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Abstract

In the last decades the spread of portable devices has carried electronic circuits to a
higher level of challenges. In fact these products are continuously demanding for higher
performances together with the longest possible battery life, that results in a low power
consumption.

Texas Instruments MSP430 is a 32-bit micro controller capable of assuring a very low
power consumption concurrently with high performances and for these qualities is one
of the most used MCU. Its power management module (PMM) is very important for
assuring these characteristics, since it needs to achieve the highest energy conversion ef-
ficiency possible. One or more low drop-out voltage linear regulators (LDO) are usually
employed in PMM but their efficiency degrades as the difference between their input
and output voltages increases. Unfortunately battery voltages has not scaled as much
as the ICs internal supply, therefore LDOs yield poor efficiency.

Texas Instruments is developing a switched mode power supply and a controller for op-
erating it with a Pulse Frequency Modulation in order to improve the MSP430 power
management efficiency. The controller uses two monostable for generating the correct
time pulses. These devices consume 25uA each.

The aim of this thesis is to improve their current consumption up to the lowest possible
achievable. The new power management concept is described and the monostable con-
sumption is analysed in order to understand how it can be optimized. Afterwards the
various devices composing the monostables are analysed investigating various solutions.
The final circuit has been design with a TI’s 90nm CMOS process, and it shows the
same characteristics of the previous design with a current consumption improved up to
5uA.
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Chapter 1

Introduction

In the last two decades we have faced an exponential increase of electronic applications
in every field, from the automotive to everyday products like microwaves or washing
machines.

A micro-controller is always hidden inside all these products. These circuits are small
computers that control various applications and interaction of the users with the tool.
In the last decades also the number of portable devices arose significantly. These devices
increased continuously their computational power and applications. The most famous
example is the smartphone. However, the increase of their complexity determined the
increase of their power consumption. Therefore battery-powered devices need highly effi-
cient circuits in order not to compromise their battery life time. Thus, micro-controllers
capable of providing the desired functions together with a low consumption are highly
desirable.

MSP430 is continuously decreasing its power consumption in order to allow portable
devices to achieve higher performances. A solution for the optimization of this micro-
controller is described (chapter 2). This involves the use of a switched-mode power
supply regulator instead of a linear regulator for the power management of the device.
In fact it can increase significantly the efficiency of the energy conversion circuit. Ob-
viously it needs a controller that itself has to achieve a low power consumption so as
not to affect the overall efficiency. The controller uses two monostables to fix the period
in which the energy is transferred from the battery to the load. These are the most
significant devices of the controller, both for their role and their current consumption.
In this thesis the one-shot circuit will be analysed and its current consumption will be
lowered.

In chapter 2 the premises and the motivations of the project will be explained.

In chapter 3 a comparator will be realized and both its performances and its current

consumption will be optimized for the monostable.

1



Chapter 1. Introduction 2

In chapter 4 a circuit for the extrapolation of a current proportional to the difference
between two voltages will be analysed and realized.
Finally in chapter 5 the monostable is designed using the devices obtained in the other

chapters. Afterwards the circuit will be tested and the final results will be reported.



Chapter 2

Application description

In this chapter the application of the monostable realized will be explained. A brief
introduction in the difference between an LDO and a SMPS circuit for ultra-low power

MCUs will take place. Finally the requirements for the monostable will be set.

2.1 MSP430 power management

The MSP430 is a Texas Intruments 16 bit Micro Controller Unit. A microcontroller
is a small computer integrated on a single chip that contains a CPU, memories and
I/0 peripherals. MCUs are usually employed on embedded systems for special purpose
digital control.

Texas Intruments 4 bit TMS1000 (1972) was the first programmable system on chip
employed in application such as calculators and oven. Towards the decades MCUs de-
veloped their processing power, thanks to higher levels of integration, while they reduced
their power consumption. MSP430 main advantages are the low cost and the low power
consumption. It can draw less than 1uA in idle mode, while it has 6 different low power
modes, useful for a lot of low power applications. It requires, as every electronic device,
an external supply voltage that usually is an external battery. Therefore the MSP needs
a power management module, PMM, able to provide an internal supply voltage for the
integrated circuit from the external battery. The present power management is realised
by a Low Dropout voltage regulator (LDO). This device is mainly a constant voltage
source that provides a constant voltage at its output varying its internal resistance to
the variations that occurs in the load resistance. A circuit that does this simple task is

reported in figure 2.1.

The key device is the error amplifier that compares a scale-down version of the output

voltage to a reference (usually a bandgap type) and adjust its output voltage in order

3
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pMOS pass transistor

==
R,

\Y
Ven‘ out

111

V.
o

Error”
Amplifier

FIGURE 2.1: Basic linear voltage regulator.

to set its differential input voltage as close as possible to zero. Therefore it drives a
pass transistor and varies its drain current so as to keep Vi, close to zero through a
negative feedback. The pass transistor is usually a pMOS since the gate source voltage
that controls it is usually negative.

Many are the advantages provided by an LDO, such as its fast response to input and out-
put transients, low output noise, small area; however its main drawback is its maximum

theoretical efficiency that is

Vout
Vin

NLDO = (2.1)
In fact as the difference between the output voltage and the input voltage increases,
nrpo drastically decreases. While the integrate circuit internal supply voltage has scaled
through the decades, the battery supply voltage has remained constant. Therefore today
LDOs present low cost, low complexity, but poor efficiency. Therefore switched mode
power supply circuits become advisable since nowadays battery powered devices need

high efficiency power regulators in order not to compromise the battery life.

2.2 Switched Mode Power Supply (SMPS) fundamentals

Switched mode power supply circuits are electronic devices used as regulators and for
providing the necessary power to electronic circuits. Differently from linear regulators
where there is an element (the pass transistor) that always conduct, SMPS devices
continuously switches from on and off stage, remaining the lowest time possible (ideally
zero) in high dissipation. For this reason the maximum ideal efficiency of such a circuit
is 100%.
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The basic DC/DC converters are the Buck converter and the Boost (figure 2.2). The
first one is a step-down converter since V,,; < V;, while the second a step-up since
Vout > Vin. The converter used to substitute the LDO is a Buck, therefore the analysis

will focus on this circuit.

N L L 7
\' mn /“ o fm ‘ out \' imn /m r} ‘QO‘JI‘
SW l D L
C - C
BUCK BOOST

FIGURE 2.2: Basic Switched mode power supply DC/DC converters.

Buck operation fundamentals

A Buck converter is reported in the above figure. Assuming ideal switches and a current

i1, always higher than zero, it is possible to evaluate the circuit operation in 2 phases:

e Powering phase: at the instant ¢ = 0 the MOS is turned on while the diode is
turned off. The voltage across the inductance is vy, = Vj, — Vo and its current

increases linearly as

ip(t) = ip (0) 4~ 2outy (2.2)

e Freewheeling phase: the MOS is turned off while the diode turns on. During
this period the energy stored in the inductor is transferred to the output capacitor
and to the load. The inductor voltage is vy, = — Ve, therefore its current linearly

decreases as

‘/out
L

ir(t) = ILpk — t (2.3)
The steady-state condition states that the inductor current variation during each phase

has to be equivalent, thus

‘/in - Vout ‘/out tcm .
Al = ——ton = —tors = Vo = —— Vi = 0V th § = duty-cycl
L I on L of f out ton + toff in in WL uty-cycle
(2.4)
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This way of operating is called Continuous Current Mode (CCM). Equation 2.4 shows
the step down characteristic of the Buck converter. The Buck time characteristics are

reported in figure 2.3.

I].‘k 155 Ticlle

,,,,,, I 1
! LPK T._.‘T—m‘ Waale
' p o AN ek
: N

Tox | Toff ! : | : ,

A T t ry t

— — m'\ out - V Li— — V. -V out

;A -V, A
Y\fD Put -

ccM DCM

FIGURE 2.3: CCM and DCM Buck time characteristics.

The Buck behaviour varies with output current variations. As the load decreases, the
inductor current becomes zero for a period and the Buck enters in Discontinuous current
mode (DCM). In fact the diode does not allow i, to become less than zero when the
MOS is off. The way of operating is the same as for the CCM but there is a third phase
called idling phase in which i, = 0A and the capacitor provides the output current.

The output voltage is thus given by

52 52

V;)ut:M%":(gg_i_Qf‘s/ﬂ T2 Iy

(2.5)

where f, is the switching frequency of the system and I,y = %

Output voltage control modulations

The output voltage has to be regulated and therefore an active controller is needed. In
CCM the output voltage can be regulated varying the duty-cycle. Therefore a pulse
width modulation (PWM) is employed; this utilizes a fixed switching frequency and
varies the width of the on and off time in order to keep the output voltage regulated.
The pulse width modulator is usually a comparator that compares a triangular waveform
with a modulation signal proportional to the output voltage, in order to obtain a variable

pulse square waveform used to control the switch (figure 2.4).

However CCM, and so PWM, is usually used for high load current since the Buck

efficiency is higher in this mode of operation. In the case of light loads, other modulations



Chapter 2. Application description 7

Wt

JANEERANE

Wit ] | ] | p
OL' : ;v; :.\Il -
] 1 ] 1 "1
i i i i
M(t)=m o o
0—.
Ton Toff
—T—

FIGURE 2.4: Pulse Width Modulation.

are used, like Pulse Frequency Modulation (PFM). Differently form PWM, in PFM the
on and off times are fixed and what varies is their repetition frequency. Therefore when
the output voltage is lower than the reference, the energy transferred to the load is

increased enhancing the frequency.

2.3 Buck Converter for the power management

A DC-DC switching converter as a Buck has a higher efficiency than a LDO when the
difference between input and output voltage is considerable. They are usually designed
for showing a high efficiency at a set peak power level, while when operated in lighter
load conditions their efficiency degrades. This is mainly related to the switching power
losses. These losses can be reduced operating at a lower frequency, when a pulse width
modulation (PWM) is employed, but results in higher peak inductor currents that de-
termines an increased cost. The use of a discontinuous current mode (DCM) converter
controlled by a frequency pulse modulation (PFM) results in a high efficiency for medium
to light load conditions[1].

