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Abstract

A new concept for retrofitting a reconfiguration module to an existing control law is reported
in this thesis. The concept is motivated by the need for low cost, add-on modules that improve
air safety in the existing fleet of civil air transport vehicles. A direct adaptive approach that
accommodates control surface nonlinearities is adopted, which uses a slowly adapting model of
the closed-loop aircraft as the reference model. The motivation, benefits, and components of
the architecture are presented. In addition, the issues of control surface magnitude and rate
saturation are addressed. A proof of stability is outlined for input-error adaptation when posi-
tion and rate saturation are present. The reconfiguration architecture is demonstrated using an
F/A-18 and a generic transport nonlinear simulator. General issues associated with commercial
transport reconfiguration are highlighted. In both the longitudinal and directional axes, the
control surfaces are not well balanced from a reconfiguration viewpoint. As a result, a novel
reconfiguration control allocation scheme was devised that blends in all the control effectors in a
given axis to perform the reconfiguration task. The simulation results revealed that the recon-
figuration architecture does provide reconfiguration functionality for a wide variety of control
surface failures. The reconfiguration potential is illustrated through comparisons of post-failure
performance with and without reconfiguration via non-linear simulations. Additionally, compar-
isons between post-failure performance and nominal performance are made through non-linear
simulations, closed-loop frequency responses, and aircraft handling qualities. For all of the fail-
ure scenarios illustrated, the simulation results showed that the aircraft without reconfiguration
departs; with reconfiguration, nominal performance is achieve provided that adequate control
authority exists post-failure.

Thesis Supervisor: James D. Paduano
Title: Principal Research Engineer of Aeronautics and Astronautics
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RCM Reconfiguration Control Module

RFCS Reconfigurable Flight Control System
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Chapter 1

Introduction

"We will achieve a national goal of reducing the aircraft accident rate by 80% within

10 years" President William J. Clinton - February 12, 1997.

In response to this challenge, NASA established the Aviation Safety Program. The objective

of this program is to reduce the fatal commercial accident rate by 80% in 10 years, and 90%

in 20 years. If the accident rate was to remain at today's already low-level, by 2015, the mean

time between major accidents would be from 7 to 10 days simply because of the large volumes

of passengers and flights [1].

Traditionally, aviation safety improvements have accompanied significant technology milestones:

introduction of jet engines, advances in materials and manufacturing, global navigation and

communications, integrated air traffic control systems, etc. Considering the maturity of the

commercial transport technology, it is unlikely that within the next two decades a single new

technology will be able to improve the fatal accident rate to the extent desired. Thus, many

incremental improvements must be made to achieve the safety objective.

As a result, NASA outlined several key technology areas to incrementally improve aviation

safety, one of which is damage tolerant aircraft and control systems. According to Eslinger and

Chandler [3], 20% of aircraft losses are due to faulty or damaged control systems. Zemlaykov [2]
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notes that today, control surfaces are the primary cause of control system unreliability. Tra-

ditionally, hardware redundancy has been the primary approach of fault-tolerant flight control

systems; however this approach has limitations in cost and weight. An alternative approach is

to develop algorithms to support the fault-tolerance of a control system, and this approach has

led to the field of Reconfigurable Flight Control Systems (RFCS).

Currently, pilot training is the sole method for commercial transport reconfiguration. Pilots can

be trained to react to some anticipated failures; however, they cannot be expected to respond

correctly and quickly to a wide range of conceivable failures. Furthermore, the pilot must know

what type of failure has occurred in order to take corrective action. Failure classification can

be a daunting task in an emergency situation. Eslinger and Chandler [3] also noted that about

70% of the accidents caused by control surfaces could have been prevented in principle. There

are three well-publicized cases of commercial pilot reconfiguration during emergencies [4, 5, 6].

In all of these cases, the aircraft remained controllable despite the damage. The first case is

a L-1011 - Delta Flight 1080, April 12, 1977 - where the left elevator became stuck at 190

during takeoff; the pilot was able to reconfigure the vehicle. The next case is a DC10 - Chicago,

May 25, 1979 - where the left engine flew off the airplane and struck the left outboard leading

edge slat; the pilot was not able to reconfigure the vehicle and the aircraft was lost. Post-

accident simulations demonstrated that proper reconfiguration by the pilot could have resulted

in a successful landing. Finally, a DC1O - United Airlines Flight 232, July 1989 - had an

uncontained tail engine failure that resulted in a complete loss of hydraulics; pilots were able to

reconfigure the vehicle, but were unable to land safely. Post-accident flight tests demonstrated

that a RFCS using only engines can provide adequate control to land a commercial transport [6].

From the above discussion, a RFCS that automatically tailors the control system for a certain

class of failures has the potential to improve commercial aviation safety. With this motivation,

the research questions are:

" How should the control system be altered in an emergency?

" What type of control surface failures can be accommodated?

* What is the resulting complexity of the RFCS?
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These are the questions that this research will attempt to address.

1.1 Research Problem Statement

The overall performance objective of any RFCS is to implement a control strategies that will

provide adequate control, whenever possible, despite large changes to the dynamics and despite

the presence of sometimes large force and moment disturbances. For commercial transports, the

control strategy to implement needs to be determined automatically and quickly so that a pilot

may maintain adequate control during an emergency.

There are many obstacles to making commercial transports reconfigurable. One of the primary

obstacles is that the commercial fleet in 10-20 years will contain a significant percentage of

today's fleet; thus, complex, all-encompassing changes to the flight control laws of these vehicles

is a costly proposition. Furthermore, any new technology requiring significant changes to the

flight control design methodology is unlikely to be accepted by industry.

Considering the primary obstacles and the performance objectives, the focus of

this research is to develop reconfiguration strategies that can be modularly added

to existing fight control systems while keeping cost and complexity low.

The type of emergency situations that this research will address are failures to the control

surfaces. The failure set includes unanticipated, single or multiple, simultaneous or sequential

failures that affect the control power of the aircraft, that may affect the baseline aerodynamics,

and that may produce large disturbances. The failure set excludes those unsolvable areas where

the plane cannot be saved, i.e, a static equilibrium must exist and there must be enough control

power available to stabilize the aircraft.

Figure 1-1 illustrates the concept of a modular reconfiguration strategy. An algorithm that

is completely separate from the existing control law takes information about the state of the

vehicle, command inputs, and control law outputs; it then generates an augmentation signal that

compensates for the deficiencies in the basic control law. A switch locks out these signals when
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there is no failure. To ensure smooth transition from the primary control laws to the augmented

system, the reconfiguration module must naturally exhibit zero or very small outputs when there

is no failure.

r

uc

Figure 1-1: Retrofit Reconfiguration Architecture for Civil Aviation Aircraft

1.2 Literature Survey

The performance of control systems under off-nominal conditions has always been a central

theme in control design. In recent years, attention has focused on control system robustness, i.e.,

satisfactory performance for a nominal controller in the presence of model uncertainty. Clearly,

control surface failures can be viewed as model uncertainty. The are two approaches to the

control system robustness problem: passive and active. Passive robustness has a rich developed

theory for linear systems [7, 8]. Weiss et al [9] demonstrated that a flight control system designed

using passive robustness techniques could posses fault-tolerance for a certain class of control

system failures. However, passive robustness approaches require complete redesign of the flight

control system, which is not compatible with our problem statement.

The active approach to the robustness problem has evolved into the field of adaptive control.
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There are three broad categories of adaptive control schemes in the literature: diagnostic, in-

direct, and direct. Some have been investigated for aircraft reconfiguration, and a few have

actually been tested in flight. The objective of this section is to review some of these general

approaches and to identify possible schemes that fit the research problem statement. The focus

of this discussion will be on general techniques that are prominent in the literature; the survey

presented is by no means exhaustive.

A note to the reader, the following three sections contain a brief introductory discussion of the

general advantages and disadvantages of the category as it pertains to the problem statement

in Section 1.1. The reader may scan these brief discussions and proceed directly to Section 1.3.

1.2.1 Diagnostic Adaptive Control

Adaptive control systems in this class posses the ability to accommodate system failures au-

tomatically based upon a priori assumed conditions. On-line failure detection and isolation

methods are used to diagnose the failure, and based on this result, appropriate control action is

implemented based on stored information. Advantages of this approach are summarized below:

* Control solutions can reflect current industry design methodologies.

* Implementation is straight forward.

* Nominal performance is not affected.

* Rapid adaptability is possible.

The primary disadvantages of this approach are:

* Design and analysis process at each flight point must be duplicated for each failure mode.

* Stability is not guaranteed for failure modes that were not modeled a priori.

* Failure mode data must be stored in the flight control computer.

* Suffers from the 'Curse of Dimensionality'.

Adaptive control techniques that belong to this class include gain scheduling and controller

scheduling.
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Gain Scheduling

Gain scheduling was the first form of controller reconfiguration for the purpose of achieving good

performance throughout the flight envelope. This approach has been extended for the purpose

of reconfiguration by adding the failure status to the parameterization of the controller gains.

Many of the early reconfiguration attempts via gain scheduling were based on Pseudo-Inverse

Methods (PIM) [2, 10, 3]. The objective of this approach was to minimize the differences

between the nominal and failed linear time-invariant closed loop dynamics in the sense of a

Frobenius norm [10]. Minimizing the Frobenius norm of this objective function minimizes the

upper bound of the differences between the nominal and failed closed-loop eigenvalues. Thus, if

the minimized objective function is zero, the nominal and failed closed-loop poles are identical.

The primary limitation of this approach is that minimization of the Frobenius norm does not

guarantee stability. Furthermore, the minimization may result in compensator gains that will

saturate the control surfaces. Gao [10] suggested an extension to this general concept by using

linear robust synthesis combined with the PIM to guarantee stability. It is worth noting that the

PIM gain scheduling approach formed the basis of an Air Force program - The Self-Repairing

Flight Control System Program - in the 1980s, which lead to a flight demonstration [3].

Another gain scheduling approach is based on the Constrained Least-Squares Method (CLSM) [11].

In this approach, reconfiguration is performed via control allocation. The procedure relies on

minimizing the differences between the nominal and failed forces/moments produced by gener-

alized forces/moment commands. The minimization is performed in a least squares sense, and

constraints are added to limit high gains and coupling. Like the PIM, this approach does not

guarantee stability. This technique is currently being implemented on the X33 [11].

Wise and Sedwick [12] address the issue of ensuring stability of failure dependent gain schedules

for failures that lie between the discrete set of a priori modeled failures. Stability analysis is

presented using linear matrix inequalities for failure-dependent models that are characterized

by their scheduling parameters. This technique determines a conservative bound of the closed

loop system stability and relative stability given an a priori designed controller for a discrete

number of failures.
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More recently, Chen et al [13] propose a failure-dependent gain scheduling controller based

on a linear matrix inequality design. Assuming that the failures are additive in nature, a

robust fault-tolerant controller was obtained for a short period mode which exhibited satisfactory

performance and guaranteed stability robustness.

Controller Scheduling

The other broad category of diagnostic adaptive control is controller scheduling. In this ap-

proach, the entire controller is switched or blended based upon the diagnostic results. A well

known controller scheduling approach is called multiple model, which has its roots in LQ control

theory. As a hypothesized alternative to gain scheduling, Athans et al [14] investigated the

potential of a multiple model, full envelope controller for the NASA F-8C. The architecture

consisted of a bank of Kalman filters and LQ controllers all producing control outputs simul-

taneously. The implemented control action is a weighted sum of all the controller outputs; the

weighting is determined online and reflects the conditional probability that the aircraft is at a

certain point in the flight envelope. Maybeck [15, 16] has since extended this method for RFCS.

An additional example of a controller scheduling approach is the Propulsion-Controlled Aircraft

(PCA) [6]. For this flight test demonstration, the PCA controller was used as an emergency

control system in the event of complete loss of hydraulic power. Flight tests demonstrated that

a commercial transport could land using engines as the only control device.

1.2.2 Indirect Adaptive Control

Indirect adaptive control involves on-line parameter estimation of the plant, and this information

is then used to implement a suitable control law. The general area of indirect adaptive control

is primarily based on classical techniques used for designing feedback systems that have been

extended for the purpose of adaptation. Advantages of this approach are summarized below:

e Control architecture is generally modular: feedback control, system identification, and
control allocation.
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" Independent technology advances in any of these areas benefit the overall system.

" Primarily based on classical design techniques.

" Flexible in incorporating a priori knowledge of the plant.

The primary disadvantages of the indirect adaptive control are:

" Performance is generally linked to good on-line parameter estimation; thus, unbiased con-
vergence is required.

" Persistent excitation is required for parameter convergence, and this can be difficult for
closed-loop control with multiple effectors.

" Inherent trade-off exists between speed and accuracy of parameter estimation.

" Proof of stability is generally not available.

Conforming to the modular nature of indirect adaptive control, the literature survey will be

presented separately in the following categories: system identification, controller redesign and

control allocation.

Parameter Estimation

The general theory of parameter estimation is well documented in Ljung [17] and Mendel [18].

The objective of parameter estimation is to provide unbiased estimates of the aircraft's stability

and control derivatives with and without impairment. A parameter estimation methodology

that has been successfully applied to several flight simulations was developed at the Air Force

Research Lab. The foundation of this technique is an equation error, minimum-variance parame-

ter estimation approach [18]. This is a static system identification approach, which is well suited

for aircraft reconfiguration if the aircraft states and state rates are measurable. The theory was

expanded to online estimation of stability and control derivatives in [19]. The fundamental re-

quirement to obtain real-time estimates of aircraft parameters was addressed by exploiting the

flight mechanics. The estimation problem is formulated as a constrained linear regression that

is computed either by batch or recursive processing. The constraints to the linear regression can

include relationships between stability and control derivatives, a priori estimates of derivatives,
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or restrictions on the rate of change of the estimate. The methodology was simulated for the

pitch plane dynamics of the F-16 VISTA [19].

The next advancement to the methodology was the use of regularization techniques for real-time

identification of aircraft parameters [20]. The fundamental limitations of closed-loop identifica-

tion for a moderate failure with tightly regulated control were addressed. Tight control attenu-

ates the additional excitation caused by the failure; thus, the signal-to-noise ratio might not be

adequate for identification. Also, the control is often a linear combinations of the states, which

results in biased estimates. To address these problems, singular value decomposition is used

to re-parameterize the model, and a priori data is used to generate estimates of the original

parameter set. This stage of the methodology was demonstrated on F-16 VISTA simulations,

and included both longitudinal and lateral-directional dynamics [20]. Additionally, a version of

this methodology was flight tested on the F-16 VISTA [21, 22].

The method has now been extended to aircraft with distributed control effectors [23]. This

advancement addresses the relationship between the system identification and control allocation

modules; on-line control allocation requires knowledge of the aerodynamic control derivatives.

For aircraft with redundant control effectors, traditional control allocation algorithms gang a

subset of 'favorite' control surfaces while not exciting the remaining control surfaces. This

control allocation approach often reduces the rank of the regressor matrix and results in poor

estimates. This problem is circumvented by superimposing additional excitation into the control

surfaces while attempting to minimize the associated motion of the aircraft.

An additional advancement to the system identification algorithm is the separation of estimation

tasks into two separate stages. The first stage estimates the stability derivatives and generalized

loop gain for the purpose of rapid stabilization after the onset of failure. The second stage

estimates the control power derivatives associated with the individual control effectors; this

information is used in the control allocation to optimize a performance metric. This version of

the estimation methodology was demonstrated on simulations of the Innovative Control Effectors

(ICE) tailless aircraft [23]. This aircraft is a delta wing configuration with eleven individual

control effectors. The two-stage parameter estimation methodology has also being extended to
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aircraft that have highly nonlinear aerodynamics such as the Tailless Advanced Fighter Aircraft

(TAFA) [24, 25, 26]. This aircraft is an agile, stealth configuration that is similar to the X-36.

As in all parameter estimation techniques, there is an inherent trade-off between the parameter

convergence rate and parameter sensitivity to noise. For the above methodology, a hybrid

batch/sequential approach is used that utilizes a short data window for fast convergence and a

priori knowledge as constraints to dampen parameter variations. Bodson [27, 28] has suggested

a modified recursive weighted least-squares algorithm which has similar performance to the

previous algorithm with the addition of a second-order convergence response. The two algorithms

were compared off-line using flight test data from the F-16 VISTA [29].

Controller Redesign

Given that the plant has been successfully identified, there are a number of on-line control

design methods that can be used. In general, the controller redesign methods are extensions of

non-adaptive control techniques.

Probably the most extensively applied technique for on-line flight control redesign is the re-

ceding horizon, model predictive control approach. For the general theory of receding horizon

control, see Michalska and Mayne [30], and for a general overview of model predictive control

see Mehra [31]. Pachter, Chandler, and Mears [32, 33] extended this approach to the case of

aircraft reconfiguration. The basic structure involves the on-line solution of an LQ cost func-

tion - penalizing tracking error and control - over a prediction horizon. Because of the LQ

formulation, a closed form optimal control solution exists and is a function of the current state,

previous pilot input, and the predicted pilot input over the prediction horizon. Using this func-

tional dependence, an outer loop linear program was employed to prevent control surface rate

saturation. Again, a closed form solution was obtained. In [32, 33], simulation results were

presented for an F-16 with a severe failure, and good tracking performance was demonstrated.

Based on this success, Barron Associates incorporated this controller redesign approach into

their Self-Designing Controller Design Program and demonstrated the approach through flight

test of the F-16 VISTA with a simulated missing stabilator [21, 22].
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The literature contains several examples of LQ design techniques that were extended for the

purpose of reconfiguration. Looze, Weiss, et al [4, 9] demonstrate a LQ feedback controller that

attempts to recover the nominal return difference while maintaining the actuator bandwidth

constraints. Given the unfailed control and state weighting matrices, failed linear dynamics,

and some measure of uncertainty about the failed model, an algebraic Ricatti equation was

solved on-line to determine the appropriate control action. This reconfiguration strategy was

implemented in a B737 simulator. Failure analysis was performed at a single flight point for

various control surface failures. The overall performance demonstrated that this technique was

able to provide fault tolerant control for surface failures.

Another application of LQ control theory for reconfigurable flight control is presented in Ahmed-

Zaid, et al [34]. This study explores the reconfiguration of an F-16 using the nominal control

system with a linear quadratic regulator (LQR) as an adaptive outer loop. The only axis

for which the adaptive LQG was added was the roll axis. The architecture contains on-line

parameter estimation, a state observer, and a Riccati solver. Nonlinear simulation demonstrated

that this approach was capable of accommodating control system failures while maintaining

good performance. Casalino, et al [35] presented the theory of another adaptive LQ technique

that updates the previous controller based on the additional information obtained from the

parameter estimates. Thus, a complete redesign of the controller at every iteration is avoided.

This is accomplished by solving a variational calculus problem and is applicable to either finite

or infinite horizon LQ optimization.

Another aircraft flight control design approach is eigenstructure assignment [36]. An attractive

feature of the eigenstructure assignment is that the feedback stabilization and the feedforward

performance design objectives are separated. Jiang [37] and Napolitano et al [38] explored the

use of eigenstructure assignment for aircraft reconfiguration. The general result of their studies

is that the closed loop system is guaranteed to be stable for full-state feedback, but for output

feedback, stability is uncertain. Again, the stability guarantee assumes that the plant is known;

no robustness issues associated with uncertainty in the plant model were addressed.

Dynamic Inversion, or feedback linearization, has been suggested as an indirect adaptive control
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approach. Dynamic Inversion has gained acceptance as a viable nonlinear control method for

designing aircraft control laws [36, 39]. The general theory of feedback linearization is well

documented in Khalil [40] and Soltine [41]. In this indirect adaptive approach, the identified

plant parameters would be used to update the inverse dynamics, thus achieving reconfiguration.

As Brinker and Wise [42] point out, the pitch plane stability and flying qualities are robust to

aerodynamic parameter uncertainties, but the lateral directional flying qualities are sensitive to

these uncertainties.

The general area of linear model reference control has been suggested as a suitable indirect adap-

tive control approach. An advantage of using a reference model approach is that the closed-loop

desired performance can be specified entirely by the reference model. Bodson [27] presents an

indirect adaptive control structure that is suitable for aircraft reconfiguration. Furthermore,

Bodson [43] addresses the issue of control surface saturation for the indirect adaptive model ref-

erence control architecture by devising an outer loop command limiter. Because a pseudo-inverse

is generally involved to determine the control parameters from the estimated plant parameters,

there is some uncertainty whether the closed-loop plant will follow the reference model. Con-

ditions for perfect model following have been developed and are well documented [10, 44, 45].

Perfect model following completely specifies the behavior of the closed-loop system for all times.

There are many other fringe controller redesign techniques in the literature. Caliskan and

Vepa [46] propose a mini-max approach for reconfiguration. The primary objective of the al-

gorithm is to obtain stability once a failure has occurred by minimizing the risk of instability.

Performance issues before, during and after the onset of failure were not addressed. Balakrish-

nan and Biega [47] present a technique of solving a nonlinear optimal control problem by casting

the dynamic programming equations into a neural network framework. This method is not well

suited for on-line computations because the number of iterations required for convergence is

uncertain. Chandler, Mears, and Pachter [48] suggest the use of a Hopfield neural network as

the controller redesign module. Using the identified model, the Hopfield network generates an

optimal model following open-loop control law, which is calculated at every sample, thus yielding

a feedback control action. Assuring stability for any of these techniques is problematic.
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Control Allocation

Keeping the indirect control modular structure in mind, several techniques have been suggested

for on-line control surface allocation to address the problem of changes in controller effectiveness

and to address the problem of control surface constraints.

The pseudo inverse method described in Section 1.2.1 has been the standard method of solving

the control allocation problem online due to the ease with which it can be implemented based

on the estimated plant. However, the same deficiencies described in Section 1.2.1 pertain here.

Bordignon and Durham [49] have devised an alternative technique based on an attainable mo-

ment set that reflects control surface position constraints. This general technique was extended

to include control surface rate saturation in [50]. Enns [51] discusses several approximation ap-

proaches to the constrained weighted least-square problem of minimizing the difference between

the desired and achievable moments. For the general nonlinear case, the exact solution to the

least-square problem might be impractical for on-line implementation because of computational

complexity; therefore, several approximations for the control constraints are suggested. Buffing-

ton [52] presents a control allocation technique specifically oriented to dynamic inversion control.

The objective function is the 1-norm of the difference between the desired and achievable mo-

ments subject to control surface position limits, control law command prioritization, and control

law axes prioritization.

1.2.3 Direct Adaptive Control

The direct adaptive control approach alters the parameters that define the controller directly,

thus skipping the plant identification step. Many of the results in direct adaptive control are

derived from Lyapunov stability theory. The textbooks by Narendra and Annaswammy [53]

and Astrom and Wittenmark [54] provide a thorough overview of direct adaptive control. The

advantages of direct adaptive approaches are as follows:

* The method generally ensures close-loop stability for unforeseen events.

* Complete knowledge of the post-failure mathematical model is not required.
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o Control surface constraints can be incorporated into the design.

The disadvantages of this approach are:

" Conditions for stability can be quite stringent depending on the formulation.

" A suitable Lyapunov function must be found to prove stability.

" Controllers are inherently nonlinear and non-autonomous; thus, analysis can be difficult.

* There is no general unified approach to these problems.

A promising technique for commercial reconfiguration is presented by Bodson [27, 28]. A model

reference input error formulation is derived for a linear time-invariant aircraft reconfiguration

problem. The significance of this derivation is that a stability proof exists which requires minor

assumptions that the plant is minimum phase and that the high frequency gain is nonsingular.

Furthermore, the resulting adaptation regressor is linear in control parameters, and efficient

least-squares algorithms can be used to update the parameters. Finally, as Annaswamy et

al [55, 56, 57] demonstrated, the closed-loop system remains stable in the presence of control

surface position saturation. The stability analysis reveals that for a linear time-invariant plant,

the closed-loop nonlinear non-autonomous system is globally stable if the open-loop plant is

stable and is locally stable if the open-loop plant is unstable. They also derived conditions on

the state amplitude for the locally stable case.

Another promising technique for reconfiguration is the application of Neural Networks (NN)

for control systems. Narendra and Parthasarathy [58] introduce the use of neural networks for

identification and control of dynamical systems in 1990. The general theory of neural networks

for identification and control is well documented by Narendra [59]. Since Narendra's paper, there

have been a number of flight control applications reported that illustrate the on-line learning

capability of neural networks. Troudet et al [60] designed a model-following multi-layer neural

network for an integrated airframe/propulsion model for a modern fighter aircraft. Simulation

demonstrated that the tracking performance of the neural network was superior to a similarly

design Hoo controller; however, the neurocontroller had poor stability robustness characteristics.

An interesting point made in this paper is that through the choice of inputs (which included
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proportional, integral, and derivative tracking errors), the linearized NN exhibits PID control-

type behavior.

A neurocontroller approach for flight control has also been demonstrated by Calise, McFarland,

and Kim [61, 62, 63] within the framework of dynamic inversion. The architecture consists of two

neural networks which invert the nonlinearities: the first neural network is trained off-line for the

operational envelope, and the second neural network adapts online to correct the inversion error

cause by the first neural approximation and by potential failures. Both networks are composed

of radial basis functions and sigma-pi units. Of primary significance is a proof of stability that

is presented under mild assumptions on the nonlinearities representing the inversion error [61].

This nonlinear flight control approach has been demonstrated through simulations for a fighter

aircraft [61], high-performance missile [62, 63], and a helicopter [64]. With regards to aircraft

reconfiguration, Kim and Calise [61] present simulation results for an F-18 aircraft with and

without a 30% loss of left stabilator, and inside and outside of the first neural network training

envelope. The results demonstrated the the aircraft response resembled first-order tracking for

these scenarios. McFarland [65] has extended this adaptive neural approach for augmenting

a gain-scheduled missile autopilot. This extension is a promising technique for commercial

reconfiguration.

More recently, this adaptive neural network, dynamic inversion control architecture was applied

to Boeing's Reconfigurable Control for Tailless Aircraft (RESTORE) Program [66]. The aircraft

used in this program is the Tailless Advanced Fighter Aircraft (TAFA) which is similar in con-

figuration to the X-36. It is worth noting that this aircraft has highly nonlinear aerodynamic

relationships which can be a problem for the parameter estimation techniques outlined in Sec-

tion 1.2.2 [24, 26]. Calise et al [67] demonstrated through simulations that this approach was

able to accommodate a large set of damage scenarios and failures while maintaining acceptable

handling qualities. Based on this success, the RESTORE program is transitioning into the Self

Adaptive Flight Control Experiment (SAFE) program to perform flight demonstrations of this

reconfiguration technique. The X-36 will be used as the flight demonstration vehicle.
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Yet another application of a neurocontroller within the framework of dynamic inversion is pre-

sented by Lin et al [68]. In this paper, a dynamic inversion neurocontroller scheme was used to

control the depth and pitch of a submarine. A Fuzzy Cerebellar Model Arithmetic Computer

(FCMAC) neural network was used to represent the inverse dynamics. The advantage of the

FCMAC network is that it has learning rates that are at least an order of magnitude faster than

conventional neural networks.

There are other nonlinear direct adaptive design techniques that show potential for aircraft

reconfiguration, two of which are Sliding Mode Control (SMC) [41] and Backstepping [69].

These methods are recent advances in the field of nonlinear control, and their application to

RFCS have not been fully explored. SMC is an attractive approach for aircraft reconfiguration

because the method is inherently robust to plant uncertainties and because actuator constraints

can be handled directly. Shtessel et al [70] propose a two loop SMC for a reconfigurable flight

control system. The inner loop SMC provides robust performance of angular rate commands

while the outer loop provides robust tracking of commanded mission angles such as angle of

attack. Reconfiguration simulations were performed for an F-16; the controller demonstrated

high accuracy tracking for a 50% loss of horizontal tail area.

1.3 Retrofit Module Requirements

Given the advantages and disadvantages of the available technologies outlined in the above

section, a list of requirements for a low-cost retrofit reconfiguration module for commercial

transports was compiled. The basic objective function of the problem statement is to maximize

reconfiguration capability while minimizing the implementation and lift-cycle cost given the

retrofit concept. This mini-max viewpoint results in a set of requirements that can be separated

into two categories, architectural and algorithm requirements; the architectural requirements

attempt to minimize the cost while the algorithms attempt to maximize the reconfiguration

functionality.

Viewing the advantages and disadvantages of the available technologies, we desire a reconfig-
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uration algorithm that can accommodate unforeseen failures, adapt quickly to destabilizing

moments, and re-trim the vehicle post failure. Additionally, we desire a reconfiguration algo-

rithm that provides adequate command following and disturbance rejection post failure. The

algorithm must account for the realities of flight which include model uncertainty, control sur-

face constraints, transport delays, sensor noise, and process noise. Finally, a proof of stability

is sought that will give some assurance of how the algorithm will behave under realistic as-

sumptions. Clearly, these algorithm requirements constitute a high degree of reconfiguration

functionality.

