aspects of MPC.

A viable solution was sought in particular for nonlinear MPC. The Pseudospectral numerical

method was found to be the best candidate. The solution was applied to a 2D robot model in

both open and closed loop settings. Comparisons were made between linear MPC and the non-

linear MPC solutions. For small perturbations the two controllers produced the same results.

However for large perturbations where nonlinearity effects are more significant the pseudospec-

tral nonlinear MPC controller was found to produce more accurate results than the linear MPC

controller.

The next chapter will investigate the application of this solution to fault tolerant control.
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Chapter 4

Fault Tolerant Control System

Design

4.1 Introduction

4.1.1 Motivation

After examining the various optimal control techniques for the implementation of nonlinear

model predictive control (NMPC) in chapter 3, it became clear that pseudospectral discreti-

sation provided the most viable solution. In order to develop this control technique into a

full-fledged fault tolerant control system, it is imperative for fault detection and identification

(FDI) to be incorporated into the model. This is the aim of this chapter.

Fault tolerant control systems are classified as either Passive or Active (see sub-sections 2.3.1

and 2.3.2). A passive fault tolerant control (FTC) system “passively” handles faults, which are

not explicitly detected and isolated and about which no information is gathered. The controller

is, thus, designed to automatically counteract only particular faults. The benefit of a passive

controller is that performance is unaffected by fault detection delays or false alarms. However

the handling of only faults that are incorporated into its design is a major drawback of a pas-

sive fault tolerant control (FTC) system, as all other faults may cause the system to become

unstable. Another disadvantage of a passive FTC controller is its reliance on robust control

techniques that can be overly conservative. Active FTC systems, on the other hand, “actively”

seek the fault and try to gather as much information about it as possible to help the controller

overcome any consequential instabilities.
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Fault detection and identification (FDI) is a key component in an active fault tolerant control

(FTC) system and is the most difficult aspect of FTC [26]. In his 1997 paper Patton [97] states

that most research on FDI has been done independent of the controller design and no combined

design exists. Since then there has been some research on the integration of FDI and FTC;

however much remains to be done in this area.

According to Zhang and Jiang [148], FDI can be either parameter based or state based. State

based fault detection systems have shorter time delays but do not provide enough detail for fault

diagnosis, leading to parameter based systems being preferred. In general the FDI system has

three major tasks:

1. Fault detection indicates that something is wrong in the system i.e. the occurrence of a

fault and the time of its occurrence.

2. Fault isolation determines the location and the type of the fault (the manner in which the

component has failed).

3. Fault identification determines the magnitude (size) of the fault.

To design an active FTC system, the aim of this thesis, it is essential that the final design

includes an FDI subsystem. I investigate existing FDI techniques in this chapter, and use the

knowledge to reconfigure the fault tolerant controller that I started designing in Chapter 3.

The simple 2D robot model introduced in section 3.5 is used as an illustrative example.

4.1.2 Outline

Section 4.2 presents a brief literature survey of the techniques used in fault detection and iden-

tification as applied to flight control. This is followed by an in-depth investigation of the FDI

methods chosen for the work in this thesis, namely the extended Kalman filter (EKF), the un-

scented Kalman filter (UKF) and the interactive multiple model (IMM), in section 4.3.

An extended Kalman filter (EKF) filter, unscented Kalman filter (UKF) filter, EKF based inter-

active multiple model (IMM) filter and a UKF based IMM filter are each designed in section 4.4

for the purposes of FDI using the 2D robot model of section 3.5. Hence four different active fault

tolerant control systems using NMPC as the controller design are formulated and implemented
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in MATLAB for the 2D robot model.

Each of the four different active FTC systems developed in section 4.4 are tested under differ-

ent conditions in section 4.5. The tests are designed to evaluate the performance of the filters

as well as the interaction of the filter and controller designs. The section provides a detailed

analysis of the test results and concludes with a summary of findings. Based on the findings

the filter chosen to continue the research is implemented for active FTC using linear model pre-

dictive control (MPC) as the controller and the results are compared to its nonlinear counterpart.

Finally a brief conclusion is given in section 4.6.

4.2 Literature Review of FDI

Fault Detection and Identification is a very mature field of study and provides many powerful

quantitative and/or qualitative modelling tools as well as artificial intelligence. As Patton [97]

identified back in 1997, most FDI research does not include a combined controller and FDI

design. The main difficulty with active FTC is on-line reconfiguration which requires detailed

information about changes in system parameters. Hence the main role of the FDI subsystem,

particularly in this research, is the gathering of information on parameter changes to assist in

controller reconfiguration.

Most reconfigurable controllers use real time estimates of the system parameters provided by

parameter estimation based FDI. These approaches to FDI are thought to provide the controller

with system information in a more suitable format for on-line reconfiguration than the alter-

native approaches based on state estimation. Many difficulties still exist in parameter based

estimation techniques. For example, in order to get good estimates it may be necessary to

introduce perturbation signals to ensure all plant modes have been sufficiently excited; this is

particularly true for aircraft.

Observer based FDI schemes are very dependent on the models upon which the scheme is de-

signed. Hence the reliability of these FDI systems must be higher than the monitored system.

The better the model representing the dynamic behaviour of the system, the higher the chance

of improving the reliability and performance in detecting and isolating faults. Plant model mis-

matches can cause false alarms, or even miss faults, and hence robustness issues in FDI are very
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important [8]. One of the advantages of MPC is the easy incorporation of robust control ideas

[26].

As mentioned in chapter 2, hardware redundancy and full self diagnosis equipment are not always

feasible, especially for unmanned aerial vehicles (UAVs), because of their cost and associated

weight penalties. The FTC system that I wish to design is based around analytical redundancy

(AR), which was discussed in sub-section 2.1.3, an approach that utilises the available data and

mathematical model of the plant (model-based FDI) for fault tolerance. This approach is based

on the belief that a fault changes physical parameters and hence the dynamical model of the

plant.

The next section gives a brief overview of the current literature on the application of fault

detection and identification to flight control.

4.2.1 Application to Flight Control

Fault tolerance has been applied to many industries. The focus of this research is flight control,

and this section looks at the FDI schemes applied specifically to flight vehicles, in particular

UAVs.

Fault detection can be divided into three categories [96]:

1. Knowledge based - these techniques use artificial intelligence methods such as neural net-

works (NNs) or fuzzy decision logic to detect and classify faults.

2. Signal processing - these techniques use signal characteristics such as spectrum information

or statistical information to enable the generation of signals that can be used to provide

an indication of the existence of a failure.

3. Model based - these techniques are similar to signal processing techniques except that a

model is utilised to estimate/measure the values provided by error signals (residuals) to

provide an indication of the existence of a failure.

A report by Cork et. al [33], presents an NN based sensor fault detection scheme to provide

analytical redundancy (AR) from sensors already existing onboard a UAV. Artificial intelligence

schemes for flight control FDI are described in Lin and Liu [81], with the FDI based on detecting

immediate changes in the correlation between pitching, yawing and rolling moments. An NN
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is used for FDI and adaptive compensation, while failure tolerance is addressed by applying

a wavelet neural net-based proportional integral derivative (PID) control law. Perhinschi et.

al [100] present an FDI scheme for flight control capable of detecting and identifying failures

affecting aircraft actuators, sensors, structural integrity and propulsion, using ideas from the

modelling of bioimmune systems, combined with other artificial intelligence (AI) techniques.

An immunity based fault detection system operates in a similar manner to the human immune

system whereby a distinction is made between the entities that belong to the organism and those

that do not.

Observer based FDI is the most common approach studied in recent literature. An application

to flight control can be found in Wang et. al [121] where the focus is on control surface failures.

Here the FTC system encompasses two controllers; the main controller designed for the faultless

system with the second controller being a compensator designed to handle the faulty case. Fault

detection is then based on an extended state observer to estimate faults. Liu et. al [82] apply

an adaptive fault estimation observer based algorithm for linear discrete systems with actuator

faults to a model of the F-16 aircraft.

Boskovic et. al [20] suggest a viable approach to FDI for air and space vehicles through the use

of multiple model switching and tuning (MMST). The authors claim that most techniques are

based on treating failures and structural damage as parametric uncertainty and then design-

ing corresponding adaptive controllers that achieve the desired control response. The standard

approach to indirect adaptive control is based on certainty equivalence, where certain plant pa-

rameters are estimated online and the estimates are, in turn, used by the controller to assure

stability of the overall system (Boskovic et. al [20]). However such approaches, when applied to

a linearised aircraft model, can only handle small to moderate uncertainty and, with regards to

FTC, only a small set of failures can be tolerated. Boskovik and co-authors [20] suggest using a

MPC multiple model based method, where different models are used to describe the dynamics

of the system for different operating regimes. These are referred to as identification models as

they identify the current dynamics of the system.

Sliding mode observers for fault detection have been used by Edwards et. al [41]. Historically,

sliding mode methods have generated interest because of their strong robustness to a particular

class of uncertainty. This is achieved by using nonlinear control/injection signals to force the

136



system trajectories to attain motion along a surface in the state-space in finite time. Sliding

mode observers are able to reconstruct unmeasurable signals within a process by appropriate

scaling and filtering of the so-called “equivalent output error injection”. The fault tolerant con-

troller in Edwards et. al [41] is also based on a state feedback sliding mode scheme and was

tested on the GARTEUR flight simulator (Edwards et. al [41]).

Yee et. al [141] illustrate an FDI scheme based on estimating the fault through matrix algebra.

Simulations are based on a combat aircraft and the scheme shows that it has the potential to

handle multiple faults. Meanwhile Xiao-song [132] claims that FDI cannot be performed by a

single method and combines statistical and analytical redundancy approaches. A set of robust

adaptive observers are set up for residual generation (analytical) alongside a statistical method

of residual evaluation (statistical) to detect faults online (Xiao-song [132]), and the method is

applied to a model of a fighter aircraft.

Ducard’s book [39] details a fault tolerant control scheme for a small UAV. The FDI presented

therein is based on a particular type of multiple model adaptive estimation (MMAE) called the

extended multiple model adaptive estimation (EMMAE). A bank of extended Kalman filters are

designed to monitor the health of each actuator, and the method allows estimation of the fault

control signal by the respective EKF. By allowing actuator deflection estimates to be a part of

the system state vector, the EMMAE method is able to work for all possible positions where an

actuator can be locked or floating. Ducard [39] discovered that failures near trim conditions are

harder to detect and isolate, so a control allocation scheme is used where estimates from the FDI

are used to solve a set of algebraic equations that, in turn, are used to describe the dimensionless

aerodynamic coefficients CL, CM and CN . Given five actuators the system is faced with three

equations and five unknowns, and to obtain a unique solution various behaviour modes are set

up. Ducard [39] states that this control allocation method is simple, fast and can be imple-

mented on a small processor or a microcontroller where computational power is limited. The

final overall solution is a reconfigurable guidance system where a new flight path is calculated

based on information about the fault.

The next section describes in detail the particular FDI techniques chosen for this research. The

selected methods are the EKF, the UKF and the IMM filters.
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4.3 Fault Detection Techniques Selected for Implementation:

Theoretical Description

The fault detection techniques considered here are all based on filtering techniques, namely the

EKF, the UKF, the EKF based IMM and the UKF based IMM. These filters are used to se-

quentially estimate the state of a dynamic system using a sequence of noisy measurements made

on the system. The state estimates are then utilised to aid in fault detection and control re-

configuration. A general overview and key mathematical concepts are provided for each method.

4.3.1 Extended Kalman Filter (EKF)

The EKF is an extension of the well known Kalman filter. One of the drawbacks of the Kalman

filter is that it does not provide good estimations for nonlinear systems [106]. The EKF approx-

imates (or linearises) the nonlinear functions in the state dynamic and measurement models.

There are two main stages during an EKF (and the general Kalman filter) cycle: predict and

update. During the prediction stage the filter states and covariances are predicted forward one

time step as are the measurement predictions. During the update stage corrections are made to

the state predictions via noisy measurements.

The extended Kalman filter is derived for nonlinear systems with additive noise. A summary of

the EKF (Ristic et. al [106]) equations are given below. The target state xk and measurement

zk equations propagate according to:

xk = fk−1 (xk−1) + vk−1, (4.1)

zk = hk (xk) + wk, (4.2)

where vk−1 and wk are random sequences and are mutually independent with zero-mean, white

Gaussian with covariances Qk−1 and Rk respectively. The EKF is based on the assumption

that local linearisation of the above equations may be a sufficient description of nonlinearity.

The mean and covariance of the underlying Gaussian density are computed recursively in a two

stage process (Ristic et. al [106]):
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Stage 1: Prediction

x̂k|k−1 = f
(
x̂k−1|k−1

)
, (4.3)

Pk|k−1 = Qk−1 + F̂k−1P̂k−1|k−1F̂
>
k−1. (4.4)

(4.5)

Stage 2: Update/Correction

x̂k|k = x̂k|k−1 + Kkνk, (4.6)

Pk|k = Pk|k−1 −KkSkK
>
k , (4.7)

where

νk = zk − hk
(
x̂k|k−1

)
, (4.8)

S = ĤkPk|k−1Ĥ
>
k + Rk, (4.9)

Kk = Pk|k−1Ĥ
>
k S−1

k . (4.10)

The parameter Kk is commonly known as the Kalman gain and Sk is referred to as the inno-

vation covariance. The innovation νk is the error between the predicted measurement and the

actual measurement of the system. The matrices F̂k−1 and Ĥk are the local linearisation of

the nonlinear functions fk−1 and hk. The two matrices are defined as Jacobians evaluated at

x̂k−1|k−1 and x̂k|k−1 respectively (Ristic et. al [106]):

F̂k−1 =
[
∇xk−1

f>k−1 (xk−1)
]> ∣∣∣∣

xk−1=x̂k−1|k−1

, (4.11)

Ĥk =
[
∇xkh

>
k (xk)

]> ∣∣∣∣
xk=x̂k|k−1

, (4.12)

where:

∇xk =

[
∂

∂xk[1]
. . .

∂

∂xk[nx]

]>
. (4.13)

Since the Jacobians must be calculated analytically the EKF is often referred to as an analytic

approximation. If the functions fk or hk are discontinuous, analytical methods cannot be ap-

plied. A drawback of the EKF is that it always approximates p (xk|Zk) to be Gaussian [106].
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If the model is highly nonlinear the non-Gaussianity of the true posterior density will be more

evident, for example, it could be bimodal or heavily skewed. In this event the performance of

the EKF will significantly degrade.

4.3.2 The Unscented Kalman Filter (UKF)

The unscented Kalman filter (UKF) addresses the issue of non-Gaussianity. The UKF is a part

of a family of nonlinear filters, referred to as linear regression Kalman Filters, that are based

on statistical linearisation rather than analytical linearisation. The key concept behind these

filters is to perform nonlinear filtering using a Gaussian representation of the posterior p (xk|Zk)

through a set of deterministically chosen sample points. The true mean and covariance of the

Gaussian density are completely captured by these sample points up to the second order of

nonlinearity, with errors introduced in the third and higher order when propagated through a

nonlinear transform. The EKF on the other hand is only of first order with errors introduced

in the second and higher orders. The filters belonging to this family differ only by the method

used to select the sample points i.e. their number, weights and values in the filtering equations

are identical and are given below. The UKF uses an unscented transform for the selection of

points in an EKF framework (Ristic et. al [106]).

We assume that at time k−1 the posterior is Gaussian: p (xk−1|Zk−1) ≈ N
(
xk−1; x̂k−1|k−1,Pk−1|k−1

)
.

The very first step is to represent this density via a set of N sample points X ik−1 and their weights

W i
k−1, i = 0, . . . , N − 1. The prediction step is as follows:

x̂k|k−1 =
N−1∑
i=1

W i
k−1fk−1

(
X ik−1

)
, (4.14)

Pk|k−1 = Qk−1 +

N−1∑
i=0

W i
k−1

[
fk−1

(
X ik−1

)
− x̂k|k−1

] [
fk−1

(
X ik−1

)
− x̂k|k−1

]>
. (4.15)

A set of N sample points:

X ik|k−1 = fk−1

(
X ik−1

)
, (4.16)

are used to represent the predicted density: p (xk|Zk−1) ≈ N
(
xk; x̂k|k−1,Pk|k−1

)
and the pre-

dicted measurement becomes:
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ẑk|k−1 =

N−1∑
i=0

W i
k−1h

(
X ik−1

)
. (4.17)

The update step is defined as:

x̂k|k−1 = x̂k|k−1 + Kkνk, (4.18)

Pk|k = Pk|k−1 −KkSkK
ᵀ
k , (4.19)

where

Kk = PxzS
−1
k , (4.20)

Sk = Rk + Pzz, (4.21)

Pxz =
N−1∑
i=0

W i
k−1

(
X ik|k−1 − x̂k|k−1

)(
hk(X ik|k−1)− ẑk|k−1

)ᵀ
, (4.22)

Pzz =
N−1∑
i=0

W i
k−1

(
hk(X ik|k−1)− ẑk|k−1

)(
hk(X ik|k−1)− ẑk|k−1

)ᵀ
. (4.23)

As can be seen from the above filter equations there is no explicit calculation of Jacobians.

Consequently these filters can be utilised even when the nonlinear functions f and h have dis-

continuities.

The UKF uses the unscented transform to select the sample points X ik−1 and weights W i
k−1 as

described in the next subsection.

4.3.2.1 The Unscented Transform

The unscented transform is a means of calculating the statistics of a random variable which

undergoes a nonlinear transform (Ristic et. al [106]). For example, given a random variable a

with mean and covariance ā and Pa respectively, on propagation through an arbitrary nonlinear

function g : Rna → Rnb it will produce a random variable b:

b = g(a).

The first two moments of b can be computed using the unscented transform by first determin-

istically choosing 2na + 1 weighted samples points (Ai,Wi) so that they completely capture the

true mean ā and covariance Pa of a. The following scheme satisfies this requirement (Ristic et.

al [106]):
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A0 = ā, W0 =
κ

(na + κ)
, i = 0, (4.24)

Ai = ā +
(√

(na + κ)Pa

)
i
, Wi =

κ

2(na + κ)
, i = 1, . . . , na, (4.25)

Ai = ā−
(√

(na + κ)Pa

)
i
, Wi =

κ

2(na + κ)
, i = n1 + 1, . . . , 2na, (4.26)

where κ is a scaling factor such that κ + na 6= 0 and
(√

(na + κ)Pa

)
i

is the ith row of the

matrix square root L of (na + κ)Pa such that (na + κ)Pa = L>L. The weights are normalised(∑2na
i=0 W = 1

)
. Each sample point is then propagated through the nonlinear functions g:

Bi = g (Ai) (i = 0, 1, . . . , 2na) ,

and the first two moments of b are calculated via:

b̄ =

2na∑
i=0

WiBi, (4.27)

Pb =

2na∑
i=0

Wi (Bi − b) (Bi − b)ᵀ . (4.28)

These estimates are accurate to the second order (third order if a is Gaussian) of the Taylor

series expansion of g (a). The distance Ai, i = 1, . . . , na from ā increases with dimension na but

this can be controlled by the choice of κ. It should be noted that if κ is negative Pb can become

non-positive semidefinite.

