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Abstract

This paper presents a novel form of control allocation, designed within a sliding mode
framework, for the fault tolerant control of over-actuated systems. The control allocation
is designed in such a way as to allow a subset of the actuators to remain inactive under nom-
inal fault-free conditions. In the event that the active set of actuators becomes unable to
provide the desired performance, an adaption process takes place which allows the inactive
actuators to compensate. A computationally light gradient descent algorithm is proposed
to govern the adaption which guarantees that, if possible, actuator saturation is avoided
and system performance is maintained, even in the event of severe actuator faults/failures.
Rigorous conditions are derived, in terms of the faults/failures, uncertainties in fault recon-
struction information and the adaptive process, which ensure sliding occurs in a finite time
and that the resulting motion is stable. To demonstrate the effectiveness of the control
scheme, a high-fidelity blended wing body aircraft model is also proposed in this paper;
this particular configuration of aircraft is nominally unstable, with poor control authority
and a large amount of redundancy, making it a suitable candidate for testing reconfigurable
fault tolerant control laws in the presence of input constraints.

1 INTRODUCTION

By abstaining from using a traditional tailplane, and increasing
the internal volume, the Blended Wing Body (BWB) aircraft
provides an efficient alternative to the conventional “tube with
wings” planform that has so far dominated the commercial avi-
ation industry [1]. Although the resulting increase in efficiency is
highly desirable, sacrifices are made elsewhere. When compared
to conventional aircraft, the BWB has far less control authority
and poorer stability characteristics: in both the pitch and yaw
axis. Furthermore, a BWB typically features a set of highly cou-
pled and highly redundant actuators, in the form of elevons that
span the entire trailing-edge of the wing. The cumulation of
these factors means that the aircraft is prone to actuator sat-
uration: this is exacerbated in the event of actuator faults and
failures. To prevent actuator saturation-and the associated per-
formance degradation-the aircraft’s redundancy must be intelli-
gently utilised.

A popular choice of actuator redundancy management is
Control Allocation (CA). Through its use, it is possible to design
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a controller based on a reduced order “virtual” control, this can
then be redistributed among the actuator suite independently of
the closed-loop system’s performance [2]. In its simplest form,
CA can be achieved through a weighted Moore–Penrose inverse
of the input distribution matrix, where the inherent weighting
facilitates reconfiguration of the control distribution amongst
the actuators. Several different choices of weighting matrices
have been explored in the literature. The work in [3] chooses
the weighting matrix to reflect the health of individual actua-
tors, providing some tolerance to faults and failures. In [4] and
[5], the weighting is chosen to help prevent problems associated
with saturation. The work in [4] prioritises the use of actuators
with the greatest range of motion; whilst [5] utilises the weight-
ing to ensure all actuators saturate at the same point.

Several works have proposed more complex versions of CA
for the role of preventing saturation. The work in [6] proposes
an alternative to the Moore–Penrose inverse which involves
the addition of an adaptive parameter-this can then be used to
tune the control distribution. The method of “daisy-chaining”
is presented in [7], which splits the actuator suite into different
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priority groups; then in the event that one group begins to
saturate, the next group in the “chain” is used. This is a popular
methodology in the aerospace community. Recently, an adap-
tive law was proposed in [8] which allows a suitable CA law
to be calculated on-line, encompassing actuator non-linearities.
Many CA methods utilise on-line optimisation to ensure the
control distribution satisfies some criteria. In [9], a parameter
within the CA scheme is chosen through an unconstrained
optimisation process to minimise any saturation in the system.
Contrastingly, quadratic programming is explored in [10] and
[11], where the difference in the achieved and commanded
“virtual” control is minimised, using the saturation limits as
constraints. In the event that redistribution of the “virtual”
control alone is not sufficient to prevent saturation, [12] pro-
poses an optimisation scheme which minimises any degradation
to the system’s performance through optimising a Lyapunov
function.

BWB aircraft are a natural candidate for demonstrating the
efficacy of CA schemes because of their unique actuator config-
uration. The following works have explicitly considered the use
of CA for BWBs. In [13], an analysis of the coupling between the
BWB’s control surfaces is presented. A discussion on the non-
linear interactions between the control surfaces, and how CA
can be used to accommodate them, can be found in [11, 14]. To
help alleviate the effects of coupling, the work in [15] proposes
weighting the lateral and longitudinal CA modules differently,
allowing different actuators to be prioritised for specific roles. In
the event of actuator faults and failures, these roles are relaxed
avoiding any need to reconfigure the controller. The work in
[16] proposes a method of designing the CA to minimise the
trim-drag of the aircraft.

The main focus of this paper however is to consider the
effects of actuator faults and failures. One of the main require-
ments for fault tolerant control is robustness to both uncer-
tainties and disturbances. Multiple levels of Sliding Mode Con-
trollers (SMCs) are designed for the control of a tailless aircraft
in [17] and [18]: one SMC provides a robust “virtual” control law
which is then distributed through a second SMC to the actuator
suite, ensuring that the “virtual” control is robustly achieved.
Works which have considered the use of robust control in con-
junction with CA include [19] and [20]. In [19] and [20], H∞
control and back-stepping are used, respectively, whereas SMC
is used in [3] and [21] for FTC of aerospace systems. Higher-
order SMCs (HOSMCs) have also been considered for FTC.
These feature continuous control laws and therefore avoid the
phenomenon of “chattering,” which can be problematic for
conventional SMC. In [22], an HOSMC is compared with a con-
ventional SMC for the control of a fighter aircraft subject to dif-
ferent uncertainties and disturbances - including actuator faults
- demonstrating the HOSMC’s ability to alleviate the “chatter-
ing” experienced by the conventional SMC scheme. An adap-
tive HOSMC is proposed in [23] which does not require prior
knowledge of the bounds on any disturbances/uncertainties
to ensure that sliding is induced in finite time. In [24], Non-
Linear Dynamic Inversion is used in conjunction with an
HOSMC to further reduce the effects of uncertainty in the
system.

Some robust control methods have been designed to prevent
saturation, without the need for redistribution. An Integral
SMC scheme is presented in [25] which blends high- and
low-performing controllers; an optimisation scheme chooses
the best possible performing controller that keeps actuators
within their limits. In a similar vein, [26] proposes a nominal
reference model which is adapted on-line to change the system’s
performance. The closed-loop performance and the control
distribution are designed through a constrained optimisation
as part of a Model Predictive Control (MPC) law in [27].
However, due to the complexity of the optimisation, MPC is
computationally expensive, making it difficult to accomplish
in real time. In [5] and [28], variations of Model Reference
Adaptive Control (MRAC) are proposed, which, although do
not prevent saturation, provide some robustness against satura-
tion. These schemes are shown to be effective in controlling a
flying wing type aircraft (similar to the BWB). In [5] a “minimal
control” synthesis is presented which does not rely on the
identification of model parameters, whereas in [28], the refer-
ence model is of a reduced order, based on the tracking error
system.

In this paper, a novel fault tolerant SMC and an adaptive
CA scheme are developed. As compared to the work in [3]
(where the CA is either fixed or dependent on the actuators’
health), the proposed scheme in this paper is more elaborate
and includes an additional weighting in the CA which provides
further design freedom to prioritise the use of specified actua-
tors. Furthermore, although the scheme in [3] can handle actu-
ator faults/failures, the scheme does not consider actuator sat-
uration: this paper proposes a scheme which allows the control
effort to be redistributed in such a way as to ensure, if possible,
that saturation is avoided. Another of the paper’s main contribu-
tion is the modification of the CA structure in [9], which allows
the coupling in a BWB’s actuator suite to be more effectively
handled. This is achieved through allowing a subset of the actu-
ator suite to produce the entire control effort in nominal condi-
tions. If this subset begins to saturate, then an adaptive process
allows the entire actuator suite to be used. The SMC is designed
to be robust to uncertainties in the fault reconstruction (which
is used in the CA).