Within the reconfiguration algorithm requirements, architectural requirements are sought to

minimize implementation and life-cycle costs. Obviously, we desire a reconfiguration architecture

that is applicable to a variety of aircraft, i.e., commercial transports, business jets, fighter

aircraft. Thus, the structure must be independent of the existing control system. Also, we desire

to implement the approach on existing aircraft; thus, the architecture must be retrofittable to

existing control systems. As noted in the previous section, one of the major problems with

existing reconfiguration techniques is that they are not able to recover nominal performance

during healthy operations. Thus, we desire an architecture that does not interfere with the

nominal control system when no failure is present.

The algorithm and architectural requirements are summarized as follows.

Algorithm Requirements

* Accommodate Unforeseen Failures

* Adapt Quickly

* Re-trim Vehicle Post-Failure

* Adequate Command Following Post-Failure

* Adequate Disturbance Rejection Post-Failure

* Robust to Model Uncertainty

* Robust to Control Surface Constraints

* Robust to Transport Delays

* Robust to Process and Sensor Noise

* Ensure Stability Post-Failure
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Architecture Requirements

" Applicable to a Variety of Aircraft

" Independent of Existing Control System

* Applicable to Existing Aircraft

" Exhibit Nominal Performance without Failure

* Minimize Complexity

1.4 Proposed Retrofit Module Architecture and Algorithms

Based on the problem statement, literature review, and the above requirements, a direct adap-

tive approach using a model reference control architecture was selected. A direct adaptive ap-

proach was desirable because these methods can account for unforeseen events while eliminating

the bottleneck problems of on-line system identification associated with the indirect approach.

Furthermore, direct methods account for control surface constraints which, if not addressed di-

rectly, can result in significant degradation of tracking performance up to the loss of stability.

Figure 1-2 illustrates the proposed architecture, which consists of three components: adaptive

augmentor, reference model, and signal conditioning and estimation. Each of these components

will be discussed as they pertain to the requirements outlined in the previous section. As men-

tion previously, the inputs to the retrofit system are pilot inputs r(t), aircraft state information

y(t), existing control law commands uk,, and the additional input is the reconfiguration control

module commands urcmc.

The adaptive augmentor component is the primary algorithm that determines the reconfigura-

tion strategy. A direct adaptive, input error formulation similar to Bodson's [27] was selected

because of its simplicity. An important observation about commercial transports - with current

stability augmentation and under most maneuvering situations - is that they can be accurately

modeled by linear time-invariant systems with slowly varying, flight-condition dependent coeffi-

cients. This fact makes the problem more tractable, so that more sophisticated nonlinear design

techniques such as neurocontroller approaches are not warranted. The input error formulation
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Figure 1-2: Adaptive Control Architecture for Reconfiguration Module

is attractive because the resulting regressor is linear; thus relatively efficient least-squares algo-

rithms can be used to perform the control parameter updates [28, 29]. This satisfies the rapid

adaptation requirement. Another attractive feature of the model reference approach presented

by Bodson is that it includes a 'biased term' in the control law to accommodate failure distur-

bances and unmodeled dynamics. Also, a proof of stability in the presence of control position

saturations exist [55, 56, 57]. Techniques to robustify this algorithm due to sensor and process

noise also exist [2, 53].

Given these available technologies, several extensions will be required to apply them to the

propose framework. The formulation must be extended for the closed-loop, retrofit architecture

that tracks the desired trim condition. Additionally, methods that account for control surface

position and rate saturation need to be addressed. Finally, the proof of stability needs to

be extended to the MIMO, closed-loop formulation with rate and position saturation while

addressing modeling uncertainty and sensor and process noise.
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A logic switch is included in the adaptive augmentor component to ensure that nominal perfor-

mance is achieved during healthy operation. Even thought the reconfiguration command must

naturally exhibit zero or very small outputs when there is no failure, the switch ensures that

no signals enter the closed-loop system until a failure is declared. Also, the switch allows the

pilots to manually disengage the retrofit module. This logic could be as simple as a threshold

on the augmentation signal. Such a threshold would also ensure that small variations in the

augmentation signal, induced by reference model errors, which might occur during changes in

flight conditions, do not enter the control loop, thus preserving the nominal performance.

Given that this is a model reference control framework, a reference model is required. The

reference model provides the desired dynamics of the healthy aircraft to the adaptive augmen-

tor component. The proposed reference model has two unique properties. The first property

is that it is constructed as a flight-condition dependent, low-order equivalent system (LOES)

representation of the aircrafts unfailed closed-loop behavior. This dependence can be captured

using conventional means (table look-up or curve fits) or using neural networks that are trained

off-line [59].

The simplicity of the reference model structure, together with the desire to minimize off-line

analysis, implementation, and life cycle cost, motivates the second property of the reference

model, which is adaptation. Very slow adaptation, with bounds on the allowable deviation of

parameters from the nominal model, will be used to adjust the model during unfailed operations.

Behavior that does not precisely match a LOES model, as well as gradual changes in the aircrafts

behavior are thus not seen as failures, and cannot trip command augmentation. When a failure

is detected, adaption of the reference model is halted. The reference model is then frozen at

the most recent unfailed performance (perhaps modified very slightly by the effect of the failure

during the short period when it went undetected). If the flight condition subsequently changes,

the most recently adapted model at the new flight condition will be used. This is retained by

proper construction of the adaptation algorithm and parameterization.

The signal conditioning and module is the next component. The primary function of this

component is to provide the required signals to both the adaptive augmentor and reference
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model. Many assumptions will be made about the available data to make simplifications to the

other two components. Given that some of this data is not available on existing commercial

transports, these assumptions will result in greater complexity for this component. Depending

on the available sensor suites, Kalman filters and control surface models might be required to

generate all of the data needed to accomplish the reconfiguration task.

1.5 Thesis Overview

The goal of this research is to develop and demonstrate a reconfiguration strategy that has

the potential of improving aviation safety while keeping cost and complexity low. In doing

so, the retrofit architecture illustrated in the previous section must be developed to satisfy the

stated requirements in Section 1.3. To accomplish this, theoretical extensions are required to

the current technology. The first part of this thesis presents the theoretical development of the

retrofit module. Chapter 2 presents the adaptive augmentor formulation. Next, the reference

model development is presented in Chapter 3. Finally, the signal conditioning and estimation

component is outlined in Chapter 4.

Given the theoretical development, the reconfiguration potential needs to be verified in simula-

tions. The second part of the thesis outlines the implementation of the retrofit module into two

aircraft. Chapter 5 presents the implementation and simulation results for a F/A-18 fighter.

Next, Chapter 6 presents the implementation in a narrow-body generic commercial transport.

The particular simulation is the Advanced Concept Flight Simulator (ACFS) which resides at

NASA Dryden Flight Research Center. This chapter is followed by the thesis conclusions and

recommendations.
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Part I

Methodology
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Chapter 2

Adaptive Augmentor Module

In this chapter, we review the direct input error adaptive control algorithm that we have imple-

mented for the 'Adaptive Augmentor' shown in Figure 1-2. The adaptive input error formulation

was selected for the reasons stated in the previous section; other adaptive algorithms, i.e. output

error and neurocontroller formulations, would still fit into the retrofit framework that has been

suggested.

2.1 Closed-Loop Aircraft Model

The nonlinear, rigid-body, 6 degree-of-freedom, flat-earth equations of motion in stability axis

coordinate system are well documented in [71] and can be represented in a general form:

zy = jp(xp, zy, u, d)

XPm = xP+v (2.1)

Z = Cxpy

where the state xz and the measured state xpm E R7, the implemented control u E R", the

atmospheric disturbance d E R", the performance z E R", and the sensor noise v E R4. It will

be assumed that the performance z contains the rotational degrees of freedom:
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Assumption 1 The performance vector contains the rotational rates, p, q and r.

This is a reasonable assumption considering that control surface failures produce undesirable

rotational accelerations.

Linearizing the above equation, the aircraft model can be represented as a linear time-invariant

system with slowly varying, flight-condition dependent coefficients and a nonlinear vector which

represents higher-order dynamics:

= AP x,+ Bp u + f,+w + gp(xp, i, u,d)

xPM X p+V (2.2)

Z = CxPr

where the dimensions are consistent with (2.1) and the disturbance vectors f, and w E R" and

the nonlinear vector gp E R". As in (2.1), the plant state x, represents the total state instead of

perturbation state. The disturbance term fp accounts for the trim status and potential failure

disturbances, and w represents the linear part of d. Furthermore, gp accounts for the higher-

order nonlinearities in (2.1) such as inertial coupling, nonlinear aerodynamics, etc. In addition,

we make the following assumptions:

Assumption 2 The full state is measurable.

Assumption 3 The performance vector derivative i is measured or estimated.

Assumption 4 A static equilibrium condition exists V t > 0.

Assumption 5 The aircraft is stabilizable post failure.

Assumption 6 The state vector is detectable via the performance vector.
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Stability augmentation systems can be represented in a general form:

Xk = . k(xk,xk,xpm,r) (2.3)

Uk, =lk(Xrk,XP~r)

where Xk E R, XPm E R7 Uke E Rq, and r E Rm. Within a given mode of operation and under

normal operating conditions, the flight control system can be modeled in a state-space format:

k = Ak Xk + Bkx xPm + Bkr r + fk + gk(xk, k, xpm, r) (2.4)

Ukc = Ckxk+Dkxxp+Dkr r+hk(xk,k,xpm,r)

where the dimensions are consistent with (2.3) and the disturbance term fk E R" and the

higher-oder nonlinearities gk E R and hk E Rq.

Knowing that the reconfiguration architecture adds perturbation commands to a subset of con-

troller commands, the combined control command is as follows:

Uk, (1) + Urcmc(1

ukc (m) + urcmc (m)
-C (2.5)

uke (q)

Assumption 7 The reconfiguration command Urcmc has the same dimension as the performance

z and the reference command r, i.e. Urcmc R m.

The flight control surface behavior, including servos and limits, can be represented in a general

form:

Xa = ja(xa,c, c) (2.6)

U = la(Xa,Uc,6c)

where Xa E R' and u, uc, and ic E R4. The primary control surface nonlinearity is caused by

deflection magnitude and rate saturation. The magnitude and rate constraints on the control
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surfaces are of the form:

I ui 
(2.7)

v i I ii0 i

where i = 1... q (it is not necessary to assume that these limits are symmetric). Under nor-

mal operating conditions, the actuator saturation constraints can be quite significant; thus, an

alternative model to (2.6) can be represented in state-space format by grouping the saturation

nonlinearities Au in the output equation and the piston/linkage higher-order nonlinearities gk

in the state equation as in [55, 56, 571:

Xa = Aaxa + Bauc + fa + ga(xa, Uc, nc )
U Caxa + Au (2.8)

Uk + Urem + AU

where the dimensions are consistent with (2.6), the disturbance vector fa E R, the higher-order

nonlinearities g C R, and Au E Rq = u - Uk - urcm equals the difference between the actual

control surface deflection u and the unsaturated control surface deflection Caxa = Uk + Urcm.

Assumption 8 The control surface saturation Au is computable, e.g. a surface model or direct

measurement is available.
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Using equations (2.2,2.4,2.5,

combined state x E Rn+v+w.

Fk

XaI
and 2.8) the closed loop system can be constructed where the

=L

+L

Xk

Xa

Bp]

0

0

ga

0

+ Bkr T

BaDkr

fp

Au+ fk

fa

AP 0 BpCa

Bkx Ak 0

BaDkx BaCk Aa J
0

0 Urcmc +

Ba(:, 1 : m)

10

0 w+ Bax V

0 BaD ]

C 0 0 xk

I
In general, the purpose of the feedback augmentation is to alter the aircraft's open-loop pole

and zero locations so that flying qualities are satisfied. For our design purpose, it would be

cumbersome to retain the states of the feedback augmentation and actuators in a design model;

thus, we desire to have a reduced dimension model with only the aircraft states xp. As illustrated

in [711, the effect of the additional dynamics resulting from the feedback augmentation and

actuator dynamics can be allowed for by determining an 'equivalent low-order system' of the

form:

&(t) = Ax(t)+Br(t- T) + Burcmc(t)

+ ByAu(t) + f + Bwjw(t) + Bvv(t)

+ g(t)

z(t) = Cx(t)

(2.10)

where x E R7, and the rest of the dimensions are consistent with the state dimensions. The delay

T is included in the low-order design model to provide an equivalent time delay for matching

high-frequency effects for reference command inputs. It is worth noting that the transfer function
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from the input urcmc to the performance z is 'square', and that Au is measurable or computable

but w, v, and g are not. Furthermore, the model reduction error has been grouped into the

nonlinear vector g.

2.2 Closed-Loop Desired Dynamics

The reference model for this design is chosen to have the same dimensions as the closed-loop

design model:

zim(t) = Am xm(t)+Bmr(t-T)+fm (2.11)

zm(t) = Cxm(t)

where xm, fm E R" and r, zm E Rm where m < n. Again, the desired state xm is a total signal:

perturbation plus trim.

Note that the reference model only reflects the linear dynamics of the design model. At a given

flight point, the system matrices Am and Bm reflect the nominal closed-loop handling qualities.

In fact, the flying-qualities specifications - time constants, natural frequencies, and damping

ratios - can be inferred from these system matrices. Also note that the desired disturbance fm

reflects the nominal trim status. By including this information, we ensure that the reconfigu-

ration module will try to maintain the nominal trim attitude post failure. Finally, because the

reference model does not contain the actuator saturation, noise, or modeling nonlinearity terms,

special consideration must be made to account for these affects in the adaptation algorithm.

2.3 Model Reference Control Law

The goal of the MRAC is to make the system matrices A, Br, and f in (2.10) look like the

system matrices Am, Bm, and fm in (2.11). The control law chosen has the following form:

urcme (t) = K.x (t) + Kr r(t - r) + Kf (2.12)
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where K. E Rmn , Kr E Rmxm and Kf E Rm . Substituting the optimal control law into the

design model and equating with the reference model, the algebraic conditions for model matching

are obtained:

Kx = (CBu- 1(CAm - CA)

Kr = (CBu)- 1 (CBm-CBr) (2.13)

Kf = (CBu)- 1 (Cfm - Cf)

Note that when the design model system matrices equal the reference model, the model reference

control law is zero, i.e. this architecture is nonintrusive. Also, the algebraic conditions for model

matching in (2.13) provide the information about the existence and uniqueness of the optimal

gains. The assumptions required for this solution to be feasible are as follows:

Assumption 9 The control surfaces used for reconfiguration must be unique and must have

adequate control power post failure, i.e. (CBu)~1 must be nonsingular.

Assumption 10 The reference model must be stable, i.e. Am is Hurwitz.

Assumption 11 The design model must be minimum phase to eliminate the potential of right-

half-plane pole-zero cancellations.

During post failure operations, the optimal gains are unknown because the failed design model

(2.10) is uncertain. Thus, the reconfiguration module generates a perturbation command that

is based on the best guess of the optimal gains at the current time:

Urcmc (t) = kx(t) x(t) + kr (t) r(t - r) + kf (t) (2.14)

where the ^ denotes an estimate. The control parameters in (2.14) are updated based on an

input error formulation that will be derived in the next section.
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2.4 Robust Adaptive Algorithm

The goal of the adaptive algorithm is to ensure that the gains approach their optimal values in

a well-behaved manner over time. Furthermore, given the limitations of the reference model,

the adaptation must be robust to uncertainties. In this section, the input error formulation will

be derived.

A perturbation control input identity can be obtained by computing :- from (2.10) and subtract-

ing the known vectors C(Amx + Bmr + fmn) from both sides:

z-C(Amx + Bmr + fm) = C(A - Am)x + C(Br - Bm)r + C(f - fm)

+ CBuurcme + CBpAu + CBw + CBov + Cg

Note, the arguments have been dropped for compactness. Rearranging allows an expression for

Urcm to be written

Urcnc = (CBu)-C(A - A.)x - (CBu)~1 C(Br - Bm)r - (CBu)-'C(f - fi)

+(CBu)-l [' - C(Amx + Bnr + fm + BpAu)] - V

where V = (CBu) -'(CBew + CBov + Cg) represents the higher-order nonlinerities, atmospheric

disturbances, sensor noise, and model reduction errors. Using this expression in equation (2.13),

and rearranging:

Urcnc = Kxx + Krr + Kj + (CBu)-1 ( - C(Amx + Bmr + f m + BpAu)] - V

This expression is true for all time for any urcmc, and does not represent the ideal control;

it is the actual reconfiguration input in terms of quantities that are known to exist. Perfect

tracking is achieved when the bracketed term equals zero, so that Urcmc = Urcmc (see (2.12)).

The bracketed term is zero when the closed-loop state trajectories satisfy the reference model

performance equality in equation (2.11) and when V is insignificant.
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To form an error on which to adapt, we can also write an expression based on the current

estimates of the gain matrices and (CBu)- 1 . Define the 'modified control input' as:

drenc =Kxx + Krr + f [ - C(Amx + Bmr + fm + BpAu)] (2.15)

where j is the current estimate of (CBu)~1 .

Using the modified control input, we can define the input error as:

ei -- rcmc - rcmc
(2.16)

Kxx + krr + Kf + J [z - C(Anx + Br + fm + BpAu)] +V

where Kx = Kx - K,, Kr = Kr - Kr, Kf = Kf - Kf, and J = J - (CBu)- are the parameter

errors. If the control parameters in (2.14) converge to (2.13), if J converges to (CB,)- 1 , and

if the adaptive algorithm is robust to V, the control parameters will remain at their optimal

values regardless to the saturation level, i.e. Au # 0. In other words, the presence of saturation

will not affect the convergence of the estimates.

Another useful realization of the input error can be obtained by subtracting (2.15) from (2.14):

SrCM c UCmc

j [z - C(Amx + Bmr + f m + ByAu)] (2.17)

= je 0

where the output performance error eo is defined as follows:

eo= z - C(Anx + Bar + f m + ByAu) (2.18)

Thus, the input error can be view as the output error performance eo - the error between

the actual and desired aircraft's performance - scaled to produce units of pseudo actuator

deflection.
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In order to calculate the input error, the control surface saturation signal must be calculated

AU = U - (Uk + Urcm)

where u is the actual control surface deflection and Uk + Urcm is the unsaturated control surface

deflection in (2.8). Both of these deflections are computed via a surface model and/or direct

measurement.

Given that the input error is computable, a linear regressor can be constructed in terms of

parameter errors

x

ej = [kx kr kf J r V
1 (2.19)

L -- C(Amx + Bmr + fm + BAu) j

ei = (DZ +V

where Z E Rn+m+1+m and <P E Rox(n+m+1+mn). It is worth mentioning that if (CBu)-' i s

known a priori, then j = 0 V t > 0 and this this term can be eliminated from the regressor.

For this multivariable linear error model, a robust, stable adaptation law [53] is:

. - e (j)ZT1 F if Iei(j)| ; V(j) (2.20)
0 else

for j = 1 : m and where IVI < V is the upper bound on the regressor disturbance, and the

adaptation gain F is a symmetric positive definite.

2.5 Asymptotic Properties

As mentioned previously, direct adaptive approaches are attractive because stability proofs are

generally obtainable. In this section, the asymptotic properties of the closed-loop system with
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the reconfiguration module will be explored under the previously mentioned assumptions and

the following additional assumptions:

Assumption 12 The open-loop aircraft (2.1) is stable.

Assumption 13 The pilot input r is uniformly continuous and bounded.

Assumption 14 The regressor disturbance V is uniformly continuous and bounded.

Assumption 12 can be restrictive; current research is in progress to extend the asymptotic results

to open-loop unstable aircraft.

The asymptotic properties are developed using the principle of Barbalat's Lemma [53, 41]. To

do this, we first define a Lyapunov function for the parameter errors:

1
W = Tr [V1-1T] (2.21)

2

This equation is lower bounded, i.e. W > 0. Taking the derivative of (2.21) along the trajectory

and inserting the robust adaptation law (2.20), we have that

-ei (eg - V) if lei I;> V (2.22)
0 else

where again |VI < V is the upper bound on the regressor disturbance. This implies that W is

negative semi-definite, i.e. W K 0.

Next, we need to show that W is uniformally continuous in time, i.e. W is bounded. This requires

that ei and ei be bounded. Given Assumptions 12, 4, and 5, the state and performance vectors

are bounded, i.e. X, z E LO, and the saturation and saturation rate Au and Au are bounded,

i.e. Au, Au E L'. Also, 1 C L' as a result of (2.21) and (2.22). Since x, r, c E L' and the

optimal gains (2.13) exist, the command control urcmc (2.14) is bounded, i.e. urcm c E L. It

then follows that the state and performance derivatives are bounded, i.e. I , i e L'. Given that
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x, r, i and Au E L , the regressor vector Z is bounded. Given that b, Z, and V c L , the

input error ei is bounded, i.e. ei E L'-

To show that di c £0, we must show that z is bounded. First, given that x, r, i, , and

5c ), then Grmc EL. Thus, since Au,remc,Ai and V E L', then from (2.10), i E L'

which implies that Z E LO'. Given that Z, Z, , Z, and V E L', the input error derivative ei
is bounded, i.e. ei E L0.

With the ei, V, di, and V E L', the derivative of the Lyapunov function W is uniformly contin-

uous in time, i.e.

WcE (2.23)

From Barbalat's Lemma, given (2.21 - 2.23)

W -+ 0 as t -+ oc

which implies

lim leil <Vo and lim = 0
t*oo too

Furthermore, if Z is persistently excited and if the level of persistent excitation is large relative

to V - that is, there is adequate signal-to-noise ratio - then

lim ( = 0.
t-+oo

Showing that leil < V as t - oc ensures that the performance variables in z are driven to the

values given by the reference model, i.e. Izm - z| oc V. Clearly, as V gets large, the achievable

performance decreases.
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2.6 Summary

In this chapter, the input error adaptive control algorithm for the model reference control ar-

chitecture was presented. The input error was derived for a closed loop, low-order equivalent

system. In one formulation, it was shown that the input error is linearly dependent in parameter

errors, and a robust, stable adaptation law was suggested to update the unknown parameters.

In another formulation, the input error was shown to be equivalent to the output performance

error scaled to produce units of pseudo actuator deflection. Finally, asymptotic properties of the

adaptation algorithm demonstrated that as t -+ oc, the input error would converge to the upper

bound of the regressor noise boundary layer, i.e. leil < V. Thus, the output performance error

leol < j--1VO, which implies that the aircraft will follow the desired dynamics with the largest

tracking error of j-V o .

In the following two chapters, the other two components of the RCM will be discussed. The

primary functionality of the other two components is to provide the adaptive augmentor with

the required information to compute the reconfiguration control solution.
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Chapter 3

Reference Model Module

The reference model is the second component of the RCM architecture. The reference model's

primary function is to provide desired dynamics CAm, CBm, and Cfm and an estimated of

the aircraft's control power effectiveness CB, to the adaptive augmentor component for the

calculation of the input error. Recall from the previous chapter, the input error ei, defined

in (2.17), is simply the error between the actual and desired aircraft's performance, scaled to

produce the units of pseudo actuator deflection:

ej (t) = drcmc (t) - urcmc (t)

= J(t) [i(t) - C(Amx(t) + Bmr(t - T) + f, + BpAu(t))]

= J(t)eo(t)

where the output performance error eo was defined in (2.18) as follows:

e0 (t) = z(t) - C[Amx(t) + Bmr(t - T) + f m + By Au(t)]

As stated in Section 1.3, the input error is the key measure for updating the reconfiguration

gains during failure operations. The previous chapter discussed the use of the input error for

updating the reconfiguration gains. Also stated in Section 1.3, the input error is the key measure
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for determining whether a failure has occurred. In order to use the input error as a measure

for failure detection, the input error (or equivalently the output error) needs to be near zero

for nominal operation. To achieve a near zero output error throughout the flight envelope, the

reference model must be flight condition dependent. Given the additional requirements for low-

cost implementation and life cycle maintenance, the reference model is to be generated on-line

using system identification.

In this implementation, the objective of the on-line system identification is to minimize the

mean-squared output performance error throughout the flight envelope:

nJi) 1
min J[5(p)] lim - 1 eo[t|()12 (3.1)
eO p) T-*oo T

where the parameters A(p) are the estimated desired dynamics - CAm, dBm, Cf m and CBp -

and the parameter p represents the flight condition dependency. In the sections that follow, a two

stage identification process will be outlined that minimizes (3.1) during nominal operation. The

data set and model structure selection will be detailed. Furthermore, procedures for determining

the 'best' model from the model structure will be presented for both off-line and on-line analysis.

The use of system identification theory for constructing aircraft models is well documented.

Ljung [17] and Mendel [18] contain a general overview of the system identification process,

and a thorough overview of aircraft parameter estimation is contained in Maine and Iliff [72,

73]. Recent advances in on-line system identification will be utilized; specifically, the modified

sequential least-square (MSLS) technique [19, 20, 21, 22, 23, 24] is used to generate the desired

information on-line.

3.1 Identification Data Set and Model Structure

In this section, the model structure used to minimize the output error in (3.1) is formulated. The

model structure represents a set of models that conform to a specific structure, i.e. dimensions

and input/output relationships. As illustrated in Ljung [17], there are many different types of
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model structures that can be used to obtain the desired information, but the model structure

selected depends on the available data, i.e. the data set.

The adaptive augmentor formulation section listed several assumptions pertaining to the data

set.

Assumption 2 The full state is measurable.

Assumption 3 The performance vector derivative z is measured or estimated.

Assumption 8 The control surface saturation Au is computable, e.g. a surface model or direct

measurement is available.

Since the data set contains states x(t), performance derivatives i(t), pilot inputs r(t - r),

and saturation level Au(t), an Output-Error (OE) identification model structure can be used.

The benefits of the OE model structure is that the resultant regressor is linear in unknown

parameters. In contrast, if only state and pilot input data are used, an AutoRegressive Moving

Average with eXternal input (ARMAX) model structure is require, and the resultant regressor

is nonlinear in unknown parameters.

Given the assumptions on the data set, an OE model structure can be constructed, noting that

the desire to make the output performance error eo equal to zero is equivalent to:

z(t) = CAm( p)x(t) + CBm(p)r(t - T) + Cfm(p) + CBp(p)Au(t) (3.2)

Since all of the signals, i(t), x(t), r(t - T), and Au(t), are known, each row of (t) can be treated

as an independent measurement. Thus,

f(i; t) = CAm(i, :; p)x(t) + CBm(i, :; p)r(t - r) + Cfm(i; p) ± CBp(i, :; p)Au(t) (3.3)

where the index i represents the ith row the the matrix or vector and ranges from 1 : m, and

colon index : represents all columns of the respective matrix. Rearranging the above equation,
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the OE model structure is obtained:

CAm(i,:; p)T

z(i;t) = T(t) rT(t- T) 1 AuT(t)j (3.4)
CFm(i; p)

CBp(i, :; p)T

Representing the above equation in the classical linear regressor notation:

Z(i; t) = H(t)E(i; p) (3.5)

where measurement Z(i; t) = z(i; t), the regressor matrix H(t) = [xT(t) rT(t - T) 1 AUT(t)],

and the unknown parameters E(i; p) = [CAm(i, :; p) CBm(i, :; p) CFm(i; p) CB,(i, :; p)]T. Again,

since each row of the output error performance vector is an independent OE model structure,

m parallel identification procedures can be performed:

Z(1; t) = H(t)E(1; p)

Z(2; t) = H(t)8(2; p) (3.6)

Z(m; t) = H (t)e(m; p)

Based on (3.1), an equivalent objective function can be stated for the model structure presented

above:

min J[5(i; p)] = lim ZZ(i; t) - Z[i; t|$(i; p)]l (37)
e(i;p) Too T i

where,

Z[i; t|$(i; p)] = H(t)e(i; p)

Minimizing the mean-squared error of the above model structure would achieve the identifi-

cation objective; however, this model structure is not practical for two reasons. First, recall

Assumption 10 which states that the reference model must be stable, i.e. Am is Hurwitz. It is

impossible to guarantee that Am is stable given the identified subset CAm. Secondly, to obtain
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an unbiased estimate of CB,, there must be adequate Au excitation. Given that saturation

occurs infrequently during normal maneuvers, intentional saturation would have to be injected

to obtain good estimates. This is clearly undesirable. Thus, an alternative model structure to

(3.4) is needed to obtain good estimated while satisfying required assumptions.

A two stage identification process is proposed that is well suited to on-line identification of

the desired dynamics while satisfying the requirement that Am be Hurwitz. The first stage will

involve the identification of the aircraft's control effectiveness matrix CB,. The second stage will

involve the identification of the closed loop desired dynamics Am and Bmn. Note, the complete

Am and Bm versus CAm and CBm will be estimated; thus, an additional assumption about the

data set is required:

Assumption 15 The full state derivative is estimated or measured.

With a complete estimate of Am, the stability requirement can be satisfied. Finally, based on

previous experience, fm will be derived using the estimates Am and Bm so that a feasible trim

solution of wings level, zero sideslip angle, and zero state derivatives can be enforced. The

discussion of the enforced stabilization and trim solution will be presented Section 3.4.

