73 research outputs found

    CMOS Design of Reconfigurable SoC Systems for Impedance Sensor Devices

    Get PDF
    La rápida evolución en el campo de los sensores inteligentes, junto con los avances en las tecnologías de la computación y la comunicación, está revolucionando la forma en que recopilamos y analizamos datos del mundo físico para tomar decisiones, facilitando nuevas soluciones que desempeñan tareas que antes eran inconcebibles de lograr.La inclusión en un mismo dado de silicio de todos los elementos necesarios para un proceso de monitorización y actuación ha sido posible gracias a los avances en micro (y nano) electrónica. Al mismo tiempo, la evolución de las tecnologías de procesamiento y micromecanizado de superficies de silicio y otros materiales complementarios ha dado lugar al desarrollo de sensores integrados compatibles con CMOS, lo que permite la implementación de matrices de sensores de alta densidad. Así, la combinación de un sistema de adquisición basado en sensores on-Chip, junto con un microprocesador como núcleo digital donde se puede ejecutar la digitalización de señales, el procesamiento y la comunicación de datos proporciona características adicionales como reducción del coste, compacidad, portabilidad, alimentación por batería, facilidad de uso e intercambio inteligente de datos, aumentando su potencial número de aplicaciones.Esta tesis pretende profundizar en el diseño de un sistema portátil de medición de espectroscopía de impedancia de baja potencia operado por batería, basado en tecnologías microelectrónicas CMOS, que pueda integrarse con el sensor, proporcionando una implementación paralelizable sin incrementar significativamente el tamaño o el consumo, pero manteniendo las principales características de fiabilidad y sensibilidad de un instrumento de laboratorio. Esto requiere el diseño tanto de la etapa de gestión de la energía como de las diferentes celdas que conforman la interfaz, que habrán de satisfacer los requisitos de un alto rendimiento a la par que las exigentes restricciones de tamaño mínimo y bajo consumo requeridas en la monitorización portátil, características que son aún más críticas al considerar la tendencia actual hacia matrices de sensores.A nivel de celdas, se proponen diferentes circuitos en un proceso CMOS de 180 nm: un regulador de baja caída de voltaje como unidad de gestión de energía, que proporciona una alimentación de 1.8 V estable, de bajo ruido, precisa e independiente de la carga para todo el sistema; amplificadores de instrumentación con una aproximación completamente diferencial, que incluyen una etapa de entrada de voltaje/corriente configurable, ganancia programable y ancho de banda ajustable, tanto en la frecuencia de corte baja como alta; un multiplicador para conformar la demodulación dual, que está embebido en el amplificador para optimizar consumo y área; y filtros pasa baja totalmente integrados, que actúan como extractores de magnitud de DC, con frecuencias de corte ajustables desde sub-Hz hasta cientos de Hz.<br /

    Output-Capacitorless CMOS LDO Regulator Based on High Slew-Rate Current-Mode Transconductance Amplifier

    Get PDF
    A low quiescent current output-capacitorless CMOS LDO regulator based on a high slew-rate current-mode transconductance amplifier (CTA) as an error amplifier is presented. Load transient characteristic of the proposed LDO is improved even at low quiescent currents, by using a local common-mode feedback (LCMFB) in the proposed CTA. This provides an increase in the order of transfer characteristic of the circuit, thereby enhancing the slew-rate at the gate of pass transistor. The proposed CTA-based LDO topology has been designed and post-layout simulated in HSPICE, in a 0.18 μm CMOS process to supply a load current between 0-100 mA. Postlayout simulation results reveal that the proposed LDO is stable without any internal compensation strategy and with on-chip output capacitor or lumped parasitic capacitances at the output node between 10-100 pF.Postprint (published version

    Current Feedback-Based High Load Current Low Drop-Out Voltage Regulator in 65-nm CMOS Technology