The structure of the paper is as follows: Section 2 presents
an overview of the problem addressed in this paper. In Sec-
tions 3 and 4, the novel CA scheme is proposed and then
appropriate SMC laws are designed and analysed. Section 5 pro-
vides the details of a high-fidelity 6 Degree of Freedom (DoF)
non-linear BWB model which will form the basis of the con-
trol design, which is discussed in Section 6, and the simulation
results, which are shown in Section 7. Section 8 provides some
concluding remarks.

The notation used in this paper is quite standard: ℝ
represents the set of all real numbers and I represents an
appropriately sized identity matrix. Unless specified oth-
erwise, ‖ ⋅ ‖ represents the Euclidean 2 norm. The vec-
tor x = col (x1,… , xm ) represents the concatenation of the
components into a column vector and X = diag(x1, .., xm )
represents a matrix whose diagonal elements are the
xis.
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2 PROBLEM STATEMENT

Consider an nth order over-actuated Linear Time Invariant
(LTI) system

ẋ(t ) = Ax(t ) + BWf (t )u(t )

y(t ) = Cx(t ),
(1)

where the system’s state, input and the controlled outputs are,
respectively, denoted by x(t ) ∈ ℝn, u(t ) ∈ ℝm and y(t ) ∈ ℝl .
Here, it is assumed that all the states are available. In this
paper, it is also assumed that actuator redundancy is available,
that is the system is over-actuated (m > l ), meaning that there
are strictly more actuators than outputs to be controlled. The
corresponding system matrices are: A ∈ ℝn×n, B ∈ ℝn×m and
C ∈ ℝl×n. The square matrix Wf (t ) = diag(w f1

(t ),… , w fm
(t )) is

a time-varying matrix, which represents any actuator faults and
failures present in the system. Each scalar diagonal compo-
nent w fi

(t ) signifies the health of the ith actuator and as such
is bounded so that 0 ≤ w fi

(t ) ≤ 1. A healthy actuator is indi-
cated by w fi

= 1, whilst w fi
= 0 represents a completely failed

actuator-anywhere in between these values indicates a fault. In
reality, the health of the actuators are not precisely known. For
practical purposes, they can be approximated online by a Fault
Detection and Isolation (FDI) system (see, e.g. the sliding mode
approach proposed in [29] or the Kalman filter approach in
[30]); however, this introduces uncertainty into the feedback sys-
tem. Therefore, consider the following expansion of Wf (t ) in
the state equations of (1) so that

ẋ(t ) = Ax(t ) + B
(
I − Δ(t )

)
Ŵ f (t )

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
W f (t )

u(t ),
(2)

where Ŵ f (t ) ∈ ℝm×m represents the approximation of Wf (t )
(as calculated by an FDI scheme) and Δ(t ) ∈ ℝm×m is a diago-
nal matrix denoting the uncertainty in the fault reconstruction.
To capture the effects of actuator saturation, it is assumed that
the individual components of the control signal in (2), u(t ), are
bounded satisfying

ui (t ) =

⎧⎪⎪⎨⎪⎪⎩
uimax

, for uci
(t ) ≥ uimax

uci
(t ), for uimin

< uci
(t ) < uimax

uimin
, for uc (t ) ≤ uimin

,

(3)

where uc (t ) is the signal generated by the controller and u(t )
is the achieved control signal (i.e. that which is seen by the
plant). The maximum and minimum limits of the ith actuator
are denoted by uimax

and uimin
, respectively; typically in aerospace

systems, these are known and represent the minimum and max-
imum deflections of flaps or the minimum and maximum thrust
produced by an engine.

3 CONTROL ALLOCATION

Consider the system presented in (2). For the purpose of control
design, assume the states can be reordered and partitioned to
achieve the following form:

B =

[
B1

B2

]
, (4)

where B2 ∈ ℝ
l×m contains the majority of the control effort

and B1 ∈ ℝ
(n−l )×m is considered “small” in comparison [3]. For

the sake of simplicity, it is assumed that ‖B2‖ = 1: such a result
is always possible by scaling the last l states of the system. Com-
monly, in the CA literature, a reduced order “virtual” control
signal v(t ) ∈ ℝl is related to the physical control signal uc (t )
through a pseudo-inverse structure. In [9, 31], the following
form is proposed:

uc (t ) =Wp1Ŵ f (t )BT
2 (B2Ŵ f (t )Wp1Ŵ f (t )BT

2 )−1

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
B
†
2

v(t ), (5)

where Wp1 ∈ ℝ
m×m is a fixed diagonal matrix which constitutes

design freedom, thus allowing the use of certain actuators to be
prioritised. Through direct evaluation, it can be verified that this
choice of uc (t ) satisfies

B2
(
I − Δ(t )

)
Ŵ f (t )uc (t )|Δ=0 = v(t ), (6)

and therefore demonstrates that, despite actuator faults and fail-
ures, v(t ) is mapped to the bottom partition of (2) and directly
represents the effect of the control on the last l channels of ẋ(t ):
as long as there is no uncertainty in the system. Although it is
possible to use Wp1 in (5) to try to accommodate saturation lim-
its, it is not straight-forward as the relationship between Wp1 and
uc (t ) is non-linear. This approach would also remove any facil-
ity to prioritise actuators subject to other criteria, such as (in
an aerospace context) reducing structural loading or increasing
efficiency. As an alternative, consider the addition of an adaptive
component to (5): specifically

uc (t ) :=
(

B
†
2 (t ) +

(
I − B

‡
2 (t )B2Ŵ f (t )

)
Θ(t )B‡2 (t )

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

Φ(t )

v(t ), (7)

where Θ(t ) = diag(𝜃1(t ),… , 𝜃m (t )) is an adaptive parameter, B
†
2

is the pseudo inverse of B2Ŵ f defined in (5) and B
‡
2 ∈ ℝ

m×l is
chosen as any appropriate right pseudo inverse of B2Ŵ f (this
will be discussed later). It can be verified that, independently of
Θ(t ) and B

‡
2 (t ), (7) satisfies (6) and that uc (t ) varies linearly with

respect to Θ(t ). Furthermore, when Θ(t ) = 0, the expression
(7) reduces to (5), thus retaining the original CA form under
nominal conditions. A suitable choice of Θ(t ) is discussed in
Section 7.2.
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Remark 1. The choice of structure in (7) is inspired by the adap-
tive formulation in [6]. This has been modified in [9] to accom-
modate actuator faults and failures. In [9], the pseudo-inverse
B
‡
2 (t ) is chosen such that B

‡
2 (t ) = B

†
2 (t ) and a full-rank restric-

tion is placed on the design of Wp1. In this paper, B
‡
2 (t ) is chosen

as

B
‡
2 =Wp2Ŵ f (t )BT

2 (B2Ŵ f (t )Wp2Ŵ f (t )BT
2 )−1, (8)

where Wp2 ∈ ℝ
m×m is a second priority weighting matrix. By

choosing B
‡
2 ≠ B

†
2 , additional design freedom is introduced.

Remark 2. If the restriction on Wp1 in [9] is relaxed, (5) can be
designed to operate within a subset of the actuator suite since
the ith actuator can be removed from the distribution of (5) by
setting Wp1i

= 0. This may be desirable in cases where actuators
should be reserved for their primary functions which do not fit
in the controllers remit; for example, in aerospace systems the
main purpose of engines are for longitudinal control but they
could also be used for lateral control through differential thrust.
In the event of saturation, the adaptive parameter Θ(t ) redis-
tributes the control effort through the adaptive component of
(7) and this can be tuned through choice of Wp2 in (8), to utilise
a different set of actuators. In this paper, the entire actuator
suite is considered for adaption by making Wp2 full rank. This
allows the CA structure in (7) to use a reduced set of actuators in
nominal conditions (when Θ(t ) = 0) whilst allowing the entire
actuator suite to be used in the event of saturation (by setting
Θ(t ) ≠ 0).