Since the identification process has been separated into two stages, two new model structures are

required. Because we desire to maintain a linear regression in the identification parameters, the

output error formulation will be retained for both. For the first stage, the aircraft's open-loop

nonlinear equations of motion will be used to identify the control effectiveness matrix CB,. In

the second stage, a perturbation state space model of the aircraft's closed-loop dynamics will be

used to identify the desired dynamics Am and Bin. These model structures will be discussed in

the following subsections.

3.1.1 Open-Loop Model Structure: Estimation of CB,

As pointed out above, one of the shortcomings of the model structure in (3.4) is that there is

no way to guarantee that Au will have adequate excitation during normal operation to generate
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good estimates of CB,. An alternative model formulation using the aircraft's open-loop dynam-

ics in the stability axis system can be used to estimate the control effectiveness matrix CBp.

The primary difference between this formulation and the formulation presented above is that the

actual control surface deflection u(t) is used instead of the control surface saturation level Au(t).

During normal operation, many of control surfaces will have adequate persistent excitation. For

control surfaces that do not, additional excitation may have to be injected. Nevertheless, such

excitation is far more acceptable when applied to a subset of u then it would be for Au.

Given Assumption 1, which states that the performance vector consists of the rotation degrees

of freedom, the aircraft's rotational dynamics are need to estimate CB,. The non-linear, stabil-

ity axis moment equations of motion with linear aerodynamics in matrix-vector format are as

follows:

ws + QRWS + Js QsJsws = CA,(p)x + CB,(p)u + Cf,(p) (3.8)

where the subscript S stands for stability axis, p represents the flight condition dependency,

the linear aerodynamics CA,(p) E Rmxn and CB,(p) E Rmxq, the aerodynamic intercept

Cf,(p) E Rmxi, and

Ps 0 0 [0 -Rs Qs
WS Qs Q= 0 0 0 QS Rs 0 -Ps

Rs 6 0 0 -Qs Ps 0

Jz., 0 Jx z, Jo, 0 -Joz.,
s J = 0 0 J = 0 JY, 0

JZ8 0 J4, JXz 0 Jz8

The derivation of these equations is contained in Appendix A. A few aspects of the above

equations warrant additional discussion. First, the rotational rates and accelerations and the

inertia matrix will have to be computed in the stability axis framework. Secondly, the matrix

CA, will be sparse since the motion is decoupled and only a subset of the state vector x(t) is

important.
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Now, this is a well-posed model structure for identification of CB,. Knowing that the intercept

term Cfp is not of interest, it can be removed from the equation by removing the mean from

each of the signals:

Ks + QRWS + Jss'QSJsWs - E{&'s + QRws ± JsQsJsws1 (39)
= CA,(p)[x - E{x}] + CB,(p)[u - E{u}]

Rearranging the open-loop perturbation equation, the OE model structure is obtained:

)s + RWS + JQSSJSwS-

ES-QRWS 
( 

J QJSW- (3.10)

= [(xT - E{xT}) (uT - E{ })jE] OCA (:,i; p)

OCs,, i; p)

where the index i reflects the fact that each row represents an independent regressor, OCA,(:

,i;p) E R(n'<n)x is an estimate of CAp(i,:;p)T, and EcB(:,i; p) E R''<q)> is an estimate

of CB,(i, :; p)T. Representing the above equation in the classical linear reqressor notation, we

have:

Zol(i; t) = H 1 (t)e01(i; p)

A probabilistic model structure is obtained by assuming the the regressor noise is zero-mean

broadband, stationary noise, which is realistic given the modeling. Thus, the open-loop model

structure can be expressed as follows:

Zol(1; t) = Hol(t)8e0 (1; p) + Vo (1; t)

Zo (2; t) - Ho (t)e 01(2; p) + Vo (2; t) (3.11)

Zo(m;t) = Hoi(t)E01 (m; p) + Vo(m; t)

where Vo(i; t) = N(0, Rol(i)), and Rol(i) > 0 is the open-loop model structure regressor noise

covariance matrix.
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3.1.2 Closed-Loop Model Structure: Estimation of Am and Bm

For the second stage of the identification process, the first stage estimates will be treated as

known information, and an alternative model structure to (3.4) will be formulated. Recall the

equivalent formulation for making the output performance error eo equal to zero:

z(t) = CA.(p)x(t) + CBm(p)r(t - T) + Cf m (p) + CB,(p)Au(t)

Since the control effectiveness matrix has be estimated in the first stage, the CB,(p)Au vector

can be move to the left side of the expression:

z(t) - CBy(p)Au(t) = C Am(p)x(t) + CBm(p)r(t - r) + Cfm(p) (3.12)

Knowing that the entire desired dynamics are needed to satisfy the stability assumption, but only

a subset of the control effectiveness matrix has been identified in the first stage, the formulation

can be represented as follows:

i(i; t) - CB,(i, :; p)Au(t) = Am(i, :; p)x(t) + Bm(i, :; p)r (t - T) + fm(i; p)

i(j;t) Am(j,:;p)x(t) +Bm(j,:;p)r(t -T) +fm(j;p)

where the index i, which ranges from 1 : m, represents the subset of states that are in the

performance vector and the index j, which ranges from m = 1 : n, represents the subset of

states that are not contained in performance vector. Again, these indices reflect the fact that

each row represents an independent regressor, and the colon index : represents all columns of

the respective matrix and the parameter p represents the flight condition dependency.

Now, this is a well-posed model structure, but based on previous experience, the author has

chosen to remove the intercept - desired trim fm - from the model structure and estimate

it by enforcing a feasible trim solution. Previous experience has shown that small estimation

errors in fm can produce undesirable performance over long time scales. The intercept can be

removed from the model structure by simply removing the mean from the data set used in the
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structure:

i(i; t) - CBp(i, :; p)Au(t) - E{i(i; t) - CB,(i, :; p)Au(t)} =Am(i, :; p)[x(t) - E{x(t)}]

+Bm(i, :; p)[r(t - r) - E{r(t - T)}]

±(j; t) - E{±(j; t)} = Am(j, :; p)[x(t) - E{x(t)}]

+Bm(j,:; p)[r(t - r) - E{r(t - r)}]

Rearranging the above equation, the OE closed-loop perturbation model structure is obtained:

i(i; t) - CBpA(i, :; p) Au(t)-

E i (i'; t) - CBA (i,: p) u(t)}

o T --) r T(t - T)- 6A.: i ; p)

E{XT (t)} E{r'(t -T)} EBm(:, ip) (3.13)

f (j; t)-

E t:i(j; t)}I[ ( T (t)- r~ ( (t- T)- E)J F; A(,jP)1

E{x T (t)} E{r T (t -- )} JJ Bm(, j; p)

where 8Am(:,i orj; p) C R">< is an estimate of Am(i orj,:; p)T and eBm(:, i orj; p) E Rmxi is

an estimate of Bm(i orj,:; p)T. Representing the above equation in the classical linear regressor

notation:

ZCi(i; t) = Hei() c1 i; P)

The selection of the stability axis system results in longitudinal and lateral-directional decou-

pling; thus, the desired dynamics Am and Bm become block diagonal. As a result, the above

structure can be separated into longitudinal and lateral-directional structures with the obvious

reductions in the regressor matrix dimension and the number of unknown parameters.

The final step required for the closed-loop model structure is a characterization of the regressor

noise. The regressor noise is composed of measurement and process noise in the data set and of

the modeling errors associated by the approximation of the closed-loop dynamics by a LOES.
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Assumption 16 The closed-loop model structure regressor noise is broadband, stationary noise

with zero mean and variance , e.g. NA(O, Rel) where Rei > 0.

For civil aviation aircraft, with typical stability augmentation systems and under most ma-

neuvering situations, the closed-loop dynamics are accurately modeled by linear time-invariant

systems with flight-condition dependent coefficients. Thus, given that the closed-loop model

structure is based on a linear time-invariant formulation, the assumption that the modeling

error is zero-mean broadband, stationary noise is a reasonable assumption. Furthermore, the

assumption that the process and sensor noise is zero-mean broadband noise is not out of the

ordinary.

Finally, given (3.13) and Assumption 16, the classical probabilistic linear regressor of the com-

plete closed-loop model structure can be expressed as follows:

Zej (1; t) = Hej (t) Ecj (1; p) + Vc (1; t)

Zej (2; t) = Hei (t) E l(2; p) + Vel(2; t) (.4

Zci(n; t) = He(t) ci(n; p) + Vci(n; t)

where V(i) = A(0, Re(i)), Rci(i) > 0 is the closed-loop model structure regressor noise covari-

ance matrix.

3.2 Batch Least-Squares Identification

As seen in the previous sections, the OE model structures result in a classical linear regression

problem. Given this formulation, there are several algorithms available to obtain an estimate of

the desired dynamics. The methodology selected is the minimum variance parameter estimation

technique which is well documented in [18, 17]. Given the methodology, there are several different

algorithms available to arrive at an unbiased, minimum variance estimate. These algorithms

can be either batch or sequential. In the batch algorithms, a large data set is post-processed

to generate the estimate. The sequential or on-line algorithm generates an estimate recursively
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as data becomes available. This section will present the batch identification algorithm and the

sequential algorithm will follow in the next section.

It is worthwhile to note that batch identification is generally not well suited for on-line applica-

tions. However, batch identification provides a valuable design tool for generating initial model

estimates and for post-processing of reconfiguration results.

The generic OE model structure for a given measurement is as follows:

Z(t) = H(t)E + V(t) (3.15)

where the known measurement Z(t) E R', the known linear dependency H(t) E R'Xj, the

unknown parameter 8 E Rix', and the measurement noise V(t) E R1 , P(O, R), is a broadband

stationary random process with correlation time much shorter than the sampling interval of the

discrete time identification system, with R > 0. Hence, the noise at each sample time should be

viewed as a white sequence. The dimension j is generic.

Given that the identification data set record has (L + 1) measurements corresponding to unique

times, the classical linear regressor can be formulated by concatenating each measurement equa-

tion into a vector-matrix formulation:

Z = HE + V (3.16)

where the known measurement Z E R(L+1)x1, the known regressor matrix H C R(L+1)xj

the unknown parameter 0 E Rix1, and the regressor noise V C R(L+1)x1,K(0, R), and R E

R(L+1) x(L+1) > g.

Define the measurement estimate, which is a function of the parameter estimate:

Z(b) = HO ,
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and the parameter and measurement errors

5=e-5
-> Z() = HE + V = Z - HE. (3.17)

Given this regressor, the weight least-squares optimization problem is formulated as:

ming J(5) = Z - Z(()] T W [Z - ((3)1
1 1 (3.18)

= Z(e) T WZ(e)

where the weighting matrix W E R(L+1)x(L+1) > 0. The weighting matrix permits the designer

to weight certain ranges of the data more heavily than other data.

The batch, unbiased, weighted least-squares estimate is

0 1s = argming J(O) (3.19)

- [HTWH]~ HTWZ,

and knowing that the regressor noise V has zero mean and that the regressor matrix H is

deterministic, the estimation covariance is

P1, = E{$18 = [HTWH] H TWRWH [HTWH] 1. (3.20)

The weighted least-squares algorithm above is a 'valid' estimator, i.e., the estimate does not

depend explicitly on the parameters that we are trying to estimate. However, the weight least-

squares estimator is not a minimum-variance estimator for any generic weighting matrix. As

shown in [18], a minimum-variance estimator is obtained when the weighting matrix W = R- 1 .

This weighting matrix stresses measurements will small covariances and unstresses measurements

with large covariances. The resulting batch minimum variance unbiased estimator is

Em = [HTR-1H]-'HTR-Z , (3.21)
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and the estimation covariance is

Pmv = E{5m OTmv} = [HTR-H] - (3.22)

An important property of this formulation is that because multiple measurements are obtained

by the same sensors at each sample time (versus by different sensors at a single time), the

measurement covariance at each sample time can be assumed to be the same. Therefore, the

regressor covariance matrix R is an identity matrix scaled by the measurement covariance R

R = RI (3.23)

As a result, the minimum variance estimate is independent of the measurement noise covariance;

hence

emV = [HTH]1 HTZ, (3.24)

and the estimation covariance is

PmV = E{5mvemv} = R [HTH]l. (3.25)

As illustrated in [18], the measurement noise covariance can be estimated using the measurement

error, Z (3.17), by the following unbiased estimator:

R= (3.26)dim[V] - dim[E]

Thus, the batch, minimum variance unbiased estimation procedure is as follows:

1) Calculate the minimum variance estimate Omv using (3.24).

2) Calculate the measurement error Z using (3.17).

3) Calculate the measurement noise covariance R using (3.26).

4) Calculate the estimation covariance Pmv = E{5mvemv} using (3.25).
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3.3 Modified Sequential Least-Squares Identification

In the previous section, the batch, minimum variance estimation algorithm was presented. As

noted, this algorithm is ideally suited for off-line analysis where a long data record is obtained

such that all signals of interest have adequate excitation during some portion of the time history.

It is well known that the primary source of biased estimates is a lack of persistent excitation in the

measurement vector Z or in the regressor matrix H [17, 18]; additionally, if the regressor matrix

has collinear columns, a biased estimate will result. For on-line analysis, the data record generally

needs to be small so that the matrix inverse in (3.24,3.25) does not become a computational

burden; there is no way to guarantee that all relevant signals have adequate excitation within a

short regressor window. As a result, the batch approach is not well suited to on-line estimation.

To circumvent these deficiencies, the Modified Sequential Least-Square (MSLS) algorithm has

been devised. This algorithm, originally developed at the Air Force Research Lab and refined

by Barron Associates, has been successfully applied to several simulation flight vehicles and was

flight tested on the F-16 VISTA. The foundation for this technique is the minimum variance

estimator and is composed of both batch and sequential algorithms. This algorithm is the main

part of the RCM architecture that takes a mature military technology and transitions it to

commercial applications.

The underlying philosophy of MSLS algorithm is to use current flight data to update a priori

data on-line such that an unbiased, minimum variance estimate is obtained. The a priori data

is defined as the data that is stored in the reference model lookup tables. Thus, some form of a

priori data must exist. Define

,ap and Pap (3.27)

where the initial estimation eap E Ri and the estimation covariance Pap =E{5a,5[} E jRiXi >

0. The a priori data can be generated by previous identification runs or through information

obtained from wind tunnel for flight tests. The covariance matrix conveys the uncertainty of

the a priori data to the identification algorithm.
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The generic output error model structure for a given measurement is as follows:

Z(t) = H(t) + V(t) (3.28)

where the known measurement Z(t) c RI, the known linear dependency H(t) E R'Xi, the

unknown parameter E C Rix', and the measurement noise V(t) E R',Af(O, R), and R > 0. The

dimension j is again generic.

As in the batch algorithm, a finite data window with (L + 1) measurements corresponding to

unique times is used. The classical linear regressor can be formulated by concatenating each

measurement equation into a vector-matrix formulation:

Z = HE + V (3.29)

where the known measurement vector Z E R(L+1)x1, the known regressor matrix H C R(L+1)xj

the unknown parameter vector has the same definition as above, i.e. E E RiX1, and the regressor

noise vector V E R(L+1)x1,K(O,R), and R C R(L+1)x(L+1) > 0. However, unlike the batch

algorithm, the data window will change at each sample time. At each sample time, the new

data will replace the last row of the regressor, and the subsequent data will be shifted up by

a row, which eliminates the oldest data. Thus, the regressor should be view as a data window

moving through a time history.

For a given data window, it is possible that the regressor signals do not have adequate excitation

to generate an unbiased estimate. As a result, RMS threshold values are used to shutoff the

identification when the RMS of the measurement vector falls below the quiescent RMS, i.e. the

RMS of the sensor and process noise. Previous experience [24] suggests that the threshold should

be double the quiescent RMS. Knowing that the measurement vector is zero mean, based on the

model structures above, the measurement RMS is calculated as follows:

RMSz ZTZ /2 (3.30)
L + 1
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If there is insufficient excitation in some signals, the regressor is reparameterized and the iden-

tification task is separated into two steps:

1) Batch minimum variance estimation of the reparameterized regressor, and

2) Sequential updating of a priori data using the reparameterized results.

The regressor reparameterization is a regularization technique that robustifies the algorithm

against potential sources of bias, which include bad regressor column scaling, regressor collinear-

ity, and inadequate column excitation.

The reparameterized regressor will be formulated by first scaling each column of the regressor

matrix by its Frobenius norm. Define the scaled regressor as follows:

Hscaled = HA- 1 -+ HscaledA = H (3.31)

where Hscaled E R(L+l)xj and the scaling matrix A E RjXj is a diagonal matrix with each

diagonal element

A(i.i) I if ||H(:, i) IF = 0

||H (:, i)||F otherwise

Now, singular value decomposition will be performed on the scaled regressor Hscaled to eliminate

a potentially large condition number. If the regressor has a high condition number, which implies

that either some columns are nearly collinear or that a column lacks adequate excitation, the

parameter estimates will be biased. Recall from the model structure discussion that the mean

is removed from all signals; thus, inadequate excitation will result in a column of near zeros in

the regressor matrix.

Performing singular value decomposition on the scaled regressor:

H scaled = UHscaled scaled H scale ('

where the unitary matrices UHsc8 ec E g(L+1)xj and VHsaled E RiXi, and the diagonal singular

values matrix EHscaled E RiXi. Note, the subscript has been included so as not to confuse

notation.

76



If H scaled is not full rank, EHlcae will not be full rank. Knowing that a high condition number

leads to biased estimates, removing the contribution of small singular values from the regressor

will reduce the condition number while not significantly affecting the induced gain of the regres-

sor. Engineering judgment is required to decide what constitutes small, but previous experience

[24] suggests that a condition number below 250 is adequate to generate unbiased estimates. Of

course, a different ratio may be preferred depending on the application. Removing the small

singular values and the accompanying columns of the unitary matrices, the regressor matrix can

be expressed as follows:

H scaled ~HscaledSHVcale d (scale3

where the unitary matrices UHscaled E R(L+1)xk - UHscaled(:,1 : k) and VHacaled C -jxk

VHscaled (:, 1 : k), the diagonal singular values matrix SHscaled E Rkxk - Hcale(1 : k, 1 : k), and

k < j is the number of singular values kept.

With the scaling and the singular value decomposition, the regressor matrix is approximated as

follows:

H THSHle Vcje A (3-34)

Define the following reparameterized variables:

Hrp = UH dca,

Krp = SHcLeV A (3.35)

erp Krpe

where reparameterized regressor matrix Hrp C R(L+1)xK, the reparameterization relationship

matrix Krp C Rkxj, reduced parameter set e)rp c Rk, and the subscript rp stands for reparam-

eterization. Thus, the regressor in (3.29) can be reparameterized as follows:

Z = HrpErp + V (3.36)

where the known measurement Z C R(L+1)xl, the known reparameterized regressor matrix

Hrp C R(L+1)xk, the unknown reduced parameter set e E Rkxi, and the regressor noise V E

R(L+1)x1,f(O, R), and R E R(L+1)x(L+1) - RI > 0 - recall Equation (3.23)- where I is the
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identity matrix.

As presented in the previous section, the batch minimum variance unbiased estimate of the

reduced parameter set is :

erp. [H;THrp] -1HZ , (3.37)

and the estimation covariance is

Prpmv = E{5rpmv 5p_} = R [HrpHrp] (3.38)

where again, R can be estimated using the return difference Zrp:

R dm[V] - dim[rp], where Zrp = Z - HrpErpmv . (3.39)

At this point, we have an estimate of the reduced parameter along with a linear relationship

with the desired parameter in (3.35):

rPMV = KrpO + Vrp (3.40)

where the regressor noise Vrp E IRkxk, A(0, Prpmv). To solve for E, we could treat this equation

as a linear regression; however, there are more unknowns than measurements. Instead, we will

treat this equation as a stochastic constraint on the a priori data. Thus, a priori data will

represent an initial guess that is updated by the stochastic constraint in a sequential formation.

The above equation should be viewed as an additional measurement.

Using the a priori data in (3.27) and the additional measurement equation in (3.40), the mini-

mum variance sequential estimate of ® can be computed as follows:

T -+ p _1
Eme = Oap + PapKrp [KrpPap K fp Prp.v ] -(Or pM, - Kr pEap) , (3.41)
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and the estimation covariance is

PmV = E{@mvEGmv} = 1 - PapKip (KrpapK, Prpmv) Krpl Pap (3.42)

where Em, C RI and Pmv E RF .3 Note:

1) If k < j, i.e. E c Ri and Orp E Rk, then j - k parameters will be dominated by a priori data;

2) If the uncertainty in the reparameterized estimate is large, i.e. Prpmv > 0, then the parameter

estimate Emv will be dominated by a priori data;

3) Likewise, if the uncertainty in the reparameterized estimate is small, i.e. Prp. v 0, then the

parameter estimate (mo will be dominated by the reparameterized estimate.

3.4 Stabilization of Closed-Loop Model and Estimation of fm

In this section, the stabilization of the closed-loop model and the estimation of the desired trim

state will be detailed. In the previous sections, the two stage identification process was discussed

for the identification of the desired dynamics Am, Bm and the aircraft's control effectiveness ma-

trix CBy. A model structure of the aircraft's open-loop dynamics was derived for the estimation

of CBy, and a model structure of the aircrafts closed-loop dynamics has been derived for the

estimation of Am and Bm. Furthermore, two minimum variance unbiased alogrithms -- batch

and sequential - have been presented to generate the estimates. All that remains for the re-

quired reference model is to insure stability of the desired dynamics Am and to estimate the

desired trim fm. Recall from the previous discussion that, in order to have a feasible reference

model, the desired dynamics Am must be strictly stable. Furthermore, as pointed out in the

closed-loop model structure development, Section 3.1.2, previous experience suggests that it is

better to derive the desired trim state instead of adding the intercept as an unknown parameter

to the model structure.

To ensure that the closed-loop reference model satisfies the assumption of strict stability, the

Phugoid and spiral modes are artificially stabilized. Even though these modes must be stable

for Level I handling qualities, they are generally difficult to identify since they have very large
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time constants and are attenuated by the nominal controllers. This stabilization operation is

straight forward. The Phugoid mode is artificially stabilized by mirroring the respective poles

about the jw axis. Eigenanalysis is performed on the longitudinal block of Am, and eigenvectors

and eigenvalues are extracted. If the Phugoid eigenvalues are unstable, the poles are mirrored

about the jw axis to stabilize the mode. Then, a new longitudinal block in Am is constructed

using the same eigenvectors and the stabilized eigenvalues.

Flight mechanics are used to artificially stabilize the spiral mode. The stability requirement for

the spiral mode is presented in [71, 74]:

LONr - NlLr > 0 (3.43)

If this inequality is not satisfied, the spiral mode will be unstable. To artificially stabilize

this mode, the dimensional derivatives need to be change without altering the other lateral-

directional modes. For traditional tail-aft configurations, LO and Nr < 0 while NO and Lr > 0;

thus to satisfy this inequality LpNr > 0 must be greater than NpLr > 0. The only dimensional

derivative that can be altered without having a 1st order impact on the Dutch roll mode is the

yaw rate induced rolling acceleration Lr. Thus, to artificially stabilize the spiral mode, we let

_LpNr - C
Lr = > 0 (3.44)

No

where E > 0 is a small number, which reduces Lr without changing its sign. This stabilization

procedure replaces the identified Lr with the computed value above. In fact, the procedure

states that if inequality in (3.43) is violated, then the magnitude of Lr has been overestimated

and needs to be reduced.

The next topic of this subsection is the estimation of fmn. In the closed-loop model structure

section Section 3.1.2, is was noted that it is desirable to derive the desired trim fm instead

of estimating it since small errors can produce undesirable performance over large time scales.

For example, a small error in the q(t) trim, which should be zero, can produce an undesirable

time history over a ten minute span since this error is integrated twice into the pitch angle 0(t).

Also recall from the previous discussion that the intercept was removed from the regressor by
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removing the mean from the data set used in the model structure. This mean information along

with the estimated desired dynamics Am and Bm will be used to derive a feasible fm. Note, a

feasible fm is defined as one which achieves a desired trim (z-(t) = 0 and p(t), q(t), r(t) = 0) for

wings level and zero sideslip (#,3 = 0); thus, only the true velocity vt(t), the angle of attack

a(t), and the pitch angle 0(t) may be non-zero at trim.

We begin with the LOES desired dynamics:

±(t) = Ax(t) + Bmr(t - T) + fm (3.45)

Clearly, fm can be estimated as follows:

fm = E{i(t)} - AmE{x(t)} + BmE{r(t - T)} (3.46)

Given this estimate, knowing that z(t) and r(t - T) are null at trim, an estimate of the non-zero

longitudinal states can be obtained by performing a pseudo inverse of a subset of Am and fm:

Vttrim
-m WI)i= 1:40trim =Am(i, )|i=1:4 , j=1:3 (3.47)

6trim

where the index 1 : 4 represents the 4 rows corresponding to the longitudinal states and the

index 1 : 3 represents the 3 columns corresponding to the non-zero trim states. Given this

pseudo inverse data, the entire trim vector fm can be constructed as follows:

Vttrim

atrim

fm = -Anxm , where xmt - 6trim (3.48)
0

0

81



3.5 Storing Reference Model Parameters

As stated in the introduction to this chapter, on-line system identification generates estimates

of Am, Bin, fm and CB, throughout the flight envelope, with the goal of achieving a near-zero

output performance error e0 (t). Figure 3-1 illustrates a schematic of a flight envelope. Given

Service Ceiling

Mach

Figure 3-1: Flight Envelope Schematic

that a typical flight profile is altered by destination and air-traffic control, a series of 'flight

cycles' will traverse the center region of this envelope. The shaded area in Figure 3-1 is defined

as the nominal operation region for this discussion. During a series of flight cycles, the system

identification procedure outlined in the previous sections will generate data throughout this

region. Thus, an accurate reference model of a healthy aircraft is obtainable in this region. This

raises two important questions: 1) how do we obtain data in other regions of the flight envelope,

and 2) how do we store this data.

Recall that the key measure for failure detection and reconfiguration is the output performance

error, which is computed using the flight condition reference model. Thus, if a failure occurs,

the aircraft should be within the shaded area, though it may exit this region due to the failure.

Given that a good reference model is obtainable in this region, the failure detection task should
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be easy since the nominal output performance error is small. As mentioned, a failed aircraft may

exit the shaded region due to a failure. This may be due to the transient nature of the failure, or

due to the fact that the post-failure trim drag is dramatically higher. In any event, a reference

model must be available outside the shaded region. There are several options for providing this

data outside the region of normal operation. First, wind tunnel or simulator/flight test data

can be used to construct the reference model data. If this information is not readily available,

the aircraft can be flown into these regions intentionally to obtain a reference model. As a last

resort, a reference model can be specified using empirical approaches. It is important to note

that a highly accurate reference model of the nominal performance is not necessary outside the

normal operating region. If a failure forces an aircraft into the region, nominal performance is a

luxury, and the primary concern is the controlled return to the normal operating region so that an

emergency landing can be conducted. Due to the possibilities of large modeling error outside the

normal operational envelope, if a healthy aircraft enters this region for some reason or another,

a false alarm might occur. In this event, the pilot would be required to manually disengage

the RCM failure switch and allow the system identification module to generate an adequate

reference model. Note, in this situation, a false alarm will not cause any sever transients or

adverse behavior since the retrofit module naturally exhibits zero or very small outputs when

there is no failure.

The second issue associated with the flight-condition dependent reference model is how to store

that data. Given that estimates of Am, Bm, fm and CB, are available throughout the flight

envelope, each element of these matrices and vectors, which represents a dimensional derivative,

needs to be stored:

Am7i,3 i=1:n, j=1:n Bmjj li=1:n, j=1:m fmi l=1:n Bm, l=1:m, j=1:q

Recall from elementary flight dynamics that the partial derivatives of aerodynamic forces and

moments with respect to state and input variables are termed dimensional derivates. Thus, there

are potentially n x (n + m + 1) + m x q dimensional derivatives that must be stored. As will be

demonstrated in subsequent chapters, enforcing the proper aircraft dynamics will significantly

reduce the number of dimensional derivatives that require storage. Nevertheless, there is a lot
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of information that needs to be stored.

It is recommended that the reference model data be stored in a dimensionless coefficient format

versus a dimensional coefficient format. Recall, dimensional derivates can be converted to di-

mensionless derivatives or coefficients by normalizing the dimensional derivatives using reference

lengths and areas, dynamic pressure, and aircraft inertias [71, 74]. There are two good reasons

for this approach. First, inertia changes and density variations will be easily accounted for in the

reference model. Second, dimensionless coefficients vary smoothly through the flight envelope;

this property will be utilized in the following paragraphs. It is well known that for commercial

transport and general aviation aircraft the clean configuration dimensionless coefficients are ap-

proximately constant throughout the flight envelope. These coefficients will vary due to dynamic

pressure and compressibility effects, but given that these aircraft only enter the low transonic

regime, variations should be smooth. For unclean configurations, i.e. flaps down, gear down,

in-ground effects, increment data would be required.

As illustrated in Figure 3-1, the flight envelope is generally parameterized with two variables.

