5,428 research outputs found

    On-line transformer condition monitoring through diagnostics and anomaly detection

    Get PDF
    This paper describes the end-to-end components of an on-line system for diagnostics and anomaly detection. The system provides condition monitoring capabilities for two in- service transmission transformers in the UK. These transformers are nearing the end of their design life, and it is hoped that intensive monitoring will enable them to stay in service for longer. The paper discusses the requirements on a system for interpreting data from the sensors installed on site, as well as describing the operation of specific diagnostic and anomaly detection techniques employed. The system is deployed on a substation computer, collecting and interpreting site data on-line

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    A Low-Cost FPGA-Based Test and Diagnosis Architecture for SRAMs

    Get PDF
    The continues improvement of manufacturing technologies allows the realization of integrated circuits containing an ever increasing number of transistors. A major part of these devices is devoted to realize SRAM blocks. Test and diagnosis of SRAM circuits are therefore an important challenge for improving quality of next generation integrated circuits. This paper proposes a flexible platform for testing and diagnosis of SRAM circuits. The architecture is based on the use of a low cost FPGA based board allowing high diagnosability while keeping costs at a very low leve

    Real-Time Monitoring and Fault Diagnostics in Roll-To-Roll Manufacturing Systems

    Full text link
    A roll-to-roll (R2R) process is a manufacturing technique involving continuous processing of a flexible substrate as it is transferred between rotating rolls. It integrates many additive and subtractive processing techniques to produce rolls of product in an efficient and cost-effective way due to its high production rate and mass quantity. Therefore, the R2R processes have been increasingly implemented in a wide range of manufacturing industries, including traditional paper/fabric production, plastic and metal foil manufacturing, flexible electronics, thin film batteries, photovoltaics, graphene films production, etc. However, the increasing complexity of R2R processes and high demands on product quality have heightened the needs for effective real-time process monitoring and fault diagnosis in R2R manufacturing systems. This dissertation aims at developing tools to increase system visibility without additional sensors, in order to enhance real-time monitoring, and fault diagnosis capability in R2R manufacturing systems. First, a multistage modeling method is proposed for process monitoring and quality estimation in R2R processes. Product-centric and process-centric variation propagation are introduced to characterize variation propagation throughout the system. The multistage model mainly focuses on the formulation of process-centric variation propagation, which uniquely exists in R2R processes, and the corresponding product quality measurements with both physical knowledge and sensor data analysis. Second, a nonlinear analytical redundancy method is proposed for sensor validation to ensure the accuracy of sensor measurements for process and quality control. Parity relations based on nonlinear observation matrix are formulated to characterize system dynamics and sensor measurements. Robust optimization is designed to identify the coefficient of parity relations that can tolerate a certain level of measurement noise and system disturbances. The effect of the change of operating conditions on the value of the optimal objective function – parity residuals and the optimal design variables – parity coefficients are evaluated with sensitivity analysis. Finally, a multiple model approach for anomaly detection and fault diagnosis is introduced to improve the diagnosability under different operating regimes. The growing structure multiple model system (GSMMS) is employed, which utilizes Voronoi sets to automatically partition the entire operating space into smaller operating regimes. The local model identification problem is revised by formulating it into an optimization problem based on the loss minimization framework and solving with the mini-batch stochastic gradient descent method instead of least squares algorithms. This revision to the GSMMS method expands its capability to handle the local model identification problems that cannot be solved with a closed-form solution. The effectiveness of the models and methods are determined with testbed data from an R2R process. The results show that those proposed models and methods are effective tools to understand variation propagation in R2R processes and improve estimation accuracy of product quality by 70%, identify the health status of sensors promptly to guarantee data accuracy for modeling and decision making, and reduce false alarm rate and increase detection power under different operating conditions. Eventually, those tools developed in this thesis contribute to increase the visibility of R2R manufacturing systems, improve productivity and reduce product rejection rate.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146114/1/huanyis_1.pd

    Experimental analysis of computer system dependability

    Get PDF
    This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance

    Multiple-fault detection methodology based on vibration and current analysis applied to bearings in induction motors and gearboxes on the kinematic chain

    Get PDF
    © 2016 Juan Jose Saucedo-Dorantes et al. Gearboxes and induction motors are important components in industrial applications and their monitoring condition is critical in the industrial sector so as to reduce costs and maintenance downtimes. There are several techniques associated with the fault diagnosis in rotating machinery; however, vibration and stator currents analysis are commonly used due to their proven reliability. Indeed, vibration and current analysis provide fault condition information by means of the fault-related spectral component identification. This work presents a methodology based on vibration and current analysis for the diagnosis of wear in a gearbox and the detection of bearing defect in an induction motor both linked to the same kinematic chain; besides, the location of the fault-related components for analysis is supported by the corresponding theoretical models. The theoretical models are based on calculation of characteristic gearbox and bearings fault frequencies, in order to locate the spectral components of the faults. In this work, the influence of vibrations over the system is observed by performing motor current signal analysis to detect the presence of faults. The obtained results show the feasibility of detecting multiple faults in a kinematic chain, making the proposed methodology suitable to be used in the application of industrial machinery diagnosis.Postprint (published version

    Analog Defect Injection and Fault Simulation Techniques: A Systematic Literature Review

    Get PDF
    Since the last century, the exponential growth of the semiconductor industry has led to the creation of tiny and complex integrated circuits, e.g., sensors, actuators, and smart power. Innovative techniques are needed to ensure the correct functionality of analog devices that are ubiquitous in every smart system. The ISO 26262 standard for functional safety in the automotive context specifies that fault injection is necessary to validate all electronic devices. For decades, standardization of defect modeling and injection mainly focused on digital circuits and, in a minor part, on analog ones. An initial attempt is being made with the IEEE P2427 draft standard that started to give a structured and formal organization to the analog testing field. Various methods have been proposed in the literature to speed up the fault simulation of the defect universe for an analog circuit. A more limited number of papers seek to reduce the overall simulation time by reducing the number of defects to be simulated. This literature survey describes the state-of-the-art of analog defect injection and fault simulation methods. The survey is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodological flow, allowing for a systematic and complete literature survey. Each selected paper has been categorized and presented to provide an overview of all the available approaches. In addition, the limitations of the various approaches are discussed by showing possible future directions

    March Test Generation Revealed

    Get PDF
    Memory testing commonly faces two issues: the characterization of detailed and realistic fault models and the definition of time-efficient test algorithms. Among the different types of algorithms proposed for testing static random access memories, march tests have proven to be faster, simpler, and regularly structured. The majority of the published march tests have been manually generated. Unfortunately, the continuous evolution of the memory technology introduces new classes of faults such as dynamic and linked faults and makes the task of handwriting test algorithms harder and not always leading to optimal results. Although some researchers published handmade march tests able to deal with new fault models, the problem of a comprehensive methodology to automatically generate march tests addressing both classic and new fault models is still an open issue. This paper proposes a new polynomial algorithm to automatically generate march tests. The formal model adopted to represent memory faults allows the definition of a general methodology to deal with static, dynamic, and linked faults. Experimental results show that the new automatically generated march tests reduce the test complexity and, therefore, the test time, compared to the well-known state of the art in memory testin
    corecore