Consider a set of allowable actuator faults
and failures  where  is such that if
Ŵ f (t ) ∈ then det(B2Ŵ f (t )Wp1Ŵ f (t )BT

2 ) ≠ 0 and
det(B2Ŵ f (t )Wp2Ŵ f (t )BT

2 ) ≠ 0.

Remark 3. Within the set  , the norms of the pseudo-
inverse structures B

†
2 and B

‡
2 , defined in (5) and (8), respec-

tively, are bounded. This is due to the boundedness properties
of pseudo-inverses described in [32]. Therefore, the following
bounds

𝛾0 > ‖B
†
2 (t )‖ 𝛾1 > ‖B

‡
2 (t )‖, (9)

are always guaranteed to exist. The smallest possible values of 𝛾0
and 𝛾1 can be calculated efficiently through the use of Genetic
Algorithms to search the entire set  (which is compact). The
gains 𝛾0 and 𝛾1 will be exploited in the stability analysis later in
the paper.

4 OPTIMISATION ALGORITHM

This section focusses on the choice of Θ(t ) in (7): specifically
an adaptive algorithm will be proposed suitable for running in
real time.

4.1 Cost function

For any given actuator suite, there exists a set of “virtual” con-
trol signals, v(t ) ∈  , which is achievable subject to the actuator
suite’s health and saturation limits.

Assumption: The virtual control v(t ) always remains in the set
 ; in other words, there must always exist a value of Θ(t ) = Θ∗

which, when substituted into (7), ensures the saturation error

e(t ) = uc (t ) − u(t ) (10)

is equal to zero. The problem considered here is one of perfectly
allocating v(t ), that is, finding the unknown parameter Θ∗. Sub-
stituting from (7), into (10), for a generic choice ofΘ(t ), and for
Θ(t ) = Θ∗ yields

e(t ) =
(

B
†
2 (t ) +

(
I − B

‡
2 (t )B2Ŵ f (t )

)
Θ(t )B‡2 (t )

)
v(t )

−
(

B
†
2 (t ) +

(
I − B

‡
2 (t )B2Ŵ f (t )

)
Θ∗B

‡
2 (t )

)
v(t )

=
(

I − B
‡
2 (t )B2Ŵ f (t )

)(
Θ(t ) − Θ∗

)
B
‡
2 (t )v(t )

= Λ(t )
(
Θ(t ) − Θ∗

)
, (11)

where

Λ(t ) =
(

I − B
‡
2 (t )B2Ŵ f (t )

)
diag

(
B
‡
2 (t )v(t )

)
. (12)

To develop an algorithm to find Θ∗ on-line, define the nth esti-
mate of Θ∗, at a given time t , as Θn, and define the error func-
tion (10) when evaluated at Θn as

en = Λ(Θn − Θ
∗ ). (13)

In (13), Λ is considered fixed and represents the value of Λ(t )
in (12) at the current instant of time. Assuming that the sat-
uration limits in (3) are known, en in (13) can be evaluated
on-line (without knowing Θ∗) and therefore can be used to
iteratively find Θ∗. Furthermore, note that since rank(Λ) ≤
m − l, e = 0 ⇏ 𝜃 = 𝜃∗. To develop a iterative scheme to ensure
en → 0, consider the quadratic cost function

f (𝜃n ) = eT
n en = (Θn − Θ

∗ )T ΛT Λ(Θn − Θ
∗ ). (14)

It is clear that f (Θn ) ≥ 0 and for any v(t ) ∈  , the minimum
of (14) is at f (⋅) = 0. Note that f (Θn ) = 0 ⇏ Θn = Θ

∗ but
it does ensure that uc (t ) = u(t ) and hence v(t ) is perfectly allo-
cated.

4.2 Gradient decent method

To find the minima of the function f (⋅), the following Gradient
Descent algorithm, based on the work in [9], is adopted. Con-
sider the following update law for selectingΘn+1 in terms of the
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previous estimate Θn:

Θn+1 = Θn + diag(anPn )
⏟⎴⏟⎴⏟

𝜉n

, (15)

where the scalar an represents the step length whilst Pn ∈
ℝm represents the search direction [33]. The step length is
chosen to minimise f (Θn+1 ) = f (Θn + anPn ) at each itera-
tion. In such algorithms, the search direction is commonly
chosen as the steepest negative gradient: here this is given
by

Pn = −∇ f (Θn ) = −
[
𝜕 f

𝜕Θn1

,
𝜕 f

𝜕Θn2

, …
𝜕 f

𝜕Θnm

]
T , (16)

where Θni
represents the ith diagonal element of Θn. The value

of ∇ f (Θn ) can be explicitly calculated as

∇ f (𝜃n ) = 2ΛT Λ(𝜃n − 𝜃
∗ ) = 2ΛT en, (17)

from the definition of f (𝜃n ) in (14). Evaluating f (𝜃n+1 ) in (14),
and utilising (15), yields

f (𝜃n+1 ) = (Θn+1 − Θ
∗ )T ΛT Λ(Θn+1 − Θ

∗ )

= (Θn + 𝜉n − Θ
∗ )T ΛT Λ(𝜃n + 𝜉n − 𝜃

∗ )

= f (Θn ) + 𝜉T
n Λ

T Λ𝜉n + 2eT
n Λ𝜉n

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
𝛿 fn

. (18)

It is clear that minimising f (𝜃n+1 ) can be achieved by minimis-
ing the term 𝛿 fn. Using the definitions of 𝜉n from (15) and Pn

from (16) and (17), 𝛿 fn can be expressed as

𝛿 fn = a2
n∇ f (𝜃n )T ΛT Λ∇ f (𝜃n ) − 2aneT

n Λ∇ f (𝜃n )

= a2
neT

n ΛΛ
T ΛΛT en − 4aneT

n ΛΛ
T en

= 4 ‖ΛΛT en‖2

⏟⎴⏟⎴⏟
𝔞

a2
n − 4 ‖ΛT en‖2

⏟⎴⏟⎴⏟
𝔟

an. (19)

Thinking of the right-hand side of (19) as a quadratic scalar
equation, in terms of an, it is clear that 𝛿 fn has a minimum at

an =
𝔟

2𝔞
. (20)

Theorem 1. The scalar an, as defined in (20) always remains bounded

and so by updating Θn+1 according to

Θn+1 = Θn + diag(anPn ), (21)

where Pn are chosen as described in (17), will always result in a decrease of

the cost-function (14).

Proof. The proof is similar to Proposition 1 in [9]. The algorithm
is guaranteed to converge to a local minimum where f (Θn ) = 0,
but does not guarantee Θn → Θ∗. □

Remark 4. In Section 7.2, the computational load of the algo-
rithm is discussed; it is demonstrated that the algorithm is
sufficiently “light” to run in real time on common, existing
employed micro-processors.

5 SLIDING MODE CONTROL DESIGN

In this section, a SMC procedure will be used to design a robust
control law for v(t ) to control (2) through the CA structure (7).