4.3.3 Interacting Multiple Model (IMM)

The IMM belongs to a class of filters called the Gaussian Sum Filters. The main concept is the

approximation of the required posterior density p (xk|Zk) by a Gaussian mixture (Ristic et. al

[106]):

p (xk|Zk) ≈ pA (xk|Zk) =

qk∑
i=1

wik N
(
xik; x̂

i
k|k,P

i
k|k

)
, (4.29)

where wik are weights that are normalised,
∑qk

i=1w
i
k = 1. Gaussian sum filters are ideal when

the posterior density is multimodal because for multimodal densities there is a performance

degradation in both the EKF and UKF. The Gaussian Sum filter chosen for further investigation

is the IMM. At time k the state estimate is calculated for each possible current model using r
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filters, with each filter using a different combination of the previous model-conditioned estimates

called mixed initial condition. The algorithm as outlined in Bar-Shalom et. al [10] is:

Step 1: Calculation of the mixing probabilities. The probability that mode Mi was in effect at

time k − 1 given that Mj is in effect at k conditioned on Zk−1 is given by:

µi,j (k − 1|k − 1) , P
{
Mi (k − 1) |Mj (k) , Zk−1

}
, (4.30)

=
1

c̄j
P
{
Mj (k) |Mi (k − 1) , Zk−1

}
P
{
Mi (k − 1) |Zk−1

}
. (4.31)

The above can be written as:

µi,j (k − 1|k − 1) =
1

c̄j
pij µi (k − 1) , i, j = 1, . . . , r, (4.32)

where the normalising constants are:

c̄j =
r∑
i=1

pij µi (k − 1) , i, j = 1, . . . , r. (4.33)

Step 2: Mixing. The mixed initial condition for the filter matched to Mj (k) is calculated starting

with x̂i (k − 1|k − 1):

x̂0j (k − 1|k − 1) =

r∑
i=1

x̂i (k − 1|k − 1)µi|j (k − 1|k − 1) , i, j = 1, . . . , r, (4.34)

and the corresponding covariance is given by:

P 0j (k − 1|k − 1) =

r∑
i=1

µi|j (k − 1|k − 1)

{
P i (k − 1|k − 1)

+
[
x̂i (k − 1|k − 1)− x̂0j (k − 1|k − 1)

]
·
[
x̂i (k − 1|k − 1)− x̂0 (k − 1|k − 1)

]ᵀ}
, i, j = 1, . . . , r.

(4.35)

Step 3: Mode-Matched Filtering. The estimates of the states and covariances calculated in step

2 above are used as inputs to the filter matched to Mj (k) which uses z (k) to determine

x̂j (k|k) and P j (k|k). The likelihood functions associated to the r filters:

Λj (k) = p
[
z (k) |Mj (k) , Zk−1

]
, (4.36)

are calculated using the mixed initial condition and covariance from step 2:

Λj (k) = p
[
z (k) |Mj (k) , x̂0j (k − 1|k − 1) , P 0j (k − 1|k − 1)

]
, j = 1, . . . , r, (4.37)
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that is:

Λj (k) = N
[
z (k) ; ẑj

[
k|k − 1; x̂0j (k − 1|k − 1)

]
, Sj

[
k;P 0j (k − 1|k − 1)

]]
, j = 1, . . . , r.

(4.38)

Step 4: Mode Probability Update. The mode probabilities are then updated via:

µj (k) =
1

c
Λj (k) c̄j , (4.39)

where c is the normalisation constant and is given by:

c =
r∑
j=1

Λj (k) c̄j . (4.40)

Step 5: Estimations and Covariance Combination. The output is obtained by combining the

model-conditioned estimates and covariances:

x̂ (k|k) =
r∑
j=1

x̂j (k|k)µj (k) , (4.41)

P̂ (k|k) =
r∑
j=1

µj (k)
{
P j (k|k) +

[
x̂j (k|k)− x̂ (k|k)

] [
x̂j (k|k)− x̂ (k|k)

]ᵀ}
. (4.42)

Figure 4.1 illustrates the flow of the IMM algorithm given above and has been taken from Bar-

Shalom et. al [10].

Figure 4.1: IMM Algorithm Flow Chart [10]
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This section provided a brief overview of FDI techniques as well as describing in detail the meth-

ods chosen for further investigation, the EKF, the UKF and the IMM filters. These techniques

are applied to the 2D robot model in the next section.

4.4 Problem Formulation

To test the different filtering techniques in an FDI context the robot model (see figure 3.60 in

section 3.5.1) is used again for illustrative purposes.

The fault, which will be simulated and tested for, is a punctured wheel. If a wheel is punctured

the radius of the wheel will decrease and so the filters are set up to estimate the radius of the

wheel. Four different filters have been designed, the EKF, the UKF, the EKF IMM and the

UKF IMM.

The robot parameters used for all simulations are given in table 4.1.

Table 4.1: Simulation parameters for 2D robot model for FDI simulations

Right wheel radius, RR 2m

Left wheel radius, RL 2m

Distance between wheels, b 1m

Speed demand 10m/s

Input constraints on ωR and ωL ±1000 deg / sec

The NMPC controller is constructed using the pseudospectral method with 50 coincidence points

and a prediction window length of 5 secs. The filters are updated at 100Hz while the controller

is updated at 10Hz.

All work was developed using MATLAB with SNOPT as the nonlinear programming problem

(NLP) solver.

4.4.1 EKF Fault Detection Filter

The state vector for the EKF consists of the following states:
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x = [x, y, ψ, RR, RL]ᵀ , (4.43)

where x, y and ψ are the robot states as defined in subsection 3.5.1 and RR and RL are the

right wheel and left wheel radii respectively.

The measurements are assumed to be of the speed, V , of the robot:

z = V (k) + w(k), (4.44)

where w(k) is additive white noise. The initial state vector and initial covariance matrix are:

x(0) = [x0, y0, ψ0, 2, 2]ᵀ , P (0) =



(0.5)2 0 0 0 0

0 (0.5)2 0 0 0

0 0 (1π/180)2 0 0

0 0 0 (0.5)2 0

0 0 0 0 (0.5)2


. (4.45)

The Q and R noise matrices were chosen to be:

Q =



(5 ∆t)2 0 0 0 0

0 (5 ∆t)2; 0 0 0

0 0 (0.1 ∆t)2 0 0

0 0 0 (2 ∆t)2 0

0 0 0 0 (2 ∆t)2


, R = (0.5)2, (4.46)

where ∆t is the update rate of the filter.

For the prediction cycle an Euler integration scheme is used to predict the states of the EKF

forward:
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ψ̇ =
RR
2b
ωR −

RL
2b
ωL, (4.47)

ψ(k|k − 1) = ψ(k − 1) + ψ̇ dt, (4.48)

V (k|k − 1) =
RR
2
ωR +

RL
2
ωL, (4.49)

ẋ = V cos(ψ(k|k − 1)), (4.50)

xk(k|k − 1) = x(k − 1) + ẋ dt, (4.51)

ẏ = V sin(ψ(k|k − 1)), (4.52)

y(k|k − 1) = y(k − 1) + ẏ dt, (4.53)

RR(k|k − 1) = RR(k − 1), (4.54)

RL(k|k − 1) = RL(k − 1). (4.55)

The predicted measurement ẑ is given by:

ẑ(k) = V (k|k − 1), (4.56)

and the F transition matrix (Jacobian matrix) is given by:

F =



1 0
(
−RR

2 ωR sin(ψ)− RL
2 ωL sin(ψ)

)
∆t

(
ωR
2 cos(ψ)

)
δt

(
ωL
2 cos(ψ)

)
dt

0 1
(
RR
2 ωRcos(ψ) + RL

2 ωL cos(ψ)
)

∆t
(
ωR
2 sin(ψ(k|k − 1))

)
∆t

(
ωL
2 sin(ψ)

)
∆t

0 0 1
(
ωR
2b

)
∆t

(−ωL
2b

)
∆t

0 0 0 1 0

0 0 0 0 1


.

(4.57)
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N.B. In the matrix above ψ = ψ(k|k − 1), RR = RR(k|k − 1) and RL = RR(k|k − 1).

Here ∆t is the prediction update rate of the filter and has been chosen as 100Hz or ∆t =

0.01 secs. The Jacobian matrix H is given by:

H =
[
0 0 0 RR

2 ωR
RL
2 ωL

]
. (4.58)

Given the above information the Kalman filter equations given in section 4.3.1 are applied to

estimate the radius of each wheel in the experiments conducted in section 4.5.

4.4.2 UKF Fault Detection Filter

The general structure of the EKF and UKF are very similar in that they both have a prediction

and update cycle and produce a single state vector and a corresponding covariance matrix. For

the robot model the state vector is the same as the one given in equation (4.43). The initial state

vector, initial covariance matrix, the process noise matrix Q and the noise covariance matrix R

all remain the same as those given in subsection 4.4.1. The UKF algorithm given in subsection

4.3.2 is applied to the robot model with κ = 0.001 [120] (see subsection 4.3.2).

4.4.3 Interacting Multiple Model Fault Detection Filter

The interacting multiple model method, as the name suggests, is made up of multiple models

where each model tests a different hypothesis. Four different models (the terms mode and model

are used interchangeably and have the same meaning in the context of IMMs) have been designed

where:

Model 1: No Fault case.

Model 2: 50% right wheel deflation, left wheel no fault.

Model 3: Right wheel no fault, 50% left wheel deflation.

Model 4: 50% right wheel deflation, 50% left wheel deflation.

During Step 3 of the IMM algorithm given in section 4.3.3 a filter such as the EKF is used to

update the states and covariances. This study looks at both an EKF based IMM filter and a

UKF based IMM filter.
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The initial covariance matrix for each filter and each mode are the same as equation (4.45). The

Q and R matrices are those given in equation (4.46) and the initial state vectors for each filter

and mode are:

x1(0) = [x0, y0 ψ0 2 2]ᵀ , (4.59)

x2(0) = [x0, y0 ψ0 1 2]ᵀ , (4.60)

x3(0) = [x0, y0 ψ0 2 1]ᵀ , (4.61)

x4(0) = [x0, y0 ψ0 1 1]ᵀ . (4.62)

(4.63)

The mixing probabilities or mode probabilities are initially set to:

µ = [1/4, 1/4, 1/4, 1/4]ᵀ , (4.64)

and the mode transition probabilities matrix p is set to:

p =


0.97 0.01 0.01 0.01

0.01 0.97 0.01 0.01

0.01 0.01 0.97 0.01

0.01 0.01 0.01 0.97

 . (4.65)

4.5 Numerical Results and Analysis

The following reference trajectory is used to test the different fault detection techniques:
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Figure 4.2: FDI: Reference Trajectory

To simulate the measurement additive white noise is added to the speed of the robot which is

calculated as a part of the truth simulations of the robot movement.

To test the filters four different test cases were set up and each test case was run twice. During

the first run the FDI feedback loop is not closed and the filters are used for estimation only.

The FDI loop is closed during the second run to investigate the behaviour of the full active FTC

controller. The test cases are as follows:

Scenario 1: No Fault. The objective is to investigate how well the filters estimate the radii

of the tyres in a no fault situation.

Scenario 2: Left wheel 50% puncture. In this case a puncture is simulated to occur 10 secs

into the simulation. The wheel is assumed to deflate to 50% of its original

value instantaneously.

Scenario 3: Left and Right Wheel puncture. In this test case a left wheel puncture is

simulated 5 secs into the run and a right wheel puncture is simulated to occur

10 secs into the simulation. Both punctures are assumed to cause an instan-

taneous reduction of the respective wheel radius to 50% of the original wheel

radius.
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Scenario 4: Left wheel linear puncture. In this test case once again the left wheel is

punctured 10 secs into the run however this time the puncture is assumed to

follow a linear reduction in wheel radius according to RL = 2−0.1t, where RL

represents the left wheel radius reduced from its original value of 2m down to

0.1m at a rate of 0.1m/s and t is the current time. The radius does not drop

to 0m as this caused a complete system failure.

The results for each filter are presented in the next four subsections:

4.5.1 Scenario 1

4.5.1.1 Speed Errors (Innovations)

The plots given in figure 4.3 show the speed innovation (speed errors or correction made as a re-

sult of the measurement update, blue solid lines) along with the 2σ uncertainty bounds (dashed

red lines) for the EKF. The 2σ uncertainty bounds are a 95% confidence interval and the so-

lution (errors in this case) must remain within the bounds 95% of the time. The figure shows

that the EKF filter performs very well for the whole run as the speed errors remain well within

the uncertainty bounds throughout the duration of the run both with and without feedback.

The speed innovations produced by the UKF are given in figure 4.4. Similar to the EKF the

UKF produces innovations which are well within the 2σ bounds for the whole simulation run.

151



Figure 4.3: Scenario 1 - EKF Speed Innovations, 2σ Uncertainty Bounds (dashed lines), Speed

Innovations (solid line)

Figure 4.4: Scenario 1 - UKF Speed Innovations, 2σ Uncertainty Bounds (dashed lines), Speed

Innovations (solid line)

The speed error plots for the IMM EKF are given in figure 4.5 for the no feedback case and in
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figure 4.6 for with feedback. Both figures show the innovation produced by each model, and the

plots show that the filter is able to very quickly detect the model of operation of the robot. In

both case, from the value of the uncertainty bounds, the correct model for scenario 1 is model 1

which has the least uncertainty. Compared to the other models, model 1 is the most confident

about its estimation of the radius.

Figure 4.5: Scenario 1 - IMM EKF Speed Innovations No Feedback, 2σ Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)
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Figure 4.6: Scenario 1 - IMM EKF Speed Innovations With Feedback, 2σ Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)

Figure 4.7 and 4.8 are plots of the IMM UKF Speed errors with no feedback and with feedback

respectively. The same behaviour is present as that seen in the IMM EKF case where mode 1

has the most confident estimates.
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Figure 4.7: Scenario 1 - IMM UKF Speed Innovations No Feedback, 2σ Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)

Figure 4.8: Scenario 1 - IMM UKF Speed Innovations With Feedback, 2σ Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)
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4.5.1.2 Wheel Radius Estimates

Figures 4.9, 4.10, 4.11 and 4.12 are plots of the wheel radius estimates produced by each of the

four filters respectively. The estimates are provided for both wheels with and without feedback

to the controller. In both cases the filter does a very good job of estimating the radius of the

tyres. The IMM filters initially have a higher error in the tyre estimate as the estimation is

based on a mixture of all the models, however as can be seen in figure 4.11 and 4.12, it takes

only one update for the IMM to reach the correct estimate.

Figure 4.9: Scenario 1 - EKF Radius Estimates, Right wheel (top), Left wheel (Bottom)
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Figure 4.10: Scenario 1 - UKF Radius Estimates, Right wheel (top), Left wheel (Bottom)

Figure 4.11: Scenario 1 - IMM EKF Radius Estimates, Right wheel (top), Left wheel (Bottom)
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Figure 4.12: Scenario 1 - IMM UKF Radius Estimates, Right wheel (top), Left wheel (Bottom)

In figures 4.11 and 4.12 the estimates are very similar hence they are sitting one on top of the

other making the red and blue lines invisible.

4.5.1.3 Wheel Speeds

The wheel speeds are given in figures 4.17, 4.18, 4.19 and 4.20 for each of the four filters

respectively. For scenario 1 where there is no fault the wheel speeds for all four filters are very

similar. In the case where feedback is provided the wheel speeds are quite noisy, a result of

calculations based on noisy measurements which is a consequence of feedback.
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Figure 4.13: Scenario 1 - EKF Angular Rates, Right wheel (top), Left wheel (Bottom)

Figure 4.14: Scenario 1 - UKF Angular Rates, Right wheel (top), Left wheel (Bottom)
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Figure 4.15: Scenario 1 - IMM EKF Angular Rates, Right wheel (top), Left wheel (Bottom)

Figure 4.16: Scenario 1 - IMM UKF Angular Rates, Right wheel (top), Left wheel (Bottom)

4.5.1.4 Trajectories

Plots of the robot trajectory are given in figures 4.17, 4.18, 4.19 and 4.20 for all four of the filters.

The robot is seen to remain on the path with and without feedback which is to be expected in
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the no fault case.

Figure 4.17: Scenario 1 - EKF Trajectory

Figure 4.18: Scenario 1 - UKF Trajectory
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Figure 4.19: Scenario 1 - IMM EKF Trajectory

Figure 4.20: Scenario 1 - IMM UKF Trajectory
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4.5.2 Scenario 2

4.5.2.1 Speed Errors (Innovations)

The innovations for the Speed are given in figures 4.21, 4.22, 4.23, 4.24, 4.25 and 4.26. The fault

occurs at 10 secs into the run, and upon investigating the EKF and UKF innovation plots given

in figures 4.21 and 4.22 respectively this can be seen from the peak change in the innovation

curves. The corrections increase at the time the fault occurs and then settle again near zero

once the correct estimate is reached. The IMM filters also show this peak change. Mode 3 is

the correct match for scenario 2 and both of the IMM filters can be seen to find the correct

mode immediately as mode 3 is the most confident in its estimate. Mode 3 and Mode 4 both

hypothesise a failure in the left wheel of 50% which is why after the occurrence of the fault the

uncertainties do not increase. However because mode 1 and mode 2 do not hypothesise a fault

in the left wheel the uncertainties can be seen to increase once the fault has occurred. Mode 3

is seen to have more of a decrease in uncertainty than mode 4 after the fault occurrence because

mode 4 hypothesises that both wheels are punctured whereas mode 3 predicts the puncture of

only the left wheel. In both cases the EKF and UKF exhibited similar performance. Another

point to note is that in the single filter cases feedback did not have much of an effect on the

innovations. However, in the case of the IMM filters the results show that with feedback the

filter errors do not grow as rapidly between updates. The errors are seen to grow very quickly

when no feedback is present.
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Figure 4.21: Scenario 2 - EKF Speed Innovations, 2σ Uncertainty Bounds (dashed lines), Speed

Innovations (solid line)

Figure 4.22: Scenario 2 - UKF Speed Innovations, 2σ Uncertainty Bounds (dashed lines), Speed

Innovations (solid line)
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Figure 4.23: Scenario 2 - IMM EKF Speed Innovations No Feedback, 2σ Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)

Figure 4.24: Scenario 2 - IMM EKF Speed Innovations With Feedback, 2σ Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)
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Figure 4.25: Scenario 2 - IMM UKF Speed Innovations No Feedback, 2σ Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)

Figure 4.26: Scenario 2 - IMM UKF Speed Innovations With Feedback, 2σ Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)
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4.5.2.2 Wheel Radius Estimates

The wheel radius estimates for EKF are given in figure 4.27, and for UKF in figure 4.28. The

results show that the UKF estimates are closer to the actual wheel radius compared to those

produced by the EKF. Turning on feedback results in the filters reaching a steady estimate

faster when compared to the no feedback case. The IMM filters produce better estimates than

the single filters as can be seen from figures 4.29 and 4.30 with feedback providing very little

improvement on the estimate.

Figure 4.27: Scenario 2 - EKF Radius Estimates, Right wheel (top), Left wheel (Bottom)
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Figure 4.28: Scenario 2 - UKF Radius Estimates, Right wheel (top), Left wheel (Bottom)

Figure 4.29: Scenario 2 - IMM EKF Radius Estimates, Right wheel (top), Left wheel (Bottom)
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Figure 4.30: Scenario 2 - IMM UKF Radius Estimates, Right wheel (top), Left wheel (Bottom)

4.5.2.3 Wheel Speeds

The wheel speeds are given in figures 4.31, 4.32, 4.33 and 4.34. The results for all four filters

present the same trends. Without feedback there is much more activity present compared to

turning on the feedback. Once the fault occurs the robot yaws to the side with the punctured

wheel and demands a faster speed to compensate for the loss in radius.
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Figure 4.31: Scenario 2 - EKF Angular Rates, Right wheel (top), Left wheel (Bottom)

Figure 4.32: Scenario 2 - UKF Angular Rates, Right wheel (top), Left wheel (Bottom)
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Figure 4.33: Scenario 2 - IMM EKF Angular Rates, Right wheel (top), Left wheel (Bottom)

Figure 4.34: Scenario 2 - IMM UKF Angular Rates, Right wheel (top), Left wheel (Bottom)

4.5.2.4 Trajectories

The trajectory for the filters given in figures 4.35, 4.36, 4.37 and 4.38 all show that the robot was

only able to remain on the path if feedback from the filter was provided to reconfigure the con-
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troller. Although the filters’ estimates without feedback were excellent, without reconfiguration

of the controller the robot could not be made to follow the desired path.