The converter that Texas Instruments is developing for the new MSP430 power man-
agement uses this concept[2]. A fast and stable control loop is needed. The solution
proposed by Ph.D. Francesco Santoro is a power supply capable of providing the neces-
sary energy when the digital core needs it and enter in an idle mode when the system
absorbs only the leakage current[2]. For this reason a fast start up is desirable. There-
fore he has designed a synchronous DCM Buck converter employing a predictive peak

current controller (figure 2.5).

The inductor peak current is constant, thus the charge @ transferred every period to
the load is fixed
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in L Vout ILPK *****
. P o M
—_ Cm CDUt I T 1 T A
o J\ |

l[

Controller i

/ \ _4_ton >+ toﬁ Nldﬁ_ t

] ton t

FIGURE 2.5: Buck converter with the controller that sets the variable on and off times.

_ IprTon + Toyy

Q (2.6)

2

FIGURE 2.6: Quantity of charge transferred to the load every period.

Since this charge is known, it is possible to minimize the output capacitor and therefore
obtain a fast start up.
The controller senses the input and output voltages of the converter, Vi, pycx and

Vout,Buck, to set the on and off time T,,, Tpry. The on and off time of a Buck are

given by:
T — InpkL
on — [¢3
Vin,Buck — Vout,Buck Tonn X7 -
m,buc out,buc = ILPKL —a = COnSt = ‘/;n,Buck Vout,Buck
ILPKL T o
Toff = Off Vout,Buck:
Vout,Buck

(2.7)

Therefore the controller sets the correct on time depending on the difference between

the input and output voltages.
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The maximum inductor peak current I px depends on the maximum DC load. The
inductor dimension depends on the maximum load current, the maximum frequency of

the digital circuit and the maximum output ripple voltage allowed (equation 2.8).

—  Appr (Ton +Topy)

)

L= — Ton + Tops + T}
2(Ton + Tops + Tiate) % = Tow=1Ir= Irpr = 2lioadmar—2 + Zofs + Lidie
Ton + Toff
Towt = Iload,max
Tout 1 Ly
AV, , =29 [ _ 2 [0
T O, ( 2\ M(1— M)
(2.8)

I

ILPK

FIGURE 2.7: Output ripple voltage is function of the inductor peak current I pg.

Since I = 2.65mA and Irpx = 7.5mA, the inductor has been set to L = 7.4uH. For
this circuit the input voltages can vary from 1.7V to 3.6V (it is a battery) while the

output voltage is fixed at 1.2V. Therefore the on time varies from T, = % ~

23.2ns and has been chosen equal to 24ns for simplicity, to Ty, = %4% ~ 111ns.

7.5mA-T.AuH

% ~ 46.3ns ~ 48ns. The controller is

The off time is instead fixed to Tp,rp =
reported in figure 2.8.

A comparator senses the output voltage Vo Buck and compares it with a reference V..
When the output voltage goes under the reference, the comparator output goes to a
digital control logic that wakes up the switching converter and triggers a monostable
that fixes the on time. The on time monostable then triggers an off time monostable
after a small delay so as to avoid cross conduction, since the two pulses drive the power
stage. The signal is then sent to the control logic after a minimum delay time in order to

assure that the converter does never enter in continuous current mode (CCM). Finally
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Driver pMOS

\’:—out,Buck J_I_ f J_|_ .
° Driver nMOS
Vs Control logic —— T_, Monostable Delay — Toes Monostable

Minimum

Delay

FIGURE 2.8: Controller realized for the DCM Buck converter.

the control logic allows the system to start again until the output voltage is higher than
the reference voltage and the comparator switches again putting the converter in idle
mode. In this way the resulting Buck period (considering the maximum current load)
results to be Tpyck = Ton +Toff + Tigre = 24ns +48ns+28ns = 100ns (for a 3.6V input
voltage) and Tgyck = Ton + Tt + Tidle = 111ns + 48ns + 91ns = 250ns (for the 1.7V
input voltage).

2.4 Monostable

The key devices in the whole controller are the monostable circuits. In fact they have
the important role of driving the Buck’s power stage, therefore they regulate the amount

of energy transferred to the load every period.

A monostable is a circuit that generates a pulse of a pre-defined time width in response
to an external trigger input signal. The name of this device derives from its unique
stable state, during its rest period. The external impulse causes the circuit to its quasi
stable state for a period of time that is determined by the circuit internal parameters.
Usually a one-shot circuit uses a device able to provide a delay that sets the pulse width.

The simplest monostable is realized using the circuit in figure 2.9.

T el
o Delay ﬁD_Q
Input Output pulse

FI1GURE 2.9: Simplest monostable design.

In the stable state the output is zero since the inputs are both at zero. When an impulse
is applied, the output goes to 1 until the two XOR inputs return equal, time that is
exactly the delay ¢, introduced. In this way a pulse of width ¢, has been generated.
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A common mode to produce a delay cell is to introduce a RC time constant or use a
cascade of elementary digital ports.
Another common way of design a monostable is that reported in [3] and [1]. The common

concept is reported in figure 2.10.

vd

(=N

V in.comp
v reset | ,,J: out.comp
==
1 . Vo
— Input/reset ' outmono
) logic
J— V trigg

FIGURE 2.10: Monostable concept.

A triggering signal determines the input of the monostable pulse and turns off the switch
that keeps the capacitor discharged. A constant current is therefore able to charge the

capacitor and generate a ramp input voltage signal since

AV (t)

— = V(t) =Vi(ty) + lIc(t — o) (2.9)

I(t)=C -

This ramp input voltage has a constant slope and the monostable’s time width can be
set as the time took by the ramp to reach a defined voltage. Therefore a comparator is
used to detect this event. It compares the ramp voltage signal with a voltage reference
and its output goes from 0 to 1 when the input signal crosses the reference. A suitable

digital circuitry uses this signal to determine the end of the pulse.

The Buck controller needs a monostable able to vary its pulse width depending on
the input and output voltage of the regulator and obtain always the same Iy pgx. The
previous concept can be used for the realization of this device, but it has to be modified
in order to be able to provide different pulses. The parameter that can be easily varied
is the current that charges the capacitor. In fact it varies the slope of the ramp voltage,
allowing it to cross the reference at different times. If this current varies proportionally
to the input output voltage difference Vi;, puck — Vout, Buck, then the monostable varies
its width proportionally to this parameter.

This concept has been developed by Ph.D. Francesco Santoro. The circuit that he
realized is reported in figure 2.11. Two voltage regulators for the generation of the

currents proportional to Vi, Buck and Viut Buck are used. The two currents are then
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subtracted using a current mirror. The current resulting from this operation is then
used to charge a capacitor. Finally a comparator is used to detect the reference crossing.
The current consumption of every device is reported in the figure. The resulting overall

current consumption of the fist version of the monostable is

Icons =2 Icons,OTA + IVm + I\/m,copy + IVout + IVm—Vout + IC + Icons,comp
~ 2-300nA +2-750nA + 250nA + 750nA + 2.5uA + 20pA = 25.6 1A

(2.10)

The purpose of this thesis is therefore to reduce as much as possible the consumption of
this monostable.

the requirements set for this circuits are:

e average current consumption in a period I.ons < 10uA as a fist goal
e input Buck voltage that varies from 1.7V to 3.6V
e variable pulse width T,, from 24ns to 111ns

e maximum allowable pulse jitter related to process variations and random mis-

matches o7, < 2.5% of Ty,

The comparator is the circuit that consumes more current since it has to be fast. Thus

the optimization starts from this circuit.

Vdd

Vdd vdd Vdd

l: SuA

300nA

Voug Buck:

llSOuA

Rever l 500nA

Vdd vdd

300nA

750nA ’—{
l':som l l750m ‘
|
‘

FI1GURE 2.11: Francesco Santoro monostable design concept.



Chapter 3

Comparator

As explained in the previous chapter, the optimization began from the comparator, since
it has to match very strictly requirements and it is the most current hungry device. In
the first monostable version, the comparator was an open loop 2-stage OTA with an
average current consumption of 20puA.

This chapter will begin with the comparator fundamentals. After that, all the different
suitable solutions will be described, each one with its pros and cons. The fundamentals

and the relative considerations are based on [4].

3.1 Comparator fundamentals

Static characteristics

The comparator is a widely used circuit and it relates analog signals to digital ones; in
fact it can be considered a 1-bit analog to digital converter.

This circuit, as the name suggests, compares its two input voltages, giving a binary
output(0 or 1) depending on the result of the comparison. Therefore V,,; equals a
defined high voltage V,z when the positive input V;, is greater than the negative input
voltage V; ,, otherwise it is set to a defined low voltage V, . The behaviour of the ideal

comparator is mathematically described in 3.1.

Vo { V; - sz n > 0
Vo = 4 e 1 Vip = Vi (3.1)
VoL Zf ‘/i,p - V;,n <0

The output of the comparator changes its state(from V,z, to V,p) when there is a vari-

ation of AV =V, , — V; , (figure 3.1). The gain of the ideal comparator is
13
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(a) Comparator symbol. (b) Ideal transfer voltage curve.

FiGUurE 3.1: Comparator symbol and ideal transfer voltage curve.

A, = lim Ve~ VoL _

.2
AV =0 AV (3.2)

In figure 3.2 it is shown a more realistic transfer function of a comparator. In fact the

gain is not infinite any more and there is a finite transition region. The gain is better
defined as

Vor — VoL
A, = 2= 3.3
Vie —Vir (3:3)
VOU(
VoH
I
l
Vie f
i ViH Vj.p'vj.ll
i
VOL \

FI1cURE 3.2: Tranfer voltage curve of a more realistic comparator.

Now it is also possible to introduce a paramenter, the resolution, that shows what is the
minimum input change needed for the saturation of the output voltage. Of course the
greatest gain possible is pursued in order to obtain the smallest transition region and

the lowest resolution.