5.1 Sliding surface stability analysis

Assuming there is no saturation in the system (u(t ) = uc (t )),
substituting (7) into (2) yields the following faulty “virtual” sys-
tem:

ẋ(t ) = Ax(t ) +

[
B1
B2

] (
I − Δ(t )

)
Ŵ f (t )Φ(t )v(t ). (22)

Define a coordinate transformation x ↦ Tr x = x̂, where

Tr =

[
I −B1Wp1BT

2 (B2Wp1BT
2 )−1

0 I

]
; (23)

then in the new coordinates the system in (22) becomes

̇̂x(t ) = Âx̂(t ) +

[
B1BN

2

(
I − Δ(t )

)
Ŵ f (t )Φ(t )

I − B2Δ(t )Ŵ f (t )Φ(t )

]
v(t ), (24)

where Â = Tr AT −1
r and

BN
2 = I −Wp1BT

2 (B2Wp1BT
2 )−1B2. (25)

Under “ideal” operating conditions, that is, where the actua-
tors are all healthy and perfectly monitored (Wf (t )=Ŵ f (t ) = I ),
there is no saturation (u(t ) = uc (t )), and there is no adaption
(Θ(t ) = 0); it can be verified through direct evaluation that

B1BN
2

(
I − Δ(t )

)
Ŵ f (t )Φ(t ) = 0, (26)

which means (24) reduces to the regular form [34]:

̇̂x(t ) =

[
Â11 Â12
Â21 Â22

]
⏟⎴⎴⏟⎴⎴⏟

Â

x̂(t ) +

[
0
I

]
⏟⏟⏟

B̂v

v(t ). (27)

This system will be used for the basis of the control design.
Assuming that the system pair (Â, B̂v ) is controllable, (Â11, Â12)
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is also controllable and a reduced order switching function can
be designed [34]. Consider the hyperplane defined by

 = {x̂(t ) ∈ ℝn : s(t ) = 0}, (28)

where the switching function s(t ) :∈ ℝn →∈ ℝl is given by

s(t ) =
[
M I

]
⏟⏟⏟

S

[
x̃1(t )

x̃2(t )

]
⏟⎴⏟⎴⏟

x̃(t )

. (29)

Here, the matrix M ∈ ℝl×(n−l ) represents the design freedom:
a minimal requirement being that M must be chosen so that
Â11 − Â12M is stable. To analyse the dynamics of (24), when
confined to the hyperplane  , define a second coordinate trans-
formation according to x̂ ↦ Tsx̂ = x̃ = col (x̂1, s) where

Ts =

[
I 0

M I

]
. (30)

In the new coordinate system, (24) can be rewritten as[
̇̂x1(t )

ṡ(t )

]
=

[
Ã11 Ã12

Ã21 Ã22

]
⏟⎴⎴⎴⏟⎴⎴⎴⏟

Ã

[
x̂1(t )

s(t )

]
+ B̃v (t )v(t ), (31)

where Ã = TsAT −1
s , the matrix B̃v (t ) is defined as

B̃v (t ) =

[
B1BN

2

(
I − Δ(t )

)
Ŵ f (t )Φ(t )

Ψ(t )

]
, (32)

and where

Ψ(t ) = Il +
(
MB1BN

2

(
I − Δ(t )

)
− B2Δ(t )

)
Ŵ f (t )Φ(t ). (33)

In particular, from (31), Ã11 = Â11 − Â12M and is therefore
Hurwitz stable. When confined to the hyperplane  , the sys-
tem is said to be in an ideal sliding motion [34]. This is charac-
terised by ṡ(t ) = s(t ) = 0. Substituting these values into the bot-
tom partition of (31) and solving for v(t ) yields the control effort
necessary to maintain sliding. This gives the so-called equivalent
control, veq (t ), which in this case can be calculated as

veq (t ) = −Ψ−1(t )Ã21x̂1(t ). (34)

Substituting (34) for v(t ) in the top partition of (31) yields

̇̂x1(t ) =
(
Ã11 − B1BN

2

(
I − Δ(t )

)
Ŵ f (t )Φ(t )Ψ−1(t )Ã21

)
x̂1(t ),

(35)
which describes the equations of motion governing sliding. The
reduced order dynamic (35) can be thought of as the negative

feedback interconnection of the non-linear feedback gain

ũ(t ) :=
(
I − Δ(t )

)
Ŵ f (t )Φ(t )Ψ−1(t )

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
Ω(t )

ỹ(t ), (36)

and the LTI plant

̇̂x1(t ) =Ã11x̂1(t ) + B1BN
2 ũ(t )

ỹ(t ) :=Ã21x̂1(t ),
(37)

which has the associated transfer function

G̃ (s) = Ã21(sI − Ã11)−1B1BN
2 . (38)

For the subsequent analysis define

𝛾2 = ‖MB1BN
2 ‖ (39)

𝛾3 = ‖G̃ (s)‖∞. (40)

Since M in (29) is chosen to stabilise Ã11, it follows that G̃ (s) is
stable and therefore 𝛾3 is finite.

Theorem 2. The sliding motion presented in (35) is asymptotically stable

for any fault/failure combination Ŵ f (t ) ∈ if the uncertainty Δ(t )
satisfies

‖Δ(t )‖ < Δmax ≤
1 − (𝛾2 + 𝛾3)

(
𝛾0 + (1 + 𝛾1)𝛾1Θmax

)
(1 + 𝛾2 + 𝛾3)

(
𝛾0 + (1 + 𝛾1)𝛾1Θmax

) , (41)

where 𝛾0 and 𝛾1 are defined in (9), 𝛾2 is defined in (39), 𝛾3 is defined

in (40) and Θmax is a bound on the adaptive matrix such that Θmax >‖Θ(t )‖, where Θ(t ) is defined in (7).

Proof. For the equivalent control in (34) to be unique, the gain
Ψ(t )-as defined in (33) must be invertible. This is guaranteed if
the following inequality holds true:

‖‖‖(MB1BN
2

(
I − Δ(t )

)
− B2Δ(t )

)
Ŵ f (t )Φ(t )‖‖‖ < 1. (42)

It can be shown that the CA structure Φ(t ), from (7), satisfies

‖Φ(t )‖ < Φmax < 𝛾0 + (1 + 𝛾1)𝛾1Θmax . (43)

Similarly, using (43), (39) and the fact that ‖B2‖ = 1, it can be
verified that‖‖‖(MB1BN

2

(
I − Δ(t )

)
− B2Δ(t )

)
Ŵ f (t )Φ(t )‖‖‖

≤ ‖MB1BN
2 ‖(1 + ‖Δ(t )‖)Φmax + ‖Δ(t )‖Φmax

≤ 𝛾2
(
1 + ‖Δ(t )‖)Φmax + ‖Δ(t )‖Φmax . (44)
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Rearranging (44), it can be shown that

𝛾2Φmax + (1 + 𝛾2)ΦmaxΔ̂max < 1 (45)

is a sufficient condition for (42) to be satisfied. Because in gen-
eral ‖(1 − X )−1‖ ≤ (1 − ‖X ‖)−1 [35], the following bound on‖Ψ(t )−1‖ can be calculated using (45) and the definition ofΨ(t )
from (33):

‖Ψ(t )−1‖ < 1
1 − 𝛾2Φmax − (1 + 𝛾2)ΦmaxΔmax

. (46)

From the definition of the non-linear feedback gainΩ(t ) in (36)
and the bound on ‖Ψ(t )−1‖ from (46)

‖Ω(t )‖ = ‖ (I − Δ(t )
)

Ŵ f (t )Φ(t )Ψ−1(t )‖
≤ ‖ (I − Δ(t )

)
Ŵ f (t )Φ(t )‖‖Ψ−1(t )‖

≤
(1 + Δmax )Φmax

1 − 𝛾2Φmax − (1 + 𝛾2)ΦmaxΔmax
. (47)

Finally, from the small gain theorem [36], if the
inequality

‖Ω(t )‖‖G̃ (s)‖∞ < 1 (48)

is satisfied, then the closed loop system described by (37) and
(36) is stable. Using the bound on Φ(t ) from (47) and (40), it
follows that

‖Ω(t )‖‖G̃ (s)‖∞ ≤
𝛾3(1 + Δmax )Φmax

1 − 𝛾1Φmax − (1 + 𝛾1)ΦmaxΔmax
, (49)

and therefore, the condition that

𝛾3(1 + Δmax )Φmax

1 − 𝛾2Φmax − (1 + 𝛾2)ΦmaxΔmax
< 1 (50)

is sufficient to guarantee stability. Rearranging (50) and substi-
tuting into (43) yields the inequality in (41). □

5.2 Sliding mode control laws

In this paper, the SMC law for the “virtual” control has been
selected to have the general form

v(t ) = vl (t ) + vn(t ), (51)

where the linear component is given by

vl (t ) = −Ã21x̂1(t ) − Ã22s(t ) (52)

and the non-linear component is given by

vn(t ) = −𝜌(x, t )
s(t )‖s(t )‖ . (53)

Theorem 3. The reachability condition is satisfied if the function 𝜌(x, t )
in (53) is chosen to satisfy

𝜌(t, x ) ≥
Φmax

(
𝛾2(1 + Δmax ) + Δmax

)‖vl (t )‖ + 𝜂
1 − Φmax

(
𝛾2(1 + Δmax ) + Δmax

) , (54)

where 𝜂 is a positive design scalar andΦmax is defined in (43). This ensures

that a sliding motion is guaranteed to occur in a finite time and to continue

to be sustained for all subsequent time.