Figure 4.35: Scenario 2 - EKF Trajectory

Figure 4.36: Scenario 2 - UKF Trajectory
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Figure 4.37: Scenario 2 - IMM EKF Trajectory

Figure 4.38: Scenario 2 - IMM UKF Trajectory

4.5.3 Scenario 3

4.5.3.1 Speed Errors (Innovations)

Figures 4.39, 4.40, 4.41, 4.42, 4.43 and 4.44 show plots of the speed innovations for scenario 3

for all four filters with and without feedback. All plots clearly indicate, from the sudden changes
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in innovations, the detection of both faults, left wheel at 5 secs and right wheel at 10 secs. The

EKF innovations were found to be consistent, however the innovations produced by the UKF

show that, with feedback, the innovation uncertainty begins to grow rapidly between updates

whereas without feedback the uncertainty remains constant. The IMM filters show that after 5

secs model 3 is the best model. However once the second fault occurs the filters do an excellent

job of recognising that mode 4 is the correct match and uncertainties in mode 4 are seen to

decrease. Again with no feedback the uncertainties on the IMM filters grow rapidly between

updates and many more corrections are required.

Figure 4.39: Scenario 3 - EKF Speed Innovations, 2σ Uncertainty Bounds (dashed lines), Speed

Innovations (solid line)
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Figure 4.40: Scenario 3 - UKF Speed Innovations, 2σ Uncertainty Bounds (dashed lines), Speed

Innovations (solid line)

Figure 4.41: Scenario 3 - IMM EKF Speed Innovations No Feedback, 2σ Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)
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Figure 4.42: Scenario 3 - IMM EKF Speed Innovations With Feedback, 2σ Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)

Figure 4.43: Scenario 3 - IMM UKF Speed Innovations No Feedback, 2σ Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)
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Figure 4.44: Scenario 3 - IMM UKF Speed Innovations With Feedback, 2σ Uncertainty Bounds

(dashed lines), Speed Innovations (solid line)

4.5.3.2 Wheel Radius Estimates

The radius estimates produced by the filters, given in figures 4.45, 4.46, 4.47 and 4.48, show

that the IMM filters produce the best estimates of the radii. The UKF performs slightly better

than the EKF, and turning feedback on results in a faster settling time.
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Figure 4.45: Scenario 3 - EKF Radius Estimates, Right wheel (top), Left wheel (Bottom)

Figure 4.46: Scenario 3 - UKF Radius Estimates, Right wheel (top), Left wheel (Bottom)
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Figure 4.47: Scenario 3 - IMM EKF Radius Estimates, Right wheel (top), Left wheel (Bottom)

Figure 4.48: Scenario 3 - IMM UKF Radius Estimates, Right wheel (top), Left wheel (Bottom)

4.5.3.3 Wheel Speeds

Figure 4.49 presents the angular rates achieved by the robot as a result of EKF estimates

which show that once a fault occurs that particular wheel is required to spin faster in order to
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compensate for the loss in radius. The angular rates given in figure 4.50 show that estimates

used by the UKF to reconfigure the controller resulted in operation at the constraints. Both

IMM filters displayed similar behaviour in that once a wheel was punctured it was required to

rotate faster to compensate for the loss in radius.

Figure 4.49: Scenario 3 - EKF Angular Rates, Right wheel (top), Left wheel (Bottom)

Figure 4.50: Scenario 3 - UKF Angular Rates, Right wheel (top), Left wheel (Bottom)
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Figure 4.51: Scenario 3 - IMM EKF Angular Rates, Right wheel (top), Left wheel (Bottom)

Figure 4.52: Scenario 3 - IMM UKF Angular Rates, Right wheel (top), Left wheel (Bottom)

4.5.3.4 Trajectories

The trajectory produced by each filter for scenario 3 (figures 4.53, 4.54, 4.55 and 4.56) show

that without feedback it is impossible to maintain the robot on the path. Reconfiguring the
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controller on the other hand with estimates from the filters allowed the robot to easily follow

the reference path. An anomaly occurred with the UKF filter where even turning the feedback

on did not result in the robot following the path after the occurrence of the second fault. This

could possibly be the result of poor tuning of the filter.

Figure 4.53: Scenario 3 - EKF Trajectory

Figure 4.54: Scenario 3 - UKF Trajectory
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Figure 4.55: Scenario 3 - IMM EKF Trajectory

Figure 4.56: Scenario 3 - IMM UKF Trajectory
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4.5.4 Scenario 4

4.5.4.1 Speed Errors (Innovations)

Scenario 4 velocity innovations are presented in figures 4.57 and 4.58 for the EKF and UKF

respectively. The EKF breaks down 5 seconds after the fault occurs, when feedback is turned on

as can be seen by the innovations exceeding the covariance bounds. Without feedback however

the innovations remain within the uncertainty bounds. The results from the UKF however are

much better as it produces innovations which remain well within the uncertainty bounds with

and without feedback. Both of the IMM filters failed, because the fault type of scenario 4 was

not modelled as a part of the filter design, i.e. the hypothesis for this type of failure is not

accounted for and so no model exists for this failure.

Figure 4.57: Scenario 4 - EKF Velocity Innovations, 2σ Uncertainty Bounds (dashed lines),

Velocity Innovations (solid line)
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Figure 4.58: Scenario 4 - UKF Velocity Innovations, 2σ Uncertainty Bounds (dashed lines),

Velocity Innovations (solid line)

Figure 4.59: Scenario 4 - IMM EKF Velocity Innovations No Feedback, 2σ Uncertainty Bounds

(dashed lines), Velocity Innovations (solid line)
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Figure 4.60: Scenario 4 - IMM EKF Velocity Innovations With Feedback, 2σ Uncertainty Bounds

(dashed lines), Velocity Innovations (solid line)

Figure 4.61: Scenario 4 - IMM UKF Velocity Innovations No Feedback, 2σ Uncertainty Bounds

(dashed lines), Velocity Innovations (solid line)
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Figure 4.62: Scenario 4 - IMM UKF Velocity Innovations With Feedback, 2σ Uncertainty Bounds

(dashed lines), Velocity Innovations (solid line)

4.5.4.2 Wheel Radius Estimates

The wheel radius estimates are given in figures 4.63, 4.64, 4.65 and 4.66. The results show

that without a hypothesis on the IMM filters the UKF was the only filter able to produce

the correct estimates of the wheel radii. Figure 4.64 clearly indicates that reconfiguring the

controller resulted in a faster convergence to the correct estimate.
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Figure 4.63: Scenario 4 - EKF Radius Estimates, Right wheel (top), Left wheel (Bottom)

Figure 4.64: Scenario 4 - UKF Radius Estimates, Right wheel (top), Left wheel (Bottom)
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Figure 4.65: Scenario 4 - IMM EKF Radius Estimates, Right wheel (top), Left wheel (Bottom)

Figure 4.66: Scenario 4 - IMM UKF Radius Estimates, Right wheel (top), Left wheel (Bottom)

4.5.4.3 Wheel Speeds

Plots of wheel speed are presented in figures 4.67, 4.68, 4.69 and 4.70. The results produced

by all four filters with and without feedback show that with this type of fault both wheels are
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required to work at the constraints.

Figure 4.67: Scenario 4 - EKF Angular Rates, Right wheel (top), Left wheel (Bottom)

Figure 4.68: Scenario 4 - UKF Angular Rates, Right wheel (top), Left wheel (Bottom)
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Figure 4.69: Scenario 4 - IMM EKF Angular Rates, Right wheel (top), Left wheel (Bottom)

Figure 4.70: Scenario 4 - IMM UKF Angular Rates, Right wheel (top), Left wheel (Bottom)

4.5.4.4 Trajectories

Figures 4.71, 4.72, 4.73 and 4.74 display the robot trajectory as a result of the different filter

information. None of the filters show full compliance with the reference trajectory, however the
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UKF was able to maintain the robot on the path the longest.

Figure 4.71: Scenario 4 - EKF Trajectory

Figure 4.72: Scenario 4 - UKF Trajectory
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Figure 4.73: Scenario 4 - IMM EKF Trajectory

Figure 4.74: Scenario 4 - IMM UKF Trajectory
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4.5.4.5 Filter Re-Design

This section looks at the behaviour of the IMM filters by re-designing the filters to accommodate

the fault type covered by scenario 4. The filters were modified by adding a fifth model, which

hypothesises the left wheel puncturing in the manner described by scenario 4. The five different

models are:

Model 1: No Fault case

Model 2: 50% right wheel deflation, left wheel no fault

Model 3: Right wheel no fault, 50% left wheel deflation

Model 4: 50% right wheel deflation, 50% left wheel deflation

Model 5: Right wheel no fault, left wheel deflation according to RL = 2 − 0.1t, where t is the

current time and once RL reaches 0.1m it remains constant 0.1m.

The Q and R remain the same and the initial state vectors for each filter and mode are:

x1(0) = [x0, y0 ψ0 2 2]ᵀ , (4.66)

x2(0) = [x0, y0 ψ0 1 2]ᵀ , (4.67)

x3(0) = [x0, y0 ψ0 2 1]ᵀ , (4.68)

x4(0) = [x0, y0 ψ0 1 1]ᵀ , (4.69)

x5(0) = [x0, y0 ψ0 2 2]ᵀ . (4.70)

The mixing probabilities or mode probabilities become:

µ = [1/5, 1/5, 1/5, 1/5, 1/5]ᵀ , (4.71)

and the mode transition probabilities matrix p is redefined as:

p =



0.96 0.01 0.01 0.01 0.01

0.01 0.96 0.01 0.01 0.01

0.01 0.01 0.96 0.01 0.01

0.01 0.01 0.01 0.96 0.01

0.01 0.01 0.01 0.01 0.96


. (4.72)
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The speed innovations for the IMM EKF are presented in figures 4.75 and 4.76 with no feedback

and with feedback respectively. As predicted the results show that if a hypothesis is made the

IMM performs very well. The EKF as part of IMM is able to predict this type of error which

it was unable to do as a single filter. The IMM UKF results are presented in figures 4.77 and

4.78 without feedback and with respectively. The IMM UKF shows a higher level of confidence

in its estimates compared to its EKF counterpart as the uncertainty is lower and consistent.

Providing feedback in both cases (EKF and UKF IMMs) was shown to increase confidence in

the filter estimates.

Figure 4.75: Scenario 4 - 5 Model IMM EKF Velocity Innovations No Feedback, 2σ Uncertainty

Bounds (dashed lines), Velocity Innovations (solid line)
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Figure 4.76: Scenario 4 - 5 Model IMM EKF Velocity Innovations With Feedback, 2σ Uncer-

tainty Bounds (dashed lines), Velocity Innovations (solid line)

Figure 4.77: Scenario 4 - 5 Model IMM UKF Velocity Innovations No Feedback, 2σ Uncertainty

Bounds (dashed lines), Velocity Innovations (solid line)
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Figure 4.78: Scenario 4 - 5 Model IMM UKF Velocity Innovations With Feedback, 2σ Uncer-

tainty Bounds (dashed lines), Velocity Innovations (solid line)

The estimates of the wheel radii for the 5 mode IMMs are shown in figures 4.79 and 4.80 for

the EKF IMM and UKF IMM respectively. The results show that in both cases the filters do

an excellent job of making the correct estimatations on the radius of the wheel.
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Figure 4.79: Scenario 4 - 5 Model IMM EKF Radius Estimates, Right wheel (top), Left wheel

(Bottom)

Figure 4.80: Scenario 4 - 5 Model IMM UKF Radius Estimates, Right wheel (top), Left wheel

(Bottom)

The angular rate plots of the 5 mode IMMs again show that the control inputs are required to
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work at the constraints the majority of the time once the fault has occurred. This result is not

dependent on the filter type but rather the fault that has occurred makes it impossible for the

robot to achieve the desired task while at the same time respecting its constraints.

Figure 4.81: Scenario 4 - 5 Model IMM EKF Angular Rates, Right wheel (top), Left wheel

(Bottom)
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Figure 4.82: Scenario 4 - 5 Model IMM UKF Angular Rates, Right wheel (top), Left wheel

(Bottom)

The trajectory plots (figures 4.83 and 4.84) further show that for this type of fault where the

wheel radius has almost approached zero, the wheels are unable to maintain the reference. The

IMM UKF is again able to keep the robot on the path for a longer time than the IMM EKF.

Figure 4.83: Scenario 4 - 5 Model IMM EKF Trajectory
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Figure 4.84: Scenario 4 - 5 Model IMM UKF Trajectory

4.5.5 Discussion

The results of this section reveal that all the filters considered exhibit excellent qualities for fault

detection and identification. In terms of performance the IMM filter is far superior, however

the drawback of this type of filter is that all possible scenarios must be accounted for. The

method used in this research illustrated the concept of the IMM, by showing easy adaptability

to different situations, and the speed with which it is able to identify and reach the correct esti-

mate. However predicting exactly how a fault will occur (in this case how a tyre will puncture)

is impractical. A more practical implementation would have been to develop a number of filters

each with different process noises that could adapt to all different situations. The number of

filters and the process noise values would have to be determined by trial and error. In either

case an IMM performs well if and only if it is equipped to make a hypothesis on the current

situation. If the given situation is unaccounted for the filter breaks down. In terms of the single

filter, in general the UKF displayed better performance than the EKF, especially in the case of

scenario 4 where the nonlinearities of the fault caused the single EKF to breakdown. For these

reasons the UKF has been chosen to develop the fault tolerant flight controller.
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4.5.6 Comparison to Linear MPC

As a result of the findings given in subsection 4.5.5 only the UKF with feedback is implemented

to compare nonlinear MPC with linear MPC. The results given in the next two sections are for

scenarios 2 and 4 respectively.

4.5.6.1 Scenario 2

The velocity innovation plots in figure 4.85 show that the innovations remain well within the un-

certainty bounds and are approximately zero. However the uncertainty is double that produced

by the nonlinear controller (figure 4.22).

Figure 4.85: Scenario 2 - Linear MPC UKF Speed Innovations, 2σ Uncertainty Bounds (dashed

lines), Speed Innovations (solid line)

The wheel radii plots give in figure 4.86 show that the estimations produced by a nonlinear

controller are the same as those produced by the linear controller. Hence the filter performs well

even with linear MPC.
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Figure 4.86: Scenario 2 - Comparison of Linear and Nonlinear MPC UKF Radius Estimates,

Right wheel (top), Left wheel (Bottom)

The angular rate plots for the linear MPC controller (figure 4.87) show that five seconds after

the fault occurred the linear controller pushes the wheels to operate at their constraints and is

unable to tolerate the faulty condition. This is further illustrated in the trajectory plot given

in figure 4.88 which clearly shows that the nonlinear MPC controller does an excellent job of

keeping the robot on the path despite a faulty wheel whereas the solution produced by the linear

controller has diverged.
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Figure 4.87: Scenario 2 - Linear MPC UKF Angular Rates, Right wheel (top), Left wheel

(Bottom)

Figure 4.88: Scenario 2 - Linear and Nonlinear MPC UKF Trajectory
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4.5.6.2 Scenario 4

The speed innovations plot (figure 4.89) shows similar trends to those above in that the inno-

vations are quite small however the uncertainties with the linear filter are higher than those

produced as a result of nonlinear MPC (figure 4.58). The estimates of the wheel radii however

are very good and can be seen to be the same for both linear and nonlinear controllers (figure

4.92).

Figure 4.89: Scenario 4 - Linear MPC UKF Speed Innovations, 2σ Uncertainty Bounds (dashed

lines), Speed Innovations (solid line)
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Figure 4.90: Scenario 4 - Comparison of Linear and Nonlinear MPC UKF Radius Estimates,

Right wheel (top), Left wheel (Bottom)

As expected the linear controller was unable to maintain the robot on the path as is evident by the

trajectory plot of figure 4.92. Neither of the controllers were able to drive the robot on the path

as the wheel radius had almost reached 0m making it infeasible for the robot to continue. The

angular rates given in figure 4.91 show that the linear controller constantly demands operation

at the constraints oscillating between the upper and lower limits continuously. The nonlinear

MPC controller results for wheel angular rates (figure 4.68) shows that the right wheel oscillates

between the upper and lower bounds, however the left wheel is required to constantly work at

the upper bound.
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Figure 4.91: Scenario 4 - Linear MPC UKF Angular Rates, Right wheel (top), Left wheel

(Bottom)

Figure 4.92: Scenario 4 - Comparison Linear and Nonlinear MPC UKF Trajectory
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4.6 Summary Of Findings

The analysis from this work has proven the feasibility of my NMPC controller design with filter

estimates for controller reconfiguration as a viable solution to fault tolerant control.

Comparisons were also made between the performance of nonlinear MPC and linear MPC. The

results clearly show that for the purposes of reconfigurable fault tolerant control the nonlinear

MPC controller has better performance.

The next chapter will implement the NMPC pseudospectral controller with a UKF based FDI

subsystem to an aircraft, for fault tolerant flight control.
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Chapter 5

Fault Tolerant Flight Control

5.1 Introduction

Sections 5.4 and 5.5 of this chapter have appeared as [73] and [72] respectively.

5.1.1 Motivation

In the development of any type of controller it is necessary to develop a model of the plant that

is to be controlled. Plant model development is very important particularly in the design of a

model predictive control (MPC) controller as a variant of the plant model also forms an integral

part of the controller design. As discussed in chapter 3 a linearised model of the plant is used in

the design of a linear MPC controller. Nonlinear MPC however incorporates the full nonlinear

model of the plant. Hence, in this chapter, I discuss the development of the aircraft model used

for both the plant and controller design.

The results of chapters 3 and 4 show that my active fault tolerant control (FTC) design us-

ing pseudospectral nonlinear model predictive control (NMPC) integrated with an unscented

Kalman filter (UKF) filter is a viable solution. To address the research questions stated in

chapter 2 I now apply my FTC design to aircraft control to investigate the feasibility of my

design solution as a fault tolerant flight controller.

5.1.2 Outline

This chapter is dedicated to applying the knowledge gained from the application of my FTC

design to the 2D robot model, to an aircraft system. To begin, an overview is given in section
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5.2 including the details of the system to be modelled. It puts into context a general aircraft

flight control system and gives details of what will be developed for this research and where my

system will fit into the overall aircraft flight control system.

This is followed by a section on aircraft dynamics (section 5.3), which outlines the equations

used to develop the plant model and ultimately the prediction model of the NMPC controller.

The development of the FTC system is divided into two parts, longitudinal motion (section 5.4)

followed by the development of the full 6DoF model (section 5.5) which involves combining both

the longitudinal and lateral motions of the aircraft. The build up to the combined motion model

is required because aircraft motion is highly complex. These two sections look at controller de-

velopment only and assume fault detection and identification (FDI) information is provided.