The input offset voltage V,s is another very important non-ideality of comparators. In
figure 3.2, the output of the comparator changes state when the differential input crosses

the zero voltage. However, the change of state happens at a defined voltage Vs (figure
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3.3). This non ideal behavior should not be a problem if this voltage could be predicted.
Unfortunately the offset voltage depends from the structure of the circuit, process varia-
tions and random mismatches that changes from die to die. These variations are related

to the mismatches between every device that arise in the fabrication process.

VoL

FI1GURE 3.3: Tranfer voltage curve with input offset voltage V.

The ICMR, input common mode range is another parameter that has to be taken into
account when designing a comparator. This parameter describes the range of common
mode voltage in which the comparator works properly. Usually this ICMR is the range

in which the transistors works in saturation region.

Dynamic characteristics

The static characteristics and the comparator’s non idealities have been explained. The
other very important and interesting parameters of this circuit are its dynamic charac-

teristics, that include both large and small signal behavior.

The propagation delay is the most important dynamic characteristic of a comparator.
This is the time that it takes to make a change in V,,; signal in response to a Vj,
impulse. This delay is a really important and constraining parameter since it is often
the speed limitation of an A/D converter. As it is possible to see from figure 3.10
the propagation delay is defined as the time elapsed from when the input signal in the
positive (or negative) input becomes larger (or lower) than the negative one, to when

the output reaches a defined threshold Vi, = %

Usually the propagation delay varies in dependence of the input signal swing; a small
delay time is obtained with a large input swing. This fact is simply understandable
since, as it will be shown, the comparator input is usually a differential input pair; a
large and fast change in its differential voltage determines a large and fast change in

its drain current. This behaviour has a limit, otherwise every comparator would have
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FI1GURE 3.4: Output response to an input response with the delay time.

a zero time delay and this one would not be an important dynamic parameter. This
upper limit is the slew rate, as it will be described.

Therefore when the input has a large voltage swing, and so a large change in the overdrive
(Voo = Vygs — V1), we have a delay time that is mainly determined by the large-signal
behaviour of the comparator. Differently, when a small differential input signal is applied
(hence a small V,,), the delay time is mainly determined by the small-signal behaviour
of the comparator.

In this case the frequency response of the comparator relates the small-signal dynamics

and the most simple model is a single pole response:

Ao o Ao

A = =
o(s) I+ 1+s7,

(3.4)

where A, is the DC gain and wy, is the pulse of the pole, hence the -3dB frequency(w, =
27 f,,) of the comparator. This equation represents the variation of V,, in response of a
small variation in the differential input. The time relation between these two variations
is really important for this analysis. Then from A,(s) = AAVT":: we obtain a first order

exponential response:

AVyuy = Awo(1 — e ™) AV, (3.5)
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The propagation delay is the time that passes from the input variations to when the
output voltage crosses the threshold previously defined. Let us assume that the minimum

input voltage capable of moving the output is applied. This minimum input voltage is:

V;n,min = V;)H + VOL (36)
A’UO

From 3.5 and 3.6 we obtain

Vo + Vor

; (3.7)

_ Ay(1 — e~tal) <VH+VL>

AvO

Solving this simple equation it is possible to find a simple relation for the delay time

tqg = 7p - In(2) ~ 0.697, (3.8)

From the general hypothesis, this equation is valid for both positive and negative input
variations. Moreover it is possible to relate the delay for input variations k times bigger

than the minimum one.

2k
td =Tp- n <2k—1> (39)

As it is possible to see from equation 3.9, the bigger is the input voltage (and obviously
the overdrive), the smaller is the propagation delay.

Obviously there is an upper limit to this behaviour. In fact, increasing the input over-
drive voltage, leads the comparator to a large-signal mode of operation in which the
maximum current for charging and discharging the capacitances is limited by the slew-

rate. In this case the delay is

AV Vog —Vor

li=35p = "9 3R

(3.10)

Sometimes it is useful to understand whether the delay is dominated by a small-signal or
a large-signal dynamic and the overdrive at which occurs the change from small-signal
to large-signal dynamics.

This change theoretically happens when the delay time is limited both by equations 3.9
and 3.10
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l Qk ;‘/;)H_VOL
M\ Sr 1) T 2. SR

o RLse (3.11)
VorH—=VoL
9 <e 2-7p SR _ 1)

As an example we can suppose a comparator with A,g = 60dB, Vog — Vo, = 1.2V, a
dominant pole at 27 f, = + = 10*rad/s and a SR = 300mV/us. We obtain that

Tp

= klim =

1.2
€ 2:100p5-300mV/ s

~ 25

Kiim = 12
2 (6 2-100us-300mV/pus 1)

Since Vip min = 1.2mV, we have that for an input smaller than 30mV the delay propa-
gation is dominated by the small-signal dynamic, while after this value it is dominated

by the large-signal dynamic.

The two families of comparators

Comparators are one of the most important and used circuit in ICs. They can be
classified into two main families: time-continuous and time-discrete comparators.

The former, as the name suggests, compares the two inputs continuously in the time.
The latter, instead, does the comparison in two different phases, each one decided by a
clock signal. Hence there is a first phase of evaluation, and a second phase of comparison.
This type of comparators are widely used for AD-converters and can guarantee a high
speed and a low power consumption(in figure 3.5 there is an example of time-discrete

comparator).

In general the DCDC comparator used to turn on the controller can be time-discrete
since it can use the "clock” that results from the on and off time monostables. Instead
the time continuous nature of these devices force the use of time-continuous comparators

into them.

For this reason the comparators that will be considered in the following analysis will be

only time-continuous.
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F1cURE 3.5: Time-discrete comparator.

3.2 Comparator requirements and simulation set-up

The monostable requirements have been defined in chapter 1. This circuit has to pro-
vide a pulse with a variable time width that varies from 24ns to 111ns depending on
the Buck’s input and output voltages. These pulses have then to show a low variabil-
ity to process variations and random mismatches. Therefore a requirement concerning
the statistical behaviour has been set: or,, < 2.5% of pr,,. The other important
requirement is the average current consumption in a period of operation, that has to
be the lowest possible. Initially the consumption set as a first goal is I.ons < 10uA.
Afterwards this requirement will be lowered in order to obtain a circuit with the lowest

possible current consumption.

Comparator requirements

The comparator is the most important device in the monostable. In fact it has to be
very fast and produce the lowest possible delay time. For this reason the assigned power
budget is the highest of the whole monostable. However the current consumption is not
the only important requirement of the comparator; in fact it has even to show the lowest
delay together with the lowest mismatch and processing variability. Being very precise
and careful, even the comparator’s offset is important, especially because its variations
affect the delay and its precision. Luckily (as explained in A) its value decreases when
bigger devices are used, as the use of bigger devices decreases the variation of the delay

time.

The requirements set for the comparator are:
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e maximum delay time ¢4 equal to 10 — 15% of the total period. This means that
tdye. = 2.4 —3.3ns if T,, = 24ns and t4 =11 — 16.6ns if T,,, = 111ns;

max

e maximum standard deviation oy, equal to the 10% of the propagation delay. It

has to be noted that this 10% of ¢, represents only the 1% of Top;

e average current consumption in a period I.o,s < TuA (first goal).

Simulation set-up

In the following sections various comparator’s topologies will be analysed in order to
find the most suitable circuit that fulfils all the requirements described above. Firstly
a theoretical analysis of them will be done and then the circuits will be simulated with
Cadence, in order to check their behaviour. In order to obtain a simulation that is the
closest possible to the real behaviour of the circuit, it is important to use a correct test
bench.

For its realization it is essential to have a clear knowledge of the task of the circuit, the
comparator in this case, and its actual inputs. A bad test bench design may lead to

errors and a bad functioning of the designed circuit.

In chapter 1 it is shown the idea that stands behind the operation of the monostable.
A current proportional to the difference of two voltages is driven into a capacitance,
generating a ramp voltage that is compared to a steady reference voltage: the time from
the beginning of the ramp to the instant in which it crosses the reference represents the
pulse of the monostable.

Therefore the comparator has a single supply voltage of 1.2V, a constant reference
voltage Vi..; = 300mV connected to the negative input pin, and a ramp input signal.
In the final circuit the load of the comparator is a digital port, then it is the input
capacitance of this port. The comparator has even a bias current that is provided by
a current mirror from a reference of 100nA. The test bench is shown in figure 3.6; the
current reference and the supply voltage are realized by an ideal current generator and an
ideal voltage generator, respectively. For some realizations some ideal pulse generators
will be used in order to switch on and off the comparator every period, and achieve a
smaller current consumption.

The simulations used are:

e transient analysis in order to check the propagation delay and the current con-

sumed

e dc sweep analysis for the measurement of V,
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e Monte Carlo analysis is used to check the fulfilment of statistical requirements.

The number of runs for every Monte Carlo is set to 300 (appendix A).

Vdd

m

FIGURE 3.6: Test-bench used for the simulations.

3.3 Analysis and results of comparator topologies

In this section all the different analysed and simulated comparator topologies are exam-
ined. The work starts with the simple circuit and then the topologies evolve depending

on the problems faced during the development of the solution.

3.3.1 Differential input pair with current mirror load

The comparator is mainly an amplifier with a differential input and a single-ended
output. It is capable of amplifying the input differential voltage, saturating the output
to Vo or V,r, depending on the magnitude of Vg = Vi, , — Vin . The mode of operation
of an OTA(figure 3.7) shows a transconductance region and a saturation region. While
OTA are forced to operate on the former, a comparator has the simple task of saturating
the output voltage to his maximum or minimum voltage. Therefore a comparator is
usually an open-loop OTA. The advantage of this way of operation is that the comparator
has a wider band and it does not show stability problems; as a consequence, it is not

necessary a compensation path when a multi stage OTA is used as comparator|[4].
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FIGURE 3.7: OTA transfer function[5].