Some common variables used are Mach, altitude, dynamic pressure, total pressure, and static

pressure. For this discussion, Mach and altitude will be used as envelope parameters. Each

dimensionless coefficient must be stored relative to these two parameters. This can be performed

simply using a discrete 2-D table or using polynomials or neural networks. Since the data is

being stored as dimensionless coefficients, the fluctuations between identification results should

be benign. Given the smooth nature of dimensionless coefficients throughout the envelope, low

order polynomials and neural networks can be used to approximate the identification results.

There are two important issues associated with the data storage mechanism: ability to adapt the

parameters and storage space requirements. These issues will be addressed for each of the data

storage approaches. A discrete table is by far the most common data storage mechanism. Here,

the dimensionless coefficients are stored at a discrete number of flight conditions. Updates to

these points are performed using a covariance weighted average of identification data obtained

in a neighborhood of the discrete point. Although this is a simple approach, the discrete table

storage mechanism suffers from large memory requirements. On the other end of the spectrum,
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neural networks provide a highly efficient data storage mechanism. Storing stability and control

derivatives in neural networks has been shown to be an effective means by Peterson [75]. How-

ever, adaptation of the neural networks can be problematic because over-training can result in

large fluctuations between training points. An alternative to the neural network approach is to

use polynomial functions with a fixed number of coefficients to approximate data. As mentioned

above, a low-order polynomial with a fixed number of coefficients can accurately represent the

coefficient distribution over the flight envelope. Since there will only be a few coefficients per

stability derivative, this provides an effect data storage mechanism. Given that the estimation

error covariances can be retained in this approach, the polynomial constants can be updated

using a covariance weighting approach (i.e. weighted least-squares).

3.6 Summary

The reference model is the second component of the RCM architecture. The reference model's

primary function is to provide desired dynamics CAm, CBm, and Cfm and an estimate of

the aircraft's control power effectiveness CB, to the adaptive augmentor component for the

calculation of the output performance error e0 (t). The output performance error has a dual

functionality in the RCM architecture. During failure operations, a scaled version of co(t),

which is the input error ei(t), is used to update the reconfiguration gains, and during nominal

operations, e0 (t) is the key measure for determining whether a failure has occurred. In order to

use the output performance error as a measure for failure detection, eO(t) needs to be near zero

during nominal operation. To achieve a near zero output error throughout the flight envelope,

the reference model must be flight condition dependent. Given the additional requirements

for low-cost implementation and life cycle maintenance, the reference model is to be generated

on-line using system identification.

The objective of the on-line system identification is to minimize the mean-squared output per-
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formance error throughout the flight envelope:

T

min J[E(p)] = lim e[t|S(p)]2
9(p)T -+oo To

where the parameters $ (p) are the estimated desired dynamics - dAm, CBm, Ofm and CBp

- and the parameter p represents the flight condition dependency.

To achieve this goal, a two stage identification process is outlined which is well suited for on-line

identification of the desired dynamics. The first stage involves the identification of the aircraft's

control effectiveness matrix CBp, and the second stage involves the identification of the closed

loop desired dynamics Am and Bm. Note, the complete Am and Bm (versus CAm and CBm) are

estimated; the complete Am is required to enforce Assumption 10 which states that the reference

model must be stable, i.e. Am is Hurwitz. Finally, f m is derived using the estimates Am and

Bm so that a feasible trim solution of wings level, zero sideslip angle, and zero state derivatives

can be enforced.

Given this reference model development approach, the identification data structure, model struc-

ture, and optimization algorithms were presented. Additionally, procedures for enforcing sta-

bility of the reference model and estimating fm were presented. Finally, issues associated with

storing the reference model were addressed.

Chapter 2 listed several assumptions pertaining to the data set that is available to the RCM.

Given the requirement of enforcing stability, an additional assumption was required, Assumption

15, which states that the full state derivative is estimated or measured. For the first stage

model, the aircraft's open-loop nonlinear equation of motion will be used to identify the control

effectiveness matrix CB, and a perturbation state space model of the aircraft's closed-loop

dynamics will be used to identify the desired dynamics Am and Bm.

Given the data set and dynamical models, an Output-Error (OE) identification model structure

can be used; thus, the identification problem is translated into the classical linear regression

problem. Given this formulation, there are several algorithms available to obtain an estimate of

the desired dynamics. The methodology selected is the minimum variance parameter estimation
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technique. Given the methodology, there are several different algorithms available to arrive at

an unbiased, minimum variance estimate. These algorithms can be either batch or sequential,

both of which are presented in this chapter. In the batch algorithms, a large data set is post-

processed to generate the estimate. Though batch identification is generally not well suited for

on-line applications, it does provide a valuable design tool for generating initial model estimates

and for post-processing of reconfiguration results. The sequential or on-line algorithm generates

an estimate recursively as data becomes available. The sequential algorithm selected is the

Modified Sequential Least-Square (MSLS) algorithm. This algorithm, originally developed at

the Air Force Research Lab and refined by Barron Associates, has been successfully applied to

several simulation flight vehicles and was flight tested on the F-16 VISTA. The foundation of

this technique is based on the minimum variance estimator and is composed of both batch and

sequential algorithms. This algorithm is the main part of the RCM architecture that takes a

mature military technology and transitions it to commercial applications.

Since the reference model is flight condition dependent, the identification results need to be

stored for various flight conditions. This data can simply be stored in two-dimensional tables;

however, a two-dimensional polynomial approach is proposed for the data storage. In this ar-

rangement, fixed dimension polynomials are used to approximate the dimensionless coefficient

variations through the flight envelope. This approach minimizes the data storage requirements

and computational requirements of generating reference model data throughout the flight enve-

lope. Furthermore, slow adaptation of the reference model can be accomplished using sequential,

unbiased minimum variance techniques like the ones presented in this chapter.

In summary, this chapter outlines the procedures for generating a reference model that minimizes

the RCM implementation and life cycle cost. The accuracy of the reference model is the key

issue associated with the RCM operational performance. Inaccuracies in the reference model will

lead to false alarms and ultimately limit the achievable post-failure performance. Given these

and other functional requirements for the reference model component of the RCM architecture,

an on-line system identification process is outlined that satisfies the functional requirements.
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Chapter 4

Signal Conditioning and Estimation

Module

The signal conditioning and estimation module is the final component of the RCM architecture.

Its primary function is to provide the required signals to the adaptive augmentor and reference

model components. As outlined in the previous two chapters, the required signals include the

stability axis state vector x(t), the stability axis state derivative vector N(t), the pilot input

commands r(t - T), the control surface deflections u(t), and the control surface saturation levels

Au(t). Recall that in many cases, the assumptions about the available data were made to

simplify the algorithms in the other two modules. Given that some of this data is not available

on existing commercial transports, these previous simplifications result in greater complexity for

this component.

In this chapter, the generation of the required information via conditioning or estimation will be

discussed in the context of realistic sensor suites in existing commercial transports. The contents

of this chapter do not represent a contribution to control theory or practice. Instead, this chapter

simply presents definitions, a Kalman filter formulation, and a surface model architecture for

the purpose of completeness. Thus, it may be skipped at this point and used solely as reference

in subsequent chapters.
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4.1 State Vector x(t)

The stability axes state vector x(t) generally includes the states listed in Table 4.1. With the

Table 4.1: Stability Axes Aircraft States x(t)

current stability augmentation systems and autopilots, it is reasonable to assume the nominal

control system already has either measured, filtered, and or estimated the entire state vector.

The only conditioning of the state vector that might be required is the conversion of the angular

rates from body-axes to stability-axes coordinate system. If the angular rates are in body-

axes system, they can be transformed to the stability-axes system via the following coordinate

transformation:

_[Ps(t) Pb(t)

q,(t) = Sa qb(t) whereSa =

r.(t) J r(t) J

cos a

0

-sin a

0

1

0

sin a

0

cos a I (4.1)

where the subscripts s and b stand for stability-axes and body-axes.

4.2 State Derivative Vector z(t)

The stability axes state derivative vector z(t) are listed in Table 4.2. Many of these derivatives

will not be accessible from the nominal control system for existing commercial transports; thus,

they must be estimated. The state derivative will be estimated using a bank of Kalman filters:
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Variables Description
vt(t) True Airspeed
a(t) Angle of Attack
0(t) Pitch Attitude

q8 (t) Pitch Rate
3(t) Sideslip Angle

<0(t) Bank Angle
Ps (t) Roll Rate
r5 (t) Yaw Rate



Table 4.2: Stability Axes Aircraft State Derivatives z(t)

each state will have an associated

the Kalman filter is illustrated in

Kalman filter. The dynamical model that we will use for

Figure 4-1. The output of this model is one of the state

v(t)

Sz(t)w(t)

Figure 4-1: Kalman Filter Model for Estimation ,(t)

variables, which is corrupted by measurement noise v(t). The other two states of this model

are the state derivative and state acceleration, the later being driven by process noise w(t).

For example, if an estimate of the pitch acceleration 4(t) is sought, then the Kalman filter state

vector x(t) = [q(t)4(t)4(t)]T . For this application, both the process and sensor noise are assumed

to be continuous time, white Gaussian noise with zero mean; thus,

w(t) E RI1,(O,Q), or E{w(t)w(r)} = Q6(t - T),Q > 0

v(t) E R1,A(0, R), or E{v(t)v(r)}= R6(t - r), R > 0
(4.2)
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Variables Description
ot (t) True Airspeed Derivative
6(t) Angle of Attack Derivative

#(t) Pitch Attitude Derivative

4 (t) Pitch Acceleration
p(t) Sideslip Angle Derivative
<(t) Bank Angle Derivative

Ps (t) Roll Acceleration
i (t) Yaw Acceleration



Furthermore, it is assumed that the process and sensor noise are uncorrelated. Based on this

dynamical model, we define the process model as follows:

0 1 0 0

(t) = 0 0 ]x(t)+[0]w(t)0 0 1 ~ t) +(4 .3)
0 0 0 1

i(t) = Fx(t)+Gw(t)

Additionally, we define the measurement model as:

z(t) = 1 0 0 x(t) + v(t) (4.4)

z(t) = Hx(t)+v(t)

Under the stated assumptions on the process and sensor noise, there are several optimality

criteria that result in the same 'optimal' estimator, the continuous time Kalman filter. The

Kalman filter is well documented [76, 77, 78]. The formulation of the continuous time Kalman

filter is summarized in Table 4.3. Additionally, since the process model (4.3) and measurement

Table 4.3: Summary of Continuous Kalman Filter Equations (Copied from [76])

Process Model 1(t) = Fx(t) + Gw(t), w(t) ~ .AN(0, Q)
Measurement Model z = Hx(t) + v(t), v(t) ~ N(O, R)
Initial Conditions E{x(0)} = &, E{(x(0) - O)(x(0) - sO)"} = PO
State Estimate (t) = Fx(t) + K(t) [z(t) - H2(t)]
Estimation Error Covariance P(t) = FP(t) + P(t)FT + GQGT - K(t)RK T (t)
Kalman Gain K(t) P(t)HT R-1

model (4.4) are controllable and observable respectively, the Kalman filter is guaranteed to be

stable and the estimation error covariance matrix P(t) is positive definite and unique.

In this application, the only parameter that is available to tune the Kalman filter is the process

noise covariance Q, since the measurement noise covariance is a function of the particular sensor.

The key measures of performance for the Kalman filter are the estimation error covariance

matrix P(t) and time delay r associated with the estimation. The relationship between the
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design parameter Q and the performance parameters P(t) and r are best illustrated by using

the steady-state solution to the Kalman filter. Given that the dynamical model is an LTI system

and that the statistics are stationary, the Kalman filter will reach a steady state condition, i.e.

P(t) -* Poo which is a constant matrix. The steady-state solution to this particular problem

is present in Example 11B of [78]. Only the pertinent information will be duplicated. The

steady-state estimation error covariance matrix is as follows:

2Q6R6 2QiR3 Q2R 1
POO = 3Q2R2 2Q3R3 (4.5)

sym 2Q6R6

Additionally, a transfer function from the filter input z(t) to the desired output z (t) is as follows:

X(s) 2Q 2 2 + Q 3 (
V(s) s3 + 2Qs 2 + 2Q 2s ± Q3  (4.6)

where s is the Laplace variable and Q = (Q/R) r is the ratio of process to sensor noise covariances.

The poles of this transfer function are si = -Q and S2,3 = -Q(I ± 1j). Thus, the Kalman

filter's bandwidth is proportional to the ratio of process and sensor noise. Using this transfer

function, a time delay can be associated with the filter by modeling the changes in phase due to

the filter as a transport delay:

r(w) = 0() - O(W) , where #(w) = Zk(jw) - ZV(jw) (4.7)

The maximum time delay associated with a given process to sensor noise covariance ratio can

be determined by finding the maximum of (4.7).

A few comments about the Kalman filters performance are in order. For a given measurement

noise covariance, a large process noise covariance translates into a high filter bandwidth, a small

maximum time delay, and a large estimation error covariance. So how should Q be chosen? Since

the estimates from the resulting Kalman filter are used in the system identification module, the

bandwidth is the most critical.
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To tune the filter, the bandwidth requirements must be determined by considering the physics

of the signal. For example, if an estimate of the pitch acceleration is required, the control

surface rate limit gives an approximate lower limit for the required bandwidth. Given this

bandwidth requirement, the assumed process noise covariance can be determined using the

undamped natural frequency Q = (Q/R) . Likewise, an estimate of the maximum time delay

and an estimate of the estimation error covariance can be made via (4.7) and (4.5). The time

delay information should then be used in the identification process to ensure that all data is

transformed to equivalent times.

To implement the Kalman filter in the RCM architecture, a discrete formulation is necessary. A

discrete representation of the process model in (4.3) is as follows:

1 AT j'AT2
Xk+1 0 1 AT Xk+Wk (4.8)

L0 0 1

Xk+1 Xk + Wk

where AT is the sampling interval and wk is the zero mean, discrete time white noise sequence:

Qk k~~i [ T5  AT4  AT3whrQkAT A2

t Qk k = 20 8

E{wkW}- = where Qk = [ Q (4.9)
0 k #4 3i

sym A

Likewise, the discrete representation of the measurement model in (4.4) is as follows:

Zk 1 0 0]Xk+vk (4.10)
Zk = HXk+vk

where measurement noise Vk is the zero mean, discrete time white noise sequence:

Rk k=i R
E{vkVo}{ , where Rk = (4.11)
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The main results of the discrete Kalman filter are well documented [76, 77]. The formulation

are summarized in Table 4.4.

Table 4.4: Summary of Discrete Kalman Filter Equations (Copied from [76])

Process Model Xk = (Dxk_1 + Wk_1, Wk ~ K(O, Qk)
Measurement Model Zk = HXk + vk, Vk ~ N(0, Rk)
Initial Conditions E{x(0)} = fo, E{(x(0) - so)(x(O) - so)"} = PO
State Estimate Extrapolation :4(-) = IDk-1(+)
Error Covariance Extrapolation Pk (-) = +P(+)F + Qk-1
State Update -k(+) = -4(-) + Kk [zk - H-k(-)]
Estimation Error Covariance Pk(+) = [I - Kk HI Pk(-)
Kalman Gain Kk = Pk(-)HT [H Pk(-)HT + Rk-

4.3 Pilot Input r(t - T)

There are two important issues associated with the pilot reference inputs. The first is the types

of inputs (i.e. stick, pedal, throttle, autopilot, etc.), and the second is the delay associated with

these inputs; both will be discussed in this section. Given that the reconfiguration performance,

Assumption 1, contains the rotational rates of the aircraft, the pilot commands that are of

interest include all commands that affect the rotation response of the aircraft. These commands

include manual stick and pedal inputs or certain autopilot modes that the pilot may engage.

Table 4.5 presents the definitions of pilot inputs that are used in subsequent chapters. Note,

Table 4.5: Pilot Inputs r(t - r) Definitions

Variables Description

dap(t) Roll Stick Input
dep(t) Pitch Stick Input
drp(t) Yaw Pedal Input

throttle commands are not include since the auto-throttle functionality is not critical for control

surface reconfiguration. Generally, the units will be a length that represents a deflection from
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the free position.

The generation of these signal requires special consideration when the autopilot is engaged.

In general, the autopilot functions as an outer loop control system that generates equivalent

pilot inputs to perform a specified task, i.e, attitude hold, altitude hold, heading hold, etc.

Given that we desire to perform both identification and reconfiguration with and without the

autopilot engaged, we need to be able to measure or construct r(t - T) with or without the

autopilot engaged. For some commercial transports with yoke columns, autopilot commands

are converted to equivalent stick inputs to back-drive the stick; thus, they provide cues to

the pilots of the autopilots commands. Given this situation, stick and pedal movements are

directly measurable and no signal conditioning or estimation is required. For other transport

aircraft, especially with side stick devices, autopilot commands do not back-drive the stick. In

this situation, the signal conditioning and estimation module must generate the equivalent stick

commands as though they were to be used to back-drive the stick. This can be accomplished

by taking an autopilot command and converting it to equivalent stick commands by inverting

the stick logic.

The next issue associated with the generation of r(t - T) is the delay r. This transport delay

is a result of representing a high-order system with a low-order equivalent system as is done in

Section 2.2. The delay is used in the low-order model for matching high-frequency effects of

the higher order model [71]. These high-frequency effects include actuator dynamics, control

systems filters, and possible structural dynamics. Though the time delay is generally frequency

dependent, a constant r is assumed. This delay needs to be determined prior to installation

of the retrofit module, and is to remain constant thereafter. Given that pilot inputs (Table

4.5) generate accelerations about the three axes, an estimate of the time delay can be obtained

by injecting a step input into each axis and then measuring the time delay associate with the

rotation accelerations.
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4.4 Control Surface Deflections u(t)

The next set of signals that are required are the control surface deflections u(t), which are used

solely in the first stage identification of CB,. Differing from the other required signals, the

control surface signals are aircraft dependent (for obvious reasons). Thus, all that can be done

here is to set up standard definitions for deflections and discuss the measurement or estimation

of the signals.

Aircraft generally have redundant control surfaces, e.g. spoilers and ailerons for roll, split rudders

for yaw, split elevators or stabilizers for pitch. Depending how these surfaces are deflected,

they can produce either longitudinal or lateral-directional moments or both. For example,

symmetrically deflected horizontal stabilators - both surfaces deflecting the same amount in the

same direction - produce pure pitching moment. Differentially deflected horizontal stabilators

- both surfaces deflecting the same amount in opposite directions - produce a rolling and

yawing moment. If only one surface is deflected, pitching, rolling and yawing moments will

result.

In an attempt to reduce the dimensions of the control space and to decouple control surface

deflections, equivalent surface deflections are defined as average deflections for each particular

control surface type. The term symmetric deflection will signify a set of control surface deflec-

tions that produce primarily pitching moment, and differential deflections will signify deflections

that produce primarily lateral-directional moments. Table 4.6 contains definitions of equivalent

control surface deflections that are used in subsequent chapters. In this table, the subscripts I

Table 4.6: Equivalent Control Surface Deflections u(t)

Variables Description

Usym Z~i(ui + uri)/k

Udif E~i(ui - r/

and r signify left and right surfaces, the summation accounts for multiply left and right surfaces,

and k is an averaging constant. The selection of the averaging constant is up to the designer
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and generally reflects the number and type of control surface.

With the equivalent surface definitions defined, we proceed to the discussion of measuring or

estimating the control surface deflections. It is not uncommon that a control system provides

direct measurement of the control surface positions; thus, the only signal conditioning required

is the conversion of individual surfaces into the equivalent deflections defined above. For other

aircraft, the control surface deflections need to be estimated. The control surface deflections

can be accurately estimated using a surface model like the one illustrated in Figure 4-2. The

8c SeTvo

Dynamics

Figure 4-2: Control Surface Model for Estimating u(t) and Au(t)

information required to implement this surface model is a model of the linear servo dynamics and

the saturation characteristics. This information is readily available for all commercial transports.

4.5 Control Surface Saturation Levels Au(t)

The final set of signals that is required is the control surface saturation levels Au(t). Recall

from Section 2.1 and Equation (2.8) that the control surface saturation level is defined as the

difference between the actual control surface deflection u and the unsaturated control surface

deflection Uk + Urcm:

Au(t) = U - (uk + Urcm) (4.12)

Based on the discussion in the previous section, equivalent control surface saturation levels are

defined in order to reduce the number of signals. Table 4.7 contains the generic definitions of the

control surfaces deflections that are used in subsequent chapters. In this table, the subscripts 1

and r signify left and right surfaces saturation levels, the summation accounts for multiple left

and right surfaces, and k is an averaging constant. As before, the selection of the averaging

constant is up to the designer and generally reflects the number and type of control surface.
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Table 4.7: Generic Definitions of Control Surface Saturation Levels Au(t)

Variables Description
AUsym Zi(Aui. + Aur)/k

AUdif Ei(Aui - AUri)/k

The generation of Au(t) can be accomplished using direct measurement and a surface model or

just a surface model. Direct measurements alone cannot be used since the unsaturated control

surface deflection Uk + Urcm is obtained by filtering the control surface command Uke + Urcmc

through the servo dynamics is Figure 4-2.

Since Au(t) is used during post-failure operation, special consideration must be given to the

saturation level associated with the failed surface. Recall from Section 2.4 that the Au(t)

signal is used to robustify the adaptation algorithm to potentially destabilizing control surface

saturation. This robustification was performed by subtracting out the acceleration due to the

saturating surface CBpAu(t) in the input error, which is duplicated here for convenience:

ei(t) = J(t) [i(t) - C( Amx(t) + Bmr(t - T) + fm + BpyAu(t))]

If a control surface fails, its contribution to CBpAu(t) should be zero. This fact can be arrived

at by two separate arguments. First, it is clear that if a surface experiences a fixed position

failure, the surface is not moving; thus, it does not really experience saturation. As a result,

(4.12) does not accurately portray the saturation level of a failed surface. Stated another way, a

failed surface represents a null column in the control effectiveness matrix in the LTI framework,

i.e. the linearization of a constant is zero. This argument is extended to floating surface failures

since the failed deflection is a function of the aircraft state; thus changing CBp. In any event,

we can for this discussion assume that for a failed surface,

CBAu(t)|i = 0 V t > tf (4.13)

where i represents the failed control surface and tf is the failure time. However, given that a

priori knowledge of the failure is not required in this architecture, CBp|k # 0 V t > tf where
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k represents the column associated with the failed surface. Likewise, based on the definition of

the control surface saturation level (4.12), Au(t)|j # 0 V t > tf where j represents the failed

surface. As a result, the equality (4.13) is not enforced, i.e. CBpAu(t)|i # 0 V t > tf!

Feeding this erroneous signal into the input error can result in poor reconfiguration results.

There are two possible solutions to this problem. If the surfaces are directly measurable, the

failed surface can be determined via logic, and the resulting saturation level can be nulled, i.e.

Au(t)|j = 0 V t > tf where j represents the failed surface. If the surfaces are not directly

measurable, there is no simple way to determine which surface has failed. Using the alternative

viewpoint from above, we can say that CB, is uncertain and added it to the unknown reconfig-

uration parameters <>(t) in the adaptation regressor. This will be demonstrated below. Recall

the robust adaptation law, which is defined in Equation 2.20:

.l - ei (j)Z T F if Ie(j)| Vo(j)

0 else

for j = 1 : m and where IVI < V is the upper bound on the regressor disturbance, Z = [X, r, 1, i-

(CAmx+CBmr+Cfm+CBAu)]T E Rn+m+l+m, <b = [kr kx kf j] C Rmx(n+m+1+m) , and the

adaptation gain F is a symmetric positive definite. Now, removing CB, from the regressor results

in the following measurement error Z = [x, r, 1, i-(CAmx+CBmr+Cfm), Au]T E Rn+m+1+m+m

and the reconfiguration parameter matrix <} = [Kr Kx Kf J J' ] E Rmx(n+m+1+m+m) where j'

is an estimate error of (CBu)-1 CB,.

4.6 Summary

The primary function of the signal conditioning and estimation module is to provide the required

signals to the adaptive augmentor and reference model components. As outlined in the previous

two chapters, the required signals include the stability axes state vector x(t), the stability axes

state derivative vector -z(t), the pilot input commands r(t - T), the control surface deflections

u(t), and the control surface saturation levels Au(t).
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The primary purpose of this chapter was to present definitions of signals that are used in sub-

sequent chapters and to address the potential complexity issues associated with providing the

required signals. Depending on the available sensors suites, Kalman filters may be required to

generate z(t) and control surface models may be required to generate u(t) and Au(t). Other

issues addressed include conversion of the rotation rates from body-axes to stability axes, de-

termination of the pilot reference commands with the auto-pilot engaged, determination of the

reference input delay r, and determination of the saturation level Au(t) for the failed surface.
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Part II

Implementation
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Chapter 5

F/A-18 Simulation Results

The reconfiguration architecture discussed in the previous sections was implemented on a high-

fidelity F/A-18 simulator. The purpose of this implementation is to demonstrate the retrofit

reconfiguration at a single flight point and to serve as a precursor to the implementation on

a generic commercial transport simulation. The chapter will present a brief discussion of the

implementation parameters and will present several failure scenarios.

5.1 Implementation

The F/A-18 simulator used in this implementation is a Simulink version of NASA Dryden's

high-fidelity, fixed base, piloted F/A-18 simulator. The Simulink version, illustrated in Figure

5-1, is a complete nonlinear 6 degree-of-freedom simulator that includes full envelope aerody-

namics, engine dynamics, actuator dynamics, and the Control Augmentation System (CAS).

The Simulink version has been validated against the fixed-base piloted simulator and has been

used successfully for design modifications that resulted in piloted simulations [79, 80].

The flight point selected for the evaluation is Mach 0.5 at an altitude of 15,000 feet. At this

flight point, the aircraft is trimmed at a = 4.9' and a true airspeed of V = 313 kts. Atmospheric

disturbances, sensor dynamics and noise are neglected in the following simulations.
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Figure 5-1: F/A-18 6DOF Nonlinear Simulator

In this simulator, the pilot commands aircraft rotational rates; thus, the performance vector z

contains p, q, and r. The reconfiguration architecture outlined in the previous section requires

the following information from the reference model: desired linear dynamics CAm and CBm,

desired trim condition CFm, the time delay r associated with each pilot input channel, and the

control power dimensional derivatives CB, associated with the rotational rates. As stated, the

intention of this implementation is to demonstrate 'Adaptive Augmentation' at a single flight

point; thus, online adaptation of the reference model is not included. To generate the required

reference model information, off-line system identification was used to determine the model

structure in (2.11) and a separate off-line identification was performed to determine the control

power derivatives CB, using the model structure in (2.2). Minimum variance, equation-error

estimation techniques [18, 17] were used, and special attention was devoted to ensuring that the

modeling error is small. The level of modeling error achieved eliminated the tradeoff between the

upper bound of modeling error and the achievable performance inherent in robust adaptation.

A reconfiguration module was added to the baseline F/A-18 simulator. The inputs to the

reconfiguration module include the aircraft's total stability axis states x = [V a 0 q # <5 p r]T,

the stability axis rotation accelerations i = [p q ']T, pilot stick and pedal inputs traditionally
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associated with elevator, aileron, and rudder commands r = [dep dap drp]T, and the nominal

control command uk, from the CAS. For this implementation, signal conditioning and estimation

were not required since atmospheric and sensor noise were not included. Furthermore, the

rotational accelerations were measured directly. The reconfiguration module contains a surface

module which was used to determine the level of saturation.

The reconfiguration module outputs perturbation signals to the control surfaces. The control

surfaces used for the reconfiguration task are symmetric horizontal tail for pitch, differential

aileron for roll, and symmetric rudder for yaw1 . Because of the redundancy of the surfaces

on the F/A-18, other choices are possible. However, we have chosen one surface per axis for

reconfiguration to be consistent with the eventual application to civil aviation.

Initial estimates for the control gains in (2.14) are zero to reflect the nominal condition, and

the initial estimate of j in (2.15) is set to (CB,)- 1 which is obtained from the reference model.

The adaptation gain F in (2.20) was selected to normalize the regressor and to permit rapid

adaptation to failure disturbance while not chattering. Finally, because the modeling errors in

the reference model are minor and the pilot commands used are moderate, a dead-zone was not

required.

5.2 Simulation Results

In this section, a few simulation results will be presented. The failure scenarios illustrated are

a rudder hard-over failure, a stabilator hard-over failure, and a stabilator floating failure. For

all of the simulation results that follow, pilot stick inputs are independent of the failure, i.e. the

pilot is operating 'open-loop'. The input command consists of two pitch doublets followed by a

roll doublet.

'Symmetric deflection is defined as (
6
Ieft + ortqht)/2 and differential deflection is defined as (6

Ieft -
6 right)/2
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5.2.1 Rudder Failure

The first failure scenario that is presented is a hard-over failure to the left rudder. At 2.5 seconds

into the simulation, the left rudder moves from its trim deflection to a 300 deflection. For the

F/A-18, the rudder limits are 30' to -30'. Figures 5-2 and 5-3 illustrate the longitudinal and

lateral-directional response to the input command.
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4 - --- - -- .---. .-.
- 5 3 0 -. -.. . .- . .- . . .-. ..-. .- . ..-
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Figure 5-2: Longitudinal Response for Rudder Hard-Over Failure: J,,d = 30' - Failure - -
Nominal - - Failure w/o RCM)

These figures show that without reconfiguration, the aircraft departs rapidly. With reconfigura-

tion, however, the failure disturbance is rapidly attenuated and good performance is recovered.