Proof. The equation that governs the dynamics of the switching
function can be obtained by substituting the ‘virtual’ control law
(51) for v(t ) in the bottom partition of (31). This yields

ṡ(t ) = Ã21x̃1(t ) + Ã21s(t ) + Ψ(t )
(
vl (t ) + vn(t )

)
. (55)

Using the component-wise definitions of v(t ) in (52) and (53),
Equation (55) can be simplified to

ṡ(t ) =
(
Ψ(t ) − I

)
vl (t ) + Ψ(t )vn(t ). (56)

From the definition of Ψ(t ) in (33) and using the fact that‖B2‖ = 1, it can be seen that

sT ṡ = −𝜌‖s‖ + sT
(
MB1BN

2 (I − Δ) − B2Δ̂
)

Ŵ fΦvn

+sT
(
MB1BN

2 (I − Δ) − B2Δ
)

Ŵ fΦvl

≤ ‖s‖ (𝜌‖MB1BN
2 (I − Δ) − B2Δ‖Φmax − 𝜌

+‖MB1BN
2 (I − Δ) − B2Δ‖‖vl (t )‖Φmax

)
≤ ‖s‖ (𝜌 (‖MB1BN

2 ‖(1 + ‖Δ‖) + ‖Δ‖)Φmax − 𝜌

+
(‖MB1BN

2 ‖(1 + ‖Δ‖) + ‖Δ‖) ‖vl (t )‖Φmax

)
.(57)

Using the definitions of 𝛾2 from (39) and Δ̂max from (41), Equa-
tion (57) can be further simplified to

sT ṡ ≤ ‖s‖ (−𝜌 (1 − 𝛾2Φmax (1 + Δmax ) − ΦmaxΔmax

)
+
(
Φmax𝛾2(1 + Δmax ) + ΦmaxΔmax

) ‖vl (t )‖) , (58)

finally through substituting (54) into (58), it can be verified that
this choice of 𝜌(t, x ) satisfies the reachability condition [34]

sT ṡ ≤ −𝜂‖s‖. (59)

This guarantees s is forced to zero in a finite time and remains
zero for all subsequent time i.e there exists a time t = ts at which
s(ts ) = 0, and for all time t > ts , s(t ) = 0. □
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TABLE 1 Summary of aerofoil sectional properties

Section Span (m)
1

4
Chord sweep (◦) Dihedral (◦) Taper Inner aerofoil Outer aerofoil Inner twist (◦) Outer twist (◦)

1 10 57 0.0 0.58 NACA NACA −2.00 −1.06

25116 0016

2 3.0 57 2.0 0.78 NACA NACA −1.06 −0.52

0016 0016

3 4.5 20 1.5 0.65 NACA SC2 −0.52 −0.01

0016 0612

4 6.0 31 1.5 0.66 SC2 SC2 −0.01 0.82

0612 0610

5 10 35 3.0 0.63 SC2 SC2 0.82 −0.40

0610 0610

6 5.3 35 3.0 0.69 SC2 SC2 −0.40 −2.15

0610 0610

R 5.0 28 79 0.60 NACA NACA 0.00 0.00

0012 0012

6 NON-LINEAR BLENDED WING
BODY AIRCRAFT MODEL

This section outlines the development of a non-linear 6 Degree
of Freedom (6DoF) BWB model. In [37], several BWB config-
urations were presented and analysed, which formed the basis
of the work in [38]: however, both of these endeavours con-
sider the case of static aerodynamic coefficients. In reality, these
quantities are dependent on the aircraft’s state. To ensure that
the BWB’s dynamics are properly captured, the aircraft geom-
etry presented in [37, 38] has been reproduced and analysed in
TORNADO-a Vortex Lattice Method (VLM) [39]. The results
from the analysis have been used to generate lookup tables for
the aerodynamic coefficients.

6.1 Aircraft geometry

In Table 1, details are provided of seven distinct aerofoil
sections. The root aerofoil is represented by section 1 and the
winglets are represented by section R. Interpolating between
these sections, along the span, and mirroring at the root
provides a complete description of the aircrafts’ geometry.
For the centre-wing (wing section 1), a reflex camber aerofoil
(NACA-25116) is chosen to provide a positive (nose-up) pitch-
ing moment, aiding trimming of the aircraft. The outer-wing
(wing sections 4–6) features supercritical aerofoils (SC2-0610
and SC2-0612) to provide better high-speed performance. The
inner and outer wings are blended together through a symmetri-
cal aerofoil (NACA-0016) in the centre (wing sections 2 and 3).
The twist distribution is designed to reduce the angle of attack
at the wing-tips, reducing the chances of “tip-stall,” and at the
centre-wing, to better shape the span-wise lift distribution.
The aircraft’s positive dihedral helps to provide some stability
in the roll axis. Additional geometric and inertial properties

TABLE 2 BWB geometric properties

Parameter Notation Value Units

Aircraft mass m̄ 371,280 Kg

Inertia about Xb axis Jxx 47.03 × 106 Kgm2

Inertia about Yb axis Jyy 25.06 × 106 Kgm2

Inertia about Zb axis Jzz 99.73 × 106 Kgm2

Wing area Sre f 1497.03 m2

Mean chord c̄ 28.26 m

Root chord croot 50.00 m

Wing span b̄ 87.50 m

Chordwise position of:

Centre of gravity CoG 29.4 m

Centre of pressure CoP 31.6 m

of the aircraft are shown in Table 2. Note that the Centre of
Gravity (CoG), Centre of Pressure (CoP) and the aircraft’s
mass are considered constant in this paper (although in reality
these will be dependent on the aircraft’s payload and the flying
conditions).

6.2 Equations of motion

Two different reference frames are commonly used to describe
the motion of an aircraft. The earth reference frame (Xe,Ye, Ze)
is used to describe the position of an aircraft’s CoG with respect
to a fixed point on Earth, whilst the body reference frame
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(Xb,Yb, Zb) describes the orientation and motion of the air-
craft with respect to its CoG. Within the body reference frame,
the following standard equations of motion [40, 41] can be
derived:

u̇b = ubr − wbq − g sin𝜙 + Fx∕m̄

̇vb = wb p− ubr + g cos 𝜃 sin𝜙 + Fy∕m̄

ẇb = ubq − vb p+ g cos 𝜃 cos𝜙 + Fz∕m̄

ṗ = rq(Jyy − Jzz )∕Jxx +Ml ∕Jxx

q̇ = pr (Jzz − Jxx )∕Jyy +Mm∕Jyy

ṙ = qp(Jxx − Jyy )∕Jzz +Mn∕Jzz

𝜙̇ = p+ q sin𝜙 tan 𝜃 + r cos𝜙 tan 𝜃

𝜃̇ = q cos𝜙 − r sin𝜙

𝜓̇ = q sin𝜙 sec 𝜃 + r cos𝜙 sec 𝜃,

(60)

where ub, vb and wb represent the aircraft’s velocities (ms−1) along
the Xb,Yb and Zb axes, respectively. The Euler angles 𝜙, 𝜃 and
𝜓 represent the aircraft’s rotational position (rad ) around the
Xb,Yb and Zb axes, respectively1-these are widely known as the
roll, pitch and yaw angles. The rate of change of these angles
(rads−1) are denoted by p, q and r . The aircraft’s mass is denoted
by m̄, the moments of inertia are denoted by Jii , where ii is a pair-
ing of axis (in the body reference frame), and g represents the
acceleration due to gravity (ms−2). The body forces (FX , FY , FZ )
(N ) and moments (Ml , Mm, Mn) (Nm−1) are related to the aero-
dynamic coefficients Ci (x, u) through