The most simple OTA to implement is a differential input pair loaded by a two MOS in a
mirror configuration (figure 3.8), in order to match the single-ended topology. The input
common mode is closer to ground than to Vg4 since the inputs are Vi, , = Vi.cy = 300mV
and V;, , is a ramp voltage starting from 0V. This thing suggests the use of a pMOS
input differential pair. For Vj, = 0V < 300mV = V,.; almost the entire tail current
flows in transistor M1, with the consequence of a zero current flowing in the branch of
M2 and M4. This means that M2 is turned off and M4 is in triode region, with zero
drain-source voltage; therefore the output voltage in this case is zero, following correctly
the comparator definition. As V;, approaches V,..y the tail current begins to steer from
the branch of M1 to that of M2. When V;,, > V ..y the most of the current flows in M2
while little current is mirrored by the load since the current flowing through M1 is small.
Therefore the output voltage is forced to raise from 0V to Vg4 since the current charges

the output capacitance.

In [4], [5] and [6], the frequency response of this circuit is given by a dominant pole and

a couple zero-pole coming from the current mirror load. Therefore it is
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Ficure 3.8: Differential pair with current mirror load comparator circuit. The para-
sitic capacitance C5 responsible for the zero-pole couple is reported.

Vout(s) — Ay 1+ wiz
e () (1 )

with Ay = gm1,2(7“02 |l 70a)

Av(s) =

1 (3.12)
WpD = ——  ~ ~ .
P (TOZ || To4) C’out
9gm3
CUp7ND ~ Fg
29m3
2 = Cs

The output capacitance Cyyt = Cp, and C3 ~ 2C; p, if the parasitic gate drain capac-
itances are considered negligible compared to Cys and Cr. Therefore it is possible to
assume that the 5-MOS OTA has a dominant pole frequency response, since the Cp,
is several times bigger than C3. In fact the literature shows that w, yp and w, come
several decades after w, p. The frequency response Bode diagram of the comparator is
reported in figure 3.9 demonstrating that it is a correct approximation. A single-ended
OTA has even a pole and a zero that comes from the current mirrored by the active
load; this pole-zero couple is usually at higher frequencies than the dominant pole and
can be omitted in this basic analysis. The effect of pole-zero couple presence is that of

slightly slowing the transient response.
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AC Response
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FIGURE 3.9: Transfer function of the comparator with the current mirror load.

Having made these premises, the transfer function is:

A’UO

H(s) = 3.13
() 14 s7. ( )

The step response of a first order transfer function is well-known and equal to:
V;)ut(t) = AvO‘/step(l - e_t/TC) (314)

However in this case the input is not a step but a ramp signal V;,(t) = mt where

Vref m

m = 7 is the slope of the ramp. The Laplace-transform of the ramp is L7 mt} = -

It is known from the signal theory that the transient response to a ramp input signal is

simply the time integral of the step transient response, that is:

t
Vot (t) = / Ayom(1 — e/ dr = Ayom(t + e V) (3.15)
0

Once the time behaviour of the output voltage is obtained, it is possible to relate the
propagation delay to the dominant pole of the comparator. In this way a relationship
useful to find all the comparator’s parameters can be obtained. However equation 3.15 is

non-linear and not easy to solve; for this reason it is necessary to make an approximation,
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substituting the exponential with its Taylor power series expression, interrupted at its

second-order term.

V0ut(tp) =Vrur = Avom(tp + TceftP/TC)

Vorr — VoL t, t (3.16)
5 = Vrur = Avom <tp+7'c' (1_7'c+27'02
Considering M = % we obtain
272 = 2MT1. + 5 =0 (3.17)

Once the desired delay t, is fixed, equation 3.17 gives two time constants as solution
(with a condition on the maximum DC gain). The relation between time constants and

poles is simple:

We = ]-/TC (318)

As it will be shown in equation 3.20, the tail current directly depends on the pole
frequency, therefore the lowest pole has been chosen in order to obtain the lowest current
consumption.

The dominant pole is given by w. = wp,p = (equation 3.12). Moreover

1
(ro2]lroa)CL
it is known from MOSFETSs’ model that its output resistance can be expressed by

. . L . .
. Sometimes it is referred as r, = 77”[’—5 but there are no differences since

_ 1
To2,4 = An,plaz.a

in both cases the channel length L is a choice of the designer. The resistances’ parallel

is

1
7'102H7‘o4 = ( (319)

An + Ap)laz.a
Combining equation 3.18 with 3.19 it is possible to find the tail current for the com-

parator, that is

Ins w:Cr,
I = = 3.20
M1,2 2 An +Ap ( )

Afterwards, it is possible to find the transconductance of the differential pair and then
(W/L)1 = (W/L)2
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(a) Vout, Viey and the 24ns input ramp. (b) Vout, Vyes and the 111ns input ramp.

F1GURE 3.10: Output voltage and delay time with 24ns and 111ns input ramp.

Ao (W) <W> Im12
_ (WY (WY Ime 3.21
9m1,2 roa|[Tot L), L), 2pp,Corlgip (3.21)

where the last equality has been derived from the well-known g, = \/ 214 ptn pCoz W/ L.
The dimensions of the load MOS M3 and M4 are the last parameters that has to be
decided. Since gmz 4 = pnpCosW/L(Vysza — Vipp) = S Haza  ihen we find

Vg.93,4*VTn
<W> :<W> _ 21434 (3.22)
L 3 L 4 ,Uncox(vgs3,4_VTn) ‘

Results

The comparator realized from the analysis above, shows a nominal delay ¢, = 3.21ns for
the 24ns ramp and ¢, = 10ns for the 111ns ramp, with a tail current of Iy, = 10pA.
In figure 3.10 the results are shown. It is possible to see the input ramp (for simplicity
it stops raising at 400mV), the voltage reference and the output voltage. This voltage is
full-swing but it has not a fast change in the logic state since it is not possible to obtain
a high gain from the OTA we are using. This gain can be increased using two cascaded
inverters as output stage. In this way a full-swing digital output signal can be obtained.
These two inverters form a digital buffer with the capability of increasing the output
current and driving faster the output capacitance. However it is necessary to design the
first inverter with a W/ L capable of sinking the output capacitance without loading the
output node of the comparator. As more than one inverter is cascaded, it is important
to increase the W/L of a 2.72 factor, so as not to load the previous stage and to obtain

the lowest delay[4],[7].
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FIGURE 3.12: Statistical results for the 111ns period.

The requirements are nearly satisfied since the ¢, is respectively the 14.04% for the 24ns
and 9.46% for the 111ns. The most difficult task is the satisfaction of the requirement
regarding the smaller period delay. The other difficult point regards the current con-
sumption. In this circuit it is equal to the 10 A of the tail current, plus the 1uA of
biasing current mirror, therefore I..,s = 11 A; the consumption requirement is not ful-
filled. However we will not focus much on the consumption, since it is possible to reduce
the average consumption per period switching off the comparator during the time when
it is not needed and switching it on when the ramp voltage begins. In this way it is

however necessary to ensure that the comparator is able to turn on completely in 24ns

The last requirements that need to be checked are the ones regarding random mis-
matches and processing variations. Therefore a Monte Carlo analysis is done obtaining

the results in figure 3.11 for the 24ns period, and in figure 3.12 for the 111ns period.
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In table 3.1the results are reported, showing that the circuit is not fulfilling the require-

ments.
Ton Mty Otp Otp in % of tp ‘ Icons
24ns | 3.36ns | 6.51-10710 20% 11pA
111ns | 10.69ns | 3.42-10~10 30% 11pA

TABLE 3.1: Mirror load comparator Monte-Carlo results

In order to understand how it is possible to improve these values, it is important to check
the correlation table. This table shows the parameters responsible for the statistical
distribution, together with their correlation factor. Therefore it is necessary to reduce
the influence of the factors with the highest correlation in order to reduce the value
of o. In this case the random mismatches of the differential input pair transistors are
the responsible for the high standard deviation. This result is easy to understand since
the input devices are responsible for the steering of the current, and for the input offset
voltage (in this case Vo3 = bmV’); therefore the variations in the current factor and input
offset determine the variations in the propagation delay.

In order to reduce the standard deviation it is necessary to increase the gate area (W - L)
of the input devices (appendix A). Unfortunately increasing the gate area keeping the
same W/L (and so the same g,,) slows the transistors and so the steering of the current
in response to the differential input voltage. This has the consequence of increasing the
delay. A way to overcome this problem is to increase the tail current.

This set the designer in front of a strong trade-off between speed (and its mismatch and

processing variations) and current consumption.

3.3.2 Differential input pair with cross coupled load

In the previous solution it is clear how the delay was fulfilling the basic requirements.
However some problems arise when the circuit has to be optimized in order to reduce
the mismatches and processes variability. Therefore a way to cope with this problem
is to design a faster comparator, so that its delay can be increased when the statistical
requirements have to be fulfilled.

A possible solution could be the use of a cross coupled configuration (Figure 3.13). In
fact the cross couple introduces a positive feedback in the circuit, that provides a reduced
propagation delay. Moreover this type of load can even present an hysteresis that comes
from the positive feedback. However this function will not be used since the introduction

of the hysteresis does not let achieve the lowest delay [4].

Inside this circuit there are two path of feedback: a negative feedback path, a current-

series feedback through the common source node of M1 and M2, and a positive feedback,
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F1GURE 3.13: Cross coupled comparator circuit.

a voltage-shunt that takes place through the gate of M4 and the drain of M5 and vice

versal[4].

The positive feedback can be easily understood looking at the small signal variations in
the output voltage node. Assuming a small signal decrease of AV,,,;, it means a decrease
of M4 gate voltage. This fact leads to a decreasing of Iy (through g,,4). The drop of
144 forces an increasing of I3 with the result of enhancing the gate voltage of transistor
M5, that leads to an increasing of I;5. Therefore this enhanced current discharges the
output capacitance and contributes to a further decrease in the output voltage. If the
opposite initial assumption is made (small signal increase of AV,,;) the effect and the
analysis are analogous.