The design process of the FDI subsystem is depicted in section 5.6 for the full 6DoF aircraft

model. The research results within this section show that a more thorough examination of this

area is required as many problems were encountered, most beyond the scope of this current

research. To remain within the scope of this research and to demonstrate the proof of concept

of the feasibility of my FTC system design to flight control, section 5.7 looks at a very specific

application, namely engine failure during longitudinal motion. Engine failure results in a loss of

power to the aircraft reducing its ability to maintain flight. Thus, section 5.7 develops the full

fault tolerant controller plus FDI system for flight control.

Finally the findings are summarised in section 5.8 and a conclusion given, based on the results.

5.2 System Overview

All autonomous unmanned aerial vehicles (UAVs) are equipped with an onboard guidance, nav-

igation and control (GNC) system. The system flies the aircraft on the desired trajectory. Thus

the design of a fault tolerant controller necessarily starts with an understanding of a typical

UAV GNC system model (given in figure 5.1). A GNC system usually comprises of an outer

loop subsystem which is provided with a set of way points (points used to define an aircraft

trajectory) and navigation information. The navigation subsystem provides information on the

current status of the aircraft and uses filtering techniques to estimate aircraft position, orien-

tation, velocities and angular rates based on GPS data and sensor data provided by the plant.
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Sensor information consists of data, including linear accelerations and angular rates, provided

by the inertial measurement unit on board the aircraft. The outer loops compare the current

position of the aircraft with the required position based on the waypoints, and calculate a set

of demands (typically velocity and angular rate demands) that are then passed to the inner

loops. Navigation information as well as the demands from the outer loops is supplied to the

inner loops, and based on this, the flight controller, which sits within the inner-loops subsystem,

calculates the necessary control inputs required to achieve the demands. The control inputs are

then applied to the aircraft (plant) and sensor information is fed to the navigation subsystem

and the whole process begins again.

Figure 5.1: System Block Diagram of a Typical Guidance and Navigation Loop

My objective is the development of an active fault tolerant flight control system. Hence the

typical guidance and navigation system given in figure 5.1 becomes the system given in figure

5.2. The fault tolerant control system, the area enclosed by the dashed rectangle and comprising

of the innerloops and the FDI subsystems, is the focus of my research. The NMPC controller

developed in chapter 3 sits within the inner-loops subsytem; and the filter used for fault detec-

tion lies inside the FDI subsystem.
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Figure 5.2: System Block Diagram of a Guidance and Navigation Loop with an Active Fault

Tolerant Flight Control System

As is evident from the diagrams in figures 5.1 and 5.2, it is necessary to derive a plant model

to develop the controller. Here, the navigation and guidance subsystems are not developed but

assumed. The plant model doubles as the navigation model and the guidance subsystem for the

6DoF work in section 5.5 is provided by Williams [127]. The next section details the aircraft

model.

5.3 Aircraft Model

The aircraft model to be used as the plant model and ultimately the prediction model for the

NMPC controller is developed in this section. For any control system design the behaviour of

the system to be controlled, in this case an aircraft, is simulated by the plant model. Thus, for

flight controller development the plant must simulate an aircraft, governed by the equations of

motion for flight.

The equations of motion for an aircraft are well defined and well documented [115] [114]. The
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orientation of an aircraft with respect to the airflow directly affects the forces and moments

produced on the body of the aircraft which act at the centre of gravity. In a uniform airflow the

aerodynamic forces and moments are unchanged after a rotation around the freestream velocity

vector, and only two orientation angles with respect to the relative wind are needed to calculate

them. These angles, known as aerodynamic angles, the angle of attack α and the angle of sideslip

β, are defined within the body-fixed coordinate frame denoted by the subscript b, (see figure 5.3).

Aircraft motion is defined by position coordinates, linear velocities, orientation angles and an-

gular velocities (or angular rates). The state vector of the aircraft plant model is therefore given

by:

x = [xN xE xD VN VE VD φ θ ψ p q r]ᵀ , (5.1)

where xN , xE , xD are north, east and down position coordinates respectively, given in an earth

fixed tangent frame, called the navigation frame (or North, East, Down (NED) frame), denoted

by the subscript n, (see figure 5.3). The NED is an Earth fixed frame, with the origin located

at a point on the Earth. In practice this origin is defined at the point where the aircraft is

initialised for flight. The vectors VN , VE , VD are the velocities in the north, east, and down

directions respectively, φ, θ, ψ are the aircraft orientation angles roll, pitch and yaw respectively

and, p, q, r are the roll, pitch and yaw angular rates respectively.

Figure 5.3: Aircraft Coordinate Frames
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The forces and moments used to derive the equations of motion act at the centre of gravity (c.g.)

of the aircraft, which is also the location of the body fixed coordinate frame. All calculations

are performed in the body axis, with the position and velocities in the body axis then converted

to the NED frame. A conversion via multiplication with a direction cosine matrix (DCM) [115],

transforms the vectors in one axis system to another. The direction cosine matrix, Cnb [115], is

used to transform the body axis to the NED frame and is given by a 3-2-1 right-handed rotation

sequence, namely [115]:

• Right-handed rotation about the z-axis (positive ψ),

• Right-handed rotation about the new y-axis (positive θ),

• Right-handed rotation about the new x-axis (positive φ).

Cnb =


cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ

cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ

− sin θ sinφ cos θ cosφ cos θ

 . (5.2)

Note that, to go from the NED frame to the body frame the required DCM is the transpose of

Cnb :

Cbn = (Cnb )ᵀ . (5.3)

Up until this point the state vector of the plant has been described. The plant model is

initialised with information in the form of equation (5.1) and the plant model must also provide

information in the same form. The first three elements of the state vector, xN , xE and xD are

propagated with time as follows:

ẋN = VN , (5.4)

ẋE = VE , (5.5)

ẋD = VD. (5.6)

The next three elements VN , VE and VD are calculated via:

V̇N = aN , (5.7)

V̇E = aE , (5.8)

V̇D = aD + g. (5.9)
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Here aN , aE and aD are the accelerations in the navigation frame, and g is acceleration due to

gravity equal to 9.81m/s2. All calculations are executed in the body axis hence the accelerations

are firstly found in the body axis then converted to the navigation frame. The body accelerations

aX , aY and aZ are calculated via [52]:

aX =
q̄SCX + T

m
, aY =

q̄SCY
m

, aZ =
q̄SCZ
m

, (5.10)

where q̄ is dynamic pressure and is given by:

q̄ =
1

2
ρ VT

2, (5.11)

ρ is air density and has been taken at sea level which is 1.225 kg/m3, S is the aircraft wing

area and m is the mass of the aircraft. In the acceleration equations T is the total thrust

and it is assumed that the thrust acts along the X body-axis. The terms CX , CY and CZ are

the non-dimensional forces in the X, Y and Z directions, respectively, in the body coordinate

frame. The calculation of these forces vary from aircraft to aircraft but are always a function of

the angle of attack, α and the sideslip angle β. The aerodynamic angles are calculated as follows:

To begin, the velocities from the state vector are converted from the navigation frame to the

body axis and are denoted by u, v and w in the xb, yb and zb directions respectively.

[u, v, w]ᵀ = Cbn [vNrel
, vErel

, vDrel
]ᵀ . (5.12)

Where the subscript ‘rel’ indicates velocity relative to the wind. The angles α and β are

given by [52]:

α = arctan
(w
u

)
, (5.13)

β = arctan

(
v

VT

)
, (5.14)

where the true airspeed, VT , is given by:

VT =

√
(vNrel

)2 + (vErel
)2 + (vDrel

)2. (5.15)

The effects of wind and turbulence are considered in the plant model hence Vrel is given by [115]:

Vrel = vnav − vwind,

= [vN vE vD]ᵀ − [vNwind
vEwind

vDwind
]ᵀ ,

= [vNrel
vErel

vDrel
]ᵀ , (5.16)
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and ωrel is given by:

ωrel = ω + ωwind,

= [p q r]ᵀ + [pwind qwind rwind]ᵀ ,

= [prel qrel rrel]
ᵀ , (5.17)

where VNED is the aircraft velocity vector, Vwind is the wind velocity vector with both being

measured in the NED coordinate frame. ω is the vector of angular rates of the aircraft and ωwind

is the angular rate (or turbulence) of the wind.

Finally the acceleration in the navigation frame is given by:

[aN , aE , aD]ᵀ = [v̇N , v̇E , v̇D]ᵀ (5.18)

= Cnb [aX , aY , aZ ]ᵀ + [0, 0, g]ᵀ . (5.19)

The Euler angle (or aircraft orientation angles), φ (roll), θ (pitch) and ψ (yaw) are the next

three elements in the state vector (equation (5.1)). These angles are given in the body axis and

are not converted to the NED frame. They are propagated in time via [52]:

φ̇ = p+ tan θ (q sinφ+ r cosφ) , (5.20)

θ̇ = q cosφ− r sinφ, (5.21)

ψ̇ =
q sinφ+ r cosφ

cosφ
. (5.22)

Finally the last three components of the state vector, equation (5.1), are the body angular rates

p, q and r calculated using the following equations [52]:

ṗ = (c1 r + c2 p+ c4 heng) q + q̄ S b (c3Cl + c4Cn) , (5.23)

q̇ = (c5 p− c7 heng) r − c6

(
p2 − r2

)
+ q̄ S c̄ c7Cm, (5.24)

ṙ = (c8 p− c2 r + c9 heng) q + q̄ S b (c4Cl + c9Cn) , (5.25)

where:

c1 =
(IY − IZ) IZ − IXZ2

IXIZ − IXZ2 , c2 =
(IX − IY + IZ) IXZ − IXZ2

IXIZ − IXZ2 , c3 =
IZ

IXIZ − IXZ2 ,

c4 =
IXZ

IXIZ − IXZ2 , c5 =
IZ − IX
IY

, c6 =
IXZ
IY

,

c7 =
1

IY
, c8 =

(Ix − IY )− IXZ2

IXIZ − IXZ2 , c9 =
IX

IXIZ − IXZ2 .
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The I terms are known as moments of inertia and Cl, Cm and Cn are known as moment coef-

ficients in roll, pitch and yaw respectively and vary from aircraft to aircraft. The term heng is

the distance of the engine from the aircraft c.g. and for this work it is assumed to be zero. The

parameter c̄ is known as the mean aerodynamic chord of the wing. The values for p, q and r are

provided as sensor measurements from the inertial measurement unit.

The general structure of the equations for the the non-dimensional force and moment coefficients

CX , CY , CZ , Cl, Cm, Cn can be found in Stevens and Lewis [115]. The next section will discuss

in further detail the aircraft specific values used in this research.

5.3.1 Aircraft Specific Data

The equations of motion given thus far are the general equations of motion for a 6DoF air-

craft model. To develop the fault tolerant controller a specific aircraft model was required. A

collection of nonlinear aircraft simulation models complete with full mathematical equations,

for a number of aircraft, have been provided by NASA [52] in the open literature for research

purposes. The authors, Garza and Morelli [52], recognise that nonlinear aircraft simulations are

useful for dynamic analysis, control law design and validation, guidance and trajectory studies,

air combat investigations, pilot training, and many other tasks [52] and hence have provided

this valuable tool. All models given in [52] are based on manned aircraft, however the equations

supplied are non-dimensional, hence they can easily be modified represent a compact aircraft

such as a UAV.

The generic aircraft model developed here for control law design and validation is based on

the McDonnell Douglas F-4 aircraft [52]. The aircraft specific data used for the modelling is

summarised next.

5.3.1.1 Dimensions and Weights

The aircraft model used for simulations and analysis is a fictional model with the aerodynamic

characteristics of the F-4 Phantom [52]. The properties given in tables 5.1 and 5.2 were used

for the simulated aircraft model.
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Table 5.1: Simulated Aircraft Dimensional Properties

Wing Area S 20 m

Mean Aerodynamic Chord c̄ 3 m

C.G location xc.g 0 m

C.G reference location xc.g.ref 0 m

Stall speed Vstall 23 m/s

Table 5.2: Mass Properties of model used for simulation, in SI Units

Parameter Weight (kg) IX (kg.m2) IY (kg.m2) IZ (kg.m2) IXZ (kg.m2)

Value 1,177 2,257 11,044 12,636 106

The non-dimensional force and moment equations pertaining to the aircraft model can now be

detailed.

5.3.1.2 Force and Moment Coefficients

As previously mentioned the fictional aircraft has the aerodynamic characteristics (force and

moment properties) of the F-4 Phantom. At α ≤ 150 the non-dimensional force and moment

coefficients are given by [52]:
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CX = − 0.0434 + 2.93× 10−3α+ 2.53× 10−5β2 − 1.07× 10−6αβ2 + 9.5× 10−4δe

− 8.5× 10−7δeβ
2 +

(
180qc̄

π2Vt

)(
8.73× 10−3 + 0.001α− 1.75× 10−4α2

)
,

(5.26)

CY = − 0.012β + 1.55× 10−3δr − 8× 10−6δrα

+

(
180b

π2Vt

)(
2.25× 10−3p+ 0.0117r − 3.67× 10−4rα+ 1.75× 10−4rδe

)
,

(5.27)

CZ = − 0.131− 0.0538α− 4.76× 10−3δe − 3.3× 10−5δeα− 7.5× 10−5δa
2

+

(
180qc̄

π2Vt

)(
−0.111 + 5.17× 10−3α− 1.1× 10−3α2

)
,

(5.28)

Cl = − 5.98× 10−4β − 2.83× 10−4αβ + 1.51× 10−5α2β

− δa
(
6.1× 10−4 + 2.5× 10−5α− 2.6× 10−6α2

)
+ δr

(
−2.3× 10−4 + 4.5× 10−6α

)
+

(
180b

π2Vt

)(
−4.2× 10−3p− 5.24× 10−4pα+ 4.36× 10−5pα2

+4.36× 10−4r + 1.05× 10−4rα+ 5.24× 10−5rδe
)
,

(5.29)

Cm = − 6.61× 10−3 − 2.67× 10−3α− 6.48× 10−5β2

− 2.65× 10−6αβ2 − 6.54× 10−3δe − 8.49× 10−5δeα

+ 3.74× 10−6δeβ
2 − 3.5× 10−5δa

2

+

(
180qc̄

π2Vt

)(
−0.0473− 1.57× 10−3α

)
+ (xc.g.ref − xc.g)CZ ,

(5.30)

Cn = 2.28× 10−3β + 1.79× 10−6β3 + 1.4× 10−5δa

+ 7.0× 10−6δaα− 9.0× 10−4δr + 4.0× 10−6δrα

+

(
180b

π2Vt

)(
−6.63× 10−5p− 1.92× 10−5pα+ 5.06× 10−6pα2

−6.06× 10−3r − 8.73× 10−5rδe + 8.7× 10−6rδeα
)

−
( c̄
b

)
(xc.g.ref − xc.g)CZ .

(5.31)

The δa, δe and δr terms are the control surface deflection angles, with details given in 5.3.2.
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Note: In the plant model when calculating the forces and moments the velocity and angular rates

are as given by equations (5.16) and (5.17) respectively, ie. the effects of wind and turbulence

are taken into account. However the prediction model used for the NMPC has no knowledge of

these disturbances and the wind and turbulence component is zero.

5.3.1.3 Thrust Model

The thrust force required to keep an aircraft in motion is generated by the engines. The thrust

term, T , appears in the velocity equations (5.10). The following thrust model taken from Bryson

[25] is used here:

hT =
H

3048
, (5.32)

Tmax = ((30.21− 0.668hT − 6.877hT
2 + 1.951hT

3 − 0.1512hT
4)

+

(
VT
vs

)
(−33.8 + 3.347hT + 18.13hT

2 − 5.865hT
3 + 0.4757hT

4)

+

(
VT
vs

)2

(100.8− 77.56hT + 5.441hT
2 + 2.864hT

3 − 0.3355hT
4)

+

(
VT
vs

)3

(−78.99 + 101.4hT − 30.28hT
2 + 3.236hT

3 − 0.1089hT
4)

+

(
VT
vs

)4

(18.74− 31.6hT + 12.04hT
2 − 1.785hT

3 + 0.09417hT
4))

4448.22

20
,

(5.33)

T = Tmax δth, (5.34)

where vs is the speed of sound, 340.3m/s, H the height or the −xD position of the aircraft, and

δth, the amount of throttle applied, forms a part of the control vector (explained in subsection

5.3.2).

The derivatives of the states are integrated using fourth order Runge-Kutta integration to obtain

the position, orientation, speeds and angular rates of the aircraft.

The next section describes the aircraft controls and defines the terms δth, δe, δa and δr.

5.3.2 Aircraft Controls

The purpose of any control system is to manipulate the available controls to achieve a desired

outcome. For an aircraft the available controls are effected through the manipulation of the con-
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trol surfaces. Control surfaces are manipulated by deflecting them to achieve a desired response

and it is the job of the control system to calculate the amount of deflection required.

The three most common control surfaces are the elevators, ailerons and the rudder. Figure 5.4

shows the location of these control surfaces on an aircraft. The elevators are used to control

pitch (longitudinal motion), resulting in the nose of the aircraft going up or down. The ailerons

control roll movement causing one side of the aircraft wing to go down while the other goes up.

Finally the rudder controls the yaw angle of the aircraft, moving the nose of the aircraft right

or left. The rudder and the aileron together control the lateral motion of the aircraft

Figure 5.4: Aircraft Control Surfaces

Another very important control input is the throttle, not given in the diagram as it is not located

on the outside body of the aircraft. The throttle controls the amount of thrust required with

the amount of throttle applied varying from 0% to 100%.

The equations given for the force and moment coefficients in section 5.3.1.2 contain the terms

δe, δa and δr. These terms represent the deflection angles for the elevator, aileron and rudder

respectively. The controls for the aircraft model are throttle (δth), δe, δa and δr, and the control

vector is given by:
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u = [δth, δa, δe, δr]
ᵀ . (5.35)

The sign convention used for the control surfaces is given in 5.3:

Table 5.3: Control Surface sign conventions.

Elevator trailing edge down positive negative pitching moment

Aileron right-wing trailing edge down positive negative rolling moment

Rudder trailing edge left positive negative yawing moment

The equations presented above are used to model the plant in MATLAB/Simulink. Details of

the use of these equations in the modelling of the aircraft FTC system are presented next.

5.4 Controller Design for Longitudinal Motion

Parts of this section have appeared as [73].

The design process of the FTC controller is split into two parts. Initially a controller for only

the longitudinal motion of the aircraft is designed and then the model extended to the full 6DoF

model, presented in section 5.5.

5.4.1 Model Description

The system given in figure 5.2 is modelled in MATLAB/Simulink. The aircraft equations

given in section 5.3 are used, for the plant and the prediction model for the NMPC controller.

Note, however that when investigating longitudinal motion the following values are set to zero:

δa, δr, p, r, CY , Cl, Cn, β, φ and ψ. The plant doubles as a navigation system and guidance

information is assumed to be received in the form of a reference trajectory. Trajectory informa-

tion includes a desired height profile, required vertical speed and true airspeed. The effect of

wind is not considered for this part of the investigation.

The equations of motion are integrated forward in the plant model using a Runge-Kutta in-

tegration method with the MATLAB subroutine ode45. The controller runs at 10Hz and the

equations of motion are used as constraints to the optimal control problem. A pseudospectral

discretisation method is used with 50 collocation points and a prediction window Hp of 5 secs.
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The optimal control inputs are calculated via SNOPT. The aircraft is required to follow the

trajectory given in figure 5.5

Figure 5.5: Flight Trajectory for Longitudinal Motion

Adopting the pseudospectral discretisation method where both the states and controls are dis-

cretised, the NMPC optimisation vector is:

xnmpc = [xD, VN , VD, θ, q, δth, δe, ∆δth, ∆δe]
ᵀ , (5.36)

where ∆δth is the rate of change of the throttle δth and ∆δe is the rate of change of the elevator

deflection δe.