Yaw rate and sideslip performance are degraded, primarily due to significant magnitude satu-

ration of the unfailed rudder. To attenuate the large DC yaw disturbance, the reconfiguration
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module commands the right rudder to approximately -30' deflection; from that deflection, the

rudder can only move in the positive direction during the roll doublet command (21-25 seconds).

It is worth noting that the reconfigured aircraft remains stable in the presence of significant sat-

uration. Finally, the slow decay shown in the bank angle response is attributed to the long time

constant of the spiral mode and to the fact that the pilot makes no corrections (i.e. the input

commands do not change).
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5.2.2 Horizontal Tail Failure

The next failure scenario is a left horizontal tail hard-over failure. At 2.5 seconds into the

simulation, the left horizontal tail moves to its upper limit of 10.5' deflection. For the F/A-18,

the horizontal tail limits are 10.50 to -30". Figures 5-4 and 5-5 illustrate the longitudinal and

lateral directional response to the open-loop reference commands.
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Figure 5-4: Longitudinal Response for Horizontal Tail Hard-Over Failure: 3 hzt,
Failure - - Nominal - - - Failure w/o RCM)

30

= 10.50 (-

In these figures we see that without reconfiguration, the aircraft departs rapidly in both pitch

and roll. But, with reconfiguration, the failure disturbance is rapidly attenuated and near

nominal performance is recovered. By the second pitch rate doublet, the reconfigured aircraft

is able to generate the desired pitch rate and resulting angle of attack response. The pitch
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(- Failure - - Nominal - - Failure w/o RCM)

angle offset is a result of the fact that the pitch angle is the integral of the pitch rate so that the

pitch rate disturbance is integrated. Closed-loop pilot commands would correct this discrepancy.

For the roll rate doublet, the nominal performance is achieved despite the fact that differential

horizontal tail is required for this maneuver. Finally, it is seen that the reconfigured performance

does exhibit some cross-axis coupling, indicating that the control gains have not converge to their

optimal values. Nevertheless, stable and near nominal performance is achieved.
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5.2.3 Floating Horizontal Tail Failure

The next failure scenario is a left horizontal tail hard-over failure. At 0.25 seconds into the

simulation, the right horizontal tail floats, i.e. 3 hzt, = a to 1st order. Figures 5-6 and 5-7

illustrate the longitudinal and lateral directional response to the open-loop reference commands.
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Figure 5-6: Longitudinal Response for Floating Horizontal Tail Failure: 6hzt, = a
- Nominal - - Failure w/o RCM)
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Again, the aircraft departs rapidly without reconfiguration. With reconfiguration, the failure

disturbance is rapidly attenuated and near nominal performance is recovered.
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5.3 Conclusions

The purpose of this implementation was to demonstrate the modular nature of the architecture

and to provide initial simulation results. A wide variety of control surface failures were performed

and reported: rudder fixed-position failure, stabilator fixed position failure, stabilator floating

failure. Comparisons were made between the failed aircraft with and without reconfiguration

and between the failed-with-reconfiguration and the healthy aircraft. Simulation revealed that

the retrofit module was able to stabilize the aircraft in the presence of large failure disturbances

and control surface saturation. Furthermore, nominal performance was achieved if there was

adequate control authority post-failure. Without reconfiguration, the aircraft departs for the
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failures considered.
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Chapter 6

ACFS Implementation

This chapter details the implementation of the retrofit reconfiguration system on a generic

commercial transport simulation. The transport simulator used is the Advanced Concept Flight

Simulator (ACFS) that resides at NASA Dryden Flight Research Center.

In the following sections, a description of the aircraft and simulation will be presented. A detailed

account of the implementation will be discussed, and general issues of commercial transport

reconfiguration will be highlighted. Finally, simulation results that compare the nominal aircraft

to a failed aircraft with and without reconfiguration will be presented.

6.1 Aircraft and Simulator Description

The ACFS is a high fidelity, six degree-of-freedom flight simulator that represents a generic

narrow-body commercial transport aircraft. The ACFS provides full mission functionality and

appears similar to a high fidelity training simulator but is unique in that no flight hardware

is used [81]. The physical dimensions and performance are similar to the Boeing 757-200 [82]

aircraft with the exception that the ACFS has a T-tail. Figure 6-1 presents a schematic repre-

sentation of the planform layout.
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Figure 6-1: Schematic of ACFS Planform Layout

The ACFS was originally developed as a joint venture between NASA Ames, NASA Langley, and

Lockheed Company. The simulator has primarily been used to study many aspects of human

factors in aviation safety as well as methods to improve aviation operation efficiency. Outside

the humans factors and air-traffic control research, the simulator has also been used to study

Propulsion Controlled Aircraft (PCA) [83], which is an emergency backup fly-by-throttle control

system for use in the case of complete hydraulic failure.

The aircraft has two engines mounted on the wings, and each engine produces a maximum

of 41,000 lbs of thrust. The gross take-off weight is 225,000 lbs, and can accommodate 200

passengers. The ACFS control surface layout is typical for this class of aircraft. Table 6.1 lists

the control effectors and their respective position and rate limits. The aircraft has an elevator

which acts as the primary pitch device, and a variable incidence horizontal tail which acts as

the primary trim device. The lateral axis consists of a pair of outboard ailerons and six spoiler

panels, three on each wing. In the directional axis, there is a single full span rudder. For high-lift

devices, the wing has trailing edge flaps that extend to the ailerons and full span leading edge

flaps. The aircraft has four ground spoilers extending from the wing/fuselage intersection to the
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wing crank. Finally,

included as a control

and yaw moments.

the engine throttle position, also known as Power Lever Angle (PLA), is

effector since symmetrical and differential throttles can produce both pitch

Table 6.1: Control Surface Position and Rate Limits

Control Position (0) Rate (0/sec)
Effector Limit Limit

Elevator -25.0 -+ 25.0 80.0
Horizontal Tail -12.0 -+ 4.0 0.15

Ailerons -25.0 -+ 15.0 80.0
Rudder See Figure 6-2 80.0
Spoilers -60.0 --+ 0.0 80.0
Flaps 0.0 - 40.0
Slats 0.0 -+ 22.0
PLA 5.0 -+ 100 3.57

The rudder deflection position limits vary as a function of dynamic pressure due to empennage

loads considerations. Figure 6-2 illustrates the deflection limits. It is seen from this figure

that the allowable rudder deflection drops exponentially for increasing dynamic pressure, and

at cruise dynamic pressures, the allowable deflection is below 8.0'.

The aircraft model includes full envelope aerodynamics and full envelope engine dynamics. The

surface dynamics account for position and rate saturation but lack servo dynamics. The aircraft

model does contain a turbulence model with RMS and bandwidths that are representative of

values specified in Military Specifications 8785 D of April 1989. No sensor dynamics or sensor

noise are included.

The version of the ACFS that was used for this implementation is referred to as the 'Stone Soup'

Simulator of the Miniature Advanced Concept Flight Simulator (sss.miniACFS). The miniature

version represents a desktop computer version of the full motion, piloted simulator that resides

at the NASA Ames Crew-Vehicle Systems Research Facility. The stone soup moniker represents

a version of the ACFS in which the proprietary portions of the simulator have been replaced to

enable limited distribution. In this version, the flight management, flight control, and autopilot

systems were replaced. Of particular interest, the flight control laws were replaced by modified
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Figure 6-2: Rudder Deflection Limit

Boeing 737 point-mass control laws obtained from MIT's Aeronautical Systems Laboratory's

(ASL). From this point on, the acronym ACFS will refer to the Stone Soup Simulation of the

Miniature Advanced Concept Flight Simulator.

The desktop simulator provides graphical displays for the various control panels and cockpit

displays. The relevant displays for this implementation include the Primary Flight Displays

(PFDs), which include an Attitude Direction Indicator (ADI) and a Horizontal Situation Indi-

cator (HSI). There are also Secondary Flight Displays (SFDs), which provide information on

aircraft systems. Hardware devices are emulated through additional graphical displays. The

Mode Control Panel (MCP) provides access to the autopilot and autothrottle systems. The

Aircraft Control Panels (ACPS) provide access to additional hardware control such as the stick,

throttles, flaps, speed brake, and landing gear. All pilot inputs are introduced using a mouse by

clicking on the respective object on the computer monitor.

The ACFS is configured to run on one or more SGI workstations. The source code has evolved

over more than 20 years and is composed of both FORTRAN and C programming languages.

The architecture of the ACFS is based upon a client/server approach. The aircraft model and

118



graphical displays run in parallel, and execution frequency and frame timing is controlled by the

programmer. The core program runs at 30 Hz, and is implemented in a discrete fashion.

6.2 Reconfiguration Module Implementation

This section discusses the implementation of the reconfiguration module into the ACFS archi-

tecture. Each component of the RCM will be presented: the signal conditioning and estimation

component, then the reference model component, and finally the adaptive augmentor compo-

nent. The goal of the discussion is to provide the foundation of the simulation results that follow

while highlighting issues associated with commercial transport reconfiguration.

The reconfiguration module was added to the baseline ACFS by using the PCA implementation

as a template. The reconfiguration module was included as an additional process that runs in

parallel to the rest of the simulator. The RCM augmentor module was added to the process

list and given an execution priority equivalent to the flight dynamics, and frame timing was

performed after the aircraft model was executed. The required inputs to each of the module

components were obtained by accessing the shared memory structures, and the outputs were

injected to the individual surfaces in a similar manner.

Given the modular nature of the RCM architecture, the steps required to implement the module

are:

* Gather the required inputs,

* Devise a reconfiguration control allocation scheme, and

* Add the reconfiguration signals to the control surface commands.

Unlike the F/A-18 implementation, the implementation of these steps was non-trivial. Initial

simulation demonstrated some anomalies that had to be resolved in order to proceed with the

reconfiguration study. A majority of the anomalies were attributed to the shared memory,

aerodynamic model, and the substituted control laws. The original intent of this simulator

was to perform air traffic control and cockpit/pilot interaction research. Due to anomalies,
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the implementation required two months of effort to generate equivalent results to the F/A-18

implementation which required two weeks. Of this two months, 75% of the time was devoted to

resolving the anomalies. This required an in-depth knowledge of the aerodynamics and control

characteristics, which should not be required in a normal implementation.

6.2.1 Signal Conditioning and Estimation Component Implementation

The signal conditioning and estimation module provides the required signals to the reference

model and adaptive augmentor components of the RCM architecture. The required signals

include the stability axes state vector x(t), the stability axes state derivative vector b(t), the

pilot input commands r(t - T), the control surface deflections u(t), and the control surface

saturation levels Au(t). The determination of each of these signals will follow.

State Vector x(t)

The state vector x(t) consisted of the stability axes states: x(t) = [vt a 0 q 3 < p r]T. As

expected, all of these states were accessible via shared memory since they are used in the nominal

controller; however, the rotational rates are in body axes. The conversion of the rotation rate

from body-axes to stability axes is as follows:

Pst pb(t) 1 cos a 0 sin a

qs(t) S b(t) L where S, 0 1 0 (6.1)

rs M) rb M) -sin a 0 cos a

where the subscripts s and b stand for stability-axes and body-axes. Table 6.2 summaries the

state vector x(t) used for the ACFS implementation.
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Table 6.2: Aircraft States x(t) for ACFS Implementation

State Derivative Vector z(t)

For the state derivative vector If(t), not all of the derivatives where available via shared memory.

The derivatives that are accessible include the linear accelerations in body-axes, the Euler angle

derivatives, and the rotational accelerations in body-axes. This data was used in conjunction

with kinematic and transform relationships to obtain the stability axes state derivative vector.

First, the true airspeed and aerodynamic angles derivatives can be obtained by taking the

derivative of there respective definitions. As illustrated in [71]:

Uu +V +WW
Vt

Vt

UW -WU
U2 + W 2 (6.2)

tV - Vibt

Vt cos 3

where U, V, and W are the translational body-axes velocities in the X, Y, and Z directions.

Next, the body axes rotational accelerations are converted to stability axes. To perform this
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Variables Description Units
vt(t) True Airspeed ft/sec
a(t) Angle of Attack rad
6(t) Pitch Angle rad
qs(t) Pitch Rate rad/sec
0(t) Sideslip Angle rad

#(t) Bank Angle rad
Ps(t) Roll Rate rad/sec

r.(t) Yaw Rate rad/sec



conversion to stability axes, the derivative of (6.1) is required:

-6 sin a

0

--6 cos a

0

0

0

6 cos a

0

-6 sin a

Table 6.3 summaries the state vector x(t) used for

Assumption 1, the performance vector derivative f(t)

celerations which are summarized in 6.4.

the ACFS implementation. Also, given

contains the stability axes rotational ac-

Table 6.3: Aircraft States f(t) for ACFS Implementation

Variables Description Units
ot (t) True Airspeed Derivative ft/sec2
6(t) Angle of Attack Derivative rad/sec

6(t) Pitch Angle Derivative rad/sec

s (t) Pitch Acceleration rad/sec2

i(t) Sideslip Angle Derivative rad/sec
4(t) Bank Angle Derivative rad/sec

Is (t) Roll Acceleration rad/sec2

?, (t) Yaw Acceleration rad/sec2

Table 6.4: Performance Vector Derivative i(t) for ACFS Implementation

Variables Description

qds(t)
ps(t)
rs(t)

Pitch Acceleration
Roll Acceleration
Yaw Acceleration

For existing commercial transports, many of the state derivatives in , (t) will not be accessible

from the nominal control system ; thus, they must be estimated. The state derivatives will

be estimated using a bank of Kalman filters: each state will have an associated Kalman filter.

The impact of using state derivative estimates £(t) in the context of system identification and

computation of the output performance error e0 (t) will be explored in Section 6.3 of this chapter.

Here, the issues associated with the implementation of the Kalman filters will be presented.
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As stated in Section 4.2, in order to implement the Kalman filters, the process noise covariance

Q and measurement noise covariance R must be determined for each element of the state vector.

Since the measurement noise covariance is a function of the sensor hardware, the process noise

covariance is the only parameter available to tune the Kalman filter. The selection of the process

noise covariance affects the estimator's bandwidth, estimation time delay T, and estimation error

covariance matrix P(t). Due to system identification considerations, the estimator's bandwidth

is the critical performance measure that should be used to determine the process noise covariance

Q.

To tune the filter, the bandwidth requirements must be determined by considering the physics

of the signal. For example, if an estimate of the pitch acceleration is required, the bandwidth

is based on maximum achievable pitch jerk. Note, maximum achievable jerk is the product of

the maximum achievable moment times the rate limit. Given the bandwidth requirements, the

process noise covariance can be determined using the undamped natural frequency Q = (Q/R) 6

of the estimator. Likewise, an estimate of the maximum time delay Tma. and an estimate of the

estimation error covariance P, can be made via (4.7) and (4.5). The time delay information

will be used in the identification process to ensure that all data is transformed to equivalent

times.

For this implementation, the measurement noise covariances were assumed to have unity mag-

nitudes. This value is quite large and is unrepresentative of most sensors; however, its actual

value only affects the predicted value of the estimation error covariance P, which is not all that

important. All that is desired is a signal that can be used to identify the plant and used in the

computation of the output performance error eo(t). As stated above, these results will be pre-

sented in Section 6.3.2. Viewing the physics of each element of the state derivative vector z(t),
the process noise covariance were determined. The process noise covariances for the estimation

of the rotational accelerations p, q and - are Q = 107 . Using these process noise covariances, the

Kalman filters were able to capture the high frequency dynamics of the aircraft, i.e. pitch, roll

and yaw jerks (rate of change of acceleration). As for the other required state derivatives, the

process noise covariance for true airspeed derivative 7)t is Q =10-2, for angle of attack derivative

& is Q = 105 , and for angle of sideslip derivative 3 is Q = 102.
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Pilot Input Vector r(t - T)

The next signal that is required is the pilot input r(t - T). The pilot input commands included

the pitch stick input dep(t), the roll stick input dap(t), and the yaw pedal input drp(t). The

generation of these signal requires special consideration when the autopilot is engaged. In

general, the autopilot functions as an outer loop control system that generates equivalent pilot

inputs to perform a specified task, i.e, attitude hold, altitude hold, heading hold, etc. Given

that we desire to perform both identification and reconfiguration with and without the autopilot

engaged, we need to be able to measure or construct r(t - r) with or without the autopilot

engaged. For some commercial transports with yoke columns, autopilot commands are converted

to equivalent stick inputs to back-drive the stick; thus, providing a cue to the pilots of the

autopilots commands. Given this situation, stick and pedal movements are directly measurable

and no signal conditioning or estimation is required.

For other transports, especially with side stick devices, autopilot commands do not back-drive

the stick. In this situation, the signal conditioning and estimation module must generate the

equivalent stick commands as though they were to be used to back-drive the stick.

For this implementation, actual pilot inputs were obtained by accessing the shared memory

structures, and the autopilot was not 'intentionally' used. However, the longitudinal inner-loop

control system defaults to an attitude hold mode for stick-free operations, i.e. no stick inputs.

Recall from Section 6.1 that the proprietary control laws were replaced with point-mass control

laws; an attitude hold mode for the longitudinal inner loop is not representative of operational

control laws. In any event, the attitude hold mode commands were converted to equivalent pitch

stick commands by inverting the stick logic.

Finally, the reference input delay r, Section 4.3, needs to be determined. For the ACFS, input

delays were negligible. Table 6.5 summaries the state vector x(t) used for the ACFS implemen-

tation.
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Table 6.5: Pilot Inputs r(t - T) for ACFS Implementation

Variables Description Units
dap(t) Roll Stick Input in
dep(t) Pitch Stick Input in
drp(t) Yaw Pedal Input in

Control Surface Deflection Vector u(t)

The next set of signals required are the control surface deflections. As illustrated in Section 6.1,

the ACFS has many control effectors that can be used for reconfiguration. Define the following

deflections:

Oelvsym = Oelv
6

stbsym = 6stb

6plasym = (plai + plar)/2.0

Saildif = (6 aii, - 6aii,)/2.0 (6.3)

Oruddif = rud

6
SPldif = (JspI - 6 spI, )/3.0

6
pladif (0plag - Epla) /2.0

where the generic subscripts sym and dif are used to distinguish longitudinal and lateral-

directional effectors. Note, this generic notation is used since some transports may have inde-

pendent elevator, horizontal tails, or rudders. Furthermore, symmetrical spoiler and ailerons

are not included since they produce negligible pitch authority. Finally, the three roll spoilers on

each wing are ganged into left and right spoilers because there appears to be little benefit in

commanding individual spoilers.

Since the aircraft systems management display contains information on the control surface po-

sitions, it is assumed that the control surface positions are measured. Both the Boeing 757 and

the Airbus A320 have these displays. As a result, the control surface positions were accessed

from the shared memory structures. All of the control effectors required to compute the defined

deflections in (6.3) were obtainable except for the implemented throttle commands opIa, and
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'plal. When the throttles are repositioned in the cockpit, it takes time for the engine to spool

up or down. Note, the throttle levers should be viewed as the commanded throttle position. To

obtain the implemented throttle position, a surface model is required. Note, the implemented

throttle position is a fictitious signal that is used to convey throttle saturation to the RCM. Tak-

ing the viewpoint that the engine is like all the other servos, a surface model was implemented

using rate and position saturation limiters. Given that the engine control effectiveness is small,

this first order approximation will not affect the reconfiguration performance. The rate limit

was determined by measuring the rate of change of the Engine Pressure Ratio (EPR) which is

an available measurement on existing transport aircraft. The position limits correspond to the

position limits on the throttle console.

Table 6.6 summarizes the control vector u(t) used for the ACFS implementation.

Table 6.6: Control Surface Positions u(t) for ACFS Implementation

Control Surface Saturation Level Vector Au(t)

The final set of signals required are the control surface saturation levels. Recall from Section 2.1

and Equation (2.8) that the control surface saturation level is defined as the difference between

the actual control surface deflection u and the unsaturated control surface deflection Uk + Urem:

LAu(t) = U - (Uk + Urcm)
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Variables Description Units
6 elvsym Symmetrical Elevator Deflection deg
6stbsym Symmetrical Horizontal Tail Deflection deg
6plam Symmetrical Throttle Deflection deg
3 aildif Differential Aileron Deflection deg

6 ruddif Differential Rudder Deflection deg
6 SPldif Differential Spoiler Deflection deg
oplad f Differential Throttle Deflection deg



As noted in Section 6.1, the aircraft simulator lacks servo dynamics; thus, the saturation level

for each surface is computable via shared memory data, i.e. the unsaturated control surface

deflection equals the control surface command in Section 4.5. Also, the saturation level of a

failed surface is nulled as discussed in Section 4.5. Using the same control surface definitions,

Table 6.7 summarizes the control surface saturation level Au(t) for the ACFS implementation.

Table 6.7: Control Surface Saturation Levels Au(t) for ACFS Implementation

6.2.2 Reference Model Component Implementation

The reference model component provides the desired linear dynamics CAm and CBm, desired

trim condition Cfm, and an estimate of the control power dimensional derivatives CB, to the

adaptive augmentor component of the RCM. The required inputs included all of the signal con-

ditioning and estimation outputs, as well as the flight condition parameters Mach and altitude.

The identification problem is formulated in Chapter 3. As stated in this chapter, the generation

of the required data has been separated into a two stage identification process which is well

suited for on-line estimation. The first stage involves the identification of the aircraft's control

effectiveness matrix CBy, and the second stage involves the identification of the desired dynam-

ics Am and Bin. Recall that Am and Bm versus CAm and CBm will be estimated so that the

strict stability assumption of Am can be enforced. Finally, the desired trim fm will be derived

using the estimated desired dynamics Am and Bm so that a feasible trim solution is obtained.

The first stage model structure for estimating CBp is presented in Section 3.1.1. The governing

equation for this model structure is the non-linear, stability axes moment equations with linear
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Variables Description Units

Auelvsym Symmetrical Elevator Saturation Level deg

AUstbym Symmetrical Horizontal Tail Saturation Level deg
Auplasym Symmetrical Throttle Saturation Level deg

AUailaf Differential Aileron Saturation Level deg

AUruddf Differential Rudder Saturation Level deg

Auspld Differential Spoiler Saturation Level deg

AUplad I Differential Throttle Saturation Level deg



aerodynamics. The matrix-vector representation of this equations is presented in Equation 3.8

and is duplicated here:

cs + QRWS + JE 1 QsJsws = CAp(p)x + CBy(p)u + Cfp(p)

where the subscript S stands for stability axes, p represents the flight condition dependency,

the linear aerodynamics CAp(p) E R"Xn" and CB,(p) E IR"nXq , and the aerodynamic intercept

Cfp(p) E R".Xl, All other variables are explained in Section 3.1.1.

The unknown matrices in the above equation are CAP, CBp, and Cfp. As stated in Section

3.1.1, the intercept CfP can be removed from the model structure by simply removing the mean

from the data set. Given the state vector in Table 6.2 and the control surface deflections in

Table 6.6, the aerodynamic matrices CA, and CB, have the following format:

Mvt Ma 0 Mq 0 0 0 0

CAp(p)= 0 0 0 0 LO 0 Lp Lr (6.4)

0 0 0 0 No 0 Np Nr

CB() aym M6s [0 Mipiasym 0 0 0 0

CB [(Ap) = 0 0 0 L L6d Ls L (6.5)

0 0 0 N6 dif ddif sdif N6  J
where p signifies that these dimensional derivatives are flight condition dependent and it is

assumed that z(t) is order as follows: z(t) = [q(t) p(t) r(t)]T.

In order to obtained unbiased estimates of these dimensional derivatives, there must be adequate

excitation for each variable in the state and control vectors. During normal operations, the

nominal control system does not use the horizontal tail, symmetrical or differential throttles, or

spoilers; thus, excitation must be injected into these surfaces to obtain a complete estimate of the

control effectiveness matrix CBp. This can be done during a flight test phase of implementation

and updated during ferry or transport operations.
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The second stage model structure for estimating the desired dynamics Am and Bm is presented

in Section 3.1.2. The governing equation for this model structure is the output performance

error eo(t). The matrix-vector representation of this equation is presented in Equation 3.12 and

is duplicated here:

z(t) - CB,(p)Au(t) = CAm(p)x(t) + CBm(p)r(t - T) + Cfm(p)

Recall that since the control effectiveness matrix is estimated in the first stage, the CBAu

vector can be treated as known and moved to the left side of the expression. Also, knowing that

the entire desired dynamics are needed to satisfy the stability assumption, but only a subset

of the control effectiveness matrix has been identified in the first stage, the formulation can be

represented as follows:

i (i; t) - CB,(i, :; p)Au(t) = Am(i, :; p)x(t) + Bm(i, :; p)r (t - T) + fm(i; p)

±(j; t) = Am(j, :;p)x(t) + Bm(j, :; p)r(t - T) + fm(j; p)

where the index i, which ranges from 1 : m, represents the subset of states that are in the

performance vector and the index j, which ranges from m + 1 : n, represents the subset of states

that are not contained in performance vector. Again, these indices reflect the fact that each row

represents an independent regressor.

The unknown matrices in the above equation are the desired dynamics Am and Bm and the

desired trim fm. As stated in Section 3.1.2 the desired trim f m is computed instead of estimated;

thus, it can be removed from the structure by removing the mean from the data set. Given the

state vector in Table 6.2 and the pilot inputs in Table 6.5, the desired dynamics Am and Bm
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have the following format:

Xvt Xk X0  0 0 0 0 0

Zvt Za ZO Zq 0 0 0 0

0 0 0 1 0 0 0 0

Am(p) = M M MO Mq 0 0 0 0 (6.6)
0 0 0 0 YO YO Y Yr

0 0 0 0 0 0 1 0

0 0 0 0 LO LO Lp L,

0 0 0 0 No N4  Np Nr

0 Xdep 0

0 Zdep 0

0 0 0

Bm(p) 0 Mdep 0 (6.7)
Ydap 0 Ydrp

0 0 0

Ldap 0 Ldrp

Ndap 0 Ndrp

where p signifies that these dimensional derivatives are flight condition dependent. Finally, the

ACFS version used for this implementation does not contain an interface for the rudder pedals;

as a result, rudder pedal inputs were injected via a timing sequence in the rudder code so that

unbiased estimates of the rudder pedal effectiveness could be obtained.

Given the two structures above, both batch and sequential identification results were obtained.

The primary purpose of the batch results were to tune the sequential algorithm. In both in-

stances, the identification results were obtained off-line in Matlab. The on-line identification

algorithm was simulated by feeding the algorithm new data at every sample time. The algo-

rithm was not fully integrated into the ACFS because of the coding time that would be required.
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The batch identification algorithm is presented in Section 3.2. The batch identification process is

quite simple. Given a data record in which all pertinent variables are excited, select a weighting

matrix, if needed, such that good identification results are obtained. For this implementation,

a weighting matrix was only required for the longitudinal regressors in the second stage of

the identification process. The ACFS does contain some non-linear coupling from the lateral-

directional axes to the longitudinal axes, and this coupling was deemphasized using the weighting

matrices to obtain good estimates.

With good batch estimates obtained, the sequential estimation algorithm was tuned. The se-

quential identification algorithm is presented in Section 3.3. The primary design parameters

used to tune the sequential algorithm are the data window lengths, persistence of excitation

thresholds, the maximum condition number of the re-parameterized regressor, the a priori data

used for the sequential updating, and low-pass filtering of the estimates. The selection of each

of these design parameters will be discussed in the following paragraphs.

There are a total of nine independent regressors, three regressors for the first stage and six

regressors for the second stage, required to generate the required information. Note, there are

only six second stage regressors since the pitch and bank angle kinematic equations do not

contain unknown dimensional derivatives. Each of these regressors may have different data

window lengths. As new data is sampled, the new data replaces the last row of the regressor,

and subsequent data is shifted up by a row. Because of the model structure used for the

first and second stages, the eleven individual regressors were reduced to four master regressors,

longitudinal and lateral-directional for the first stage and likewise for the the second stage. The

length of the master data windows correspond to the individual regressor that has the largest

data window. For this implementation, both longitudinal data window lengths were chosen to

be 12 seconds which corresponds to 360 samples. Likewise, both lateral-directional data window

lengths were chosen to be 20 seconds or 600 samples. Recall that the ACFS runs at 30 Hz. Since

the ID results are not being used in real-time for reconfiguration (because the ID results are

stored), the inherent trade-off between estimation speed and identification accuracy is avoided,

i.e. large data windows are acceptable. It is also worth noting that if the data window lengths are

set to the size of the input file, the sequential ID results should duplicate the ID results obtained
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from the minimum variance batch least-squares results. This provides a useful debugging tool.