The same deductive reasoning is applied for the negative feedback path; assuming a small
signal drop of AV,,;, this leads to a decreasing of Iz, and therefore of I;;. However the
current biasing the input differential pair is constant and a I;; drop forces an increase of
I40. This current charges the output capacitance, working against the discharge carried

out by the positive feedback.

If the positive feedback dominates over the negative feedback, then the circuit shows
an hysteretic transfer function, while when the negative feedback dominates over the
positive one the circuit shows no hysteresis. The circuit shows hysteresis when the W/L
of M4 and M5 is bigger than that of M3 and M6.

An histeretic behaviour is not required in the comparator, therefore the cross couple
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(a) Vout of the 24ns ramp input. (b) Vout of the 111ns ramp input.

FIGURE 3.14: V,u, Vier and Vi, for the 24ns and 111ns ramp input.

load has transistor M4 and M5 smaller then M3 and M6.
The amplifier uses the negative resistance of the cross coupled to compensate the positive

resistance of the diode load and achieve a higher gain [8]. The output resistance is

1
Rout = (323)
Im6 — Imb
The output transconductances of the transistor g2, go¢ and g.5 have been neglected

since they are negligible compared to gmg and gms.

Assuming gmi1 = gm2, gma = gms and gm3 = gme, the dc gain is therefore

1
Avo ~ _ gm1,2 — _gm1,2 (324)
9m3,6 — 9m4,5 9m3,6 1 — gma5/9m36

From the equation above it can be seen that if gma5/9m36 = 1 the gain could be
infinite[8].

An important disadvantage of this amplifier is the limited output swing. In fact the
diode-connected transistors clamp the voltage. Therefore, as it is possible to see from
figure 3.14, the lower voltage V,r, is zero but the higher voltage V,p is only a diode
forward voltage over 0V. Clearly this is not the way of operation expected from a
comparator; it is necessary to add a second stage able to provide a higher gain and a

full-swing output.

The simplest solution is to use a push-pull second stage (figure 3.15). This is mainly an
inverter stage whose current is given using the diode load as a mirror and therefore uses
the mirrors to perform a diffential to single-ended conversion. The gain will be higher

than in the previous circuit and it is given by:
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A

Vi _ _gmge2 1 with R — 9mas

AV; gm3e 1 — R 9Im3,6

AV,

A{Zt = —gm10(To10/|7011) (3.25)
dm1,2 1

)

= Ay = Tot0||7
w0 = gm10(To10]| Oll)gm?,,ﬁ TR

The transistor are chosen so as not to show an hysteretic behaviour, as it has been done
in the previous case.

Vdd Vdd

F1GURE 3.15: Cross coupled with push-pull output stage comparator circuit.

Results

The comparator realized with this topology shows a nominal delay time of ¢, = 2.87ns
for the 24ns input ramp and ¢, = 6.76ns for the 111ns input ramp. These results have
been accomplished using the same tail current of the previous circuit, l;,;; = 10uA.
Comparing the two results, it is possible to see how the choice of using a cross-couple
load in order to decrease the time delay was correct. In figure 3.16 the output of the
comparator for the two ramps is shown. Since the comparator has low gain, two output
inverters have been added in order to give the correct output. It is possible to notice
that they do not add a considerable delay time. Moreover the gain of the comparator is

increased since they can sink a lot of current for a small period of time.
Figures 3.17 and 3.18 are obtained from a Monte Carlo analysis.

The results obtained are summarized in table 3.2.
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Ton | Uty Otp Otp in % of tp ‘ Icons
24ns | 2.79ns | 7.1-10719 25% 13pA
111ns | 6.58ns | 3.83 - 107 58% 13uA

TABLE 3.2: Cross-couple push-pull comparator Monte-Carlo results

It has been found from the correlation table that in this case the devices responsible
for the unsuitable standard deviation are the transistors that form the load (M3, M4,
M5, M6). This is mainly related to the small dimensions of transistors M4 and M5.
In fact small devices have been used in order to obtain a fast comparison and avoid
the hysteretic behaviour. Unfortunately small devices have by definition a small gate
area (W - L) and therefore they are more susceptible to random mismatches. As a
consequence the delay time has a high variation that is related to the current factor
and offset voltage mismatches. In fact an input DC sweep simulation reveals a relevant
Vos = 6.5mV (figure 3.19), and a Monte Carlo shows how its statistical variations are

very important (figure 3.20).

.5 VIrI[V] 75 1.0 125

FIGURE 3.19: Input V,, of the push-pull cross-coupled comparator.

A way to improve these results is that of increasing the area of the cross-coupled tran-
sistors. Increasing the area of these devices leads to a higher delay. For example qua-
drupling the gate area of transistors M3, M4, M5 and M6 gives a delay time of 4.9ns,
but improves the statistical behaviour of the circuit giving a oy, = 0.6 - 1079,

Unfortunately the requirements lead to pursue a low delay time together with a lim-
ited statistical variation that this circuit is not able to provide. In fact the cross-couple
gives the advantage of a fast comparison, but has many disadvantages. Again the limited
output swing requires the use of a second stage, adding more delay time and current con-

sumption; secondly the statistical variations are high when small delay time is needed.
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FIGURE 3.20: Statistical results of the input V.

The increase of the tail current could be a solution, but it is not possible since the

fulfilment of the current requirement could not be satisfied.

3.3.3 Self-biased comparator

In the last two sections two different comparators have been analysed. In these two
solutions high attention was given to the fulfilment of the delay time requirement, and
very little to the consumption requirement.

Both circuits used a tail current of 10 A that itself exceeds the consumption requirement
defined in section 3.2. In addition to the tail current even the current used by the push-
pull stage has to be accounted in the average current consumption in a period.

It is therefore necessary to investigate on a way to reduce the current consumption. In
the solutions seen, a tail current that continuously flows in the differential pair is used.
This sets the minimum current consumption to the value of this current. Obviously it
is not a good and efficient solution, since the comparator does not need to operate for
most of the period. What really matters is that the comparator can be ready to sense
the change of V4 sign and so to switch the output from 0V to Vy4 or vice versa. The
current that flows when the comparator has already switched and before it switches,
can be accounted as a loss current. For this reason it is necessary to pursue an ideal
solution able to provide a zero current consumption before and after the switch instant,
while it is allowed to have an arbitrary high current in the few nanoseconds in which
the comparator switches. In this way the average current consumption in a period can
be really low since the circuit is biased only for a negligible time compared to the whole
period. Clearly it is not possible to have a comparator that is completely off for the
whole period except for the instant of the switch; such a solution implies the knowledge
of the switching moment, fact that makes the comparator useless. Let us consider as

an example the 24ns period; we are looking for a comparator that is switched off with
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zero biasing current for 20ns and then in 4ns must be able to turn on and compare
the two inputs, switching the output from V,; to V,gy. A similar way of operation
would require a suitable digital signal to turn on the biasing current and so the circuit
just a few nanoseconds before the end of the period; of course this is quite impossible
because we are designing a monostable to give a similar signal, otherwise the entire
circuit would be useless. For this reason a good compromise would be to accept a low
constant current biasing the comparator and then find a way to enhance this current

only a few nanoseconds before the comparison event.

In order to achieve this result, a concept similar to how the push-pull second stage works
was used, together with [9]. In fact the push-pull stage operates mirroring the current
that flows in the load and uses it to obtain a full-swing voltage output signal. As the
input ramp voltage increases, the current steers from M2 to M1, and so the current
flowing in the diode load transistor increases. Unfortunately the diode load does not
represent a high impedance node, and so a low current determines a low swing of the
output node, such small that it does not ensure the saturation of the push-pull second
stage output to Vgzg. On the other hand a high current it is not available since low
current consumption has to be pursued. A solution is to use a small biasing current
and introduce a self biasing branch that is able to increase the tail current only when
the comparator has to switch, which is exactly the moment when most of the current
steers from M2 to M1. This self biasing branch mirrors the current of the diode load
M6 and adds it as a tail current. In this way it is possible to obtain a current that
increases itself as the circuit is approaching the switching point. Unfortunately once
the comparator switches to V4, the self biasing branch continues to bias the circuit
with a high tail current, which means a high and useless current consumption, since the
comparison has already been done. If a switch is put in series to this branch (e.g. a
pMOS), it can disable the self-biasing branch once the output node reaches Vgq. The
gate of this transistor is then biased by the output voltage of the push-pull stage: when
the output is low the self biasing is enabled while it is disabled when the comparator
switches and the output goes to V4. The R, of this switch does not represent a great

problem so its W/L can be small. In figure 3.21 there is the entire circuit schematic.

The circuit is exactly the same of the previous section, with the only difference of the
adaptive bias branch. Therefore the theoretical analysis is the same as the one done
previously, but the calculus are more difficult since the current flowing in the circuit
changes during the time of operation. The design process has been developed from the
previous circuit. Since the target is to reduce the current consumption, the tail current
is reduced from 10pA to 3pA. The self biasing branch was designed as follows. As it
is possible to see from the circuit the load current is mirrored two times, one with a K

mirror factor and the other with a K’ mirror factor. These two values are chosen such
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FIGURE 3.21: Auto-bias comparator circuit.
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(a) Vout, Vrey and the 24ns input ramp. (b) Vout, Vyes and the 111ns input ramp.

FIGURE 3.22: Output voltage and delay time with 24ns and 111ns input ramp.

that the total tail current (the continuous one and the auto-biasing one) is doubled, so
as to keep the average current consumption really low. In figure 3.22 the simulation

results are shown for the adaptive biasing current.

When the input voltage ramp crosses the reference, the current steers from M2 to M1
and so the self biasing branch begins to increase the tail current. This adaptive tail
current stops to increase as the push-pull output voltage reaches V, g and switches off the
adaptive biasing branch. Using this circuit it was possible to reduce the average current
consumption in a period, obtaining I.ons =~ 5uA. In this way the current consumption
requirement is fulfilled. Unfortunately the circuit shows an increased delay. In fact it
becomes t, = 11.87ns for the 24ns ramp and ¢, = 12.3ns for the 111ns ramp (table 3.3).