    Get PDF
    The motivation for this paper was to design a current feedback-based high load current, low drop-out (LDO) voltage regulator. A bandgap voltage reference (BGR) was also designed in conjunction with the LDO to simulate realistic environments. The schematic was designed with Cadence Virtuoso Schematic XL, using the Taiwan Semiconductor Manufacturing Company (TSMC) 65-nm CMOS library, used for Internet of Things (IoT) System on Chip (SoC) applications. The proposed capacitor-less LDO with BGR provided an average temperature coefficient (TC) of 13.34 ppm/℃ within the range of -40 to 125 ℃. This was in accordance with military standards to gain a higher stability and power supply rejection ratio (PSRR). The proposed capacitor-less LDO also achieved a 200 mA load current with an error percentage of 0.246% and a -21.47 dB PSRR at 100 KHz with a current based structure. This thesis concluded with the application of capacitor-less LDO in medical IoT devices, followed by the future of medical device development

    High Performance Power Management Integrated Circuits for Portable Devices

    Get PDF
    abstract: Portable devices often require multiple power management IC (PMIC) to power different sub-modules, Li-ion batteries are well suited for portable devices because of its small size, high energy density and long life cycle. Since Li-ion battery is the major power source for portable device, fast and high-efficiency battery charging solution has become a major requirement in portable device application. In the first part of dissertation, a high performance Li-ion switching battery charger is proposed. Cascaded two loop (CTL) control architecture is used for seamless CC-CV transition, time based technique is utilized to minimize controller area and power consumption. Time domain controller is implemented by using voltage controlled oscillator (VCO) and voltage controlled delay line (VCDL). Several efficiency improvement techniques such as segmented power-FET, quasi-zero voltage switching (QZVS) and switching frequency reduction are proposed. The proposed switching battery charger is able to provide maximum 2 A charging current and has an peak efficiency of 93.3%. By configure the charger as boost converter, the charger is able to provide maximum 1.5 A charging current while achieving 96.3% peak efficiency. The second part of dissertation presents a digital low dropout regulator (DLDO) for system on a chip (SoC) in portable devices application. The proposed DLDO achieve fast transient settling time, lower undershoot/overshoot and higher PSR performance compared to state of the art. By having a good PSR performance, the proposed DLDO is able to power mixed signal load. To achieve a fast load transient response, a load transient detector (LTD) enables boost mode operation of the digital PI controller. The boost mode operation achieves sub microsecond settling time, and reduces the settling time by 50% to 250 ns, undershoot/overshoot by 35% to 250 mV and 17% to 125 mV without compromising the system stability.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    A CMOS low pass filter for soc lock-in-based measurement devices

    Get PDF
    This paper presents a fully integrated Gm–C low pass ¿lter (LPF) based on a current ¿steering Gm reduction-tuning technique, specifically designed to operate as the output stage of a SoC lock-in amplifier. To validate this proposal, a first-order and a second-order single-ended topology were integrated into a 1.8 V to 0.18 µm CMOS (Complementary Metal-Oxide-Semiconductor) process, showing experimentally a tuneable cutoff frequency that spanned five orders of magnitude, from tens of mHz to kHz, with a constant current consumption (below 3 µA/pole), compact size (&lt;0.0140 mm2 /pole), and a dynamic range better than 70 dB. Compared to state-of-the-art solutions, the proposed approach exhibited very competitive performances while simultaneously fully satisfying the demanding requirements of on-chip portable measurement systems in terms of highly efficient area and power. This is of special relevance, taking into account the current trend towards multichannel instruments to process sensor arrays, as the total area and power consumption will be proportional to the number of channels

    A 0.5GHz 0.35mW LDO-Powered Constant-Slope Phase Interpolator with 0.22% INL

    Get PDF
    Clock generators are an essential and critical building block of any communication link, whether it be wired or wireless, and they are increasingly critical given the push for lower I/O power and higher bandwidth in Systems-on-Chip (SoCs) for the Internet-of-Things (IoT). One recurrent issue with clock generators is multiple-phase generation, especially for low-power applications; several methods of phase generation have been proposed, one of which is phase interpolation. We propose a phase interpolator (PI) that employs the concept of constant-slope operation. Consequently, a low-power highly-linear operation is coupled with the wide dynamic range (i.e., phase wrapping) capabilities of a PI. Furthermore, the PI is powered by a low-dropout regulator (LDO) supporting fast transient operation. Implemented in 65-nm CMOS technology, it consumes 350μ W at a 1.2-V supply and a 0.5-GHz clock; it achieves energy efficiency 4× -15× lower than state-of-the-art (SoA) digital-to-time converters (DTCs) and an integral non-linearity (INL) of 2.5× -3.1× better than SoA PIs, striking a good balance between linearity and energy efficiency