The next important design parameters that are required are the persistence of excitation thresh-

olds. These thresholds are used to turn the identification algorithm off when persistent excitation

is not present. Recall that low excitation conditions result in biased estimates. In addition to

turning the identification off during low excitation, the thresholds can be used to turn off the

identification when the aircraft is not operating in a nominal condition. For example, the desired

dynamics identification should be turned off when excitation is being injected into either the

horizontal tail, spoilers, or throttle levers for the first stage identification. For the first stage of

the identification, the rotation acceleration RMS levels were used to judge the excitation level.

The thresholds were set to double the quiescent RMS levels. The quiescent RMS is based on

the sensor noise and atmospheric disturbances. For the second stage, the stick and pedal RMS

levels were used to turn the identification process on. Clearly, given adequate stick and pedal

excitation, the aircraft states will be excited, and good estimates will be obtainable.

The next tuning parameter is the maximum condition number of the re-parameterized regres-

sor. Singular value decomposition is performed on the regressor matrix to remove collinearities.

Collinearity implies that two columns are linearly related or that a single column has low excita-

tion. Recall that all of the regressor columns are zero mean; thus, a column with low excitation

results in a column of zeros. The collinearity of a regressor can be quantified by its condition

number. It is well known that if the condition number of the regressor matrix is high, biased

estimates will result [20]. As illustrated in Section 3.3, singular value decomposition can be

used to reduce the condition number. The lower the maximum condition number is, the greater

the impact the re-parameterization has on the induced gain of the regressor matrix. For this

implementation, a maximum condition number of 250 was used for the longitudinal regressors

and 50 was used for the lateral-directional regressors.

It was assumed initially that no estimates were available, thus the a priori information consisted

of null matrices and the a priori variances where set to 100, which means that this information

is completely uncertain. As sequential estimates were generated, this estimate became the a

priori data for the next update. The sequential minimum variance update algorithms operate
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in the following fashion. If the new estimate had a lower covariance than the a priori, then the

new estimate was favored in the sequential updating. Likewise, if the new estimate had a larger

covariance than the a priori data, the new estimate was discarded. Finally, if the new estimate

had the same covariance as the a priori and the estimate was different, the estimate is averaged

and the covariance is reduced by half. Using the new estimates as a priori data generates rapid

convergence which low covariances.

Finally, a discrete low pass filter was implemented to reduce the fluctuations in the estimation

parameters. These filters were required since the aerodynamic model is noisy. This noise was

attributed to poor interpolation routine used in the aerodynamic tables. The algorithm of

discrete filter blended 95% of the a priori data with 5% of the new estimates. In affect, this

algorithm added damping to the identification process.

6.2.3 Adaptive Augmentor Component Implementation

The adaptive augmentor component outputs perturbations signals to the control surfaces and

throttles to perform the task. Reconfiguration control commands are urcmc = [6eivsym 6
stbsym

opiasym 6
aildif 

6 ruddif 6
SPlif 6plaadif] . These deflections are defined in Equation 6.3. The inputs

for this component include following outputs from the signal conditioning and estimation com-

ponent: the state vector x(t) defined in Table 6.2, the performance vector derivative i(t) defined

in Table 6.4, the pilot input r(t) defined in Table 6.5, and the control surface saturation level

Au(t) defined in Table 6.7. Additionally, the following reference model outputs are required:

the desired linear dynamics CAm and CBm, desired trim condition Cfm, and an estimate of

the control power dimensional derivatives CBy. Given these inputs, the input error ei(t) can be

computed and the reconfiguration gains can be updated based on this computation.

In the following subsections, the core functionality of the adaptive augmentor will be presented

for the ACFS implementation. First, the control allocation scheme chosen for this application

will be explored. Then, the process of updating the control parameters will be discussed.
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Reconfiguration Control Allocation

Given that Urcm c R 7 and z E R3, a control allocation scheme is required to ensure that CBU1

is square and exists (Assumption 9) for all possible single event control surface failures. The

reconfiguration control surface allocation developed for this implementation is a basic approach

that blends all of the control effectors in a given axis. Many elaborate control allocation tech-

niques exist in the literature for over-determined systems. For this application, there is not an

abundant supply of control effectors; thus, these approaches were not warranted.

The parameters that are important for reconfiguration are the achievable moments that a surface

can produce and the rate at which the moment can be generated. The maximum achievable

moment depends on the control power effectiveness - which is flight condition dependent -

and the maximum deflection from the trim position. The rate of achieving the moment depends

on the rate saturation limit of the actuator. These parameters affect aircraft reconfiguration in

three ways. During post failure operations, the available maximum moment must be greater

than the failure disturbance for a static equilibrium to exist. Secondly, even though the available

moment to cancel the failure disturbance may exist, the moment must be generated fast enough

to prevent the aircraft from entering an unrecoverable attitude. Finally, if the aircraft is unstable,

there must be additional available control moment to stabilize the aircraft.

In the following paragraphs, typical control effectiveness levels, along with position and rate

limits, for the control effectors in each axis will be compared. Based on this data, a control

allocation logic will be devised which translates pseudo deflections to specific effector commands.

Since this logic is only used in the RCM, it will not alter the basic control operation during

nominal operation. Given this gearing scheme, the pseudo control power effectiveness will be

derived for the initial estimate of CBUj. Finally, the impact of the control allocation and

estimates of the pseudo control effectiveness on the reconfiguration task will be explored.

Longitudinal Axis Reconfiguration Control Allocation The longitudinal control effec-

tors include the elevator, horizontal tail, and symmetric throttles. The elevator is the primary

pitch control effector in the longitudinal axis, and this surface can generate a large moment at
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a fast rate. The horizontal tail is the primary longitudinal trim device, and it can generate the

largest moment but at a slow rate. The engine thrust is a secondary pitch control effector, and

the pitch authority depends on the engine disposition but generally the authority is small for

wing and aft-fuselage mounted engines and the rate is low.

For the ACFS, the reconfiguration control allocation for the longitudinal axis is composed of

the elevator, horizontal tail, and collective thrust. The collective thrust is realized in terms of

collective power-lever-angle (PLA). The control power, position limits, and rate limits for each

of the surfaces are illustrated in Table 6.8 for a cruise altitude of 35,000 feet and Mach 0.82.

Again, the dimensional coefficients are flight condition dependent, but the relative magnitudes

are approximately equivalent throughout the flight envelope. Note, the position limits on the

throttle positions indicate that the reconfiguration module is limited to +10.00 about the trim

throttle setting; thus, the reconfiguration module has a low-authority control over the throttles.

The reasoning is that the pilots will still need to control airspeed, and if full authority is granted

to the throttles, independent speed control would be lost.

Table 6.8: Longitudinal Achievable Accelerations, 0.82 M, 35,000 ft

Control M 1 Position (0) Rate (4/sec)
Effector (rad/s2/o) Limit Limit

6elv.,y -0.0282 -25.0 -+ 25.0 80.0
6
stbym -0-0771 -12.0 -+ 4.0 0.15

6
plasym 0.0004 -10.0 1 10.0 3.57

It is seen from this table that the achievable moments as well as the rates to achieve these

moments vary greatly. The result of this variation is that the RCM will not be able to ac-

commodate some hard-over failures. For example, a horizontal tail hard-over failure to -8.0'

will produce a moment that the elevator and engines cannot cancel; in other words, a static

equilibrium does not exist. Likewise, it is apparent that the horizontal tail and engines cannot

produce a moment fast enough to prevent the aircraft from entering an unrecoverable attitude

for an elevator hard-over failure. These limitations will be explored in simulations.

The longitudinal reconfiguration control allocation scheme devised for the ACFS blends these
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three effectors. A one degree pitch commands translates into a one degree elevator deflection, a

one degree horizontal tail command, and a 0.4 degree collective PLA command:

1.00 6eiv,

1.00 odep - 1.0 6
stbsYm

0.40 pla

The gearing of the throttles was chosen so that the elevator and throttle positions saturated

together.

Using this strategy, the pseudo pitch effectiveness Mdep needs to be constructed for the CB"

matrix. An equivalent Mj can be calculated using the ganging strategy and control effectiveness

from Table 6.8:

Mbdep = Mevsm + Mstbsym + M 6 asym 10/25 (6.8)

This estimate of the pseudo pitch effectiveness will be too large if there is a failure to either

the elevator or the horizontal tail. The result of this overestimation is that the initial required

reconfiguration command to attenuate the failure disturbance will be underestimated. Even

though the estimate will eventually converge, this initial underestimation can result in departure,

especially when the low-bandwidth horizontal tail is being used to attenuate an elevator failure.

There are two basic things that can be done about the initial errors in CBu~1 : (1) underestimate

the pseudo control derivative M6de, and thus overestimate the required deflection, and (2) have

a high adaptation gain on the J matrix. Both approaches were implemented in the ACFS.

The initial estimate of the pseudo pitch effectiveness was equated to the horizontal tail pitch

effectiveness thus overestimating the required control surface deflection:

Msde = Mstbym (6.9)
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Additionally, the adaptation gain for CBs was set high. Thus, if the elevator fails, the initial

estimate of CBa is close to the true value, and the horizontal tail captures the failure easily

without a slow rise time or excessive overshoot. For a stabilizer fixed position failure, the

initial estimated deflection required would be under-estimated by approximately M6,iv /M6Stb.

But, given the high adaptation gain and high-bandwidth of the elevator, the failure disturbance

should be captured.

Lateral Axis Reconfiguration Control Allocation The lateral axis control effectors in-

clude two ailerons and six roll spoilers. The redundancy in this axis exists because differential

spoilers provide roll control at high dynamic pressure (aileron control effectiveness decreases as

dynamic pressure increases and eventually reverses sign) and collective spoiler deflections func-

tion as speed brakes. Typical control effectiveness values, along with position and rate limits

for the lateral axis are compared in Table 6.9 for a cruise altitude of 35,000 feet and Mach 0.82.

As before, the dimensional coefficients are flight condition dependent; however in this case, the

relative magnitudes do not scale to other flight points because of aeroelastic effects. Therefore,

Table 6.9 is used for explanation purposes only.

Table 6.9: Lateral Achievable Accelerations, 0.82 M, 35,000 ft

Control Lj Position (0) Rate (0 /s)
Effector (rad/s2/o) Limit Limit
6

aildif 0.0297 -20.0 4 20.0 80.0
6

SPsdi 0.0502 -60.0 -4 0.0 80.0

The lateral reconfiguration control allocation scheme blends these surfaces. A one degree pseudo

roll command translates into a one degree differential aileron deflection and a three degree

differential spoiler command. This gearing is based on equating the position limits. Recall the

definitions of differential deflections in Equation 6.3.
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1.00 dop - 0 aildif (6.10)
3.00 6Sli

Based on this scheme, the pseudo roll and yaw control power derivatives for the pseudo roll

command are:

LJd = L3 1  + LPL 3.0 (6.11)
N =d Na +N6 3.0

As in the longitudinal case, if one of the lateral control surfaces fails, the roll control effectiveness

will be overestimated, and this translates into an underestimation of the pseudo deflection

required to attenuate the failure disturbance. However, in contrast to the longitudinal case, this

overestimation of the effectiveness is tolerable for any lateral surface failure for several reasons.

First, a single surface failure will not have a large impact on the estimated effectiveness, and

secondly, all of the lateral surfaces have equivalent bandwidths. Finally, the nominal control

law has some inherent robustness to unexpected roll rates. The net effect is that when a lateral

surface experiences a hard-over failure, both the nominal and reconfiguration module will capture

the failure disturbance. As the estimate of the control effectiveness converges, the proper control

surface deflection required to attenuate the failure disturbance will be commanded; this effect

eventually nulls the contribution from the nominal controller. This interaction between the

RCM and the nominal controller will be highlighted in the simulation results that follow.

Directional Axis Reconfiguration Control Allocation The directional control allocation

problem is particularly interesting for commercial transports. In general, commercial transports

have a single rudder - though some new aircraft have a split rudder with independent actuators

- and no other control surface has equivalent control power. Other secondary yaw effectors

include differential ailerons, spoilers, and throttles. Table 6.10 compares the typical control

power effectiveness and the position and rate limits for the yaw axis at a cruise condition of
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35,000 feet and Mach 0.82.

Table 6.10: Directional Axis Achievable Accelerations, 0.82 M, 35,000 ft

A few notes on this table. The dimensional derivatives are flight condition dependent, but the

relative magnitudes of the rudder versus the rest are scalable throughout the flight envelope,

because the rudder position limit is limited by empennage load considerations. Also, as in the

longitudinal axis control allocation, the throttle position limits are artificially imposed to allow

independent speed control. Finally, the spoilers are proverse yaw devices while the ailerons are

adverse yaw devices; this trait will be utilized later.

Based on the directional achievable accelerations, a commercial transport is not well balanced

from a reconfiguration perspective. The implications of this are twofold. For an aircraft with a

single rudder, there is no other control surface that can cancel the yaw generated by a rudder

hard-over failure. On the flip side, since the directional control powers of all the other surfaces

are an order of magnitude less than the rudder, lateral reconfiguration is trivial for non-rudder

failures. Thus, the only interesting directional failure is a failure of the rudder.

Even though some rudder fixed failure disturbance cannot be canceled by the other control

surfaces, all is not lost; commercial aircraft generally have sizeable inherent static stability in the

directional axis, which is realized in the C, aerodynamic derivative. Due to this weathercocking

ability, the rudder yawing moment will be canceled by flying with a non-zero 3. This steady

state 3 will then cause a rolling moment via the dihedral effect, which is realized in the CL,

aerodynamic derivative. This induced rolling moment does present a possibility of departure

however. But recall from the lateral axis discussion above, there is an abundant amount of

lateral control power.
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Control N6  Position (0) Rate (0 /sec)
Effector (rad/s2/o) Limit Limit
6 ruddif -0.0130 -6.0 6.0 80.0
6 aildif -0.0013 -20.0 -+ 20.0 80.0
6SPldif 0.0047 -60.0 - 0.0 80.0
6 pladff 0.0016 -10.0 trim0-0_______ 0.0016___ -4 0. 3.57



Under the current architecture of the reconfiguration module, the desired trim for the lateral-

directional axis is wings level and zero side slip angle. Thus, for fixed position failures, the

secondary yaw devices will attempt to drive the aircraft to zero angle of sideslip. In addition to

driving the steady state # to zero, the secondary yaw devices must assume the responsibility of

the yaw damper. For moderate fixed position failure, the static requirement can easily drive the

secondary yaw devices to position saturation since there is an order of magnitude difference in

the control authority. When the secondary surfaces saturate, a significant amount of the lateral

control authority is nulled.

It would be advantageous to devise a method where the secondary yaw devices just provide yaw

damping without trying to zero the sideslip angle. Thus, the inherent weathercocking ability of

the aircraft would be used to capture the failure disturbance in yaw. A method for implementing

this approach in the adaptive control architecture is unknown at this time. Attempts were made

to redefine the desired trim Cfm using the linear nominal model for a given fixed position rudder

failure. This attempt failed because the nominal model does not approximate the crabbed flight

condition well.

Referring back to Tables 6.10 and 6.9, ailerons or spoilers used as independent yaw devices

will produce unacceptable lateral coupling. In effect, the reconfiguration module would have to

generate a lateral reconfiguration command to cancel the unwanted coupling, and this would

potentially result in a reduction of yaw acceleration. The net result is that a lot of control

authority will be wasted.

To eliminate this potential 'force fighting', a split flap is devised using the spoilers and ailerons.

A split flap is achieved so that the combined deflections of the spoilers and ailerons produce

nearly zero rolling moment. Due to the fact that the spoilers are proverse yaw devices and the

ailerons are adverse yaw devices, the yaw effectiveness terms are additive. An estimate of the

spoiler deflection required to produce a zero rolling moment for a given aileron deflection is as

follows:
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(6.12)
L6ldpl

,pldif

Using this gearing, the control effectiveness of the split flap is as follows:

L6, sf 0.0

N -s N 1df La 
(6.13)

-~ di N6,Paa

Table 6.10 is repeated below for the cruise flight condition with split flap data inserted. The

split flap position limits correspond to the aileron position limits. This is artificially enforced

because if this limit is exceeded, the split flap will generate a significant roll acceleration that

must be canceled by the opposite spoilers. Thus, spoilers will be deflecting on both wings which

will not produce any additional yawing moment.

Table 6.11: Directional Axis Achievable Accelerations, 0.82 M, 35,000 ft (Repeated)

Using the numbers in Table 6.11, a static analysis was performed which concluded that the

secondary yaw effectors can accommodate a failure disturbance from a rudder fixed failure of

approximately:

|6 rudfaid < 5.40

which is slightly less than the rudder's maximum deflection. However, this static analysis neglects

the required control power needed to stabilize the Dutch Roll mode, which is certainly unstable

for commercial transports at this flight point.
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Control N6  Position (0) Rate (s/sec)
Effector (rad/s 2/o) Limit Limit
6 ruddif -0.0130 -6.0 - 6.0 80.0
6 spfdtf -0.0035 -20.0 -+ 20.0 80.0

6p adi 0.0017 -10.0 t-4 10.0 3.57 1



The yaw axis reconfiguration control allocation blends the control effectors in Table 6.11. How-

ever, due to the rudder deflection limit dependence on dynamic pressure, the control allocation

gearing is dependent on dynamic pressure. As in the lateral axis, the control effector are geared

in such a way that they all position saturate uniformly. Thus, a one degree pseudo yaw command

translates into a one degree split flap deflection, half degree differential throttle command, and

a dynamic pressure dependent rudder command.

'6ru dm a ( 4) 6 u
20.00 rud

1.00 6drp -+ 1.0" 6spf (6.14)

-0.5 6 pladif

Based on this control allocation scheme, the pseudo yaw command position limits are ±20.00.

Also, a negative sign on the differential throttles accounts for the fact that the rudder and split

flap are adverse yaw devices where the differential throttle is a proverse yaw device.

The pseudo roll and yaw control power derivatives for the pseudo yaw command are:

Led,, = Lrud 0
3
d M + L6.,, -L6 0.520.00 P pladif (6.15)

N6r, = Nrud 'dmax ( + N6.,, -N 6 1  0.5dr rd20.00 Pf adif

For a rudder failure, the yaw control effectiveness will be over-estimated and the resulting pseudo

yaw command will be under-estimated. But given the high bandwidth of these surfaces and the

fact that the aircraft will not depart in yaw, there is adequate time for the estimates to converge.

For other failures that generate a yaw disturbance, the estimate of the yaw control effectiveness

will be close to the true value.
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Integration of the Reconfiguration Parameters

The second core function of the adaptive augmentor component is the integration of the recon-

figuration parameters. In order to generate the pseudo reconfiguration commands for the control

allocation above, the reconfiguration parameters need to be updated to reflect the current status

of the aircraft. The reconfiguration parameters include the estimates of the reconfiguration con-

trol gains -kx, kr, and kf -and the estimate J of the inverse control effectiveness matrix

(CBu) .

Recall that the pseudo reconfiguration command, which is defined in Equation 2.14, is as follows:

Urcmc (t) = kx(t) x(t) + kr (t) r(t - ) + kf (t) (6.16)

where Ci R mxn, kr E Rmxm and Kf E Rm

The estimate of the inverse of the control effectiveness matrix is required to calculate the input

error. Recall that the input error, which is defined in Equation 2.17, is as follows:

ei = J[z - (CAmz + CBmr + Cf m + CBAu)] (6.17)

which is just the scaled non-saturating output error.

For the ACFS implementation, m = 3 and n = 8. Thus, according to Equation (2.14), there are

a total of 24 state feed back gains, 9 pilot feed-forward gains, and 3 feed-forward disturbance

gains. According to Equation (2.17), there are 9 elements of the estimated inverse. Thus, there

are a total of 45 reconfiguration parameters that need to be updated.

Recall the robust adaptation law, which is defined in Equation 2.20:

. -ei(j)ZT l' if |ei(j)I > V(j)

0 else

for j = 1 : m and where IVI < V is the upper bound on the regressor disturbance, Z = [X, r, 1, i-
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(C Amx + CBmr + Cf m + CBAu)]T C Rn+m+ +m, ) [k, kx kf j] E Rmx(n+m+1+m), and

the adaptation gain F is symmetric positive definite. As noted in Section 4.5, CBAu(t) may

be uncertain for given failures. If a control surface fails, its contribution to CBAu(t) should be

zero. Feeding an erroneous CBpAu(t), especially for a low bandwidth surface, into the output

error regressor will result in poor reconfiguration results. Section 4.5 suggested two solutions.

For this implementation, given that control surface positions are measured, the failed surface's

saturation level was set to zero, i.e. it is assumed that the surface position is measured and

therefore the source of the failure is known.

At this point, all one needs to know to implement this adaptation law is an initial estimate of

the reconfiguration parameters 4(to), an adaptation gain F, a value for the upper bound of the

regressor disturbance V, and a discrete integration algorithm. Each of these will be discussed

in the following paragraphs.

The initial estimates of the reconfiguration control gains are zero -Kx(to) = 0, kr(to) = 0,

and Kf(to) = 0 - to reflect the nominal condition, and the initial estimate of J(to) is set to

the inverse of the estimated pseudo control effectiveness matrix CBu defined in the control

allocation section. An estimate of the pseudo control effectiveness matrix is as follows:

Msde 0 0

CBU = 0 Lsd L d (6.19)

0 N6d N6drp

where Msdep come from (6.9), L6dap and L6drp come from (6.11), and NJdp and N6drp come from

(6.13) and (6.15). The inverse of the block diagonal dBu is then used as the initial estimate of

the j(to).

Next, the adaptation gain F is selected. In general, the adaptation gain F is a diagonal matrix

with each diagonal element unique and greater than zero, i.e. F(i, i) > 0 i = 1 : 15. We will

refer to the set of diagonal elements 1(i, i) as the adaptation law gains. The magnitudes of the

adaptation laws gains affect the convergence characteristics of the reconfiguration parameters

(P (t). Ideally, the adaptation law gains should be as large as possible to ensure rapid convergence;
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however, if the gains are too large, significant overshoot in the optimal values can produce

chattering in the control surfaces. If the gains are too small, the convergence rise time can

be too long and can result in the aircraft entering an unrecoverable attitude. Clearly some

of the adaptation parameters 1(t) are more important than others. As highlighted in the

control allocation discussion, the failure disturbance reconfiguration control gains Aff(t) are

extremely important to the reconfiguration task. In addition, the estimate of the inverse control

effectiveness matrix J(t) is important, so the reconfiguration deflections are not under or over-

estimated. Finally, the reconfiguration control gains that augment the dynamic stability -

k(t) - are important. Varying the magnitudes of the adaptation law gains J'(i,i) based on

the relative importance of different reconfiguration parameters 1(t) can permit fast convergence

of the important reconfiguration control gains while avoiding chattering in others.

As in all design trades, something must be lost by varying the relative magnitudes of the adap-

tation law gains F(i, i). Given that the adaptation law gain F(12, 12) for the reconfiguration

control gain Kf (t) is the highest, kf (t) will fluctuate about the optimal value to accommodate

for the lack of convergence of the other reconfiguration parameters kx(t), kr(t), and J(t). To

compound this problem, the fluctuating kf (t) reduces the input error, which then results in a

slower convergence rate of kx(t), kr(t), and i(t).

Next, the upper bound of the regressor noise V, needs to be selected. V defines the deadband for

adaptation law in (2.20). Recall from Section 2.5 that the deadbands robustify the adaptation

algorithm to destabilizing regressor noise that includes higher-order nonlinearities, atmospheric

disturbances, sensor noise, and model reduction errors. Clearly, the upper bound of the regressor

noise V is flight condition and atmospheric disturbance dependent. The proposed approach for

determining this upper bound is to group the higher-order nonlinearities, sensor noise, and model

reduction errors into the general category of modeling error. The other category is atmospheric

disturbance.

During normal operations, the computed input error is the regressor noise; thus, a measure of

the regressor noise V(t) is available throughout the flight envelope. Also, a rough measurement

of the atmospheric disturbance is available on most commercial transports. The atmospheric
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disturbance can be computed by measuring the noise content in the rotational rates, or it can

be estimated using a Light Detection And Ranging (LIDAR) system. Thus, the atmospheric

disturbance contribution to the regressor noise V(t) can be subtracted out of the computed

input error, and the resultant modeling error can be stored. The upper bound of the regressor

noise can then be obtained on-line by using the measured atmospheric turbulence and the stored

modeling error.

The final topic of the reconfiguration parameter integration is the selection of a integration

technique. The discrete integration technique used is second-order Adams-Bashford predictor

which is given as below. This technique is also used to integrate the aircraft equations of motion.

<b(k) = <b(k - 1) + -[I(k) + 6(k - 1)]At + ['1(k) - 6(k - 1)]At (6.20)
2

6.3 Simulation Results

This section presents the simulation results of the RCM architecture implemented in the ACFS.

All simulation results that follow are for a single flight point, which corresponds to a cruise

condition: 35,000 feet and M=0.82. The discussion begins with a presentation of the aircraft

flying qualities specifications as they pertain the ACFS. The specifications will be used to com-

pare post-failure performance to nominal performance. Then the results of the reference model

identification will be presented. Finally, the bulk of this section is devoted to illustrating the

RCM potential for accommodating fixed-position failures to control surfaces.

6.3.1 Aircraft Flying Qualities

Aircraft flying qualities are the standard way of judging an aircraft's performance. The Federal

Airworthiness Regulations (FAR) state the standards for US commercial aircraft. FAR Part 25

is the primary document for jet commercial transports; the ACFS falls into this category. Given

that FAR-25 gives sporadic guidance in the area of stability and control handling qualities, the

Military Specification for the Flying Qualities of Piloted Airplanes, MIL-F-8785C, is the default
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specifications.

The military specifications define different aircraft classes, flight phases, and flying qualities

levels. Based on these definitions, the ACFS is a Class III aircraft, and as stated above, the

evaluation is to be performed at cruise conditions which correspond to a Category B flight phase.

The different levels of flying qualities are outlined in Table 6.12.

Table 6.12: Flying Qualities Levels: Flying-Qualities Specification

To quantify the aircraft's flying qualities, MIL-8758C defines the flying qualities levels in terms

of linear aircraft modes. The typical metrics used to quantify these modes are undamped natural

frequencies and damping ratios or time constants. The requirements for dynamic longitudinal

stability are illustrated in Table 6.13 where N, = -Zyvj/g is the load factor gradient and

Table 6.13: Longitudinal Stability Flying-Qualities Specifications: Class III, Category B

Mode Metric Limit Level 1 Level 2 Level 3

Short (SP Min 0.30 0.20 0.15
Period (~) Max 2.00 2.00

on,, Min 60.085Na 60.038N 0  0.038N0
(rad/sec) Max V3.60N, v10.0Na

Phugoid (P Min 0.04 0.0 T 2, > 55.0sec

T2, = -loge2/(pon, is the Phugoid time to double. Note, Za is defined in Equation 6.6. The

requirements for dynamic lateral-directional stability are illustrated in Table 6.14 where T2 , =

logc2/(1/T) is the spiral time to double and T, is the spiral mode time constant. Also, Class
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Level Definition
1 Flying qualities clearly adequate for the mission flight phase.
2 Flying qualities adequate to accomplish the mission flight phase

but some increase in pilot workload or degradation in mission
effectiveness exists.

3 Flying qualities such that the airplane can be controlled safely,
but pilot workload is excessive or mission effectiveness is
inadequate or both.



Table 6.14: Lateral-Directional Stability Flying-Qualities Specifications: Class III, Category B

III aircraft may be exempt from the minimum Wnd requirements.

6.3.2 Reference Model Identification

For the test flight condition, the reference model was estimated as outlined in Section 6.2.2. The

reference model and pertinent performance issues will be presented below. For this identification,

atmospheric disturbances were included. As noted in the implementation section, the reference

model was generated off-line in Matlab using a data record. The on-line identification was

simulated by feeding the algorithm new data at each new sample time. The data record included

a pitch stick doublet followed by a roll stick and yaw pedal doublets. After these doublets,

excitation signals were injected into the spoilers, throttle levers, and the horizontal tail so that

the control effectiveness CB, could be estimated. The time record used for the identification

was 180 seconds in length (2400 samples) and the complete record was fed to the sequential

identification algorithm while first and second stage identification was performed in parallel.