Clearly the propagation time results are completely unacceptable for the 24ns ramp.

A way to reduce the propagation delay is to increase the tail current, but unfortunately
then the current consumption increases. Keeping the same continuous tail current and

increasing only the auto-biasing one does not greatly affect the overall consumption. In
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Ton tp ‘ Icons
24ns | 11.8Tns | 4.98uA
111ns | 12.3ns | 5.02uA

TABLE 3.3: Self-biased comparator results

[AI39V1I0A

I D
 d; 6.3126ns
E:;amsv

20.0 300 400
TIME[ns]

FicUurE 3.23: Output voltage, load voltages and delay time with 24ns input ramp.

fact the self-biasing current is active only for a few nanoseconds, with the consequence
that it has a small affection to the average consumption. The design is therefore modified
and the self-biased current is doubled; unfortunately the propagation delay does not
change too much. The reason of this behaviour can be easily seen in figure 3.23; here

the drain voltage of M1 and M2 are shown.

It is possible to see that the increase and decrease of these two nodes in response to the
input ramp voltage, are really slow since the voltage gain of the first stage is really low,
consequence of the little tail current of 3uA. When the current steers from M2 to M1
branch, the two drain voltages are equal since the current flowing in the two transistor is
identical. The self biasing branch begins to work in this moment. Unfortunately it can be
seen that the circuit takes 6ns to reach the instant in which the two voltages are identical.
Figure 3.24 shows that the self-biased current does not affect the voltage variation from
the 24ns to the 30ns, therefore the voltage behaviour before the current steering from M2
to M1 is only determined by the 3z A continuous current. For this reason the only way
to reduce the delay time is represented by an increase of the continuous tail current.
However this current directly affects the overall current consumption and represents
the well-known tradeoff between current consumption and time delay seen in the other

topologies.

In this section an auto-biasing comparator has been analysed. The solution has been
investigated in order to reduce the current consumption using a bigger amount of current

only when needed. This solution allows to comply with the consumption requirement
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FIGURE 3.24: Self-biased current for 24ns and 111ns input voltage ramp.

while it does not comply with the delay time requirements. This behaviour is the oppo-
site of the previous topologies. Clearly the sought solution has to be fast enough as the
cross couple and the current mirror comparators, but has to employ a self biased current
in order to obtain the lowest current consumption. In the next section a comparator

able to fulfil all the requirements is described and developed.

3.3.4 Preamplifier with CSDA second stage

In the previous sections various comparator’s topologies have been analysed and devel-
oped, but none of these fulfilled the requirements. However the tradeoff between delay
time and consumption has been investigated and has to be overcomed in order to design

a suitable comparator.

The idea of a circuit able to enable itself a biasing current that depends on its input
signals has to be pursued, since it allows a great current saving. A circuit that acts itself
like a comparator, and provide this characteristic, is the Complementary Self-biased
Differential Amplifier (CSDA), analysed in [4], [10] and [11].

The CSDA was firstly introduced by Bazes[10] in 1991. The circuit is obtained through
two CMOS differential amplifiers, one with a nMOS and one with a pMOS differential
input pair. The loads are deleted and the drains of the nMOS and the pMOS differential

pair are connected obtaining the circuit in figure 3.25.

This circuit, however, has an external bias and the two tail transistors have to be biased
such that the current that flows in M3 and M4 is identical. Obtaining a similar condition
is really difficult, therefore Bazes suggested to connect the gates of M3 and M4 to the
drains of Mla and M1b obtaining a self biasing structure with a bias voltage that is

inherently stable since there is a negative feedback loop that stabilizes it[10].
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FIGURE 3.25: Derivation of CSDA [10].

The circuit works as follows (figure 3.26): as Vj, , increases, the bias voltage Vp;qs drops.
This in turn decreases the gate-source voltage of M3 while it increases the gate-source
voltage of M4 which means that M3 is switched off while M4 is switched on and carries
a great amount of current. On the other hand Vj,, decreases (the input voltage is
differential) switching off M2a and switching on M2b; in this way the great amount
of current that flows from M4 is used to sink the output capacitance, and the output
voltage increases and saturates to Vgq — Von 4. The advantage of this circuit is given by
its ability of sinking a great amount of current obtaining a fast output switching without
a large quiescent current. This way of operating is similar to that of the adaptive biasing
circuit, but it has the advantage of providing a larger current for a smaller period of
time and without ”wasting” current in a mirror like the self-biasing branch does. The
other advantage of the CSDA is its possibility of providing a full-swing output since

transistors M3 and M4 operate in the linear region.

Like in [11] M1la and M1b are designed respectively equal in size and structure to M2a
and M2b in order to obtain the identical behaviour for both CMOS inverters. When
equal input voltages Vi, , = Vin n are applied, then V,,; = Viiqas, or more generally Vi,

is inclined to behave in the same way as V5.

In figure 3.27 the small DC signal model of the CSDA is reported. Since M3 and M4
work in the ohmic region, the voltage nodes Vg and Vj can be very close to Vy; and
0V'. Therefore a first small approximation in the small signal model could be that of
considering Vi, = Viown = 0 and neglecting the on-resistances. This approximation
provides a little variation of the circuit’s real behaviour, but it allows to obtain a simple

equation for the DC differential gain, that is:
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FIGURE 3.27: CSDA’s dc small signal circuit.
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+
Vout = M (%n,p - Vznm,)
Jon + Go,p (3.26)

V;Jias =0

This equation shows that the amplifier is symmetrical and the bias voltage is in a perfect

negative loop. However a more accurate calculation of the DC gain is done in [11] and

gives
o (gm,ngo,p - gm,pgo,n) [Ron,n (gm,n + go,n) - Ron,p (gm,p + go,p)] - Imn T Gmp ‘
%ut = 5 Vvln,p_i‘/zn,n
(QO,n + go,p) Gon + Go,p
(3.27)

The equation above highlights an inherent gain asymmetry of the amplifier, with a
smaller gain from V;,, to Vo, compared to that from Vj,, to Voy:. The CSDA will
be therefore used as an output buffer, as it is suggested in [4]. Its task will be that of
amplifying a differential signal coming from a first stage pre-amplifier, and the inverting
input will be used, with the consequence that the higher voltage gain has to be taken
into account. However in the design, the gain is assumed to be equal to that of equation
3.26 for simplicity.

For what concerns the speed of the CSDA, the gain asymmetry results in a higher delay
time from Vy, to the output than from Vj,, to the output [4]. However in this case
the delay time’s difference is not important since the one introduced by the CSDA is
much smaller than 3ns. Moreover, in this case, the CSDA has not to provide a high gain
since the buffer is intended to be used as a second stage where the signal has slightly
been amplified by a pre-amplifier. Therefore it is possible to focus on a high speed
optimization, obtained using devices with small channel length; in [11] it is proved that

bigger devices increase the voltage gain but slow the transient response.

The second stage has been defined and described and now it is important to find a
suitable first stage. In the previous sections many different amplifiers have been analysed,
all suitable to be used as pre-amplifier for the CSDA. Clearly this device should be an
amplifier with differential input and differential output, with a very low delay time and
low consumption. The CSDA with its self-bias current and its high speed, has a small
influence on the overall consumption and delay time. For this reason the pre-amplifier
should add a small delay time and work properly with the lowest current consumption.
Reviewing the analysed solutions, it is clear how the first comparator (differential pair
with current mirror load) it is not suitable since it provides a single-ended output. An

active load would not be taken into account because this requires the use of a biasing
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FIGURE 3.28: Comparator suggested in [4].

branch that increases the current consumption. Therefore it is possible to use two diode
connected transistors or a cross coupled as load. However the CSDA has an input stage
that is mainly an inverter, therefore the voltage at which it shows the maximum gain its
around Vy;/2. This forces the stage before the CSDA to provide a voltage swing centred
in Vyg/2. Unfortunately, as described in the previous sections, the diode connected
transistor and cross-coupled loads does not provide a high voltage swing output. To
overcome this drawback it is possible to use a second stage as suggested in [4] and

reported in figure 3.28. This solution again increases the overall current consumption.

In a first solution two diode connected transistors are used as load. They have been
designed such that the voltage output swing is the highest possible (figure 3.29), since
the CSDA input common mode is close to Vy;/2. In order to fulfil this requirement, it
is necessary that these diode connected transistors show the lowest g, (Rout = 1/gm)

possible, so as to obtain the highest output voltage when V;; = 0 and Ij; = I3. Recalling

the equation g, = \/ 214111 Cox W/ L it is necessary to have a low g, to obtain a high
Ry, therefore I, and W/L have to be chosen small. A low Ij,; then, helps the
lowering of the current consumption; however a small current has the consequence of a
slower steer of it from one MOSFET to the other of the input differential pair, and so
a higher delay. The tail current has been set at 5uA, the W/L of the input transistors
has been chosen to be 10, and the W/L of the load transistors is set to 1.

The result of this solution is shown in figure 3.30, where the delay time is equal to
t, = 2.86ns for the 24ns ramp and 6ns for the 111ns ramp, with an average current
consumption of 7uA. As it is possible to see from the figure the voltage at which Vj;
crosses Vo is set to be the highest possible. The requirements are all fulfilled, except

for the standard deviation of the time delay.
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A Monte-Carlo analysis is done and the iterations are reported in table 3.4; for every
iteration the devices’ correlation are reported and therefore their W/ L increased in order
to match the requirement of oy, < 0.1 -¢,; the design optimization will be done for th3

24ns ramp since the more difficult requirement to fulfil regards the faster input.