The following optimal control problem is then solved:

J = min
x,u

Hp

2

j=N+1∑
j=1

(∥∥xD(j)− xDref
(j)
∥∥2

Qx
+
∥∥Vt(j)−Vtref

(j)
∥∥2

QV
+
∥∥∆δe

∥∥2

Qu

)
w(j), (5.37)
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subject to (
tf − t0

2

)
Dj,kx (t)− ẋ = 0, (5.38)

x(t0)− xdem(t0) = 0, (5.39)

xlb ≤ x ≤ xub, (5.40)

ulb ≤ u ≤ uub, (5.41)

∆δelb ≤ ∆δe ≤ ∆δeub
, (5.42)

where xD and xDref
are the actual and reference heights respectively, and Vt and Vtref

are the

actual and reference true airspeeds respectively. The cost function weights are square matrices

with the following diagonal values for each state: Qx = 10, QV = 5 and Qu = 0.001 The con-

straints applied are given in table 5.4.

Table 5.4: Constraints for longitudinal Motion

Variable Upper Constraint Lower Constraint

xD 300 m 1 m

VN 100 m/s 30 m/s

VD 3 m/s −3 m/s

θ None None

q None None

δe 20 deg −20 deg

δth 100% 0%

∆δth 200 %/s −200 %/s

∆δe 200 deg/s −200 deg/s

Note: the Control surface rates given in table 5.4 are realistic for a high performance unstable

airframe or for a lower weight aircraft with a stable airframe, in either case a feasible fictional

aircraft model has been produced for simulation purposes to demonstrate proof of concept.

Given the above constraints in the event of no fault, the amount of throttle required is shown

in figure 5.6, for the aircraft to maintain the height profile given in in figure 5.5.
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Figure 5.6: Throttle response - No Fault

It is also assumed that FDI information is available. This includes the time at which the throttle

becomes stuck and and the position at which it is stuck. This information is used to update the

constraint values of the NMPC controller. Providing the controller with the most accurate and

up to date information enables it to make better use of the healthy actuators.

5.4.2 Numerical Results

To illustrate the concept of the FTC four different scenarios were set up:

Scenario 1: no fault case

Scenario 2: throttle stuck at 70% during entire flight,

Scenario 3: throttle stuck at 50% during entire flight,

Scenario 4: throttle stuck at 35% during entire flight,

Scenario 5: throttle stuck at 30% during entire flight,

Scenario 6: throttle stuck at 20% during entire flight,

Scenario 7: throttle stuck at 20% 80 secs into flight.

All plots given are of the optimal solution to illustrate proof of concept.
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5.4.2.1 True Airspeed

The aircraft was required to maintain a 50m/s true airspeed. The plots given in figure 5.7 show

the aircraft true airspeed for each of the scenarios. When the aircraft is fault free it is able to

fly at the demanded true airspeed. However, when the throttle is stuck at 70% or even 50%

there is too much power continually being provided to the aircraft resulting in large airspeed

response. When the throttle is stuck at 35% the aircraft is able to maintain the demanded VT

for only a short period of time, at the beginning of the flight mission. However at 30% throttle

the maximum deviation from the demanded airspeed is approximately 5m/s at any given time.

When the throttle drops below 30% the aircraft is unable to maintain the true airspeed which

drops to approximately between 35m/s and 30m/s. The plot for scenario 7 shows that once the

fault occurs at 80 secs the true airspeed immediately begins to drop, as expected. One main

point to note is that the NMPC controller ensures that the stall speed is never reached. This is

because the controller is designed to operate at 1.3 times the stall speed at a minimum.

5.4.2.2 Vertical Speed

The vertical speed response of the aircraft is shown in figure 5.8. The plots show the aircraft

response along with the constraints (in red) placed on the vertical speed. For high values of

throttle (70% and 50%) the vertical speed is continuously bouncing between the constraints in

an attempt to maintain the true airspeed demand. For the case when the throttle is stuck at

35% the vertical speed profile is seen to be similar to the no fault case, except in the descent

phase. During this phase, when the aircraft is descending and gaining speed, the vertical speed

response can be seen to continuously move between the constraints to regulate the speed. For

throttle values less than 30% there is insufficient power to maintain a climb hence the vertical

speed is seen to operate at the lower constraint or at zero. The plot for scenario 7 shows that

once the fault occurs at 80 secs the vertical speed moves between the constraints, working hard

to maintain the true airspeed.
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Figure 5.7: Stuck Throttle - True Airspeed Response, reference (red line), aircraft response (blue

line)
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Figure 5.8: Stuck Throttle - Vertical Speed Response, constraints (red lines), aircraft response

(blue)

228



5.4.2.3 Elevator Activity

In regards to fault tolerance, the elevator activity is of the most interest. If the throttle is stuck

the elevator provides a level of redundancy to maintain the aircraft speed. Figure 5.9 shows

plots of elevator activity for the different scenarios. The plots clearly show that any change in

throttle increases the elevator activity when compared to the no fault case. The elevator activity

increases in an attempt to regulate the airspeed of the aircraft. In the case of the high throttle

values (70% and 50%) the elevator activity is the highest because a higher level of power is

continually being provided to the aircraft exceeding the amount required to fly at the demanded

speed. Hence the elevator constantly jumps between the constraints in an attempt to compen-

sate for the excess power. For the 30% stuck throttle case the elevator activity does increase

compared to the no fault case; however 35% throttle is closer to the amount required to maintain

the given height profile (refer to figure 5.6), hence the elevator does not need to work as hard

compared to the 70% and 50% cases. For the lower throttle values activity increases during the

climb and descent phases. In the climb phase of the mission there is not enough power available

to the aircraft, so it compensates by erratically deflecting the elevator. During the descent phase

however there is too much power; to regulate this and to stay within the velocity constraints

the activity again increases. The last scenario shows that at the fault occurrence time of 80 secs

the elevator increases activity to compensate for the faulty throttle.

It is difficult to assess whether the rate constraints on the elevator are respected over the entire

flight time. Hence the elevator activity for the first 10 seconds of flight for the elevator activity

is shown in figure 5.10. These plots zoom in on the elevator activity and show that the rate

constraints of 200 deg / sec are respected.
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Figure 5.9: Stuck Throttle - Elevator Activity, constraints (red lines), aircraft response (blue)
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Figure 5.10: Stuck Throttle - Elevator Activity: First 10 secs of Flight, constraints (red lines),

aircraft response (blue)
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5.4.2.4 Pith Angle and Pitch Rate

The figures given in 5.11 and 5.12 show the plots of pitch angle and pitch rate respectively. The

plots show that for the excessive power cases where the throttle is stuck at 70% and 50% the

pitch rate and pitch angle continuously oscillate to maintain the speed of the aircraft. For the

cases where little power is available the controller tries to maintain the pitch angle and pitch

rate at a relatively constant rate forcing the the aircraft to glide down to safety.

5.4.2.5 Angle of Attack

Another pertinent state which needs to be analysed is the Angle of Attack (AoA). The model

used is valid only for α ≤ 15 degrees and above this the equations of motion break down. The

non-dimensional force and moment coefficients valid for α ≥ 15 degrees were provided by NASA

however I chose to limit the research to one model rather than multiple models. For future work

constraints should be placed on α or multiple models added. The plots given in figure 5.13 show

the angle of attack during flight and it can be seen that at all times during the flight α remains

below 15 degrees for any given scenario.

5.4.2.6 g-Force, Body Acceleration

The g-forces experienced by the aircraft during all scenarios are given in figure 5.14. It can be

seen that the maximum g-force experienced during flight for any given scenario is approximately

1.5g, except for the 70% throttle case. This was to be expected as there is too much power avail-

able to the aircraft. In this case the maximum g-force is 3g’s. The g-force is an important state

to consider when assessing the possible structural damage that the aircraft could experience.
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Figure 5.11: Stuck Throttle - Pitch Angle, θ
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Figure 5.12: Stuck Throttle - Pitch Rate, q
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Figure 5.13: Stuck Throttle - Angle of Attack
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Figure 5.14: Stuck Throttle - g Force (body acceleration, az
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5.4.2.7 Height Profile

The trajectory flown by the aircraft during the different scenarios is given in figure 5.15. The

no fault case, as expected, follows the reference height profile perfectly. The 35% case is also

able to closely maintain the profile. In the 70% and 50% cases the aircraft continually tries

to regulate the airspeed to compensate for the excess power. The solutions produced by both

scenarios show the aircraft overshooting followed by an undershoot, so the solution oscillates

around the reference. When the throttle becomes stuck at 30% the aircraft begins the climb

phase of the mission but is only able to continue climbing for 20 secs before it begins gliding

towards the ground. In the 20% stuck throttle case the aircraft completes the straight and level

phase of the mission but does not have enough power to begin climbing, and descends to the

ground. The final scenario shows that the elevator is able to compensate for the stuck throttle

in mid-flight and successfully finish the mission.

5.4.3 Findings

The results given in this section illustrate that the nonlinear NMPC controller is a viable solution

for fault tolerant flight control. This is evident from the results which show that in the event of

a stuck throttle the controller is able to manipulate the movement of the elevator to compensate

for the fault.
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Figure 5.15: Stuck Throttle - Height Profile, reference (red lines), aircraft response (blue)

In the next section the full 6DoF model of an aircraft will be employed, and an NMPC controller

implemented.
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5.5 Six Degree of Freedom Aircraft Model with Fault Tolerant

Control

Parts of this section have appeared as [72].

In section 5.3 the full 6DoF aircraft model was introduced and the longitudinal motion of the

aircraft was investigated for fault tolerant control in section 5.4. In this section the full 6DoF

model is used and an NMPC controller is designed to control the aircraft and handle any un-

foreseen faults.

5.5.1 6DoF Controller Design

The system given in 5.2 is modelled in this section with the full 6DoF aircraft model. Again

the plant model doubles as the navigation model and the guidance system has been provided

by Williams [127]. The system was modelled in Simulink and the Dryden Wind Turbulence

model from the Aerospace Blockset [66] was used to model wind and turbulence. The guidance

subsystem is supplied with a series of way points and it provides the controller with angular

rate information, ie. it calculates the angular rates required to maintain the reference path and

are referred to as angular rate demands. The inner loops consists of two controllers, an NMPC

controller to control angular rates and a speed control loop which is a simple PI controller to

maintain a desired speed. An integrator is also implemented to calculate the integrated errors

in the angular rates.

A pseudospectral discretisation method is used and the state vector of the NMPC is given by:

xnmpc = [p, q, r, Ip, Iq, Ir, δe, δa, δr, ∆δe, ∆δa, ∆δr]
ᵀ , (5.43)

where p, q and r are the roll rate, pitch rate and yaw rate respectively, Ip, Iq and Ir are

respectively, the integrated errors in p, q and r used to minimise the steady state errors, and δe,

δa and δr are the elevator, aileron and rudder deflections respectively.
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The prediction model of the nonlinear MPC controller is as follows:

ṗ = (c1 r + c2 p+ c4 heng) q + q̄ S b (c3Cl + c4Cn) , (5.44)

q̇ = (c5 p− c7 heng) r − c6

(
p2 − r2

)
+ q̄ S c̄ c7Cm, (5.45)

ṙ = (c8 p− c2 r + c9 heng) q + q̄ S b (c4Cl + c9Cn) , (5.46)

İp = p̂− pdem, (5.47)

İq = q̂ − qdem, (5.48)

İr = r̂ − rdem, (5.49)

where p̂, q̂ and r̂ are the predicted angular rates and pdem, qdem and rdem are the demanded an-

gular rates. The remaining parameters given in the equations above are as defined in section 5.3.

The following control problem is solved at each time step:

J = min
x,u

Hp

2

j=N+1∑
j=1

(∥∥ω(j)− ωdem(j)
∥∥2

Qω
+
∥∥I(j)

∥∥2

QI
+
∥∥∆u(j)

∥∥2

Qu

)
w(j), (5.50)

subject to (
tf − t0

2

)
Dj,kx (t)− ẋ = 0, (5.51)

ω(t0)− ωdem(t0) = 0, (5.52)

xlb ≤ x ≤ xub, (5.53)

ulb ≤ u ≤ uub, (5.54)

∆ulb ≤ ∆u ≤ ∆uub, (5.55)

with the constraints on the states as in table 5.5.
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Table 5.5: Constraints for 6DoF Motion

Variable Upper Constraint Lower Constraint

p None None

q None None

r None None

Ip None None

Iq None None

Ir None None

δA 20 deg −20 deg

δE 20 deg −20 deg

δR 20 deg −20 deg

∆dA 200 deg / sec −200 deg / sec

∆dE 200 deg / sec −200 deg / sec

∆dR 200 deg / sec −200 deg / sec

A prediction window length of 1 second was used with 16 coincidence points. A 1 second window

was deemed sufficient for the purposes of angular rate following as it is assumed that the angular

rate demands are constant across the window length. This is a reasonable assumption because

the angular rates do not change significantly after 1 second. The cost function weights are square

matrices with the following diagonal values for each state: Qω = 1, QI = 0.001 and Qu = 0.01.

5.5.1.1 Fault Simulation

The concept behind the fault tolerant controller design for the 6DoF model is based on moni-

toring the control derivatives. The non-dimensional aerodynamic coefficients for the forces and

moments given in section 5.3.1.2 are made up of a series of aerodynamic and control derivatives.

For example the term −6.54 × 10−3δe in the pitching moment coefficient equation (5.30) rep-

resents the pitch control derivative, Cmδe , the contribution of the elevator control input on the

pitching moment coefficient. The contributions made by α and β are known as the aerodynamic

derivatives. In the example given (Cmδe = −6.54 × 10−3) the value −6.54 × 10−3 is specific

to the given aircraft as are all the derivative values given in equations (5.26), (5.27), (5.28),

(5.29), (5.30) and (5.31). For any aircraft these values are obtained via experimental testing or

computational fluid dynamic techniques, the derivatives are affected by any physical change in
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the control surface hence any change in a control derivative would indicate a fault.

For the simulation results given in subsection 5.5.2 the faults are simulated by reducing the

efficiency of the control surface. The primary role of an elevator is to provide pitch control, so

its largest contribution is on the pitching moment, and therefore a change in the Cmδe derivative

would indicate an elevator fault. The aileron contributes primarily to the rolling moment Cl

and the control derivative associated with the aileron from equation (5.29) is Clδa = 6.1× 10−4.

Finally the rudder has the biggest impact on the yawing moment, Cn, and the associated control

derivative from equation (5.31) is Cnδr = −9.0× 10−4. To simulate a fault in a control surface

the respective control derivative is reduced.

5.5.2 Numerical Results

To investigate the effectiveness of the NMPC controller design as a fault tolerant controller the

aircraft was required to fly the trajectory given in figure 5.16.

Figure 5.16: 6DoF Reference Trajectory
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Three different scenarios were set up:

Scenario 1: faulty elevator: 70% reduction in efficiency 20 seconds into flight,

Scenario 2: faulty aileron: 80% reduction in efficiency 20 seconds into flight,

Scenario 3: faulty rudder: 60% reduction in efficiency 20 seconds into flight,

Each scenario is run with and without FDI information. FDI information is assumed and pro-

vides details on the time of fault and the efficiency of the control surface.

5.5.2.1 Scenario 1: Faulty Elevator

Figure 5.17 presents the plots for the control surface activity given an elevator with 70% re-

duction in efficiency. The plots show that without any knowledge of the fault the activity in

the elevator decreases after 20 seconds and there is very little change in the aileron and rudder

activity once the fault occurs. When FDI information is provided however the knowledge of

the fault prompts the control surfaces to work harder to compensate for the fault. This is seen

in all three control surfaces which at various times during the flight are all operating at the

constraints.

Figure 5.17: Faulty Elevator: Control Surface Activity, constraints (red), control surface activity

(blue). Left column: no FDI information, Right column: with FDI information
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Figure 5.18: Faulty Elevator: Control Surface Activity, constraints (red), control surface activity

(blue). Left column: no FDI information, Right column: with FDI information - Zoomed

Figure 5.18 shows the elevator activity between 110 secs and 120 secs. During this time large

amounts of oscillations can be observed (figure 5.17) however by zooming in at this time the

plot shows that the rate constraints on the control surfaces are being respected. This is to be

expected as the actuator dynamics have been modelled in the controller as well as in the plant

model.

The angular rate plots are shown in figure 5.19. A fault in the elevator directly affects the pitch

rate q, and without any FDI information the controller is unable to meet the pitch rate demands

however the roll rate and yaw rate demands are followed very closely. With knowledge of the

faults there is an increase in the demanded angular rates and the controller shows a significant

improvement in performance in being able to follow the demanded rates.
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Figure 5.19: Faulty Elevator: Angular Rates, demanded (red), actual (blue). Left column: no

FDI information, Right column: with FDI information

Plots of AoA and g-force are give in 5.20 and 5.21 respectively. The AoA plots shows that

the 15 deg upper limit on AoA was never reached hence the equations of motion in the process

model were valid throughout the flight. The maximum g-force reached was only 1.5g which is

very unlikely to cause structural damage.
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Figure 5.20: Faulty Elevator: Angle of Attack

Figure 5.21: Faulty Elevator: g-Force, Body Acceleration aZ

The trajectories flown by the aircraft with a faulty elevator, with and without FDI information,

are provided in 5.22. The results show that in the absence of FDI information the aircraft suc-

cessfully flies the trajectory, however providing FDI information caused the solution to diverge.
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This result shows that the controller behaved exactly as expected. The controller has been

designed to maintain the angular rate demands not the reference trajectory. The angular rate

plots show that with the FDI information there is an increase in performance of the controller

in terms of tracking the angular rate demands. The trajectory plots show that the solution pro-

duced with FDI information causes the aircraft to drop below ground level which is physically

impossible. This is a result of not applying constraints on the aircraft position vector. Hence

unless a parameter is explicitly penalised in the cost function and/or constraints placed upon the

parameters the controller will use everything available to it to achieve what is being demanded

of it. A zoomed in plot of the NED states are given in figure 5.23. The plot shows that upon

zooming in the case with no FDI the controller does a an excellent job of following the no-fault

situation however in the case where FDI information is available the solution diverges.

Figure 5.22: Faulty Elevator: 6DoF Trajectory
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Figure 5.23: Faulty Elevator: NED

5.5.2.2 Scenario 2: Faulty Aileron

The plots given in figure 5.24 show control surface activity with an 80% reduction in aileron

efficiency. The red lines show the constraints placed on the control surface and the blue the

actual activity. The aileron and rudder are primarily used to control the lateral motion of the

aircraft while the elevator controls the longitudinal motion. Thus there is very little change in

the behaviour of the elevator when FDI information is provided compared to no FDI information.

The rudder and aileron on the other hand increase their activity after the occurrence of the fault

to compensate for the loss in efficiency and operate closer to the constraints.
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Figure 5.24: Faulty Aileron: Control Surface Activity, constraints (red), control surface activity

(blue). Left column: no FDI information, Right column: with FDI information

Figure 5.25: Faulty Aileron: Control Surface Activity, constraints (red), control surface activity

(blue). Left column: no FDI information, Right column: with FDI information - Zoomed

Figure 5.25 shows the elevator activity between 160 secs and 170 secs. During this time large
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amounts of oscillations can be observed (figure 5.24) however by zooming in at this time the

plot shows that the rate constraints on the control surfaces are being respected. This is to be

expected as the actuator dynamics have been modelled in the controller as well as in the plant

model.