The ordering of the states, pilot inputs and the control surface deflections are defined in Section
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Mode Metric I Limit Level 1 Level 2 Level 3
Spiral T2, Min 20.0 8.0 4.0

(sec)
Dutch Roll (d Min 0.08 0.02 0.02

(~)
(dWnd Min 0.15 0.05 ~

(rad sec)
Wnd Min 0.4 0.4 0.04

(rad sec)
Roll Tr Min 1.4 3.0 10.0

(sec) 1 11



6.2.1. The control effectiveness matrix CB, was identified in the first stage and is as follows:

0

0.0297

-0.0013

0 0

0.0052 0.0502

-0.0130 0.0047

The estimated desired dynamics Am and

follows:

Am =

-0.0205

-0.0002

0.0000

0.0004

0

0

0

0

0.1000

-0.8626

0.0107

-1.4115

0

0

0

0

-31.5395

-0.0022

-0.0208

0.0528

0

0

0

0

Bm =

Bm were identified in the second stage and are as

0.0581

1.0111

0.9932

-1.4444

0

0

0

0

0

0

0

0

0.0000

0

0.0126

-0.0010

0.0060

0.0001

0

0.0085

0

0

0

0

0

0

0

0

-0.1282

0

-3.6475

3.2333

0

0

0

0

-0.0070

0

-0.3316

0.4043

0

0

0

0

0.0400

0

0

0

0

0

0

0

-0.0024

1.0000

-2.1222

-0.1037

0

0

0

0

-0.9882

0

0.8192

-1.0003

(6.22)

(6.23)

Based on these estimates, the desired trim fm

wings level, zero sideslip, and zero accelerations

was determined

was satisfied:

such that the desired trim of
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CBp= [-0.0282

0

0

-0.0771

0

0

0.0004

0

0

0

-0.0000

0.0016 I (6.21)



17.1477

0.2194

-0.0010

-0.3202
fm= (6.24)

0

0

0

0

Figures 6-3 and 6-4 illustrate the linear model response when compared to the nonlinear sim-

ulation. For this simulation, the pilot commands from the nonlinear simulator were fed to the

Simulink model of the linear identification model. Note, the linear simulation does not contain

a turbulence model.

It is seen from these figures that longitudinal response does match fairly well. The Phugoid

mode can be observed in the linear response because the true versus equivalent pilot inputs are

used in the linear simulation. Recall from Section 6.2.1 that the equivalent stick inputs mimic

the autopilot attitude hold mode. The only deficiency in the identification model is the roll

response for rudder pedal inputs, which corresponds to the time interval from 50 seconds to 80

seconds in Figure 6-4. Investigation of the cause of this deficiency revealed that the roll stability

derivatives fluctuate when rudder pedals are present, i.e. the roll dimensional derivatives change

when the roll stick and rudder pedals are deflected. Given this anomaly and the fact that good

roll response was not possible for both lateral stick and rudder pedals, the lateral stick inputs

were emphasized and the rudder pedal inputs were deemphasized in the identification algorithm.

Based on this linear reference model, the nominal frequency responses from pitch and roll stick

to pitch and bank angle respectively are illustrated in Figure 6-5. Also, the nominal aircraft

flying qualities were assessed. Table 6.15 presents the flying qualities for the nominal aircraft.

It is seen that all of the modes have Level 1 flying qualities. The nominal frequency response
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Figure 6-3: Longitudinal Response of Linear Model and Nonlinear Simulator, 0.82 M, 35,000 ft
(- Linear - - Nonlinear)

and aircraft flying qualities will be used later in this chapter to compare the post-failure with

RCM to nominal performance. In doing this comparison, it is important to note that these

comparisons will be based on identified post-failure and nominal models. The linear models will

be generated using the same pilot inputs that produce the responses in Figures 6-3 and 6-4. It is

seen in these figures that low frequency modes, which include the Phugoid and Spiral modes, are

not excited; thus, the identification process cannot generate reliable estimates of these modes.

As a result, the comparison of the Phugoid damping (, and the the Spiral time constant T2 ,

should not be viewed as reliable data; equivalently, the frequency response below w < 0.1rad/sec

is not reliable.

Finally, the objective of the system identification is to minimize the output performance error
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Figure 6-4: Lateral-Directional Response of Linear Model and Nonlinear Simulator, 0.82 M,
35,000 ft (- Linear - - Nonlinear)

e0 (t) which is a scaled version of the input error ei(t). Recall that the input performance error

ei(t) is the primary metric for updating the reconfiguration gains and is also the key measure

for determining whether a failure has occurred. In order to use the input error as a measure

for failure detection, the input error or equivalently, the output error needs to be near zero

for nominal operations. As presented in Section 2.4, the input error is a noisy signal due to

the higher-order nonlinearities, atmospheric disturbances, sensor noise, and model reduction

errors. Due to robustness issues associated with the adaptation algorithm, this noise limits the

achievable performance of the RCM; recall the discussion in Section 2.4 about the upper bound

on the regressor disturbance V.

Figure 6-6 presents the nominal output performance error for the generated reference model.
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Table 6.15: Nominal Aircraft Flying-Qualities: Class III, Category B

Mode Metric Value Level

Short (Sp 0.71 1
Period wn, 1.63 rad/sec 1

Phugoid ( 0.11 1
Spiral T2, Stable 1

Dutch Roll (d 0.28 1
(dWnd 0.52 rad/sec 1

Wnd 1.84 rad/sec 1
Roll Tr 0.46 sec 1

The scales in these three plots are chosen based on the maximum acceleration magnitudes

experienced due to the pilot inputs. Based on these scales, it can be deduced from the figures

that the output error noise is about an order of magnitude less than the maximum accelerations.

Furthermore, in the pitch acceleration output error, at about 20 seconds, a bias appears which is

attributed to the attitude hold mode turning on. This is a nonlinear effect that is grouped into

modeling error. Finally, the roll acceleration output error has a blip between 50 and 80 seconds

due to the anomaly of the rudder pedal inputs, but given that the ACFS does not have a rudder

pedal interface, this modeling error should not have a major effect on the reconfiguration results

that follow.

As promised in Section 6.2.1, the impact of using state derivative estimates .i(t) in the context
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Figure 6-6: Output Performance Error e0 (t) for Nominal Aircraft, 0.82 M, 35,000 ft

of system identification and computation of the output performance error e0(t) is explored in

this section. Using the same procedures as above, the Kalman filters were simulated off-line in

Matlab by feeding the recursive algorithm new data at each new sample time. State derivative

estimates x(t) where obtained for the same data used in the above results. These estimates were

then used to generate the reference model using the same procedures as previously noted. It

will be shown next that the results of these simulations demonstrated that the state derivative

estimates were capable of generating a reference model suitable for the reconfiguration task.

Figures 6-7 and 6-8 illustrate the response of the linear model generated with k(t) data when

compared to the nonlinear simulation. Again, for this simulation, the pilot commands from the

nonlinear simulator were fed to the Simulink model of the linear identification model, and the

linear simulation does not contain a turbulence model.
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It is seen from these figures that the response of the linear model generated with $(t) data

resembles the linear model response illustrated in Figures 6-3 and 6-4. Based on the new linear

reference model, the nominal frequency responses from pitch and roll stick to pitch and bank

angle respectively are illustrated in Figure 6-9.

Also, the nominal aircraft flying qualities were assessed. Table 6.16 presents the flying qualities

for the nominal aircraft. It is seen that all of the modes have Level 1 flying qualities. Both the

frequency response functions and the flying qualities for the new reference model are close to

the former results.

Finally, the impact of using the ,(t) on the ultimate reconfiguration performance can be viewed
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Table 6.16: Nominal Aircraft Flying-Qualities (±(t) Data): Class III, Category B

Mode Metric Value [Level D
Short (S, 0.73 1

Period on, 1.78 rad/sec 1

Phugoid (P 0.06 1
Spiral T2 Stable 1

Dutch Roll (d 0.25 1

(dWnd 0.55 rad/sec 1

Wnd 2.21 rad/sec 1
Roll T 0.40 sec 1

does not have a rudder pedal interface, this modeling error should not

the reconfiguration results. Thus, the estimate of the state derivative

reconfiguration task.

have a major effect on

±(t) is suitable for the
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6.3.3 Longitudinal Failures

In this subsection, three longitudinal failure scenarios will be presented: horizontal tail fixed

position failure, elevator fixed position failure, and an empennage hydraulic failure. Simulations

of each of these failure scenarios will be shown at the selected cruise condition, and a comparison

between the nominal and post-failure performance, with and without reconfiguration, will be

presented. Additionally, a comparison of pitch stick to pitch angle and roll stick to bank angle

frequency response functions will be presented. The frequency response functions are generated

using the identification procedures outlined in the previous sections. Finally, the post-failure

aircraft flying qualities will be compared to the nominal aircraft flying qualities.

Atmospheric disturbances are included in these simulations. Given the nominal output per-

formance errors illustrated in Figure 6-6, the regressor disturbance upperbound for the robust

adaptation algorithm, in Equation (2.20), was set to V = i(t)[0.01 0.01 0 .0 0 2 ]T. Finally,

the failure-logic switch is closed and remains closed, i.e. a failure is declared and adaptation

is turned on, when the output performance error e,(t) exceeds [0.05 0.03 0 . 0 3 ]T rad/sec2.

These values were selected through inspection of Figure 6-6 and noting that these bounds are

not exceed for pitch and roll stick inputs. Recall from the previous section that the rudder pedal

anomaly causes errors exceeding these bounds. However, since the ACFS does not have a rudder

pedal interface for pilot inputs, no false alarm are expected.

Horizontal Tail Fixed Position Failure

The first failure scenario is a horizontal tail fixed position failure. Based on static analysis at

the given flight condition, the elevator can cancel horizontal tail fixed failures that range from

-9.14 to 4.00, which is the upper limit. As a worst case scenario, the horizontal tail is moved

instantaneously from the trim setting to the failed position. Because of this instantaneously fail-

ure disturbance and the time required to integrate the reconfiguration gains, it was determined

by simulations that the aircraft was able to recover from -7.0' to 4.00 fixed failures. For failures

that exceed this range, the aircraft stalls. Stalling the aircraft is not necessarily fatal; however,
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this region clearly violates the model formulation, and adaptation characteristics are uncertain.

Simulation results for a horizontal tail fixed failure with and without the RCM are illustrated in

Figures 6-11 and 6-12. At 5.0 seconds into the simulation, the horizontal tail is instantaneously
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Figure 6-11: Horizontal Tail Failure, ostb = -5.0', 0.82 M, 35,000 ft (- RCM, - - w/o RCM)

moved from the trim setting of -1.12' to -5.0', and at approximately 30.0 seconds into the

simulation, a pitch doublet is performed. It is seen from this Figure 6-11 that without recon-

figuration, the aircraft departs. It is seen from Figure 6-12 that initially, the nominal control

system integrates up the elevator deflection to zero the pitch rate. However, when a stick input

is introduced to pitch the aircraft down, the aircraft pitches up and departs. This departure is

caused by a discontinuity in the nominal control systems elevator command. The pitch stick

command is not added as a perturbation to the elevator deflection required to zero the pitch
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rate. Instead, as soon as the stick is moved, the pitch rate error integrator is zeroed.

With reconfiguration, the failure disturbance is captured through a combination of the nominal

control system and the adaptive augmentor. Since both the adaptive augmentor and the nominal

controller are working to cancel the disturbance, the pitch angle excursion is reduced by half.

Additionally, the adaptive augmentor forces the aircraft down to the desired trim attitude,

conveyed to the adaptation algorithm via Cf, without pilot inputs.

After the aircraft returns to its initial attitude, open-loop pilot commands are given to provide

a comparison between post-failure performance and nominal performance. Figures 6-13 and

6-14 illustrate the comparison. The only significant difference between the nominal and post-
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Figure 6-13: Comparison of Horizontal Tail Failure with RCM to Nominal Performance, 3 stb =

-5.00, 0.82 M, 35,000 ft (- RCM, - - Nominal)

failure disturbance is seen in the true airspeed vt(t) and the pitch angle 0(t). Naturally, the

horizontal tail position post-failure produces a greater trim drag; thus, the true airspeed is

reduced. Likewise, small errors in the pitch rate get integrated into the pitch angle. Small

differences can be observed in the peaks of the pitch rate trajectories at approximately 35 and

40 seconds.

A comparison between the post-failure and nominal frequency responses from pitch and roll stick

to pitch and bank angle respectively are illustrated in Figure 6-15. It is seen from this figure

that the Phugoid mode has a higher natural frequency and damping. Otherwise, the transfer

functions match.

162



- 2 --. .-.-.-.-.-.-
0

-~ - - -- -

O -6

-8 0 . .---..1.
-- o -8 - - - - - -- - - - -

-5 -10
0 20 40 60 0 20 40 60

Time, (sec) Time, (sec)

70

6 5 - - - - -. -

U

50 -
E
E
> , 4 5 -. .- .- --. . - .-

40
0 20 40 60

Time, (sec)
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Finally, the post-failure flying qualities are presented in Table 6.17. It is seen from this table that

the post-failure aircraft with RCM has Level 1 flying qualities. Additionally, the the post-failure

modes are close to the nominal modes.
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Table 6.17: Post-Failure Versus Nominal
6 stb - ~5.00, 0.82 M, 35,000 ft, Class III,

Aircraft Flying-Qualities
Category B

for Horizontal Tail Failure:

Mode Metric Nom Value Fail Value Level

Short (Sp 0.71 0.66 1
Period Wn,, 1.63 rad/sec 1.85 1

Phugoid (P 0.11 0.28 1
Spiral T2, Stable Stable 1

Dutch Roll (d 0.28 0.22 1

(dWnd 0.52 rad/sec 0.45 1
Wnd 1.84 rad/sec 2.04 1

Roll Tr 0.46 sec 0.51 1
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Elevator Fixed Position Failure

The next failure scenario is a failure to the elevator. Based on the control authority at 35,000

feet and 280 knots, the stabilizer can cancel a static elevator deflection ranging from -25.0'

to 10.90. However, due to the bandwidth differences, it was determined by simulation that the

horizontal tail and collective engine combination was only able to recover from instantaneous

hard-over elevator deflection failures ranging from -8.0" to 4.00. For failures that exceed this

range, the aircraft either stalls or exceeds maximum dynamic pressure. Simulation data for an

elevator failure with and without RCM are illustrated in Figures 6-16 and 6-17. At 5 seconds

into the time history, the elevator is instantaneously moved to -5.00.
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Figure 6-16: Elevator Failure, e, = -5.0", 0.82 M, 35,000 ft (-

60 80

RCM, - - w/o RCM)
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-- w/o RCM)
RCM,

It is seen from this Figure 6-16 that without reconfiguration, the aircraft departs (note that

the trajectories without RCM were stopped due to the departure at t = 25.4 seconds). With

reconfiguration, the failure disturbance is attenuated and the aircraft returns to its initial trim

conditions 55 seconds after the failure without pilot inputs. After 80 seconds, a pitch doublet

is performed to demonstrate that the low bandwidth horizontal tail and collective throttles can

provide pitch control during post-failure operations with normal stick inputs. Figures 6-18 and

6-19 illustrate the comparison. It is seen from this Figure 6-18 that there is a considerable

loss of pitch control bandwidth. This result is expected since the horizontal tail's rate limit is

0.15 0 /sec compared to the elevator's 80.00/sec. Note, although there is considerable saturation

experienced due to the reduction in pitch control bandwidth, the adaptive algorithm remains
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stable.

In addition to demonstrating the post-failure pitch authority, Figure 6-18 illustrates that the

attitude hold mode, which attenuates the Phugoid mode, is still functioning. During normal

operation, the attitude hold commands are given to the elevator only. As discussed in Section

6.2.1, these autopilot commands are converted to equivalent pitch stick commands by inverting

the stick logic. Since these equivalent pitch stick commands are fed to the RCM, the attitude

hold autopilot mode is replicated by the horizontal tail via the RCM.

A comparison between the post-failure and nominal frequency responses from pitch and roll stick

to pitch and bank angle respectively are illustrated in Figure 6-20. This figure illustrates the
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bandwidth reduction in the longitudinal axis. As expected, there is little change in the lateral

response.

The post-failure flying qualities are presented in Table 6.18. It is seen from this table that the

post-failure aircraft with RCM has below Level 3 flying qualities for the short period undamped

natural frequency due to the bandwidth limitations. As expected, the lateral-directional post-

failure modes are close to the nominal modes.

A final comment on this failure scenario is necessary. The post-failure performance deficiencies

are due to the lack of pitch control bandwidth. If the elevator is split, right and left, with

independent actuation, there would be adequate bandwidth post-failure if either one fails. Thus,
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Table 6.18: Post-Failure Versus Nominal Aircraft Flying-Qualities for Elevator Failure: 6,i,
-5.0", 0.82 M, 35,000 ft, Class III, Category B

Mode Metric Nom Value Fail Value Level

Short (SP 0.71 0.42 1
Period Usn, 1.63 rad/sec 0.47 < 3

Phugoid (P 0.11 0.51 1
Spiral T2, Stable Stable 1

Dutch Roll (d 0.28 0.24 1

(dWnd 0.52 rad/sec 0.43 1

Wnd 1.84 rad/sec 1.79 1
Roll Tr 0.46 sec 0.58 1

the post-failure performance would resemble nominal performance. To illustrate this bandwidth

deficiency for the current failure scenario, Figure 6-21 illustrates the pitch stick to pitch angle

frequency response for various simulated horizontal tail rate limits. The two solid lines in this

figure represent the results illustrated in Figure 6-20, and the dashed lines are the intermediate

rate limits. It is seen from this figure that as the rate limit increases, the bandwidth approaches

the nominal response. As noted previously, the frequency data below 0.1 rad/sec should not be

viewed as reliable data.
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Empennage Hydraulic Failure

The final longitudinal failure scenario demonstrated is the loss of hydraulics to both the elevator

and stabilizer. For this failure, the two surfaces are failed at there trim setting and the engines

are used to pitch the aircraft. Figures 6-22 and 6-23 present a comparison of post-failure and

nominal performance for a pitch doublet. As expected, the moment generated by the collective

50 60

50
Time, (sec)

60

70

3

2.5

10 2

1.5

0i 1
0)

< 0.5

0
4

0.04

0-

0 50 60 7

0.02

0

-0.02-

_J -0.04'
70 40 50

Time, (sec)
60 70

Figure 6-22: Comparison of Empennage Hydraulic Failure with RCM to Nominal Performance,
elv = 0.0", 6 stb = - 1.12o, 0.82 M, 35,000 ft (- RCM, - - w/o Nominal)

engine throttle is small, but the integral of this small moment does produce a low-bandwidth

pitch capability.

Figures 6-24 and 6-25 illustrate the pitch authority for longer pitch stick inputs. For these

trajectories, full pitch stick inputs were held until the aircraft attains a climb rate of ±1, 000
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Nominal Performance, 6e1v = 0.0', ostb = -1.12o, 0.82 M, 35,000 ft (- RCM, - - w/o Nominal)

feet-per-minute (fpm). It is seen that it takes about 15 seconds to change the climb rate from

0 - 1, 000 fpm. Also note from these figures that the engines are attenuating the Phugoid

mode via the equivalent pitch stick input from the autopilot attitude hold mode. Furthermore,

although there is considerable saturation experience during this slow maneuver, the adaptive

algorithm remains stable.

A comparison between the post-failure and nominal frequency responses from pitch and roll

stick to pitch and bank angle respectively are illustrated in Figure 6-26. This figure illustrates

the bandwidth reduction in the longitudinal axis. As expected, there is no change in the lateral

response.
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Finally, the post-failure flying qualities are presented in Table 6.19. It is seen from this table

that the post-failure aircraft with RCM has below Level 3 flying qualities for the short period

mode due to the bandwidth limitations. As expected, the lateral-directional post-failure modes

are close to the nominal modes.
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Table 6.19: Post-Failure Versus Nominal Aircraft Flying-Qualities for Empennage Hydraulic
Failure, 6civ = 0.0", 5stb = -1.120, 0.82 M, 35,000 ft, Class III, Category B

Mode Metric Nom Value Fail Value [Level

Short (SP 0.71 Degenerate < 3
Period wa, 1.63 rad/sec Degenerate < 3

Phugoid (p 0.11 0.45 1
Spiral T2, Stable Stable 1

Dutch Roll (d 0.28 0.27 1
(dWnd 0.52 rad/sec 0.50 1

Wnd 1.84 rad/sec 1.81 1
Roll T 0.46 sec 0.47 1
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6.3.4 Lateral-Directional Failures

In this subsection, three lateral-directional failure scenarios will be presented: spoiler fixed

position failure, aileron fixed position failure, and rudder fixed position failure. Each of these

failure scenarios are simulated at the selected cruise condition and a comparison between the

nominal and post-failure performance, with and without reconfiguration, will be presented.

Furthermore, nominal and post-failure frequency responses and aircraft handling qualities will

be compared.

As in the longitudinal failure simulations, atmospheric disturbances are included in these simu-

lations, and the regressor disturbance upperbound for the robust adaptation algorithm is set to

V = J(t)[0.01 0.01 0 .0 0 2 ]T. Also, the failure-logic switch is closed and remains closed when

the output performance error eo(t) exceeds [0.05 0.03 0. 0 3 ]T rad/sec2.

Spoiler Fixed Position Failure

The first lateral-directional failure scenario that will be presented is a hard-over failure to the

left furthest outboard spoiler. Because of the redundancy in the lateral axis, any single surface

fixed position failure can be accommodated by the RCM. Simulation data for the left outboard

spoiler failure with and without RCM is illustrated in Figures 6-27 and 6-28. At 5.0 seconds

into the simulation, a left outboard spoiler is deflected to -60.0" instantaneously. It is seen from

this Figure 6-27 that without reconfiguration, the aircraft rapidly departs. It is seen from Figure

6-28 that the nominal controller does have a level of robust stability. The nominal controller

integrates the roll rate error, and commands an aileron deflection to cancel the roll rate error.

However, at this flight condition, the ailerons alone cannot generate a moment great enough

to cancel a spoiler hard-over failure; thus the ailerons magnitude saturate, and the aircraft

departs. With reconfiguration, the roll spoilers on the right wing along with the ailerons are

able to capture the failure disturbance. For the adaptation gain used, the maximum bank angle

produce by the failure is approximately -9.00. After the failure disturbance is captured, i.e.

p(t) -p 0, the bank angle slowly decreases between the time interval 10 -- 20 seconds. The spiral
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Figure 6-27:
RCM)

Left Outboard Spoiler Failure, 6spi = -60.0', 0.82 M, 35,000 ft(- RCM, - - w/o

time constant is on the order of 100 seconds. At 20 seconds, the pilot levels the wings.

After the pilots levels the wings, open-loop pilot commands are inputed to provide a comparison

between post-failure performance and nominal performance. Figures 6-29 and 6-30 illustrate the

comparison. It is seen from this Figure 6-29 that for the roll stick doublet, nominal performance

is completely recovered post-failure.

177



20

-0)15 - - -

U010 
-

2 5 - - . -.. . . . . -..-..

0

-5
0 10 20 30 40

20

0

-20 -

-40 .

-60 F

-80L
0

2

10

a

0)

0

-5

-10

-15

-20

20

0

-20

.0
0)U-40

-60
E)

-80
20 30 40

(D

~0

-2
0 10 20

Time, (sec)

2

0

-1

0 10 20 30 4

-. ...- -. ..

0 10 20 30

' -2'
30 40 0 10 20

Time, (sec)
30 40

Figure 6-28: Surface Deflections for Left Outboard Spoiler Failure, ospi = -60.04, 0.82 M, 35,000
ft(- RCM, - - w/o RCM)

178

- -.-

-..

0)

a)

~0

£0

a)

a

-

0

40

5

-



0.4 -

.8 0.2-

00

-0.2-

-0.4 -
100

0.06 r-

120 140

0.04 

0.02

0

-0.02-

-0.04 -

-0.06-
100 120

Time, (sec)
140

0)

c

mz

160

U)

az

0.02

0.01

0

-0.01

160

Figure 6-29: Comparison of Spoiler Failure with
0.82 M, 35,000 ft(-- RCM, - - Nominal)

-0.02'
100 120 140

Time, (sec)

RCM to Nominal Performance, 6sP = -60.04,

179

0~

ar

160

160

........-

- I



4

2 - - --- --- 2 0 0-.... --

-4 -4
100 120 140 160 100 120 140 160

~20 20
- 0

0'

-0 -0
100 120 140 160 100 120 140 16020 20

20 -40

-1 - -40

00
0)

0-80 -80

100 120 140 160 100 120 140 160

ac 0 .82..3,00 0f

~18

-2. -2'
100 120 140 160 100 120 140 160

Time, (sec) Time, (sec)

Figure 6-30: Surface Deflection Comparison of Spoiler Failure with RCM to Nominal Perfor-
mance, 6,p = 60.0', 0.82 M, 35,000 ft(- RCM, - - Nominal)

180



A comparison between the post-failure and nominal frequency responses from pitch and roll stick

to pitch and bank angle respectively are illustrated in Figure 6-31. It is seen from this figure

that within the viable frequency range of the input signals, the frequency responses match.
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Figure 6-31: Comparison of Spoiler Failure with
-60.0, 0.82 M, 35,000 ft(-- RCM, - - Nominal)
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Next, the post-failure flying qualities are presented in Table 6.20. It is seen from this table that

the post-failure aircraft with RCM has Level 1 flying qualities. Additionally, the post-failure

modes are close to the nominal modes.

Table 6.20: Post-Failure Versus Nominal Aircraft Flying-Qualities
-60.0", 0.82 M, 35,000 ft, Class III, Category B

for Spoiler Failure: spl

Mode [Metric [ Nom Value [Fail Value] Level

Short (S, 0.71 0.69 1
Period on, 1.63 rad/sec 1.61 1

Phugoid (, 0.11 0.04 1
Spiral T2 Stable Stable 1

Dutch Roll (d 0.28 0.26 1

(dwnd 0.52 rad/sec 0.50 1
Wnd 1.84 rad/sec 1.89 1

Roll Tr 0.45 sec 0.43 1

As mentioned above, the nominal control system does have a certain level of robustness to roll

rate errors. The nominal controller integrates the roll rate error, and commands an aileron
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deflection in an attempt to cancel the roll rate error caused by the spoiler failure. Though this

inherent robustness is not adequate alone to accommodate this spoiler failure, it does present

the opportunity to illustrate how the RCM interacts with a nominal controller to accommodate

failures. Figure 6-32 illustrates the ailerons and spoiler deflections required to attenuate the

spoiler failure. In this figure, the aileron deflections correspond to the differential aileron deflec-

4 20
c,))

2 - - - - -15 -

2 - 1 0 - . . -.. . .. . . .

-0)
< U)

-41 0
0 100 200 300 0 100 200 300

Time, (sec) Time, (sec)

Figure 6-32: Differential Aileron and Spoiler Deflections for Spoiler Failure, ospl -60.0", 0.82
M, 35,000 ft

tions 6,Saidf (t) commanded by the nominal control system, and the spoiler deflections correspond

to the differential spoiler deflections 6
SPldif (t) commanded by the RCM. For this simulation, no

pilot inputs were used to level the wings, instead the spiral mode was allowed to attenuate.

After the failure is introduced, the nominal control system commands 3.5' of differential aileron

deflection while the RCM commands 14.0" of differential spoiler deflection. The combination

of these two capture the roll rate error. As the spiral mode decays, the nominal control roll

rate integrators integrate down which drives the ailerons to there trim settings. This process

results in the nominal controller releasing trim control authority to the reconfiguration module.

Around 230 seconds into this simulation, the ailerons have converged to 0.0' and the spoilers

have converged to 16.54; thus, the RCM has full authority over the spoiler failure disturbance.

During the time interval from 240 to 270 seconds, a roll doublet is performed. It is seen that

the ailerons alone produce the desired rolling moment and the RCM does not contribute any

additional commands to perform this maneuver. Since the spoilers are not used for roll control

at this flight condition, the spoiler failure does not affect the nominal control system's capability
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to generate the desired roll moment.

In summary, this simulation illustrates how the RCM interacts with the nominal control system

to accommodate failure. If the nominal control system has some inherent robustness, the RCM

will only inject whatever is required to obtain the desired performance. Thus, if a nominal

control system has a high-degree of inherent robustness, the RCM will do very little; if the

nominal control system has a low-degree of robustness, the RCM will do all of the reconfiguration

task.

Aileron Fixed Position Failure

The next failure disturbance scenario that is presented is a hard-over failure to the left aileron.

At 5.0 seconds into the simulation, the left aileron is moved to -25.0" instantaneously. Recall

that the aileron deflections range from -25.0' to 15.0'; so the nominal controller should be able

to accommodate this failure if it integrates the right aileron to -25.04. Figures 6-33 and 6-34

illustrate the nominal performance and failure performance with and without reconfiguration.