Iteration | pq, Tty ‘ correlation ‘ (W-L) increase

1 2.95ns | 1.239-107° | L.mn3_ufbomm 0.513 (W - L)
2.mn4_vfo_mm —0.45
3.mn3_nch-mm 0.43
2 3.08ns | 8.42-107" | L.mn3_ufb_mm 0.514 2-(W-L)g; init
2.mn4_vfoomm —0.322
3.nufb_snd  0.29

3 3.55ns | 6.364 - 10710 | 1.mpI_np_mm 0.39 2-(W-L),,
2.mp2_np-mm 0.31
3.mn3_vfo_mm  0.297
4 3.66ns | 5.9-1071° | L.pufo_snd 0.40 2-(W-L); 5 imit
2.nyfb_snd  0.35
3.mp2np-mm 0.34
5 3.81ns | 4.38-10719 | L.mn3 ufoomm 0.46 2-(W-L);,
2.mn4_vfo_mm  0.36
3.mp2_np-mm 0.35
6 4.3ns | 4.29-10710 [ L.mn6.np_mm 0.45 2-(W-1L),,
2.mpl_np-mm 0.38
3.mp2_np-mm —0.33

nat

TABLE 3.4: Monte Carlo design iteration process

Table 3.4 shows how the design process for the improvement of the circuit’s statisti-
cal behaviour works (explained in appendix A). The iterations necessary to match the
requirements for the standard deviation were 6; as it was previously investigated, increas-
ing the devices’ area slows the circuit and the fulfilment of the statistical requirement
forced the circuit to not be able of satisfying the delay time requirement. The same
statistical behaviour is given by a cross-coupled load. Therefore it is necessary to find a
different solution for the load. Its task is to amplify the input ramp voltage and obtain
a voltage value as high as possible at the moment in which V;; = 0 and do that with
the lowest propagation delay. A resistor is able to provide these tasks: therefore the
circuit is redesigned using a resistor as a load. Its value has been decided such that
when V;; = 0 the voltage across it should be around 500mV (the tail current is keep
equal to 5uA).



Chapter 3. Comparator 45

Idl _ Itail + ,UpCo:Jc E 4Itail _ Vqu
2 4 L\ 1,CouW/L
I
I . Itail B HPCOQ?K 4Itail B 9 = When Vtid = 0 = Idl = Id2 f— tT(ul
®T 4 L\ ppCoeW/L
‘/id = ‘/in,p - ‘/in,n )
Vr 500mV
R — - — 200k
0 T /2 25uA
(3.28)

This resistor allows the correct functionalities of the circuit even when all the tail current
flows in one branch.

Apart from the propagation delay, the other requirement that needs to be improved is
the average current consumption in a period. Therefore some switches are added so
that the comparator is switched on when the input ramp voltage starts to increase, and
turns off when its output has switched. A switch is added in series to the transistor that
provides the tail current. Moreover two switches are used to keep Vo at ground and
Vup at Vg when the input pair is not biased, in order to avoid losses from floating gates.
In this way the average current consumption could be lowered up to 3.36A.

The circuit is showed in figure 3.31.
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=

Vdd Vdd Vdd
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F1GURE 3.31: Schematic of the final comparator.

A transient analysis gives the result in figure 3.33, showing a delay time of 2.42ns for

the 24ns ramp and 3.56ns for the 111ns ramp. As expected the delay time is lower and
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fulfils the requirements.

The average current consumption result to be:

o I.ons = 3.36uA for the 24ns ramp, the period is 100ns as stated in section 2.3

(3.32(a))

o I.ons = 4.11uA for the 111ns ramp, the period is 250ns as stated in section 2.3

(3.32(b))

The consumption obtained is the minimum achievable. In fact a possible solution for

obtaining a lower consumption could be that of decreasing the current biasing the dif-

ferential pair. Unfortunately this determines an increased delay time since the input g,,

decreases and an increased oy, since the g,,/I; increases (appendix A).
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F1GURE 3.32: Comparator current consumption.

A Monte-Carlo analysis is then done as for the previous circuit, obtaining table 3.5.
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TIME[ns]

(a) Delay time for 24ns input ramp.

L
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0.0 50 750 100.0

50.0
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(b) Delay time for the 111ns input ramp.

FIGURE 3.33: Vout, Vin, Veer, Voutr,cspa and the the drain voltages of the input
pPMOSFETs.
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Iteration ‘ . T, correlation ‘ (W-L) increase

1 2.42ns | 6.28 - 10719 | 1.mp1_np-mm —0.57 (W - L)
2.mp2_np_-mm  0.52

3.mpl_vufbomm —0.41
2 2.56ns | 4.28-1071 | Lmplnpmm —0.527 [ 2-(W - L) 5 st
2.mp2_np_-mm  0.508
3.mpl_vyfbomm —0.28
3 3.19ns | 3.89 10719 | L.mpI_np_mm 0.41 2-(W-L),,

)

inat

2.mp2np-mm —0.40
3.nufb_snd  0.33

4 3.38ns | 3.18 - 10710 | 1.mp2.np-mm —0.35 1.25-(W-L);,
2.nufb_snd  0.338
3.mpl np-mm 0.30

TABLE 3.5: Monte-Carlo design iteration process

Using a resistor as a load it was possible to match the requirements in 4 iterations; a
delay t, = 3.38ns, the 14% of the 24ns period has been obtained; it shows a standard
deviation oy, = 3.18 - 10710, that is the 9.4% of the delay, and more important it is the
1.325% of the monostable time period of 24ns.

A Monte-Carlo analysis is then done, with the final circuit, for the 111ns ramp voltage
obtaining a delay time t, = 5.05ns (the 4.55% of 111ns) with a standard deviation
o1, = 1.08-1077 (the 20% of t,). At a first sight it should be possible to conclude that
the comparator fulfil the 24ns period requirements, but not the ones regarding the oy,
of the 111ns period. The correlation table suggests that an increase of the input device
area can improve the standard deviation. Unfortunately a further increase of these
devices’ area slows the circuit, fact that determines a failure in the fulfilment of the
smaller period’s delay time. For this reason it can be seen how the standard deviation
o, = 1.08 10~ represents the 0.97% of the 111ns monostable period. In fact the
purpose of the project is to design a monostable and the requirement about the time’s
precision regards the final monostable period; this consideration lets us conclude that
all the requirements are fulfilled and the comparator designed is the solution chosen. In

figures 3.34 and 3.35, the Monte-Carlo results for the final design are shown.

Finally it is important to test its statistical behaviour at different temperatures. In the
previous simulations the temperature was always set at 27°C. The circuit is then tested
at two corner temperatures: —40°C' and 95°C'. Requirements are not set for these two
temperatures, but it is only important to check that the standard deviation does not
become greater than the 15% of the delay time. The results are reported in table 3.6,
while in figures 3.36, 3.37,3.38 and 3.39 are reported the results of the two Monte-Carlo

simulations.
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Delay time[ns]
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FI1GURE 3.34: Statistical results for the 24ns period.
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FIGURE 3.35: Statistical results for the 111ns period.
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FIGURE 3.36: Statistical results for the 24ns period at —40°.
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Occurrences
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(a) Monte Carlo runs. (b) Gaussian distribution.

FIGURE 3.37: Statistical results for the 24ns period at 95°.
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FIGURE 3.39: Statistical results for the 111ns period at 95°.
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in % of tp

Temperature ‘ Pty Tt Tt
—40°C 3.58ns | 5.15-10~10 14.38%
27°C 3.38ns | 3.18 10710 9.4%
95°C 3.51ns | 3.11-10~10 8.9%

TABLE 3.6: Monte-Carlo temperature analysis for the 24ns period.

Temperature ‘ Pty Tty oy, in % of tp oy, in % Ton
—40°C 5.37ns | 1.34-107° 24.9% 1.2%
27°C 5.05ns | 1.08-1077 21% 0.97%
95°C' 49ns | 9.52-10710 19.4% 0.86%

TABLE 3.7: Monte-Carlo temperature analysis for the 111ns period.



Chapter 4

Current generator

In chapter 2 the idea for the realization of the monostable is described. In this chapter
the requirements for the voltage-dependent current generator will be set. A first solution
with two OTAs used as voltage regulators and another one implemented with two super

source followers are described.

4.1 Current generator requirements

The idea for the realization of the monostable is really simple. A capacitor being charged
by a voltage-dependent current generator. The current generator is therefore really
important because it has to provide a precise current; the statistical variations of this
current should be as low as possible since they would directly affect that of the final
monostable time period. The other important requirement about this device is the one
regarding its current, since the overall current consumption is one of the most important
monostable specification.

Therefore the requirements would be:

o Ioons < 3uA, as a first goal

i Ulout S 25% Of lu’Iout

4.2 OTA as voltage regulator

From a first point of view the current generator has to provide a current that depends
on the difference between two voltages; this is exactly what a resistor does. Of course

the two voltages could not be directly applied to the resistor but a voltage buffer would

51
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be needed. An OTA could be used for the generation of a current proportional to its
input voltage.

Therefore it is possible to realize the current generator as it is reported in figure 4.1.
This circuit was proposed in the first version of the monostable. It consists of two OTAs
used as voltage regulators; the OTA has a common source second stage that has its
drain connected to the inverting input in a unity negative feedback loop. A resistor is
connected to the drain of the second stage so that the OTA is forced by the negative loop
to keep the voltage across the resistor equal to the voltage applied to the non-inverting
input. In fact the OTA tends to remain in the operating point V;4 = 0. In order to
do that, it works against the small signal output voltage variations with small signal
variations of the second stage drain current.

Therefore two currents proportionally dependent on V;, and V,,; are available. These

two currents are then copied and subtracted using two current mirrors (figure 4.1).

<i
o
o

Vdd Vdd

o IC ]j

R i ]om:]ml'lml

v

il

=
[N
[
<
[N
[N

i o MY

FIGURE 4.1: Circuit for the generation of the current.

4.2.1 OTA voltage regulator design

A voltage regulator is reported in figure 4.2. Usually this circuit is used to provide a ref-
erence current from a bandgap reference voltage. For the realization of this device some

requirements have been chosen in order to obtain the best voltage regulator possible:

e the static error ¢y < 0.001 since it defines the difference between the output voltage

and the input one
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e the output resistor Ry, = 800K that defines the second stage dc current
Vdd

Viu

OTA EMm

i Iout:Viu/ R

FIGURE 4.2: Linear voltage regulator circuit.