Similar results are present in the angular rate plots of figure 5.26. There is little or no change

in the pitch response of the aircraft once FDI information is provided compared when FDI is

absent. In the case of no FDI the actual roll rate is lower than the demand however once

information on the fault is provided tracking performance increases. This is also true for the

yaw rate response. In the presence of an aileron fault roll and yaw rate demands increase to

sustain lateral motion.

Figure 5.26: Faulty Aileron: Angular Rates, demanded (red), actual (blue). Left column: no

FDI information, Right column: with FDI information

Plots of AoA and g-force are give in 5.27 and 5.28 respectively. Again, the AoA plots show that

the 15 deg upper limit on AoA was never reached hence the equations of motion in the process

model were valid throughout the flight. Also the maximum g-force reached was only 1.5g which

is very unlikely to cause structural damage.
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Figure 5.27: Faulty Aileron: Angle of Attack

Figure 5.28: Faulty Aileron: g-Force, Body Acceleration aZ

The trajectory plots of the aircraft are given in figure 5.29. The case where FDI information

is provided the aircraft can be seen to deviate slightly off the path. The deviation is not

as significant in the event of an aileron fault as the rudder also helps to control the lateral
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motion of the aircraft hence providing an extra degree of redundancy. A closer look at the NED

states have been presented in figure 5.30. The plots clearly show that upon zooming in on the

states there are differences in the no fault case and the with and without FDI cases. Although

the trajectory plot shows very good tracking, upon closer investigation there are discrepancies

especially in the Down direction.

Figure 5.29: Faulty Aileron: 6DoF Trajectory
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Figure 5.30: Faulty Aileron: NED

5.5.2.3 Scenario 3: Faulty Rudder

With a 60% reduction in efficiency in the rudder the resulting control surface activity is provided

in figure 5.31. Again, as the elevator has very little influence on lateral motion, there is very

little change in elevator activity with no difference between the no FDI and with FDI cases. The

rudder is pushed to its lower limit and the aileron deflection increases in the negative direction

causing the aircraft to bank more to the left.
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Figure 5.31: Faulty Rudder: Control Surface Activity, constraints (red), control surface activity

(blue). Left column: no FDI information, Right column: with FDI information

Figure 5.32: Faulty Rudder: Control Surface Activity, constraints (red), control surface activity

(blue). Left column: no FDI information, Right column: with FDI information - Zoomed

Figure 5.32 shows the elevator activity between 100 secs and 110 secs, that is, 80 secs after the
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fault has occurred. Zooming in at this time the plot shows that the rate constraints on the

control surfaces are being respected. Again, this is as to be expected as the actuator dynamics

have been modelled in the controller as well as in the plant model.

A faulty rudder had no effect on the angular rate demands (figure 5.33). Tracking performance

was the same both with and without FDI information. This is translated in the trajectory plots

of figure 5.34 which show that the aircraft closely follows the flight path with and without FDI

information. A closer look at the NED states (figure 5.35) shows that tracking performance

is excellent in the North and East direction, however there are slight variations present in the

Down direction.

Figure 5.33: Faulty Rudder: Angular Rates, demanded (red), actual (blue). Left column: no

FDI information, Right column: with FDI information
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Figure 5.34: Faulty Rudder: 6DoF Trajectory

Figure 5.35: Faulty Rudder: NED

Plots of AoA and g-force are give in 5.36 and 5.37 respectively. Again the AoA plots show that

the 15 deg upper limit on AoA was never reached, so the equations of motion in the process

model were valid throughout the flight. Also the maximum g-force reached was only 1.5g which
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is very unlikely to cause structural damage.

Figure 5.36: Faulty Rudder: Angle of Attack

Figure 5.37: Faulty Rudder: g-Force, Body Acceleration aZ
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5.5.2.4 Findings

The results of the 6DoF analysis show that NMPC design as a fault tolerant controller is viable,

and that in the absence of FDI information the controller is capable of allocating control au-

thority to the appropriate actuators to fly the aircraft on the given flight path. This illustrates

the inherent fault tolerant capabilities of MPC. Turning on FDI updates improved the tracking

performance of the controller. The results did show however that unless a quantity is penalised

in the cost function, and/or constraints are applied, the controller will push the limits to achieve

the desired outcome. In this case the controller was specifically designed to track angular rate

demands, so providing FDI information resulted in an increase in tracking performance of an-

gular rates in the event of a control surface fault.

The next section will look at the design of an FDI filter to be incorporated into the FTC

developed in this section.

5.6 6DoF Fault Detection and Identification

The fault detection concepts covered in chapter 4 are implemented here for the full 6DoF air-

craft model and designs for the UKF are presented. A proportional integral derivative (PID)

controller for the aircraft is designed and implemented.

A traditional PID controller was used to control the aircraft through the range of manoeuvres

required to test and tune the filter. The PID control method, although not optimal in terms of

performance, was quick to implement and tune to the level required.

5.6.1 PID Controller Design

The PID controller assumes a fixed structure where an aileron is the only control surface which

can produce a roll manoeuvre, pitch control is performed only by the elevators and yaw movement

is provided only by the rudder. The PID controller forms the inner-loops of the system given in

figure 5.2. A Simulink diagram of the PID based inner loops is given in figure 5.38.
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Figure 5.38: Inner Loop with PID Control

The height control loops and the throttle control also form a part of the inner loops.

5.6.1.1 Height Control Loop

The Simulink model of the height control loop is given in figure 5.39. There are four inputs, the

vertical speed VD, the height demand Hdem, the measured or actual height of the aircraft Hmeas

and the true airspeed VTAS. The objective of the height control loop is to calculate the pitch

angle required to maintain the height demand. The error between the measured and actual

height is given by:

eH = Hdem −Hmeas. (5.56)

The output of the PID controller is the rate of climb VROC:

VRoC = KdP VD +KP eH +KI

∫
eH(t) dt, (5.57)

where:

KdP = 0.25, Proportional gain for vertical speed,

KP = 0.5, Proportional error gain,

KI = 0.025, Integral error gain.

The climb rate to pitch angle conversion is given by:
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θ =
VRoC

VTAS
. (5.58)

The pitch angle demand is constrained between 0 and 0.25 rads hence θdem is given by:

θdem =


θ, if 0 rad ≤ θ ≤ 0.25 rads,

0 rad, if θ < 0 rads,

0.25 rads, if θ > 0.25 rads.

(5.59)

Figure 5.39: Height Control Loop

5.6.1.2 Throttle Control Loop

The throttle control loop is given in figure 5.40, the objective of which is to calculate the throttle

needed to maintain the true airspeed demand. The error in true airspeed is given by:

eVTAS
= (VTAS)dem − VTAS. (5.60)

The output of the PID controller is uth:

uth = KP eVTAS
+KI

∫
eVTAS

(t) dt +KD
d(eVTAS

)

dt
+ δth trim, (5.61)
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where:

KP = 0.1, Proportional error gain,

KI = 0.01, Integral error gain,

KD = 0.05, Derivative error gain,

δth trim= 0.5, Throttle trim.

Speed is controlled by applying anywhere between 0% throttle to 100% throttle hence:

δth =


uth, if 0 ≤ uth ≤ 1,

0, if uth < 0,

1, if uth > 1.

(5.62)

Figure 5.40: Throttle Control Loop

5.6.1.3 Roll Control

The roll control loop is given in figure 5.41. The inputs are roll angle demand φdem, measured

roll angle φmeas and measured roll rate pmeas. The overall aim of this loop is to calculate the

aileron deflection needed to maintain a roll angle demand. The error between the roll angle

demand and measured roll angle is given by:

eφ = φdem − φmeas. (5.63)
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The demanded roll rate is calculated via:

Pdem = Kφ eφ, (5.64)

where Kφ is a gain factor used to convert the roll angle error to a roll rate and is equal to 2.

The error in roll rate is:

ep = pdem − pmeas. (5.65)

The output of the controller is aileron deflection given by:

δa = KFF pdem +KP ep, (5.66)

where:

KFF= 0.8, Feedforward gain,

KP = 2.2, Proportional error gain.

Figure 5.41: Roll Control Loop

5.6.1.4 Pitch Control

The pitch control loop is given in figure 5.42. The inputs are measured roll angle φmeas, true

airspeed VTAS, pitch angle demand θdem, measured pitch angle θmeas and measured pitch rate

qmeas. The overall objective is to calculate the correct elevator deflection required to maintain

the demanded pitch and pitch rate. The pitch angle error is given by:
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eθ = θdem − θmeas. (5.67)

The demanded pitch rate is given by:

qdem = Kθ eθ + |f (φ, VTAS) |, (5.68)

where:

f (φmeas, VTAS) = φ̇dem =
g tan (φmeas) sin (φmeas)

VTAS
. (5.69)

Here g is the acceleration due to gravity, 9.81 m/s2. The function given in equation (5.69) cal-

culates the additional pitch rate required for a constant height coordinated turn.

The error in pitch rate is given by:

eq = qdem − qmeas. (5.70)

Finally the elevator deflection is given by:

δe = KFF qdem +Kp eq +KP KI

∫
eq(t) dt, (5.71)

where:

KFF= 0.01, Feedforward gain,

Kθ = 2, Gain required to convert to pitch rate,

KP = 1.2, Proportional error gain.
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Figure 5.42: Pitch Control Loop

5.6.1.5 Yaw Control

The yaw control loop is given in figure 5.43. The inputs are true airspeed VTAS, measured roll

angle φmeas, measured yaw rate rmeas, body acceleration ay and a speed scalar constant. The

overall objective of the yaw control loop is to maintain zero sideslip. The yaw rate error due to

a turn is given by:

er(turn) = (rmeas − rdem) ∗ h (t) , (5.72)

where ∗ indicates a convolution operation between the two functions, and the demanded yaw

rate is given by equation (5.73):

rdem = Kφ fψ̇ (φ, VTAS) , (5.73)

fψ̇ (φ, VTAS) is the yaw rate required to turn and is given by

fψ̇ (φ, VTAS) =
g tanφ cosφ

VTAS
, (5.74)

and h (t) is a high pass filter whose Laplace transform is given by:

H (s) =
5s

5s+ 1
. (5.75)

The highpass filter is there to prevent measurement errors in airspeed and bank angle (roll)

producing a steady state sideslip condition.
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The yaw rate error is then given by:

er = −er(turn) −Kβ ay, (5.76)

where Kβ is the gain due to sideslip and is equal to 0.1. Finally the rudder deflection is given

by:

δr = Kdamp

(
KI er − er(turn)

)
S, (5.77)

S = 1, Speed scalar,

KI = 1, Integral error gain,

Kdamp= 3, Yaw damper.

Figure 5.43: Yaw Control Loop

5.6.2 Filter Design

The proposed fault detection scheme is based on the principle that a failure in any one of the

control surfaces would directly affect the corresponding control derivative. Hence changes in the

control derivatives would indicate a fault has occurred, while at the same time the filter would

provide the controller with estimates of the derivatives. Furthermore, up to date estimates of

the derivatives will allow the MPC controller to perform at its optimum.

The force and moment equations given in section 5.3.1.2 show that there are a total of 24 control

derivative. These are listed in Table 5.6.
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Table 5.6: Control Derivatives

Derivative Value Derivative Value

CXdE1 9.5× 10−4 CldR2 4.5× 10−6

CXdE2 8.5× 10−7 CldE1 5.24× 10−5

CYdE1 1.75× 10−4 CmdE1 6.54× 10−3

CYdR1 1.55× 10−3 CmdE2 8.49× 10−5

CYdR2 8× 10−6 CmdE3 3.74× 10−6

CZdE1 4.76× 10−3 CmdA1 3.5× 10−5

CZdE2 3.3× 10−5 CndA1 1.4× 10−5

CZdA1 7.5× 10−5 CndA2 7.0× 10−6

CldA1 6.1× 10−4 CndE1 8.73× 10−5

CldA2 2.5× 10−5 CndE2 8.7× 10−6

CldA3 2.6× 10−6 CndR1 9.0× 10−4

CldR1 −2.3× 10−4 CndR2 4.0× 10−6

To test the filters the aircraft was required to achieve the roll angle demands given in figure

5.44.

266



Figure 5.44: 6DoF Motion Filter Tests - Roll Angle Demands

Initially a 30 state UKF filter was designed where the states comprised of three accelerations

(ax, ay, az), three angular rates (p, q, r) and the 24 control derivatives given above. The mea-

surements were of the body acceleration and angular rates (as would be provided by an IMU

sensor). All the derivatives were normalised to 1 hence the states of the control derivative were

set to 1. The results of the acceleration and angular rate innovations are given in figures 5.45

and 5.46 respectively. The results show that the filter does an excellent job of predicting the

accelerations and angular rates as the innovations filter predictions align perfectly with the mea-

surements of acceleration and angular rates. The estimates of the control derivatives are shown

in figure 5.47. Since all derivatives were normalised the estimates should each have a value of

1. However, as the plot shows, the filter is unable to correctly estimate the value of all the

derivatives, as many of the states in the filter are unobservable.
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Figure 5.45: Accelerations - 30 State Vector, left column estimates (red measured, blue pre-

dicted), right column innovations (2σ uncertainty bounds (red dashed) and innovations (blue).

Figure 5.46: Angular Rates - 30 State Vector, left column estimates (red measured, blue pre-

dicted), right column innovations (2σ uncertainty bounds (red dashed) and innovations (blue).
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Figure 5.47: Control Derivative Estimates - 30 State Vector. Each line corresponds to a nor-

malised value of a control derivative estimate and should have a value of 1.

To address the issue of observability the number of states was reduced to 19; 3 accelerations,

3 angular rates and 13 control derivatives. This was achieved by having one control derivative

estimate per force/moment for a particular control surface. For example, the control derivatives

given in table 5.6 show that there are 2 CX control derivatives which are due to the elevator

CXdE1 and CXdE2; the 19 state filter has only one derivative CXdE used to represent both of

the CX derivatives due to the elevator. Thus the contributions of each control surface in the

force and moment equations are grouped together in this manner reducing the number of control

derivative states from 24 to 13. Figures 5.48 and 5.49 show the acceleration and angular rate

estimates respectively produced by the 19 state filter. The results again show close to perfect

compliance between prediction and measurement. The control derivative estimates plot given

in figure 5.50 show an improvement in estimates (again they should all be equal to 1), however

the issue of unobservable states is still evident.
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Figure 5.48: Accelerations - 19 State Vector, left column estimates (red measured, blue pre-

dicted), right column innovations (2σ uncertainty bounds (red dashed) and innovations (blue).

Figure 5.49: Angular Rates - 19 State Vector, left column estimates (red measured, blue pre-

dicted), right column innovations (2σ uncertainty bounds (red dashed) and innovations (blue).
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Figure 5.50: Control Derivative Estimates - 19 State Vector. Each line corresponds to a nor-

malised value of a control derivative estimate and should have a value of 1.

To further address this issue the number of filter states was again reduced, from 19 to 12. For

control surface failure the most important derivatives are deemed to be CldA1 for aileron, CmdE1

for elevator and CndR1 for the rudder and the trim values Cl0, Cm0 and Cn0. From the equa-

tions given in section 5.3.1.2 the trim values corresponding to aileron, elevator and rudder are,

Cl0 = 0, Cm0 = −6.61× 10−3 and Cn0 = 0 respectively.

The plots of acceleration and angular rate estimates for the 12 state filter are given in figures

5.51 and 5.52 respectively. The results of angular rate estimation are excellent however the filter

is unable to make correct estimates of acceleration which is to be expected because the other

terms are unrelated to force, being all moment related terms. The control derivatives CldA1,

CmdE1 and CndR1 are normalised to 1 as is the trim value for Cm0 and the estimates of these

are given in figure 5.53. Results show big discrepancies between the actual and estimated values

for the elevator terms.
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Figure 5.51: Accelerations - 12 State Vector, left column estimates (red measured, blue pre-

dicted), right column innovations (2σ uncertainty bounds (red dashed) and innovations (blue).

Figure 5.52: Angular Rates - 12 State Vector, left column estimates (red measured, blue pre-

dicted), right column innovations (2σ uncertainty bounds (red dashed) and innovations (blue).
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Figure 5.53: Control Derivative Estimates - 12 State Vector. Each line corresponds to a control

derivative estimate. Values for CldA, CmdE , Cm0 and CndR have been normalised to have a

value of 1, Cl0 and Cn0 should both be zero.

Due to the presence of unobservable states the state vector was once more reduced by removing

the acceleration terms resulting in a 9 state filter. The measurements supplied to the filter were

only of the angular rates. The acceleration terms were removed due to the errors present in

the estimates. The angular rate estimates and innovations are presented in figure 5.54 and as

expected, show that the filter predictions closely match the measurements. It is evident however

from the control derivative and trim estimate plot (figure 5.55) that the observability issue is

still present.
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Figure 5.54: Angular Rates - 9 State Vector, left column estimates (red measured, blue pre-

dicted), right column innovations (2σ uncertainty bounds (red dashed) and innovations (blue).

Figure 5.55: Control Derivative Estimates - 9 State Vector. Values for CldA, CmdE , Cm0 and

CndR have been normalised to have a value of 1, Cl0 and Cn0 should both be zero.

In a final attempt to solve the observability issue three separate filters were developed, one each
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for roll, pitch and yaw with each filter, a 3 state filter. The states for the roll only filter are

p, CldA1 and Cn0, the pitch only filter states are q, CmdE1 and Cm0 and the yaw only filter

has r, CndR1 and Cn0 as states. The angular rate estimates are given in figure 5.56 and again

show compliance with the measurements. Separating the filters caused slight improvement in

the control derivative and trim estimates (figure 5.57), however the observability problem is still

present particularly for the Cm0 term. This was to be expected as the aircraft lateral dynamics

have been excited by the demanded roll inputs given in figure 5.44 hence the estimates of

the derivatives related to the later dynamics are more accurate than the longitudinal motion

derivatives. For good estimates it is necessary to excite the aircraft dynamics.

Figure 5.56: Angular Rates - 3 Filters, left column estimates (red measured, blue predicted),

right column innovations (2σ uncertainty bounds (red dashed) and innovations (blue).
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Figure 5.57: Control Derivative Estimates - 3 Filters Vector. Values for CldA, CmdE , Cm0 and

CndR have been normalised to have a value of 1, Cl0 and Cn0 should both be zero.

5.6.3 Findings

The results of section 5.5.2 illustrate that if the NMPC controller could be provided with es-

timates of the control derivatives it would assist the controller in allocating control authority

appropriately. For this reason a UKF filter was designed in this section to provide real time

estimates. However results show that many of the control derivatives are unobservable. Many

attempts were made to tackle this issue, however all proved to be unsuccessful. The 3 filter

solution was integrated with the NMPC controller to test the full active fault tolerant control

system. Results for these tests have not been supplied as the incorrect estimates of the filter

caused the solution from the controller to diverge. Further investigations into the full 6DoF

fault tolerant controller are required.

As the main objective of this thesis is to demonstrate that my controller design can be utilised

for fault tolerant flight control, the next section looks at the longitudinal motion of the aircraft

with integrated FDI to form a full active fault tolerant flight control system.

276



5.7 Narrowing of Scope: Engine Failure - Loss of Power

The loss of power on an aircraft due to engine failure can result in a catastrophic breakdown

of the system if left unattended. This section demonstrates the use of my active FTC system

design as a fault tolerant flight controller in the event of an engine failure.

The FTC system is used to control the longitudinal motion of the aircraft. The design comprises

of a UKF filter to monitor the thrust level of the air vehicle. Fault detection logic is built into

the filter and once the decision is made that there is a loss of power the filter estimates are fed

to the NMPC controller for reconfiguration.