    Design of Analog & Mixed Signal Circuits in Continuous-Time Sigma-Delta Modulators for System-on-Chip applications

    Get PDF
    Software-defined radio receivers (SDRs) have become popular to accommodate multi-standard wireless services using a single chip-set solution in mobile telecommunication systems. In SDRs, the signal is down-converted to an intermediate frequency and then digitalized. This approach relaxes the specifications for most of the analog front-end building blocks by performing most of the signal processing in the digital domain. However, since the analog-to-digital converter (ADC) is located as close as possible to the antenna in SDR architectures, the ADC specification requirements are very stringent because a large amount of interference signals are present at the ADC input due to the removal of filtering blocks, which particularly affects the dynamic range (DR) specification. Sigma-delta (ΣΔ) ADCs have several benefits such as low implementation cost, especially when the architecture contains mostly digital circuits. Furthermore, continuous-time (CT) ΣΔ ADCs allow elimination of the anti‐aliasing filter because input signals are sampled after the integrator. The bandwidth requirements for the amplifiers in CT ΣΔ ADCs can be relaxed due to the continuous operation without stringing settling time requirements. Therefore, they are suitable for high‐speed and low‐power applications. In addition, CT ΣΔ ADCs achieve high resolution due to the ΣΔ modulator’s noise shaping property. However, the in-band quantization noise is shaped by the analog loop filter and the distortions of the analog loop filter directly affect the system output. Hence, highly linear low-noise loop filters are required for high-performance ΣΔ modulators. The first task in this research focused on using CMOS 90 nm technology to design and fabricate a 5^(TH)–order active-RC loop filter with a cutoff frequency of 20 MHz for a low pass (LP) CT ΣΔ modulator. The active-RC topology was selected because of the high DR requirement in SDR applications. The amplifiers in the first stage of the loop filter were implemented with linearization techniques employing anti-parallel cancellation and source degeneration in the second stage of the amplifiers. These techniques improve the third-order intermodulation (IM3) by approximately 10 dB; while noise, area, and power consumption do not increase by more than 10%. Second, a current-mode adder-flash ADC was also fabricated as part of a LP CT ΣΔ modulator. The new current-mode operation developed through this research makes possible a 53% power reduction. The new technology also lessens existing problems associated with voltage-mode flash ADCs, which are mainly related to voltage headroom restrictions, speed of operation, offsets, and power efficiency of the latches. The core of the current-mode adder-flash ADC was fabricated in CMOS 90 nm technology with 1.2 V supply; it dissipates 3.34 mW while operating at 1.48 GHz and consumes a die area of 0.0276 mm^(2). System-on chip (SoC) solutions are becoming more popular in mobile telecommunication systems to improve the portability and competitiveness of products. Since the analog/RF and digital blocks often share the same external power supply in SoC solutions, the on-chip generation of clean power supplies is necessary to avoid system performance degradation due to supply noises. Finally, the critical design issues for external capacitor-less low drop-out (LDO) regulators for SoC applications are addressed in this dissertation, especially the challenges related to power supply rejection at high frequencies as well as loop stability and transient response. The paths of the power supply noise to the LDO output were analyzed, and a power supply noise cancellation circuit was developed. The power supply rejection (PSR) performance was improved by using a replica circuit that tracks the main supply noise under process-voltage-temperature variations and all operating conditions. Fabricated in a 0.18 μm CMOS technology with 1.8 V supply, the entire proposed LDO consumes 55 μA of quiescent current while in standby operation, and it has a drop-out voltage of 200 mV when providing 50 mA to the load. Its active core chip area is 0.14 mm2. Compared to a conventional uncompensated LDO, the proposed architecture presents a PSR improvement of 34 dB and 25 dB at 1 MHz and 4 MHz, respectively

    Design of a Monostable for the controller of an innovative Buck regulator

    Get PDF
    In this work a monostable circuit, implemented in 90nm CMOS technology for Texas Instruments, is presented. A high efficiency Buck converter is used in the Power Management Module of a very low-power microcontroller and the monostable is the main part of the Buck's controller. Various solutions have been investigated for the monostable realization, in order to achieve the lowest current consumption possibl
    corecore