As illustrated in Figure 6-33, without reconfiguration, the aircraft departs rapidly in roll. It

is seen from Figure 6-34 that the nominal control system integrates the right aileron to -17.0"

instead of the required -25.0". With reconfiguration, the failure disturbance is captured through

the combination of right aileron and left wing spoilers. The maximum bank angle produced by

the failure is approximately -4.6". After the failure disturbance is captured, the bank angle

slowly decreases during the time interval between 10 and 20 seconds. At 20 seconds, the pilot

levels the wings.
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After the pilot levels the wings, open-loop pilot commands are given to provide a comparison

between post-failure performance and nominal performance. Figures 6-35 and 6-35 illustrate the

comparison. It is seen from Figure 6-35 that for the roll stick doublet, nominal performance is
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Figure 6-35: Comparison of Aileron Failure with RCM to Nominal
0.82 M, 35,000 ft(- RCM, - - Nominal)

Performance, ai = -25.00,

completely recovered post-failure. There is one primary distinction between the aileron failure

and the spoiler failure. In both cases, the failures introduce a disturbance that must be attenu-

ated. In both cases, the aircraft's stability derivatives are not changed by the failures. For the

spoiler failure, the nominal control power is not affected. However, for the aileron failure, the

aircraft's roll control derivative is reduced by half; thus, the RCM must provide roll control to

achieve the desired performance. This additional roll control command is illustrated in Figure

6-36 by viewing the larger right aileron deflections and the right wing spoiler deflections.
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A comparison between the post-failure and nominal frequency responses from pitch and roll stick

to pitch and bank angle respectively are illustrated in Figure 6-37. It is seen from this figure

that within the viable frequency range of the input signals, the frequency responses match.
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Figure 6-37:
-25.00, 0.82

Comparison of Aileron Failure with
M, 35,000 ft(- RCM, - - Nominal)

RCM to Nominal Frequency Response, oaiz, =

Next, the post-failure flying qualities are presented in Table 6.21. It is seen from this table that

the post-failure aircraft with RCM has Level 1 flying qualities except for the Phugoid damping

which has a Level 2 rating. Additionally, the post-failure modes are close to the nominal modes.

Table 6.21: Post-Failure Versus Nominal Aircraft Flying-Qualities for Aileron Failure: o6ail,
-25.00, 0.82 M, 35,000 ft, Class III, Category B

Mode Metric Nom Value ] Fail Value [Level

Short (Sp 0.71 0.63 1
Period on, 1.63 rad/sec 1.63 1

Phugoid (P 0.11 0.04 1
Spiral T2 Stable Stable 1

Dutch Roll (d 0.28 0.33 1

(dWnd 0.52 rad/sec 0.54 1

Wnd 1.84 rad/sec 1.63 1
Roll T 0.45 sec 0.48 1
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Rudder Fixed Position Failure

The final failure scenario that will be presented is a fixed rudder failure. At 5.0 seconds into the

simulation, the rudder is move instantaneously from the trim setting - which is approximately

0.04 - to 4.00. Figures 6-38 and 6-39 illustrate the nominal performance and failure performance

with and without reconfiguration. It is seen from Figure 6-38 that without reconfiguration, the
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Figure 6-38: Rudder Failure, ud = 4.0', 0.82 M, 35,000 ft (- RCM, - - w/o RCM)

aircraft departs in roll attitude. Initially, the inherent robustness in the lateral axis captures the

induced rolling moment generated by the rudder failure, i.e. p(t) - 0. However, the nominal

control system does not have inherent robustness in the directional axis, and the yaw rate is not

attenuated. Then, when the roll doublet is attempted, the aircraft departs in roll.
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With reconfiguration, the failure disturbance is captured by using the split flap configuration

and differential engines to attenuate the yaw rate error and spoilers to attenuate the roll rate

error. Note, these secondary yaw devises provide the yaw damping since the entire rudder is

inoperative. The maximum bank angle produce by the failure is approximately 3.00, and the

maximum sideslip angle is 1.10. After the failure disturbance is captured, the bank angle slow

decreases between the time interval 20 -+ 50 seconds. At 50 seconds, the pilot levels the wings.

After the pilot levels the wings, open-loop pilot commands are given to provide a comparison

between post-failure performance and nominal performance. Figures 6-40 and 6-41 illustrate

the comparison.
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It is seen from Figure 6-40 that for the roll stick doublet, near nominal performance is achieved

post-failure. The only deficiency is that the Dutch Roll mode has slightly lower damping. This

lower damping can be view by observing the yaw rate response.

A comparison between the post-failure and nominal frequency responses from pitch and roll stick

to pitch and bank angle respectively are illustrated in Figure 6-42. It is seen from this figure

that within the viable frequency range of the input signals, the frequency responses match.
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Next, the post-failure flying qualities are presented in Table 6.22. It is seen from this table

that the post-failure aircraft with RCM has Level 1 flying qualities. Additionally, most of the

post-failure modes are close to the nominal modes with the exception of the Dutch Roll mode

which has a lower frequency and damping.
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Table 6.22: Post-Failure Versus Nominal Aircraft Flying-Qualities for Rudder Failure: 6 .d =
4.00, 0.82 M, 35,000 ft, Class III, Category B

Mode ] Metric [ Nom Value Fail Value I Level
Short (Sp 0.71 0.68 1

Period Wn,, 1.63 rad/sec 1.60 1
Phugoid (, 0.11 0.08 1

Spiral T2, Stable Stable 1
Dutch Roll (d 0.28 0.16 1

(dWnAd 0.52 rad/sec 0.26 1
Wnd 1.84 rad/sec 1.61 1

Roll Tr 0.45 sec 0.45 1
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6.4 Conclusions

This chapter presented a detailed description of the implementation of the RCM architecture

in the Advanced Concept Flight Simulator (ACFS). The ACFS is a high fidelity, six degree-of-

freedom flight simulator that represents a generic narrow-body commercial transport aircraft.

This implementation and the accompanying results demonstrate the RCMs potential for ac-

commodating a wide variety of control surface failures. Key issues associated with commercial

transport reconfiguration were highlighted. Furthermore, simulation results illustrated that the

RCM was able to provide nominal performance post-failure, without corrective pilot inputs, pro-

vided that sufficient control effectiveness existed post-failure. Without the RCM architecture,

most failures presented resulted in aircraft departures.

The implementation and simulation results of the recursive reference model identification were

presented. It was shown that the two-stage on-line identification procedure was able to generate

a reference model representative of the aircraft's nominal performance. The implementation

highlighted issues associated with identification of commercial transports. The identification

algorithm was tuned so that unbiased estimates were obtained for various excitation conditions.

Furthermore, the implementation also illustrated that during normal operation, some additional

control surface excitation is required to generate a complete estimate of the reference model.

The implementation of the adaptive augmentor component illustrates the challenge that com-

mercial transport reconfiguration presents. In both the longitudinal and directional axis, the

control surfaces are not well balanced from a reconfiguration viewpoint, i.e. in the longitudinal

axis, there is no surface with equivalent bandwidth to the elevator, and in the direction axis,

there is no surface with equivalent control authority to the rudder. Thus, for failure to either

the elevator or rudder, the reconfiguration task is difficult. As a result, a novel reconfiguration

control allocation scheme was devised that blends in all the control effectors in a given axis to

perform the reconfiguration task. In the longitudinal axis, the reconfiguration task was accom-

plished by combining the elevator, horizontal tail, and symmetrical throttles. In the lateral axis,

differential spoiler and aileron deflections were used, and in the directional axis, a combination of

rudder, split flap (spoilers and ailerons geared to produce pure yawing moment), and differential
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throttles were used to accommodate failures.

Simulation results that compared the nominal aircraft to a failed aircraft with and without

reconfiguration at a cruise flight condition were presented. These results illustrated the RCMs

potential for commercial transport reconfiguration. A variety of single event, fixed position

control surface failures were illustrated: elevator, horizontal tail, spoiler, aileron, and rudder.

The results demonstrate that when the aircraft had adequate control authority post-failure,

nominal performance was recovered. Without the RCM, the aircraft departed for most of the

failure scenarios presented. Post-failure performance was assessed by comparing time histories,

frequency response functions, and aircraft handling qualities post-failure to nominal. For failures

where nominal performance is infeasible due to lack of control authority, the RCM architecture

still provided a means of controlling the aircraft with traditional pilot stick inputs. For these

situations, the reconfiguration task was performed in a stable manner while in the presence

of significant control surface saturation. The primary reason for the lack of control authority

post-failure is that the ACFS has a single actuator for the elevator and a single actuator for the

rudder. If this aircraft had a split elevator and rudder, the potential for nominal performance

for a failure to one of these actuators exists.

Simulation results also illustrated how the RCM interacts with the nominal control system during

post-failure operations. If the nominal control has inherent robustness to certain failures, the

RCM will only inject signals that are required to obtain nominal performance. Thus, if the

nominal control system has a high level of robustness to a particular failure, the RCM will do

nothing. On the other hand, if the nominal control system has a low level of robustness, the RCM

will perform most of the reconfiguration task. Furthermore, simulation results also illustrated

how the RCM interacts with the autopilot. The nominal control system defaults to an attitude

hold mode for pitch stick-free operations, and the control system generates elevator commands

to perform this function. For failures to the elevator, the elevator attitude hold commands are

translated into equivalent pitch stick inputs which are then fed to the RCM. As a result, the

RCM performs the attitude hold function.

In all of the failure scenarios presented, the reconfiguration was performed rapidly without
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requiring the pilot to assess the failure status and or take corrective action before the aircraft

enters an unrecoverable attitude. Even if the pilot was able assess the failure status rapidly,

the pilot controls do not permit the appropriate interface to accommodate the failures since the

pilot cannot command differential spoiler or split flap deflections.

197



THIS PAGE LEFT BLANK INTENTIONALLY

198



Chapter 7

Summary, Contribution, and

Recommendations

7.1 Summary

The objective of this research was to investigate reconfiguration strategies that would improve

aviation safety while adhering to real world constraints. This objective was accomplished. The

motivation for this research originates from the NASA safety objective of reducing the fatal

accident rate. These simple words were translated into a reconfiguration architecture that is

composed of several algorithms. Both analytical and numerical analysis were performed to

demonstrate the reconfiguration potential in the event of a control surface failure. The results

revealed that nominal performance was achievable for a wide variety of control surface failures

if there was adequate control authority post-failure.

In 1997, NASA stated the objective to reduce the fatal accident rate in commercial aviation by

80% in 10 years, and 90% in 20 years. Since the fatal accident rate is already small, many aspects

of the U.S. flight transportation fleet must be improved to achieve this objective. One important

aspect is reconfiguration: an estimated 14% of fatal incidents could have been prevented through

accommodating damaged or inoperative control surfaces. Therefore, reconfigurable flight control
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is an integral aspect of the overall safety plan. However, there are many obstacles to adding

reconfiguration logic to the commercial fleet. A primary obstacle is that a significant fraction of

the fleet in 10-20 years will consist of current aircraft; complex, all-encompassing changes to the

flight control laws of these vehicles is a costly proposition. Furthermore, any new technology

requiring significant changes to flight control design methodology is unlikely to be accepted by

industry. Considering these obstacles, the focus of the research presented here was to develop

reconfiguration strategies that can be added to existing flight control systems, keeping cost and

complexity low.

The types of failures that were considered were failures to the control surfaces. The failure set

included unanticipated, single or multiple, simultaneous or sequential failures that affect the

control power of the aircraft, that may affect the baseline aerodynamics, and that may produce

large disturbances. The failure set excludes those unsolvable areas where the aircraft cannot be

saved, i.e, a static equilibrium must exist and there must be enough control power to stabilize

the aircraft.

The reconfiguration framework proposed is completely separate from the control law and takes

input information about the state of the vehicle, command inputs and control law outputs; it

then generates an augmentation signal that compensates for deficiencies in the basic control

laws. Given this framework, an extensive literature survey was conducted to identify potential

technologies. Given the advantages and disadvantages of the available technologies, a low-

cost retrofit reconfiguration module for commercial transports must meet several requirements.

There are architectural requirements: independent of existing control structure, minimize off-

line analysis, exhibit nominal performance without failures, applicable to a variety of aircraft,

and provide adequate command following post failure. There are also algorithm requirements:

ensure stability post failure, accommodate unforeseen failures, adapt quickly to destabilizing

forces, and account for control surface constraints.

Given the requirements and the available technologies, a direct adaptive approach using a model

reference framework was selected for the retrofit framework. The architecture consisted of

an adaptive augmentor, flight condition dependent reference model, and signal conditioning

200



and estimation components. The theoretical development of each of these components are

detailed in the methodology chapters of the thesis. This development was then followed by the

implementation chapters that illustrates the implementation of the retrofit architecture on two

separate aircraft simulators: the F/A-18 and the Advanced Concept Flight Simulator (ACFS),

which is a generic narrow-body commercial transport.

The adaptive augmentor component is the primary algorithm that determines the reconfigu-

ration strategy. A direct adaptive, input error approach that incorporates input saturation in

the adaptive control design was adopted for the adaptive augmentor component. This formu-

lation permits rapid adaptation and can accommodate hard-over failures. Additionally, a proof

of stability existed for a SISO, open-loop plant with input saturation. Several extensions were

required. The algorithm was formulated for close-loop, retrofit architecture that tracked the de-

sired trim condition. Additionally, methods were included to handle control surface position and

rate saturation. Finally, an existing proof of stability for SISO, open-loop plants was extended

to include a MIMO, closed loop formulation with rate and position saturation while accounting

for modeling error, sensor, and process noise.

Given that this is a model reference control framework, a reference model is required. The

reference model component provides the desired dynamics of the healthy aircraft to the adaptive

augmentor component. The accuracy of the reference model is the key issue associated with

the operational performance. Inaccuracies in the reference model will lead to false alarms and

ultimately limit the achievable post-failure performance. As a result, the reference model must be

flight condition dependent. Given the additional requirements for low-cost implementation and

life cycle maintenance, the reference model is to be generated on-line using system identification.

To achieve these goals, a two stage identification process is outlined which is well suited for on-

line identification of the desired dynamics. The foundation of this technique is based on the

minimum variance estimator and is composed of both batch and sequential algorithms. This

algorithm is the main part of the overall architecture that takes a mature military technology

and transitions it to commercial applications.

The signal conditioning and estimation module is the final component of the reconfiguration
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architecture. Its primary function is to provide the required signals to the adaptive augmentor

and reference model components. Several assumptions were made in the previous components

about the availability of signals. Given that some of this signals are not available on existing

commercial transports, these previous simplifications result in greater complexity for the signal

conditioning and estimation component. Depending on the available sensors suites, Kalman

filters and control surface models may be required to generate all of the signals required to

perform the reconfiguration task.

With these components, the retrofit architecture was implemented on two separate aircraft.

The first aircraft was the F/A-18 nonlinear simulator that resides at MIT. The purpose of this

implementation was to provide a proof of concept of the modular nature of the architecture and

to provide initial simulation results. A wide variety of control surface failures were performed

and reported: rudder fixed-position failure, stabilator fixed position failure, stabilator floating

failure. Comparisons were made between the failed aircraft with and without reconfiguration

and between the failed-with-reconfiguration and the healthy aircraft. Simulation revealed that

the retrofit module was able to stabilize the aircraft in the presence of large failure disturbances

and control surface saturation. Furthermore, nominal performance was achieved if there was

adequate control authority post-failure. Without reconfiguration, the aircraft departs for the

failures considered.

The second aircraft used was the Advanced Concept Flight Simulator (ACFS) that resides at

NASA Dryden Flight Research Center. The ACFS is a high fidelity, six degree-of-freedom

flight simulator that represents a generic narrow-body commercial transport aircraft. This

implementation and the accompanying results demonstrated the retrofit module's potential for

accommodating a wide variety of control surface failures. Key issues associated with commercial

transport reconfiguration were highlighted. Furthermore, simulation results illustrated that

the retrofit module was able to provide nominal performance post-failure, without corrective

pilots inputs, provided that sufficient control effectiveness existed post-failure. Without the

reconfiguration architecture, most failures presented resulted in aircraft departure.

The implementation and simulation results of the recursive reference model identification were
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presented. It was shown that the two-stage on-line identification procedure was able to generate

a reference model representative of the aircraft's nominal performance. The implementation

highlighted issues associated with identification of commercial transports. The identification

algorithm was tuned so that unbiased estimates were obtained for various excitation conditions.

Furthermore, the implementation illustrated that during normal operation, some additional

control surface excitation is required to generate a complete estimate of the reference model.

The implementation of the adaptive augmentor component illustrates the challenge that com-

mercial transport reconfiguration presents. In both the longitudinal and directional axis, the

control surfaces are not well balanced from a reconfiguration viewpoint, i.e. in the longitudinal

axis, there is no surface with equivalent bandwidth to the elevator, and in the directional axis,

there is no surface with equivalent control authority to the rudder. Thus, for failure to either

the elevator or rudder, the reconfiguration task is difficult. As a result, a novel reconfiguration

control allocation scheme was devised that blends in all the control effectors in a given axis to

perform the reconfiguration task. In the longitudinal axis, the reconfiguration task was accom-

plished by combining the elevator, horizontal tail, and symmetrical throttles. In the lateral axis,

differential spoiler and aileron deflections were used, and in the directional axis, a combination of

rudder, split flap (spoilers and ailerons geared to produce pure yawing moment), and differential

throttles were used to accommodate failures.

Simulation results that compared the nominal aircraft to a failed aircraft with and without re-

configuration at a cruise flight condition were presented. These results illustrated the retrofit

module's potential for commercial transport reconfiguration. A variety of single event, fixed

position control surface failures were illustrated: elevator, horizontal tail, spoiler, aileron, and

rudder. The results demonstrated that when the post failure aircraft had adequate control

authority post-failure, nominal performance was recovered. Without the retrofit module, the

aircraft departed for most of the failure scenarios presented. Post-Failure performance was as-

sessed by comparing time histories, frequency response functions, and aircraft handling qualities

post-failure to nominal. For failures where nominal performance is infeasible due to the lack con-

trol authority, the reconfiguration architecture still provided a means of controlling the aircraft

with traditional pilot stick inputs. For these situations, the reconfiguration task was performed
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in a stable manner in the presence of significant control surface saturation. The primary reason

for the lack of control authority post-failure is that the ACFS has a single actuator for the

elevator and a single actuator for the rudder. If this aircraft had a split elevator and rudder,

the potential for nominal performance for a failure to one of these actuators exists.

Simulation results also illustrated how the retrofit module interacts with the nominal control

system during post-failure operations. If the nominal control has inherent robustness to certain

failures, the retrofit module will only inject signals that are required to obtain nominal perfor-

mance. Thus, if the nominal control system has a high level of robustness to a particular failure,

the retrofit module will do nothing. On the other hand, if the nominal control system has a low

level of robustness, the retrofit module will perform most of the reconfiguration task. Further-

more, simulation results also illustrated how the retrofit module interacts with the autopilot.

The nominal control system defaults to an attitude hold mode for pitch stick-free operations,

and the control system generates elevator commands to perform this function. For failures to the

elevator, the elevator attitude hold commands are translated into equivalent pitch stick inputs

which are then fed to the retrofit module. As a result, the retrofit module performs the attitude

hold function.

In all of the failure scenarios presented, the reconfiguration was performed rapidly without

requiring the pilot to assess the failure status and then hopefully take the corrective action

before the aircraft entered an unrecoverable attitude. Even if the pilot was able assess the

failure status rapidly, the pilot controls do not permit the appropriate interface to accommodate

the failures since the pilot cannot command differential spoiler or split flap deflections.

To summarize the conclusions:

" Given the requirements and the available technologies, a direct adaptive approach using
a model reference framework is well suited for the retrofit framework. The architecture
consists of an adaptive augmentor, flight condition dependent reference model, and signal
conditioning and estimation components.

" An on-line, two stage identification process can identify low-order equivalent desired dy-
namics of a healthy aircraft.

" Depending on the available sensors suites, Kalman filters and control surface models can
generate all of the required signals for the reconfiguration task.

" The retrofit architecture can provide reconfiguration functionality to a variety of aircraft.
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The module was implemented in a F/A-18 nonlinear simulator and in a generic commercial
transport nonlinear simulator. Simulation results revealed that the retrofit module is able
to stabilize the aircraft in the presence of large failure disturbances and control surface
saturation using normal stick inputs. Furthermore, nominal performance is achieved if
there is adequate control authority post-failure.

P Due to the lack of control surface redundancy, commercial transport reconfiguration is
a difficult task. In both the longitudinal and directional axes, the control surfaces are
not well balanced from a reconfiguration viewpoint, i.e. in the longitudinal axis, there is
no surface with equivalent bandwidth to the elevator, and in the directional axis, there
is no surface with equivalent control authority to the rudder. Thus, for failure to either
the elevator or rudder, the reconfiguration task is difficult. Given this difficulty, a novel
reconfiguration control allocation scheme was devised that blends in all the control effectors
in a given axis to perform the reconfiguration task.

* The retrofit system does not cancel the nominal control system, but instead interacts min-
imally to perform the reconfiguration task. If the nominal control has inherent robustness
to certain failures, the retrofit module will only inject signals that are required to obtain
nominal performance.

7.2 Contributions

This research makes a series of contributions that range from architectural design to extensions

of theoretical development in the current literature to the implementation of this reconfigu-

ration approach on two aircraft. Thus, the research is well balanced from a theoretical and

implementation perspectives.

The first contribution is that this research addresses the requirement to improve aviation safety.

Simple requirements to reduce the fatal accident rate were translated into straight forward

algorithms that achieve that task. In doing so, a retrofit architecture was developed that

encompassed the objectives of low-cost implementation while providing rapid, automatic re-

configuration functionality to existing aircraft. This reconfiguration architecture satisfies the

requirements of being independent of existing control structure, exhibit nominal performance

without failures, applicable to a variety of aircraft, and provide adequate command following

post failure.

The second contribution is that existing algorithms in the literature were extended for the

retrofit architecture, and mature technology was incorporated where appropriate. The adap-

tive augmentor component uses a direct, input error adaptive approach that can accommodate
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unknown failures. This formulation was extended for a closed-loop, non-intrusive format that

tracks the desired trim conditions and accounts for control surface constraints. An existing proof

of stability was then extended to include MIMO, closed loop model with both rate and position

saturation. The reference model component consists of a flight condition dependent, low-order

equivalent model of the desired dynamics. An innovative model structure was developed that

attempts to maximize the achievable performance post failure while minimizing false alarms. An

on-line system identification algorithm is used to generate the desired dynamics. This algorithm

represents the part of the architecture where a mature military technology is transitioned for

commercial applications.

The final contribution involves the implementation of the retrofit module in two separate high-

fidelity simulators. The simulation results supplemented the theoretical development and provide

graphical evidence of the reconfiguration potential. Demonstrating this on two different classes

of aircraft verifies that this approach is applicable to a wide variety of aircraft. Additionally, the

implementations uncovered paramount issues associated with commercial transport reconfigura-

tion which are not available in the current literature. Furthermore, using realistic, high-fidelity,

six degree-of-freedom simulators, the implementation demonstrated that this approach does

work.

Obviously, we have not exhaustively tested all failure scenarios that one may pose, i.e. slow time

varying failures, actuator polarity failures, high-lift device failures, or missing surface failures.

Given that instantaneous hard-over failures are in most cases more severe than these examples,

it is the author's opinion that this reconfiguration approach can accommodate the other failure

types provided that a static equilibrium condition exists and that adequate control authority

is available post-failure. It was for this reason that hard-over type failure were selected for

evaluation. At most, minor modifications would be required to accommodate a substantial subset

of all possible control surface failures. In other words, conceptually, there are no assumptions

in the architecture that precludes the accommodation of these other failure types. More testing

is required to substantiate this opinion.
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7.3 Recommendations

It is the recommendation of the author that the retrofit architecture needs to be evaluated in a

piloted simulator, preferably a FAA certified commercial transport simulator. Issues associated

with algorithm computational requirements and storage requirements need to be resolved. Ad-

ditionally, it would be advantageous to have an impaired aircraft make a controlled descent and

landing. Issues associated with pilot evaluation, hardware integration, and software integration

need to be addressed before proceeding with a flight test program.

Additionally, for aircraft without a split rudder, it would be advantageous to devise a method

where the secondary yaw devices just provide yaw damping without trying to zero the sideslip

angle. Thus, the inherent weathercocking ability of the aircraft would be used to capture the

failure disturbance in the directional axis. A method for implementing this approach in the

adaptive control architecture is unknown at this time. Attempts were made to redefine the

desired trim Cfm using the linear nominal model for a given fixed position rudder failure. This

attempt failed because the nominal model does not approximate the crabbed flight condition

well. Thus, it might be wise to remove the desired trim reconfiguration gain Kf in the directional

axis.

Finally, it might be advantageous to extended the stability proof present herein for the case of an

unstable aircraft with augmentation, i.e. a failure causes the augmented aircraft to be unstable.

As background information, there are four cases that we are concerned about: stable aircraft

without a nominal control system, unstable aircraft without a nominal control system, stable

aircraft with a nominal control system, and unstable aircraft with a nominal control system.

Stability proofs exist for the first three cases, and there is no apparent extension available for

the fourth case. The engineering benefit of developing the proof is questionable for commercial

transport reconfiguration since the Phugoid and spiral modes have time constants in the order of

200 seconds. However, developing this proof might provide a valuable extension to the existing

stability analysis literature for closed-loop plants with input saturation.

207



THIS PAGE LEFT BLANK INTENTIONALLY

208



Appendix A

Derivation of the Stability Axis

Nonlinear Moment Equations

The stability axis nonlinear moment equation will be derived from the body axis equations. The

derivation follows the notation contained in Stevens and Lewis.The conversion of the body-axis

equations to stability axis, one equation at a time, is time consuming and lengthy. As mentioned

in Stevens and Lewis, an alternative approach is to use the vector-matrix representations using

rotation matrices S. The coordinate transformation S will be presented below. We begin with

the flat-earth, body axis moment equations in vector-matrix format (Equation 1.5-4 in [71]):

WB =mJQBJWB+ J'TB (A.1)
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where

P Jx 0 - Jxz Jz 0 Jxz

WB J Q J= 0 Jy 0 J1 [= 1 0 0

R -Jxz 0 Jz Jx z 0 Jx

LB 0 -R Q

TB= MB QB= R 0 -P 1'=JxJz-JX2z

NB -Q P 0

and the subscript implies body-axis.

Recalling the definitions of body and stability axis systems, the conversion from body to stability-

axis is simply a rotation about the aircraft's y-axis by the angle of attack a. The coordinate

transformation is thus defined as follows:

cos ca 0 sin a

V = SVB where SL = 0 1 0 (A.2)

-sin a 0 cos a

where the subscript S refers to stability-axis coordinate system. Also, for the relative transfor-

mation between two coordinate frames with the same origin, the strapdown equation is useful:

0 0 -6

QR -Sa§S 0[ 0 0 (A.-3)

6 0 0

This relationship can be obtained by taking the derivative of (A.2), performing the matrix

multiplication, and using trigonometric identities.

We begin the derivation with the body-axis moment equation expressed as follows, which is
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(A.1) with the cross product expanded:

(A.4)J (WB) +WB X JWB = TB

Premultiply (A.4) through by Sc in (A.2):

d
Sa J (WB) + Sa( WB X JWB) = SaTBdt (A.5)

Now, the following substitutions can be made:

TB S TS

WB = S7WS

Sa(WB X JwB) = SwB X SaWBJWB = WS X SaJSWS

Where in the last equation, we used the fact that the coordinate transformations are distributive

with the cross-product. Making these substitutions, the moment equation (A.5) becomes:

d
Sa J (S" Ws) + WS X (S TJSS)ws

dt (A.6)

The derivative term in the above equation can be simplified using the strapdown equation (A.3).

SOj J (SaTws) = SaJ(S'Ws + $TLws) = So JS/(SaSjS + SoS,*ws)

= (Sa JS'')(PS + QRWS)

(S0 JS )('s + QRWs) + WS X (Sa JSD ws = TS
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Define the stability axis inertial matrix as follows:

Js = S' J S
Js =[

Jr, 0 - Jxz

0 Jy, 0

- Jz 0 J j

0 JxzS
0

0s J
Jys

0 JixJ

where F, = Jx, Jz, - J23,. The body-stability axis rotation of the inertias can

produce the following transformation matrix:

Jz,

Jzs

Joz,

y

cos 2 a

sin 2 a

1 sin 2a -2

0

sin2 a - sin 2a 0

cos 2 a sin 2a 0

'sin 2a cos 2a 0

0 0 1

be expanded to

Jr

Jz

Jrz

Jy _

Substituting the stability axis inertias into the moment equations (A.7) we have:

JS ('S + QRWS) + WS X JSWS = TS -

Now, the cross product can be replace with a matrix multiplication as follows:

0

WS X JSWS = QS JSwS where, QS =Rs

- Q

(A.8)

-Rs Q

0 - Ps.

Ps 0s

Premultiplying through by the inverse of the stability-axis inertias and incorporating the sim-

plification above, the moment equation is as follows:

WS + QRWS + JS 1 QSJSws = JS (A.9)
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Knowing that the aerodynamic moments are a function of stability-axis states and the control

surface deflections, the stability axis moments are generally modeled as a first order expansion

of these dependencies:

JsjTs = CApx + CBu + CfP

where the elements of CAP and CBp are the flight condition dependent, dimensional stability

derivatives defined in the stability axis system, Cfp represents the aerodynamic intercept, x

consist of the longitudinal and lateral-direction stability-axis states, and u is a vector of control

surface deflections. Note, since the translation and kinematic equations are not included, the

aerodynamics above represent a subset of the total open-loop aerodynamics. Since the above

expression is the linear expansion of the aerodynamic moments, the aerodynamics are the same

as the aerodynamics of the linearized equations of motion. Thus, combining the non-linear

dynamics with the linear moment buildup, the non-linear, stability axis moment equations of

motion are:

s)5 + QRWS - JjssJsWs = CApx + CBpu + Cfp (A.10)
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