The filter design is detailed in the next subsection followed by the details of the controller design.

Finally numerical results are presented.

5.7.1 Filter Design

The filter design process consists of the development of a simple PID thrust controller. The

NMPC and filter designs were independently constructed and tested then integrated into the

final design.

5.7.1.1 PID Controller Design

Figure 5.58 is a block diagram of the inner loops developed for the filter design process. Lon-

gitudinal motion requires a height control loop and a thrust control loop, as well as a pitch

control loop which calculates the amount of elevator deflection required to achieve the desired

pitch angle.

277



Figure 5.58: Thrust Controller Filter Design - Innerloops

The height controller is the same as that given in section 5.6.1.1 and the pitch control loop is

as described in section 5.6.1.4. The thrust control loop is given in figure 5.59, and is

Figure 5.59: Thrust Controller Filter Design - Thrust Control Loop

very similar to the throttle control loop of section 5.6.1.2 with the addition of the “calculate

maximum thrust” block. This block contains the maximum thrust expression given in equa-

tion (5.32). The maximum thrust value and the required throttle are multiplied to obtain the

amount of thrust required to maintain a desired true airspeed of 50m/s and the demanded height.
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The next subsection describes the design of the UKF filter.

5.7.1.2 UKF FDI Filter

The UKF filter is designed to estimate the amount of thrust used by the aircraft. The filter

states are:

xukf = [VN , VD, θ, T ], (5.78)

where T is thrust. The measurement vector is:

xukf = [VEAS, vD, θ], (5.79)

where VEAS is equivalent airspeed of the aircraft at sea level whereas VT is the true airspeed at

altitude. VEAS is the speed commonly used in measurements. The relationship between VEAS

and VT is given by:

VEAS = VT

√
ρ

ρ0
, (5.80)

where ρ is the air density at a given altitude and ρ0 is the density of air at sea level (1.225 kg/m3).

For this work the aircraft is assume to be flying low enough for VEAS = VT .

The weighting matrices Q and R were set to:

Q =


(5 ∆t 0.05)2 0 0 0

0 (5 ∆t 0.05)2 0 0

0 0 (0.1 ∆ t)2 0

0 0 0 (6500 ∆t 0.3)2

 , R =


(0.05)2 0 0

0 (0.05)2 0

0 0 (0.017)2

 ,
(5.81)

where ∆t is the filter update rate 0.01 secs. The intial state vector and covariance matrix are:

x(0) = [50, 0 0.04247, 1507.7526]ᵀ , P(0) =


(0.5)2 0 0 0

0 (0.5)2 0 0

0 0 (0.017)2 0

0 0 0 (315)2

 (5.82)

279



5.7.1.3 Numerical Results

The following test cases were carried out to examine the filter performance:

Test 1: no fault,

Test 2: 70% loss of power 70 secs into flight,

Test 3: 90% loss of power 35 secs into flight,

Test 4: 50% loss of power 20 secs into flight.

The aircraft was required to fly the trajectory given in figure 5.5. The effects of wind and tur-

bulence have been taken into account as well as the effect of noise on the measurements of VEAS,

vd and θ, which has been modelled as a normally distributed random white noise.

To analyse the performance of the filter the innovation covariance plots were examined and are

given in figures 5.60, 5.61 and 5.62 for VEAS, vd and θ respectively. The results show that for

all test cases the innovations are well within the 2σ covariance bounds. The test case 3 where

the thrust level drops to 10% shows that after approximately 70 seconds the aircraft is unable

to maintain flight as there is not enough power hence the filter diverges. The thrust estimates

are given in figure 5.63 along with the actual thrust applied to the aircraft. In each test case

the filter does an excellent job of estimating the thrust levels.
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Figure 5.60: UKF VEAS Innovations - Longitudinal Model, ±2σ innovation covariance bounds

(red dashed lines), VEAS innovations (solid blue line)

Figure 5.61: UKF VD Innovations - Longitudinal Model, ±2σ innovation covariance bounds (red

dashed lines), VD innovations (solid blue line)
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Figure 5.62: UKF θ Innovations - Longitudinal Model, ±2σ innovation covariance bounds (red

dashed lines), θ innovations (solid blue line)

Figure 5.63: UKF Thrust Estimates - Longitudinal Model
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5.7.1.4 Fault Detection Logic

The premise behind the FTC design is the provision of the updates of the power status to

the NMPC controller to enable controller reconfiguration. When an engine fails the amount of

thrust available decreases. If this level of thrust could be estimated and provided to the NMPC

controller the maximum constraint on thrust can be updated and the controller can then allocate

control authority to the control inputs accordingly. For this reason it is important to detect the

fault and to know when to begin feeding the controller with filter estimates of thrust, hence the

need for fault detection logic.

The controller is designed (section 5.7.2) to calculate the optimal amount of thrust to maintain

a height demand and true airspeed. The filter on the other hand estimates the thrust level cur-

rently used by the aircraft, hence if the demand is greater than the estimate this would indicate

an engine failure.

The fault detection logic therefore checks whether the thrust demand is higher than the thrust

estimate. If this is true for a set period of time then a fault has occurred and a flag is turned

on, indicating that a fault has occurred, and consequently the constraints must be updated via

the filter estimates. The filter outputs an estimate of the state as well as the uncertainty on

the estimate, so the actual value of the state as predicted by the filter is within plus or minus

the uncertainty. For this reason a number of tests were performed to see whether the check

should include zero level of uncertainty, ±1σ uncertainty or ±2σ, and the results are given in

figure 5.64. The results are based on a fault count of 200, i.e. when the demand is greater than

the thrust estimate the fault counter is incremented by one, and when this counter exceeds 200

the fault flag switches from 0 to 1 indicating to the controller that the maximum constraint on

thrust must be updated with the filter estimate. The number of counts being set to 200 is based

purely on trial and error. The results show that the filter estimate plus 2σ uncertainty was able

to correctly identify the fault within approximately a couple of seconds of the fault occurring.

The other uncertainty bounds as well as the zero uncertainty case all indicated false detection

of the fault, that is the fault flag is set to true at the incorrect times. Note that a fault was not

detected for test case 4 even with a 2σ uncertainty bound. This is because the thrust estimate

plots (as shown in figure 5.63) indicate that in a no fault case the aircraft requires no more than

50% of the maximum thrust to maintain the given trajectory, hence the demand is at all times

less than the estimate.
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Figure 5.64: UKF Fault Flag - Longitudinal Model

In the next section the complete active FTC system design for thrust control is detailed.

5.7.2 Controller Design

This section steps through the controller design for the active FTC system for the longitudinal

motion of the aircraft.

Pseudospectral discretisation is applied to the controller design and the NMPC state vector is:

xnmpc = [xD, VN , VD, θ, q, δthrust, δe, ∆δthrust ∆δe]
ᵀ , (5.83)

The following optimal control problem is solved each time step:

min
x,u

Hp

2

j=N+1∑
j=1

(∥∥xD(j)− xDref
(j)
∥∥2

Qx
+
∥∥VT (j)−VTref

(j)
∥∥2

QV T

+
∥∥VD(j)−VDref

(j)
∥∥2

QVD
+
∥∥∆δthrust

∥∥2

QT
+
∥∥∆δe

∥∥2

Qδe

)
w(j),

(5.84)
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subject to (
tf − t0

2

)
Dj,kx (t)− ẋ = 0, (5.85)

x(t0)− xdem(t0) = 0, (5.86)

xlb ≤ x ≤ xub, (5.87)

ulb ≤ u ≤ uub, (5.88)

∆ulb ≤ ∆u ≤ ∆uub, (5.89)

where VT and VTref
are the actual and reference true airspeeds respectively and Qx, QV T , QV D,

QT and Qδe are weighting parameters and the term w(j) are the pseudospectral node weights

as defined in chapter 3. The constraints applied are given in Table 5.7. The cost function

weights are square matrices with the following diagonal values for each state: Qx = 3, QV T = 3,

QV D = 5, QT = 0.001 and Qδe = 0.1.

Table 5.7: Constraints for Longitudinal Motion, Thrust Controller

Variable Upper Constraint Lower Constraint

xD 300 m 1 m

VN 100 m/s 30 m/s

VD 3 m/s −3 m/s

θ None None

q None None

δe 20 deg −20 deg

∆δthrust 6500 N/s −6500 N/s

∆δe 200 deg/s −200 deg/s

The lower limit on thrust is 0 N while the upper limit changes throughout the flight and is set to

the maximum value of thrust based on the height of the aircraft. Maximum thrust is calculated

via equation (5.32). If a fault has been detected and the fault flag of section 5.7.1.4 is set to 1

the upper constraint is set to the filter estimate of thrust plus a 2σ uncertainty.

The following scenarios were designed to test the fault tolerant control system:

Scenario 1: no fault case

Scenario 2: engine failure - 65% power loss 30 secs into flight,
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Scenario 3: engine failure - 70% power loss 30 secs into flight.

Note: all test runs take into account the effect of wind.

Figures 5.65, 5.66 and 5.67 show the control inputs for scenarios 1, 2 and 3 respectively. The

results for the thrust show a dip in the constraint value for the upper thrust limits for scenarios

2 and 3 just after 30 secs. This indicates that the fault was correctly identified and the NMPC

was reconfigured with the information provided by the FDI filter. The uncertainty bounds

in both figures are slightly higher than the actual thrust applied due to the addition of the

2σ uncertainty. Other values of σ were found to cause the controller and hence the filter to

diverge. Although the estimate is slightly above the actual it is still in the vicinity of the actual

thrust level and prompts the controller to allocate more control authority to the other available

actuators. The results show that compared to the no fault case once a fault occurs the elevator

activity increases as the power decreases. Also the more severe the fault the faster the detection

time. This is evident from the fact that the fault is detected earlier in the 70% power loss case

compared to the 65% loss of power case.

Figure 5.65: Active FTC Thrust Controller: Control Inputs - Scenario 1: No Fault Case
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Figure 5.66: Active FTC Thrust Controller: Control Inputs - Scenario 2: 65% Loss of Power

Case

Figure 5.67: Active FTC Thrust Controller: Control Inputs - Scenario 3: 70% Loss of Power

Case

Figure 5.68 shows that true airspeed of the air vehicle. A true airspeed of 50m/s was demanded

by the aircraft. In the case where there is 65% loss of power the the aircraft is unable to maintain
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the demanded true airspeed during straight and level flight. Once the aircraft begins to descend

the demanded true airspeed is recovered. However in the case of 70% power loss there is not

enough power to maintain the demanded airspeed. Once the fault occurs the airspeed begins to

drop and reaches the stall speed (approximately 21m/s) causing the aircraft to lose control.

Figure 5.68: Active FTC Thrust Controller: True Airspeeds

The pitch angle, pitch rate, AoA and the g-forces experienced by the aircraft are shown in figures

5.69, 5.70, 5.71 and 5.72 respectively. The AoA 15 deg limit was only exceeded in the 70% loss

of power case meaning during this time the equations of motion were invalid. The maximum

g-force once again was seen to be approximately 1.5g’s in all cases however in the 70% loss of

power case the maximum reached was 2g’s. Overall the first priority is to save the aircraft even

if it means the aircraft is be pushed to its mechanical and structure limits.
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Figure 5.69: Active FTC Thrust Controller: Pitch Angle, θ

Figure 5.70: Active FTC Thrust Controller: Pitch Angle, q

289



Figure 5.71: Active FTC Thrust Controller: Angle of Attack, q

Figure 5.72: Active FTC Thrust Controller: g-Forces, Body Acceleration aZ

The vertical speed (also known as climb rate) response is given in figure 5.73. In the 65% power

loss case the response is very similar to the no fault response. A 70% loss in power results in

the aircraft being unable to maintain speed and it descends to the ground.
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Figure 5.73: Active FTC Thrust Controller: Climb Rates

The height profiles given in figure 5.74 show that even with a 65% loss in power the aircraft is

capable of maintaining the reference trajectory. However when the power decreases by another

5% the aircraft completes the climb to the highest demanded altitude but begins to descend half

way through straight and level flight.

Figure 5.74: Active FTC Thrust Controller: Height Profiles

291



The results obtained successfully demonstrate the application of my active fault tolerant flight

control system design. The control system is able to detect an engine fault within 2-3 seconds

of the fault occurring enabling reconfiguration of the NMPC controller to allow reallocation of

control authority to maintain the aircraft on the demanded flight path within the aircraft limits.

The controller works hard to achieve the demands, however in the event where this is impossible

this information can be used to bring the aircraft back safely to the ground.

5.8 Findings and Conclusion

The results of this chapter have shown the successful application of my active fault tolerant

control system design from chapter 4 to flight control. In this chapter a generic aircraft model

was developed and the active FTC system was applied to the 3DoF aircraft model. Research

into the application of the FTC system on a full 6Dof model was also conducted however many

problems were encountered particularly in the design of the FDI system. This has been identified

as further research as it is deemed beyond the scope of this thesis.
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Chapter 6

UAV Case Study

6.1 Introduction

6.1.1 Motivation

Chapter 5 demonstrated the feasibility of my fault tolerant control (FTC) system design for

fault tolerant flight control with the system being applied to a generic aircraft model. The main

aim of this thesis is the design of a fault tolerant flight control system for an unmanned aerial

vehicle (UAV). This chapter investigates the integration of the controller design into an actual

UAV model.

6.1.2 Outline

The chapter begins with summarising the details of the UAV model (section 6.2). This is

followed by a in depth look at the development of the nonlinear model predictive control (NMPC)

controller in section 6.3. Finally the active FTC system developed in section 5.7 is applied to

the UAV model in section 6.4 and its effectiveness is demonstrated through investigation of a

number of different scenarios. The chapter concludes with a brief summary of findings (section

6.5).

6.2 Aircraft Details

The previous chapter developed the aircraft prediction model for the NMPC controller using a

generic fictional aircraft model based on the McDonnell Douglas F-4 aircraft [52]. The model

used in this section is of an actual UAV currently in operation [128]. The model is based on real

flight data and comes with a confidentiality condition attached to it hence many of the aircraft
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details cannot be disclosed. The UAV model is of a twin engine, propeller driven aircraft with

dimensions as given in Table 6.1.

Table 6.1: UAV Data

Wingspan, b 5.5m

Chord, c 0.55m

Wing Area, S 3m2

Mass, m 36.8 kg

Propeller Diameter, D 0.4572m

Stall Speed, Vstall 12m/s

The control inputs used to fly the aircraft include the throttle, aileron, elevator, rudder and

flaps. The thrust controller of section 5.7 will be applied to the model hence only longitudinal

motion is considered and consequently, only the elevator and throttle inputs are required.

The next section provides details of the development of the NMPC controller for the given UAV

model.

6.3 NMPC Controller Development

The UAV model provided uses experimental data with a series of lookup tables incorporated to

find force and moment coefficients. This model will be the plant model for this part of the inves-

tigation. For the NMPC prediction model, on the other hand, an approximation model needs to

be developed that will use mathematical expressions to find the force and moment coefficients

rather than look up tables. Before the NMPC controller can be developed, the approximation

model must be produced, tested and validated and then the NMPC controller can be designed.

I start with the development of the approximation model for the given aircraft in the next

subsection.

6.3.1 Development of Approximation Model

The first step in building the approximation model is to fit polynomial curves to the experimental

aerodynamic data. The aerodynamic data includes lift force coefficient CL, drag force coefficient
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CD and pitching moment coefficient CM all of which are given as functions of the angle of attack

α. The plots given in figures 6.1, 6.2 and 6.3 show the curve fits for CL, CD and CM respectively.

Figure 6.1: Curve Fitting to CL Data, experimental data (X), curve fit (red line)

Figure 6.2: Curve Fitting to CD Data, experimental data (X), curve fit (red line)
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Figure 6.3: Curve Fitting to CM Data, experimental data (X), curve fit (red line)

A fifth order polynomial was fitted to the CL data using the MATLAB curve fitting toolbox

(see figure 6.1). The order of the polynomial is based on trial and error to find the order of best

fit. The following expression was found for CL as a function of α:

CL(α) = −175α5 + 55.1α4 − 11.4α3 − 2.05α2 + 4.89α+ 0.533. (6.1)

Using the same procedure, sixth order and cubic polynomials were fitted to the CD and CM

data respectively (figures 6.2 and 6.3 respectively). The following expressions for CD and CM

were found as functions of α:

CD(α) = 103α6 − 13.7α5 − 8.55α4 + 0.202α3 + 0.916α2 + 0.155α+ 0.0361, (6.2)

CM(α) = 0.255α3 − 0.0638α2 − 0.603α − 0.0305. (6.3)

Experimental data was also provided for the engines. To calculate the thrust force coefficient

polynomials were fitted to the angular speed of the propeller (ωprop measured in [rads/sec]) vs

throttle (figure 6.4).

296



Figure 6.4: Curve Fitting to ωprop Data, experimental data (X), curve fit (red line)

The following expression for ωprop as a function of δth was found:

ωprop(δth) = 857 δ4
th − 1450 δ3

th + 421 δ2
th + 772 δth − 2.94. (6.4)

Given an ωprop value, the advance ratio, J, of the propeller can be determined from equation

(6.5):

J =
VT
nD

, (6.5)

where n is the rotational speed of the propeller given in revolutions per second [RPS]:

n =
ωprop

2π
. (6.6)

ωprop is the rotational speed of the propeller give in [rads/sec] calculated by equation (6.4), D

is the propeller diameter and VT is the true airspeed of the aircraft. The advance ratio, J , is

the non-dimensional parameter used to describe the incoming angle of the fluid relative to the

propeller blade. Using experimental data, the thrust coefficient, CT was mapped as a function

of J , as given in figure 6.5.
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Figure 6.5: Curve Fitting to CT Data, experimental data (X), curve fit (red line)

A fifth order polynomial was fitted to the data points in figure 6.5 and the following expression

was found:

CT(J) = 0.00578 J5 − 0.0395 J4 + 0.109 J3 − 0.198 J2 − 0.054 J + 0.131. (6.7)

Hence the approximation model of the aircraft for its longitudinal motion is:

body velocity components:

u = VN cos θ − VD sin θ , (6.8)

w = VN sin θ + VD cos θ , (6.9)

true airspeed:

VT =

√
VN

2 + VD
2 , (6.10)

angle of attack:

α = arctan

(
w

u

)
, (6.11)

dynamic pressure:

q̄ =
1

2
ρ (VT )2 , (6.12)

aerodynamic forces and moments:

CM = 0.255α3 − 0.0638α2 − 0.603α− 0.0305

+ CMδE δE + CMq

(
c

2VT

)
q,

(6.13)
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CL = − 175α5 + 55.1α4 − 11.4α3 − 2.05α2

+ 4.89α+ 0.533 + CLδE δE + CLq

(
c

2VT

)
q,

(6.14)

CD = 103α6 − 13.7α5 − 8.55α4 + 0.202α3

+ 0.916α2 + 0.155α+ 0.0361,
(6.15)

where CLq = 7.8415, CLδE = 0.3099, CMq = −14.3808, CMδE = −0.8143,

aerodynamic forces and moments in the body axis:

CX = CL sin(α)− CD cos(α), (6.16)

CZ = −CL cos(α)− CD sin(α), (6.17)

FX = q̄ S CX, (6.18)

FZ = q̄ S CZ, (6.19)

Mp = q̄ S cCM, (6.20)

(6.21)

engine forces and moments:

ω = 857 δ4
th − 1.45e+ 03 δ3

th + 421 δ2
th + 772 δth − 2.94, (6.22)

J = 2π
VT
Dω

, (6.23)

CT = 0.00578 J5 − 0.0395 J4 + 0.109 J3 − 0.198 J2 − 0.054 J + 0.131, (6.24)

Feng = 2

[
CT

( ω
2π

)2
ρD4, 0, 0

]ᵀ
, (6.25)

Meng = r1 ×
Feng

2
+ r2 ×

Feng

2
, (6.26)

where r1 and r2 are the position vectors of each engine from the c.g. Note that there are two

engines, hence the multiplication of the engine force by a factor of 2.
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Next we calculate the components of acceleration and the angular rates:

aX =
FX + FXeng

m
, (6.27)

aZ =
FZ

m
, (6.28)

aN = aX cos(θ) + aZ sin(θ), (6.29)

aD = −aX sin(θ) + aZ cos(θ) + g. (6.30)

(6.31)

Finally the state equations are:

˙xD = Vd, (6.32)

˙VN = aN , (6.33)

˙VD = aD, (6.34)

θ̇ = q (6.35)

q̇ =
Mp + MYeng

IY
, (6.36)

where IY is the moment of inertia with respect to the body y-axis and is equal to 18 kg m2.