⎡⎢⎢⎢⎣
FX

FY

FZ

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
CX (x, u)

CY (x, u)

CZ (x, u)

⎤⎥⎥⎥⎦q̄Sre f +DCM
Ze

eb
m̄g + Feng, (61)

⎡⎢⎢⎢⎣
Ml

Mm

Mn

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
Cl (x, u)b̄

Cm (x, u)c̄

Cn(x, u)b̄

⎤⎥⎥⎥⎦ q̄Sre f +Meng, (62)

where Feng and Meng represent the forces and moments produced

by the aircraft’s engines. The matrix DCM
Ze

eb
is a partial direc-

tional cosine matrix which transforms a force in the Ze direction
(in this case the aircraft’s weight) into the body reference frame:
this is given by

DCM
Ze

eb
=

⎡⎢⎢⎢⎣
cos(𝜙) sin(𝜃) cos(𝜓) + sin(𝜙) sin(𝜓)

cos(𝜙) sin(𝜃) sin(𝜓) − sin(𝜙) cos(𝜓)

cos(𝜙) cos(𝜃)

⎤⎥⎥⎥⎦ . (63)

1 In this paper, rotational angles will follow the “right hand rule” and therefore positive will
be defined as a clockwise rotation around an axis when viewed from the origin.
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FIGURE 1 BWB layout (with aerofoil sections from Table 1 labeled)

The geometric parameters b̄ and c̄ represent the aircraft’s
wingspan and the mean aerodynamic chord, respectively, while
the dynamic pressure (Pa) is denoted by q̄ and can be calculated
through

q̄ =
1
2
𝜌̄V 2

t , (64)

where 𝜌̄ represents air density (Kgm−3) and

Vt =
√

u2
b
+ v2

b
+ w2

b
(65)

represents the true airspeed of the aircraft (ms−1).

6.3 Actuator suite

The BWB is equipped with 10 elevons spanning the trailing
edge of the wing. These are aggregated into six control surfaces
( f1,… , f6) (rad ). The aircraft also features two winglet rudders
(rl , rr )(rad ) and three engines—one centered and the other two
symmetrically offset (Tl , Tc , Tr ) (N ). The actuator suite is shown
in Figure 1. The sign convention used here describes a positive
deflection of the elevons as upward (negative in the Zb axis),
whilst for the rudders a positive deflection is defined as leftward
(negative in the Yb axis).

The BWB’s three engines are positioned relative to the air-
craft’s CoG. Each engine is 0.5 m higher than the CoG and
inclined upward by 2.5◦. The outboard engines are displaced
in the Yb axis by 5 m and canted inward by 2◦. The forces and
moments produced by the engines on the aircraft, as used in
Equations (61) and (62), can be approximated as:

Feng =
⎡⎢⎢⎣

Tl + Tc + Tr

sin(2◦ ) ⋅ (Tl − Tr )
− sin(2.5◦ ) ⋅ (Tl + Tc + Tr )

⎤⎥⎥⎦ , (66)
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and

Meng =

⎡⎢⎢⎢⎣
5 sin(2.5◦ ) ⋅ (Tl − Tr )

(Tl + Tc + Tr )∕2

5 ⋅ (Tl − Tr )

⎤⎥⎥⎥⎦ , (67)

where Tl , Tc and Tr represent the thrust (N) produced by the
engines as labeled in Figure 1.

6.4 Aerodynamic coefficients

The aerodynamic coefficients Ci , used in Equations (61) and
(62), can be described through the equations

CX = CX0
+CX𝛼

𝛼 +
c̄

Vt
CXq

q + CX𝛿

CY = CY𝛽
𝛽 +

b̄

Vt
(CYr

r +CYp
p) +CY𝛿

CZ = CZ0
+CZ𝛼

𝛼 +
c̄

Vt
CZq

q +CZ𝛿

Cl = Cl𝛽
𝛽 +

b̄

Vt
(Clr

r +Clp
p) +Cl𝛿

Cm = Cm0
+Cm𝛼

𝛼 +
c̄

Vt
Cmq

q +Cm𝛿

Cn = Cn𝛽
𝛽 +

b̄

Vt
(Cnr

r +Cnp
p) +Cn𝛿

(68)

where 𝛼 is the Angle of Attack (AoA) (rad ), 𝛽 is the side-
slip angle (rad ) and Vt denotes the true airspeed of the air-
craft (ms−1). The coefficients in (68) are actually functions
of the system state such that Ci j

= Ci j
(x ); this notation has

been simplified in (68) to improve readability. The coefficients
Ci𝛿

denote the changes of Ci caused by the aerodynamics
control surfaces. The total effect of the control surfaces on
the aircraft’s aerodynamic derivatives (68) can be expressed
as

Ci𝛿
(x ) =

6∑
m=1

Ci𝛿m
(x ) ⋅ 𝛿m, (69)

where Ci𝛿m
represents the derivatives of the coefficient Ci with

respect to the mth control surfaces’ perturbation from the neu-
tral point, denoted by 𝛿m.

The BWB aircraft, as described in §6.1, was rendered in the
VLM program TORNADO [39] to study its aerodynamic prop-
erties. From experimentation, it was found that the most sig-
nificant changes in the aerodynamic coefficients were due to
changes in Vt and 𝛼 (since m and CoG are assumed constant);
therefore, it was decided to base the lookup tables on these
parameters. Using a grid of 24 different values of Vt (rang-
ing from 50ms−1 to 280ms−1) and 61 different values of 𝛼

(ranging from −5◦ to 10◦), a total of 1464 different operat-
ing conditions were analysed using the VLM. Results from the
analysis were then transformed into lookup tables to approx-
imate the functions Ci j

(x ) as used in (68). The data from
some of these lookup tables are shown in Figure 2, in which
it can be seen the aerodynamic coefficients vary with the air-
crafts state (as opposed to remaining constant). Out of the
48 total lookup tables, those shown in Figure 2 were consid-
ered the best cross-section of the entire set, both in terms
of their individual shapes and the type of coefficients they
represent.

