156 research outputs found

    Robust fault tolerant control allocation for a modern over‐actuated commercial aircraft

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordThis paper presents a novel form of control allocation, designed within a sliding mode framework, for the fault tolerant control of over-actuated systems. The control allocation is designed in such a way as to allow a subset of the actuators to remain inactive under nominal fault-free conditions. In the event that the active set of actuators becomes unable to provide the desired performance, an adaption process takes place which allows the inactive actuators to compensate. A computationally light gradient descent algorithm is proposed to govern the adaption which guarantees that, if possible, actuator saturation is avoided and system performance is maintained - even in the event of severe actuator faults and failures. Rigorous conditions are derived, in terms of the faults/failures, uncertainties in fault reconstruction information and the adaptive process, which ensures sliding occurs in a finite time and that the resulting motion is stable. To demonstrate the effectiveness of the control scheme, a highfidelity blended wing body aircraft model is also proposed in this paper; this particular configuration of aircraft is nominally unstable, with poor control authority and a large amount of redundancy - making it a suitable candidate for testing reconfigurable fault tolerant control laws in the presence of input constraints.University of Exete

    Advanced flight control system study

    Get PDF
    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed

    Autonomous Flight, Fault, and Energy Management of the Flying Fish Solar-Powered Seaplane.

    Full text link
    The Flying Fish autonomous unmanned seaplane is designed and built for persistent ocean surveillance. Solar energy harvesting and always-on autonomous control and guidance are required to achieve unattended long-term operation. This thesis describes the Flying Fish avionics and software systems that enable the system to plan, self-initiate, and autonomously execute drift-flight cycles necessary to maintain a designated watch circle subject to environmentally influenced drift. We first present the avionics and flight software architecture developed for the unique challenges of an autonomous energy-harvesting seaplane requiring the system to be: waterproof, robust over a variety of sea states, and lightweight for flight. Seaplane kinematics and dynamics are developed based on conventional aircraft and watercraft and upon empirical flight test data. These models serve as the basis for development of flight control and guidance strategies which take the form of a cyclic multi-mode guidance protocol that smoothly transitions between nested gain-scheduled proportional-derivative feedback control laws tuned for the trim conditions of each flight mode. A fault-tolerant airspeed sensing system is developed in response to elevated failure rates arising from pitot probe water ingestion in the test environment. The fault-tolerance strategy utilizes sensor characteristics and signal energy to combine redundant sensor measurements in a weighted voting strategy, handling repeated failures, sensor recovery, non-homogenous sensors, and periods of complete sensing failure. Finally, a graph-based mission planner combines models of global solar energy, local ocean-currents, and wind with flight-verified/derived aircraft models to provide an energy-aware flight planning tool. An NP-hard asymmetric multi-visit traveling salesman planning problem is posed that integrates vehicle performance and environment models using energy as the primary cost metric. A novel A* search heuristic is presented to improve search efficiency relative to uniform cost search. A series of cases studies are conducted with surface and airborne goals for various times of day and for multi-day scenarios. Energy-optimal solutions are identified except in cases where energy harvesting produces multiple comparable-cost plans via negative-cost cycles. The always-on cyclic guidance/control system, airspeed sensor fault management algorithm, and the nested-TSP heuristic for A* are all critical innovation required to solve the posed research challenges.Ph.D.Aerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91453/1/eubankrd_1.pd

    Retrofit systems for reconfiguration in civil aviation

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2000.Includes bibliographical references (p. 215-223).A new concept for retrofitting a reconfiguration module to an existing control law is reported in this thesis. The concept is motivated by the need for low cost, add-on modules that improve air safety in the existing fleet of civil air transport vehicles. A direct adaptive approach that accommodates control surface nonlinearities is adopted, which uses a slowly adapting model of the closed-loop aircraft as the reference model. The motivation, benefits, and components of the architecture are presented. In addition, the issues of control surface magnitude and rate saturation are addressed. A proof of stability is outlined for input-error adaptation when position and rate saturation are present. The reconfiguration architecture is demonstrated using an F/A-18 and a generic transport nonlinear simulator. General issues associated with commercial transport reconfiguration are highlighted. In both the longitudinal and directional axes, the control surfaces are not well balanced from a reconfiguration viewpoint. As a result, a novel reconfiguration control allocation scheme was devised that blends in all the control effectors in a given axis to perform the reconfiguration task. The simulation results revealed that the reconfiguration architecture does provide reconfiguration functionality for a wide variety of control surface failures. The reconfiguration potential is illustrated through comparisons of post-failure performance with and without reconfiguration via non-linear simulations. Additionally, comparisons between post-failure performance and nominal performance are made through non-linear simulations, closed-loop frequency responses, and aircraft handling qualities. For all of the failure scenarios illustrated, the simulation results showed that the aircraft without reconfiguration departs; with reconfiguration, nominal performance is achieve provided that adequate control authority exists post-failure.by Jerry M. Wohletz.Ph.D

    Aeronautical engineering: A continuing bibliography with indexes (supplement 267)

    Get PDF
    This bibliography lists 661 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; theoretical and applied aspects of aerodynamics and general fluid dynamics; electrical engineering; aircraft control; remote sensing; computer sciences; nuclear physics; and social sciences

    Aeronautical engineering: A continuing bibliography with indexes (supplement 286)

    Get PDF
    This bibliography lists 845 reports, articles, and other documents introduced into the NASA scientific and technical information system in Dec. 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Technology 2000, volume 1

    Get PDF
    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017
    corecore