In the next section an analysis of the validity of the approximation model against the full order

plant model is carried out.

6.3.2 Model Validation and Verification

Before the lower order approximation model could be used it was important to validate and

verify the accuracy of the approximation model against the higher order plant model. For this

purpose a proportional integral derivative (PID) controller was developed to control the plant

model. The PID controller consists of a height control loop to calculate a demanded pitch an-

gle given a desired height. The pitch demand is fed to the pitch control loop to calculate the

required elevator deflection and the throttle input is obtained via a speed control loop.

The PID controller is used to control the plant model which is the full model comprising of the

experimental data. For all validation tests the aircraft is required to fly the trajectory given in

figure 6.6.
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Figure 6.6: UAV Case Study Reference Trajectory

The first validation was to check if the algebraic expressions for the force and moment coefficients

are acceptable. The control inputs produced by the PID controller to fly the plant model on

the given trajectory (figure 6.6) were input into the approximation model and the force and

moment coefficients from both models were compared. Figure 6.7 shows the CL values produced

by the actual higher order model and the approximation model. The results show that the

approximation model closely follows the response of the actual higher order model. Figures 6.8,

6.9, 6.10 and 6.11 show the comparison plots for CD, CM, RPM and CT respectively. All plots

show that the approximation model does an excellent job of producing the same results. There

are some differences which are to be expected, however they are within acceptable bounds.
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Figure 6.7: Comparison of CL, actual model (red), approximation model (blue)

Figure 6.8: Comparison of CD, actual model (red), approximation model (blue)
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Figure 6.9: Comparison of CM, actual model (red), approximation model (blue)

Figure 6.10: Comparison of RPM, actual model (red), approximation model (blue)
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Figure 6.11: Comparison of CT, actual model (red), approximation model (blue)

The last step in verifying the validity of the approximation model is to confirm that if the

approximation model were to be the plant model then similar control inputs are produced. The

plots given in figures 6.12 and 6.13 show the comparisons of the throttle and elevator responses

produced between the actual higher order model and the approximation model. Both figures

show that the approximation is in compliance with the actual higher order model.

Figure 6.12: Comparison of Throttle Response, actual model (red), approximation model (blue)
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Figure 6.13: Comparison of Elevator Response, actual model (red), approximation model (blue)

The results produced in this section verify the validity of the approximation model. This means

that the approximation can be used to predict the behaviour of the actual plant within the

NMPC controller. The next section looks at the design of the NMPC controller.

6.3.3 NMPC Controller

Before applying the the active FTC system of section 5.7.2 a pseudospectral based NMPC

controller is designed for the longitudinal motion of the UAV model using the current control

inputs, δth and δE . The following optimal control problem is solved at each time step:

min
x,u

Hp

2

j=N+1∑
j=1

(∥∥xD(j)−xDref
(j)
∥∥2

Qx
+
∥∥VT (j)−VTref

(j)
∥∥2

QV T
+
∥∥VD(j)−VDref

(j)
∥∥2

QVD
+
∥∥∆u

∥∥2

Q∆u

)
w(j),

(6.37)

subject to (
tf − t0

2

)
Dj,kx (t)− ẋ = 0, (6.38)

x(t0)− xdem(t0) = 0, (6.39)

xlb ≤ x ≤ xub, (6.40)

ulb ≤ u ≤ uub, (6.41)

∆ulb ≤ ∆u ≤ ∆uub, (6.42)
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where Qx, QV T , QV D and Q∆u are weighting parameters.

Table 6.2: Constraints for longitudinal Motion

Variable Upper Constraint Lower Constraint

xD 300 m 1 m

VN 26 m/s 15.6 m/s

VD 3 m/s −3 m/s

θ None None

q None None

δe 30 deg −30 deg

δth 100% 0%

∆δth 200 %/s −200 %/s

∆δe 60 deg/s −60 deg/s

As initial conditions for the controller the trim conditions of the aircraft at a true airspeed of

20m/s are: θ = −0.0040rads, δth = 0.7281rads and δE = −0.0603rads. To test the controller

the aircraft was required to fly the reference trajectory given in figure 6.6. For the test cases

the effects of wind have not been taken into account.

The control inputs produced by the NMPC controller are given in figure 6.14 and show that the

inputs remain well within the constraints of the vehicle. The true airspeed and vertical speed

(or climb rate) demands are given in figures 6.15 and 6.16 respectively. Both plots show that the

controller does an excellent job at maintaining the velocity demands. This is further exemplified

by the height profile given in figure 6.17 showing the aircraft successfully flying the demanded

trajectory.
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Figure 6.14: UAV Case Study NMPC Controller Test - Controls, constraints (dashed red lines),

control inputs (blue)

Figure 6.15: UAV Case Study NMPC Controller Test - True Airpseed, VT
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Figure 6.16: UAV Case Study NMPC Controller Test - Climb Rate, VD

Figure 6.17: UAV Case Study NMPC Controller Test - Height Profile

The next section investigates the application of the active FTC system developed in section 5.7

to the given UAV model.
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6.4 Application of Active FTC System Design to a UAV

The active FTC developed in 5.7 is based on a thrust NMPC controller. Hence the NMPC

controller developed in the previous section is now converted to a thrust controller equivalent.

Pseudospectral discretisation is applied to the controller design and the NMPC state vector is:

xnmpc = [xD, VN , VD, θ, q, δthrust, δe, ∆δthrust ∆δe]
ᵀ , (6.43)

The following optimal control problem is solved at each time step:

min
x,u

Hp

2

j=N+1∑
j=1

(∥∥xD(j)− xDref
(j)
∥∥2

Qx
+
∥∥VT (j)−VTref

(j)
∥∥2

QV T

+
∥∥VD(j)−VDref

(j)
∥∥2

QVD
+
∥∥∆δthrust

∥∥2

QT
+
∥∥∆δe

∥∥2

Qδe

)
w(j),

(6.44)

subject to (
tf − t0

2

)
Dj,kx (t)− ẋ = 0, (6.45)

x(t0)− xdem(t0) = 0, (6.46)

xlb ≤ x ≤ xub, (6.47)

ulb ≤ u ≤ uub, (6.48)

∆ulb ≤ ∆u ≤ ∆uub, (6.49)

where VT and VTref
are the actual and reference true airspeeds respectively and Qx, QV T , QV D,

QT and Qδe are weighting parameters and the terms w(j) are the pseudospectral node weights as

defined in chapter 3. The constraints applied are given in Table 6.3. The cost function weights

are square matrices with the following diagonal values for each state: Qx = 10, QV T = 5,

QV D = 5, QT = 0.01 and Qδe = 0.01.
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Table 6.3: Constraints for UAV Case Study, Thrust Controller

Variable Upper Constraint Lower Constraint

xD 300 m 1 m

VN 26 m/s 15.6 m/s

VD 3 m/s −3 m/s

θ None None

q None None

δe 30 deg −30 deg

∆δthrust 122 N/s −122 N/s

∆δe 60 deg/s −60 deg/s

Trim conditions for the aircraft at 20m/s are: θ = −0.0040rads, Thrust = 27.7426N and

δe = −0.0603rads and have been used as initial conditions for the controller. The upper limit on

the thrust constraint continually changes based on the true airspeed of the aircraft according to

the equations given in (6.22). The minimum thrust level is at all time set to 0N . If however an

engine failure is detected the upper limit on thrust is set to the filter estimate plus 2σ uncertainty.

An unscented Kalman filter (UKF) filter was designed to perform fault detection and identifi-

cation (FDI) with the following process noise and noise covariance matrices:

Q =


(2∆t)2 0 0 0

0 (2∆t)2 0 0

0 0 (0.017∆ t)2 0

0 0 0 (122∆t)2

 , R =


(0.5)2 0 0

0 (0.5)2 0

0 0 (0.17)2

 , (6.50)

where ∆t is the filter update rate 0.01 secs. The initial state vector and covariance matrix are:

x(0) = [20, 0 − 0.0040, 27.7426]ᵀ , P(0) =


(0.5)2 0 0 0

0 (0.5)2 0 0

0 0 (0.0850)2 0

0 0 0 (6)2

 . (6.51)

Finally the fault detection logic is based on that given in subsection 5.7.1.4.
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6.4.1 Numerical Results

The following scenarios were set up to test the active FTC system on the UAV model:

Scenario 1: no fault case

Scenario 2: engine failure - 50% power loss 20 seconds into flight,

Scenario 3: engine failure - 70% power loss 30 seconds into flight.

The aircraft was required to follow the flight trajectory given in figure 6.18 (Note: wind effects

have been taken into account).

Figure 6.18: UAV Case Study Active FTC: Reference Trajectory

Figure 6.19 presents the fault detection logic for each scenario. There was no fault present in

scenario 1 and this is reflected in the results of the fault detection logic as the value of the fault

flag remained zero throughout the duration of the flight. The results for scenarios 2 and 3 show

that the fault flag is triggered (ie. the value of the flag switches to 1) within seconds of the fault

occurring.
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Figure 6.19: UAV Case Study Active FTC: Fault Detection Logic Results

The control inputs produced by the controller for each scenario are given in figures 6.20, 6.21

and 6.22. The results clearly indicate that the controller is able to successfully reconfigure based

on FDI data and as the loss of power increases the demand on the elevator increases.

Figure 6.20: UAV Case Study Active FTC – Scenario 1: No Fault - Controls
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Figure 6.21: UAV Case Study Active FTC – Scenario 2: 50% Loss of Power - Controls

Figure 6.22: UAV Case Study Active FTC – Scenario 3: 70% Loss of Power - Controls

The true airspeed response of the aircraft is given in figure 6.23. The demanded speed was 20m/s

and the results show that for a 50% loss in power the true airspeed demand is unachievable during

climb to altitude. However during straight and level flight the velocity demand is gradually
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achieved and is finally reached once the aircraft begins the descent phase. During the descent

the true airspeed demand is similar to the no fault case. In the case of 70% power loss the aircraft

is unable to meet the true airspeed demand during straight and level flight, however halfway

through the descent phase the aircraft picks up speed and is able to maintain the reference. The

main point to note here is that the aircraft stall speed of 12m/s was never reached hence the

controller was able to avoid a stall situation even with 70% power loss.

Figure 6.23: UAV Case Study Active FTC: True Airspeed, VT

The climb rate (or vertical speed) response is shown in figures 6.24 and 6.25 and shows that

during power loss the vertical speed oscillates between the upper and lower constraints values.

This is to be expected as the elevator is working harder to regulate the speed, and hence bounces

between the two limits.
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Figure 6.24: UAV Case Study Active FTC: Climb Rate, VD

Figure 6.25: UAV Case Study Active FTC: Climb Rate, VD

Plots for pitch rate, pitch angle, Angle of Attack (AoA) and g-forces (aZ) have been provided

in figures 6.26, 6.27, 6.28 and 6.29 respectively. There are no design constraints placed on these

parameters however the plots show that even in the extreme failure case (70% power loss) the
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aircraft maintains a reasonable pitch rate, θ and AoA. Also in the worst case scenario the g-forces

experienced is 2g’s for a very short period of time which is very unlikely to lead to structural

damage.

Figure 6.26: UAV Case Study Active FTC: Pitch Rate, q

Figure 6.27: UAV Case Study Active FTC: Pitch Angle, θ
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Figure 6.28: UAV Case Study Active FTC: Angle of Attack, α

Figure 6.29: UAV Case Study Active FTC: Z-body Acceleration, aZ

Finally the trajectories flown by the aircraft in each sceanrio are shown in figrure 6.30. The

interesting points to note here are that in the highest loss of power case (scenario 3) the aircraft

did not have enough power to reach the highest flight altitude so instead cruised at an altitude it
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was capable of flying. Once the straight and level phase of the flight was over the controller was

able to fly the aircraft back onto the demanded trajectory. The 50% loss of power case shows

that the aircraft still had enough power to fly back onto the demanded path halfway through

the straight and level flight phase.

Figure 6.30: UAV Case Study Active FTC: Height Profile

6.5 Summary of Findings

This chapter demonstrated the successful application of my active FTC design on an actual

UAV which is currently in operation. The controller was implemented using actual aircraft data

and shows great promise for active fault tolerant flight control.
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Chapter 7

Conclusion and Recommendations

for Further Work

7.1 Conclusions

For many years linear model predictive control (MPC) has been the focus of research but very

little attention has been paid to nonlinear MPC due to its greater computational load. However,

due to the availability of faster computing and the benefits of incorporating a nonlinear predic-

tion model in the controller design, this research focused on the implementation of nonlinear

model predictive control (NMPC). More specifically, this thesis looked at the application of fault

tolerant control (FTC) to flight control systems.

Receding horizon control (MPC) whether linear or nonlinear involves solving an open loop opti-

mal control problem at every time step and various numerical techniques used for implementing

optimal control were investigated in the design of the NMPC controller. The various designs

were applied to the well known Brachistochrone problem and the collocation method using pseu-

dospectral discretisation was found to be the most promising solution for fault tolerant NMPC

design. This conclusion was mainly based on the fact that the pseudospectral technique pro-

duced accurate results with fewer discretisation points, thereby using less CPU time. Need for

excessive CPU time is a major drawback of NMPC hence any saving in computational time is

highly advantageous. The pseudospectral method was then used to design a linear as well as

a nonlinear MPC controller for a simple 2D robot model using 50 discretisation points. The

controllers were initially used to solve an open loop problem and the effects of selecting a cost

function, integration time step, prediction window length and initial conditions were all analysed
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and comparisons were made between the linear and nonlinear solutions. Based on the findings a

prediction window length of 5 seconds was chosen as suitable for trajectory following. This was

followed by an investigation into solving the closed loop problem and once again the linear and

nonlinear outcomes were compared. All results showed that the linear solution performed on par

with the nonlinear solution when the perturbations were small. However when perturbations

in the linear controller became large the linear solution diverged. The design of the nonlinear

controller proved to be the most promising solution particularly in the event when the linear

assumptions, on which the linear controller is based, break down (ie. for large perturbations).

The next step in designing a fault tolerant controller was the investigation of fault detection

techniques. Observation based techniques were implemented, specifically the extended Kalman

filter (EKF), unscented Kalman filter (UKF) and the interactive multiple model (IMM) filters.

The NMPC controller design was integrated with each of the filters and the performance of

the overall active fault tolerant control system design was examined. The IMM filters outper-

formed the single EKF and UKF designs, however the single UKF filter was chosen for the

final design, as although the IMM showed great potential as a fault detection scheme, designing

a filter for all possible fault scenarios was deemed to be impractical. The final design of the

fault tolerant controller using pseudospectral NMPC with a UKF filter for fault detection and

identification (FDI) was compared to its linear counterpart where a linear MPC controller was

integrated with a UKF filter. The results showed that in the event of a fault the performance

of the linear filter was the same as the nonlinear solution up until the point at which the lin-

ear assumptions started to breakdown. The proposed nonlinear MPC design integrated with a

UKF filter turned out to be the most viable solution to the active fault tolerant control problem.

The final design was then implemented on a generic aircraft model. Initially only the longitudi-

nal motion of the aircraft was investigated assuming FDI information was available. Once the

controller was tested and verified it was then applied to the full 6DoF aircraft where once again

the FDI information was assumed. Once it was established that the controller was performing

well as a fault tolerant controller the next step was to integrate the UKF FDI filter design.

The filter was designed separately to the NMPC controller using the well known proportional

integral derivative (PID) control methodology. The filter was designed to make estimates of

the aircraft control derivatives which are directly affected in the event of a fault. The results

showed that estimating these derivatives is not a simple task and goes beyond the scope of this
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research. To remain within the scope and to demonstrate the feasibility of my proposed solution

as fault tolerant flight controller, a full active FTC system was designed and implemented for

the longitudinal motion of the aircraft. The scenario in which the engine fails and power to the

aircraft is lost, was set up. The NMPC controller was designed to control thrust and elevator

input and the UKF filter was tailored to estimate thrust level. If the thrust demand from the

NMPC controller is greater than the filter thrust estimates for a specified period of time this

indicates a fault and raises a fault flag. Once the flag has been set the thrust constraints of the

controller are amended to the filter estimates, providing the controller with up to date informa-

tion on the current status of the aircraft to allow it to optimally allocate control authority. The

results show that my proposed design for active FTC flight control is viable.

The final phase of demonstrating design feasibility was to investigate the performance of the

FTC system on an actual unmanned aerial vehicle (UAV) model. The aircraft model was pro-

vided by Williams [128] and is of an actual UAV currently in operation. The proposed active

FTC design was successfully applied to the longitudinal motion of the aircraft. Results showed

that the proposed design is a feasible methodology for the solution of fault tolerant flight control

design for UAVs.

In conclusion, with regards to the research questions outlined in Chapter 2, nonlinear model

predictive control was found to be a feasible solution to the fault tolerant flight control problem.

Comparisons with linear MPC showed that in the event of a fault occurring for which nonlin-

earities in the system significantly affect the system behaviour, nonlinear MPC outperforms its

linear counterpart. The NMPC solution was seen to have inherent fault tolerant capabilities

which was demonstrated by the 6DoF model, where, in the event of an actuator failure and no

FDI information, it was able to redistribute control authority, however with FDI information

reaction time was found to be much shorter. It is common practice to design a nominal con-

troller for fault free operations and a controller to handle faults which comes into effect once

the FDI system detects a fault. Due to the inherent fault tolerant control capabilities of MPC

it was found that there was no need to design two types of controllers. Thus, the inherent fault

handling characteristics make MPC robust to faults up to a certain degree. If however fault

information is available it can be used to reconfigure the controller. Overall the proposed active

fault tolerant flight control system design shows promise as a practical method for fault tolerant

flight control for UAVs.
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7.2 Recommendations

As a result of the research in this thesis the following areas have been identified as having great

merit for further research and development.

• Investigation of FDI for 6DoF aircraft motion and addressing the observability issue present

in the 6DoF analysis.

• Investigation of other nonlinear fault detection techniques such as particle filtering and

neural networks.

• Development of a guidance system where information from the FTC system can be incor-

porated into mission replanning. This is very important, as based on the health of the

aircraft, the guidance system can decide if the aircraft is capable of flying the full mission

or whether it is better to re-plan.

• Investigation of the handling of incorrect fault detection data such as false or delayed

information.

Fault tolerant flight control is a difficult problem. Integration of both the controller and FDI

components into the full 6DoF aircraft model is highly complex and requires a lot of time,

multiple design procedures and travelling down many different paths to reach a full solution.
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