6.5 Linear model

A =

⎡⎢⎢⎢⎢⎢⎣

0 0 1 0.074

0.048 −0.023 0.087 −1.004

0 −1.806 −2.803 0.504

0 0.384 −0.171 −0.046

⎤⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0

0.005 −0.008 −0.001 −0.001 0.001 0.001 0.008 0.005 0 0

0.266 −2.914 −1.513 −1.761 1.761 1.513 2.914 0.266 0.005 −0.005

−0.153 0.222 0.050 0.069 −0.069 −0.050 −0.222 −0.153 0.050 −0.050

⎤⎥⎥⎥⎥⎥⎦
(70)

For the purposes of control design, the non-linear model
described in the previous sections was linearised using the
MATLAB functions: linmod and operspec. The linearisation point
was chosen at a typical cruise condition with an airspeed of
200ms−1 at an altitude of 3000m. The linearised model showed
very little cross-coupling between the lateral and longitudinal
dynamics: this allows the problems of lateral and longitudi-
nal control to be addressed independently. In this paper, only
lateral control will be considered. The lateral dynamics can
be described in the form of (1) where the A and B matri-
ces are shown in (70). The (controlled) output matrix is given
by

C =

[
1 0 0 0

0 1 0 0

]
. (71)

The lateral system’s states x(t ), controlled outputs y(t ), and
inputs u(t ) are given by

x(t ) =
[
𝜙 𝛽 p r

]
T y(t ) =

[
𝜙 𝛽

]
T , (72)

u(t ) =
[
𝛿rl 𝛿 f1 𝛿 f2 𝛿 f3 𝛿 f4

𝛿 f5 𝛿 f6 𝛿rr 𝛿Tl 𝛿Tr

]T
,

(73)

where the elements of u(t ) represent perturbations from the
trim conditions (not the neutral point) of the corresponding
controls in Figure 1. The trim value of u(t ), generated through
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FIGURE 2 Aerodynamic coefficient plots

the linearisation process, is given by

utrim =
[
0 −0.11 −0.11 −0.11 −0.11

−0.11 −0.11 0 0.16 0.16
]T
.

The units of u(t ) are rad for the aerodynamic controls and MN

for the engines. Note that since the central engine was found
to have a negligible effect on the lateral dynamics, it is omit-
ted from u(t ). The saturation limits umax and umin, in (3), are set
as

umax =
[
0.65 0.52 0.44 0.26 0.26

0.44 0.52 0.65 0.17 0.17
]T

umin = −
[
0.65 0.52 0.35 0.26 0.26

0.35 0.52 0.65 0.16 0.16
]T
.

7 CONTROL DESIGN

In this section, the specifics of a controller for the lat-
eral control of a non-linear BWB are discussed. The con-
troller will be based upon applying the theory discussed
in Sections 3 and 5 to the linear BWB model from
Section 6.5.

7.1 Control allocation design

The CA will be based on the distribution structure in (7) where
the individual components are defined in (5) and (8). For the
nominal component of the CA the associated priority matrix is
selected as

Wp1 = diag(1, 0, 0, 1, 1, 0, 0, 1, 0, 0), (74)

meaning that only the rudders and the two central elevons
(rl , f3, f4 and rr ) are used under nominal conditions, leaving the
rest of the controls to focus on longitudinal control. The prior-
ity weighting associated with the adaptive component is selected
as

Wp2 = diag
( (umax−umin )⊙(umax−umin )

min(umax−umin )

)
, (75)

which prioritises the use of actuators with the greatest range of
motion and allows the adaptive component to access the entire
actuator suite in the event of the nominal set saturating.

7.2 On-line optimisation

The optimisation scheme proposed in Section 4.2 is sufficiently
computationally light to be executed in real time. In the follow-
ing simulations, the optimisation scheme is run every 0.01 s for
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a total of 100 iterations. The continuous time controller is thus
essentially implemented in discrete time at a sample rate of 0.01
s. A “forgetting factor” is implemented on Θ(t ) which allows
the adaptive parameter to return to zero after a period of satu-
ration has ended: thus returning to the nominal CA law.

To demonstrate the efficiency of this algorithm, the num-
ber of floating point operations required to run it was counted
using [42]. Consider the case where m = 10 and l = 2 (i.e. the
BWB example studied in this paper). Since at each individual
controller update time-step Λ is fixed, it therefore only needs
to be calculated once per time-step. This requires a total of
approximately 13,000 floating point operations. Calculating the
value of Θn+1, through (15), requires 1400 operations per iter-
ation. Assuming that the optimisation process is run every 0.01
s for 100 iterations, a total of 15 × 106 operations are required
each second-this is representative of the simulations presented
in this paper. An Intel(R) Core(TM) i7 - 9700K processor run-
ning at 3.6 GHz is capable of 44GFLOPs (109 floating point
operations per second), and therefore in this particular exam-
ple, the optimisation uses less than 0.04% of the processor’s
capacity. The algorithm is also suitable to run on smaller pro-
cessors. The Raspberry Pi is capable of 0.132GFLOPs [43] and
the ARM-core Cortex-A9 (a common mobile phone proces-
sor) is capable of 0.372GFLOPs [44]; therefore, in this exam-
ple, the optimisation algorithm uses 11.9% and 4.2% of the
respective processors’ capacity. Note that although this optimi-
sation algorithm is implementable in real time, it still requires
a large amount of computation compared to other calculations
undertaken to update the control signal: for example, calculat-
ing u(t ) for a given value of Θ(t ) and x(t ), through (51) and
(7), requires only 334 floating point operations per time-step
(3.34 × 10−6GFLOPs).

7.3 A practical control law with tracking

Here, reference tracking capabilities are introduced by augment-
ing system (2) with integral action states [34]. This guaran-
tees perfect tracking of fixed reference signals at steady state.
The augmented system state is given by x̄(t ) = col (xr (t ), x(t ))
where

ẋr (t ) = r (t ) − y(t ). (76)

In (76), r (t ) is a (continuous) external reference signal [34] and
y(t ) = Cx(t ) represents the controlled outputs, as defined in (1).
The overall augmented system is

̇̄x(t ) = Āx̄(t ) + B̄Wf (t )u(t ) + Br r (t ), (77)

where the system matrices are

Ā =

[
0 −C

0 A

]
B̄ =

[
0

B

]
Br =

[
I

0

]
. (78)
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FIGURE 3 Stability region plot

If the control signal u(t ) is chosen to stabilise (77), then perfect
tracking of a fixed reference signal is achieved [34]. It can be
shown by direct evaluation that if (A, B,C ) has no transmission
zeros at the origin and (A, B) is controllable, the augmented sys-
tem (Ā, B̄) is controllable. A small “feed-forward” modification
to vl (t ) in (52) is required to include the reference signal: specif-
ically

vl (t ) = −Ã21x̂1(t ) − Ã22s(t ) −MBr r (t ). (79)

To avoid the phenomenon of “chattering” [34], the following
continuous approximation of (53) is used in the simulations:

vn = −𝜌(t, x )
s(t )‖s(t )‖ + 𝛿 , (80)

where 𝛿 is a small positive design scalar. In this paper, 𝛿 =
0.0025 and a fixed value of 𝜌 is chosen where 𝜌 = 0.2. These
values were selected through intensive simulation testing. Firstly,
𝜌 is selected large enough to satisfy (54), and therefore ensure
sliding occurs (but not so unnecessarily large as to cause exces-
sive “chattering”). Finally, 𝛿 is chosen to be as small as possible
to prevent “chattering” whilst maintaining a reasonable approx-
imation of an “ideal” sliding motion.

7.4 Sliding surface stability analysis

The sliding surface was designed using the LMI approach out-
lined in [45], which aims to solve an LQR-like problem whilst
minimising the norm 𝛾3. The weighting matrix used for this
design is given as

Q = diag(10, 10, 1, 2, 5, 5), (81)

where the first two entries (those associated with the integral
action states) are weighted heavily to provide good tracking per-
formance.

Using genetic algorithms, suitable values of 𝛾0 and 𝛾1 can
be found as 3.015 and 1.705, respectively. By direct evaluation,
the values of 𝛾2 and 𝛾3 can be calculated as 0.0149 and 0.0176,
respectively. Substituting these values into the equality (41)
defines the region of guaranteed stability, as shown in Figure 3.
The figure shows that the system is most robust to uncertainty
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FIGURE 4 States: nominal case

when Θ(t ) = 0, at this point stability is guaranteed as long as‖Δ(t )‖ < 0.29. As ‖Θ(t )‖ increases, the allowable value of‖Δ(t )‖ decreases exponentially and reaches the value of zero
when ‖Θ(t )‖ = 6.01.

8 SIMULATION RESULTS

The following simulation results demonstrate the effectiveness
of the proposed control scheme. The simulations consist of
the non-linear BWB (from §6) undertaking a “wing rocking”
manoeuvre in three different scenarios: nominal (with perfect
actuator health and Θ(t ) = 0), faulty without the adaptive CA
element (Θ(t ) = 0) and in a faulty scenario with the adaptive
CA. Three different cases will be considered in this section to
demonstrate the efficacy of the proposed scheme in maintaining
system performance when subjected to actuator faults/failures
(especially when dealing with saturation): specifically this paper
considers

∙ A nominal fault free (Wf (t ) = I,Δ(t ) = 0) situation.
∙ A fault/failure scenario (Wf (t ) ≠ I,Δ(t ) ≠ 0) with the fixed,

non-optimised CA from [3]-this equivalent to (7) when
Θ(t ) = 0 throughout the simulation.

∙ A fault/failure scenario (Wf (t ) ≠ I,Δ(t ) ≠ 0) with the pro-
posed optimised CA. Here, Θ(t ) is not fixed and is chosen
on-line using the gradient descent algorithm.

8.1 Nominal case

The results for the nominal case are achieved by setting Wf (t ) =
Ŵ f (t ) = I and the adaptive parameterΘ(t ) in (7) is fixed at zero.
In Figures 4 and 5, nominal performance is shown. Note that
with perfect actuator health, the nominal CA in Figure 5 does
not violate any of the actuator’s saturation limits (dashed black
lines).
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FIGURE 5 Control signals (deg): nominal case

8.2 Faulty case—fixed CA

In this scenario, a fixed actuator fault and failure is considered
where

Wf = diag(0, 1, 0.1, 1, 0, 0.1, 0, 1, 1, 1). (82)

This includes complete failures of rl and f4 which are part of the
subset used by the nominal CA in (5). Setting w fi

= 0 (from the
start of the simulation) essentially simulates a total loss effec-
tiveness whereby the ith actuator is non-responsive to any com-
mand signal and remains locked at the trim point, whilst setting
0 < w fi

< 1 simulates a “loss of effectiveness” fault. To simu-
late the uncertainty introduced by an FDI scheme, the diagonal
components of Δ(t ) are set as sine waves with: random magni-
tudes (between 0 and 0.1), random frequencies (between 3rads−1

and 0rads−1) and random phase angles. The diagonal compo-
nents of Ŵ f (t ) are bounded such that 0 ≤ ŵ fi

(t ) ≤ 1.
As in the nominal caseΘ(t ) is fixed at zero, effectively reduc-

ing the controller to the previous SMC scheme with fixed CA [3,
15]. Once faults and failures occur in the nominal actuator set,
the performance deteriorates and the manoeuvre induces satu-
ration. This can be seen in Figure 6 and is most clear in the roll
angle (𝜙) response shown in Figure 6a: for example, in response
to the first negative reference signal (at 30 s), the rise time is
increased from 4.28 to 4.71 s and there is a 66% overshoot (com-
pared to 0% in the nominal case). There is also some clear degra-
dation in the yaw (𝛽) response shown in Figure 6b. There is a
45% increase in the overshoot between 32 − 34 s and 57 − 59 s;
there is also a 2◦ increase in overshoot between 38 − 44 s and
62 − 70 s (compared to 0.1◦ in the nominal case, giving a 2000%
increase). The reason for this can be seen in Figure 7 where the
remaining healthy elevon ( f3 shown in Figure 7b) saturates in
an attempt to compensate for the failed actuator ( f4 shown in
Figure 7b). As f3 enters saturation, the controller attempts to
compensate again, by increasing the signal to f3, pushing the
system deeper into saturation.
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FIGURE 6 States: faulty case fixed CA
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FIGURE 7 Control Signals (deg): faulty case fixed CA

8.3 Faulty case—optimised CA

In this scenario, the same fault/failure case is considered as
with the faulty fixed CA scenario; however, now Θ(t ) is opti-
mised on-line. The system response in Figure 8 demonstrates
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FIGURE 8 States: failure case with optimised CA
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FIGURE 9 Left wing control signals (deg): failure case with optimised CA
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FIGURE 10 Right wing control signals (deg): failure case with optimised
CA

the effectiveness of the optimised CA scheme, providing a sys-
tem response that is identical to the nominal case-despite the
actuator faults and failures. Figures 9–11 show the control sig-
nals generated by the optimised scheme. It can be seen that,
whilst the majority of the control effort is still provided by the
remaining actuators within the nominal set ( f3 and rr ), actua-
tors from outside of the nominal set are used to help prevent
saturation. In Figures 9d and 10d, it can be seen that the respec-
tive actuators both reach their saturation limits at 30 and 55 s, at
which point other actuators, which do not belong to the nomi-
nal set, begin to provide some of the control effort, namely: 𝛿 f1
in Figure 9b and the two engines Tl and Tr in Figure 11.
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FIGURE 13 Comparison of tracking error for the three cases (deg)

In Figure 12, the product of the on-line optimisation is
presented and shows that when the nominal CA begins to
saturate, the adaptive component weights the saturating actu-
ators negatively, effectively passing on the control effort to
the other remaining actuators. Once the period of saturation
ends, the effects of the “forgetting factor” can be seen as
the weights begin to return to zero, retaining the nominal
CA.

8.4 Discussion

In Figure 13a, a comparison of the tracking errors for the three
different scenarios are shown. The RMS (root mean squared)
value of the tracking error signals are shown in Table 3. These
values show that, when subjected to faults/failures, the fixed
CA has nearly 99% worse tracking performance in 𝜙 and 61%
worse tracking performance in 𝛽. In comparison, the tracking
performance of the optimised CA, when subjected to the same

TABLE 3 RMS values of controlled output tracking error

Tracking Error Faulty Faulty

Output Channel Nominal Faulty CA Optimised CA

𝜙 1.804 3.589 1.804

𝛽 0.6993 1.138 0.6993

set of faults/failures, is basically identical to the fault-free case.
Note that the fixed CA controller (developed previously in [3])
has the same “virtual” control law as the proposed scheme, and
therefore provides a fair comparison between the new scheme
and one that already exists in the literature. The results from the
three different scenarios (Figures 4–13) show the shortcomings
of the fixed CA controller and the advantages of the proposed
scheme. This can most clearly be seen in Table 3. Although the
fixed CA has the ability to deal with faults/failures, the con-
troller has no method of accommodating saturation limits. The
results clearly demonstrate that the more severe the fault/failure
situation, the more likely actuator saturation is to occur due
to the extra control effort assigned to the remaining healthy
actuators. In the fixed CA case, this results in performance
loss. The proposed scheme not only has the ability to handle
faults/failures (through the same mechanism as the fixed CA)
but also features an efficient adaptive component which allows
it to adapt to saturation. In the case of severe faults/failures,
this scheme was able to maintain the nominal fault-free perfor-
mance by preventing saturation.

9 CONCLUSION

This paper has presented a novel control allocation method
which exclusively uses a subset of the actuator suite, until sat-
uration occurs. A sliding mode controller is designed for use
with control allocation, and rigorous conditions are derived to
guarantee the stability of the closed-loop system. The scheme
is shown to be capable of dividing the actuator suite (of an
over-actuated system) such that a specified set of actuators is
exclusively used; in the event that this set begins to saturate, the
entire actuator suite is made available. An on-line optimisation
is proposed to adapt the control allocation to ensure the total
required control effort is met, whilst keeping actuators within
their specified limits. The scheme is proven to be computation-
ally “light” enough to run in real time. The effectiveness of the
scheme is demonstrated using a high-fidelity blended wing body
aircraft model. Simulation results show the scheme’s ability to
maintain the nominal fault-free performance despite being pre-
sented with severe, uncertain faults/failures and saturation lim-
its. In comparison, when an existing fixed control allocation law
is used, some actuators are prone to saturate which results in a
substantial amount of performance loss.
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