Since the circuit is in a negative feedback loop, it is possible to relate the static error to
the dc loop gain Tp ~ % From the circuit it can be seen that the loop gain is the gain

of the OTA times the gain of the common source (figure 4.3, that is

To = Avo,ora - Avo,cs = Gar - Ro X gmcs - (Tol|RL) (4.1)

_ V
e*\/‘m'vou‘[ out

V.
=<T“ OTA CS stage >

FIGURE 4.3: Voltage regulator block diagram.

The size of the common source transistor can be decided and therefore its gain can be
found. In fact its current has previously been defined (e.g. 500nA) and the overdrive
voltage is chosen to be equal to the common value V,, = 150mV. After this first

assumptions the transconductance of the transistor and its size can be found from

s = s
m, -
Vou (4.2)
W 2.

L /«chox Vou
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With these parameters it is possible to find the gain of the second stage and therefore
the gain of the OTA A,9ora. Once the tail current ;4 of the OTA and its devices’
channel length are fixed, it is possible to design the OTA such that it can achieve the dc
gain found. A simple initial approximation is done assuming the same transconductance
and output resistance for all the OTA’s transistors. Since the output resistance is fixed
by the choices about tail current and channel length, the W/L of the transistors can be

found.

Once the circuit is designed, its stability is checked using the Bode criterion. The circuit
is mainly a two stage OTA and the stability’s considerations are similar to that of a two
stage Miller OTA. As stated before, the closed loop gain is therefore given by the gain
of the OTA and that of the common source stage. Following the theory of the Miller
OTA ([4], [5]), it is possible to find a dominant pole wp, a non-dominant pole wyp and

a right half plane zero w, that are responsible for the stability of the circuit.

1
Rout,ora (Cout,ora + Cc) + Rout,cs (Cout,cs + Ce) + gm,csRout,07 A Rout,c5Ce
N 1
" gm.csRout,orARout.c5Ce
DN D A Im,csCe ~ 9Im,CS
Cout,OTACout,CS + (Cout,OTA + Cout,CS) Cc Cout,OTA + Cout,CS
o~ IS
CC

wp ~

~

(4.3)

C. is the compensation capacitor that in the first design is mainly the gate drain ca-
pacitance of the common source output transistor. The main problem for the circuit’s
stability is represented by the right half zero because it can reduce the phase margin.
In order to understand if it leads to a non-stable circuit, it is necessary to compare
the unity gain frequency of the loop gain with the frequency of the zero; if the latter
comes some octaves after the former, then the zero does not represent a problem for the

stability and the circuit instability is mainly determined by the two poles.

1 — 9Im,in
gm,CSRout,OTARout,CSCc Cc (4 4)

we = Towp =~ gm,ingm,CsRout,OTARout,CS :

Wz _ 9m,CS

We 9m,in

In this case the OTA is a folded cascode (figure 4.4) and it results that oz ~ 5. Therefore
it is possible to state that the zero should not represent a problem for the stability. A
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step input voltage is applied and the circuit’s response its checked in order to test the

stability and the considerations done.

Vdd
1
Vdd
M95 E\J/uo
I...
tail Vi 1
V. M7 | e
mp an V
o—| M1 M2 |—o ’ v out
b2

M3’:| |—_?I_—| E\lfm

FIGURE 4.4: Folded cascode OTA.

The result of this simulation is reported in figure 4.5 and it comes out that the circuit is
stable, confirming that the zero does not affect the stability. However the phase margin

is not really high since the overshoot is quite significant.
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FIGURE 4.5: Step response of the voltage regulator designed.
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Using the return ratio method it is therefore possible to simulate and find the magnitude
and phase Bode diagram of the loop gain. From figure 4.6 it is possible to notice that
the phase margin is only ¢y = 29.9°.

Stability Response
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10? 10t 1? 10% 10t 10° 10° 107 10° 10?1l
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FIGURE 4.6: Voltage regulator’s magnitude and phase Bode diagram of the loop gain.

A simple and quick way to increase this gain margin is to increase the pole splitting
and anticipate the dominant pole. In this way the unity gain frequency is equally
anticipated, with the result of an increased phase margin. A compensation capacitance
has been added between the gate and the drain of the common source output stage in
order to do that. In figure 4.7 the loop gain’s Bode diagram of the compensated regulator
is reported and it shows an improved phase margin of ¢); = 58.4°. The improvement
is also evident in the step response of figure 4.8 that shows a reduced ringing. In both
step responses it can be noticed a little initial step, consequence of a feed forward, and
a little effect of the right half plane zero, since the voltage slightly decreases after the
step.

This solution was the one adopted in the previous version of the monostable. Two
voltage regulators were used, then the current was copied by a pMOS identical to the
output common source device. The two currents were then subtracted by a current
mirror. Finally the current for the charge of the monostable capacitance was obtained
through another mirror. The main drawback of this solution is its current consumption,
as it is possible to see from the figure 4.9. In fact the current that has to be taken into

account for the overall consumption calculation is:

e 300nA circa for every OTA, since their tail current has been chosen to be 100nA
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FI1GURE 4.7: Compensated voltage regulator’s magnitude and phase Bode diagram of
the loop gain.
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FIGURE 4.8: Step response of the compensated voltage regulator.
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e the current flowing in the two output stages. The worst case is when the input
voltage is 3.6V. In this case the output current is 750nA while for the voltage

regulator concerning the 1.2V input voltage the output current is 250nA

e the current flowing in the mirrors for the extrapolation of the charging current

20uA
N

Vdd Vdd Vdd Vdd
300nA
\‘Tout Buck ’\‘
c VIV +
R I~ |
! = | E ] }——{ [
R, -
lzsom 125011‘4
) 2.50A
Reur l 500nA l
Vdd Vdd
v 300nA
8:.311(:1»; ‘/\]gv\ +
1 R E 200fF
2 - 750nA ’—{
175011!& l l?SOILAA ! . .
— |

o h

FIGURE 4.9: The previous realization of the current generator using two voltage regu-
lators.

The overall current consumption of the current generator, without considering the final
2.5 A current, is therefore given by Ions = Ieons = 2 - 300nA 4+ 2 - 750nA + 750nA =
2.85p4A. This is a current that allows the fulfilment of the consumption requirement;
however when the 2.5uA and the consumption of the comparator are added, it results
that the requirement about the current consumption of the entire monostable is barely
fulfilled. Therefore it is necessary to investigate on a possible different solution in order
to achieve the lowest possible current consumption. From a quick view of this circuit it
is clear that most of the current has been lost in the current routing through the mirrors.
Thus it is necessary to find a circuit that does not need mirrors for the subtraction of the
two proportional currents but is instead able to directly provide a current proportional

to the difference between the two input voltages.
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4.3 Voltage buffer

The task done by the voltage regulator was that of a voltage buffer. Simple circuits
are usually the ones that allows the achievement of a low current consumption. The
simplest voltage buffer is the common drain stage or source follower (figure 4.10(a)). In
the dc mode of operation the transistor fixes the output voltage to be equal to the input
voltage minus (for a nMOS) its gate source voltage Vi = Vip — Vgs. The small signal
circuit is reported in figure 4.10(b) and it is used to find the small signal gain of the

circuit.

Vdd

C,
\gin || &d
| J ZmV 2s mb Vbs |
Viy | c To -
| gs Vv
Vour oo
Ry Ry
(a) Source follower. (b) Source follower’s small signal circuit.

FIGURE 4.10: Common drain circuit.

From a simple analysis, as it is done in [5], it results that the voltage gain is

Cys
v - . - / C, s+Cs
Vin(s) gm +1/R} 1 + Sm (4.5)
Im
Apg= —F—"—~
w0 gm + 1/ R}

where R} = Rp||rol|1/gms-
Analysing the dc gain A, it is possible to see that it is:

e A,o = 1 in the case of an ideal source follower R;, — 0o, rg — 00 and g, = 0.
This means that small variations of the input voltage are equally reported to the

output voltage, that is exactly what a voltage follower has to do;

e Ay = gmf’;;mb if the body effect is important. For this reason pMOS source

followers are usually preferred since source and bulk can be connected together,

obtaining Vg, = 0 and avoid the body effect;

o Ay = % in the case that g,,;, = 0, Ry, < oo and rg < oco. The higher is

the gain g, Ry ||ro the closer to 1 is the dc gain.
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The last case is the closest to the reality. Unfortunately it shows that it is important
to have a high transconductance in order to obtain a good source follower; this implies
the use of a high current and we should avoid it. However it is possible to combine high
transconductance and low power consumption operating the transistor in a subthreshold
region. From a discussion with an analog designer in Texas Instruments, a circuit used
in a test chip came out and it was proposed for my monostable current generator.
This circuit uses two source followers (super source followers) operating in subthreshold
region. These voltage buffers fix the two voltages at the nodes of a resistor in order to
extrapolate a current that depends exactly from the difference of the two voltages. In
the next sections the subthreshold mode of operation will firstly be described; after that

the super source follower and the circuit proposed will be analysed.

4.3.1 Subthreshold operation

Common analog circuits usually work with MOSFETSs biased in a normal region of
operation in which the drain current I; is mainly carried by the drift current of majoriy
carriers. This way of operation is called strong inversion: in fact when the gate source
voltage |Vg,| is higher than the threshold voltage |Vrn|, |Vys| > V|, then the drain
current depends on the gate source voltage Vys with a square law, if we assume that

|Vas| > |Vys| — |Vrn| and the channel-length modulation is not important.

Iy = — (Vs — Vp)? (4.6)

This model suggests that when |Vys| < |Vry|, the drain current does not exist, thus
I; = 0. In the reality for |Vys| < |Vrp|, but high enough to create a depletion region,
the gate voltage is able to influence either the depletion region charge and the inversion
region charge that is really small in this case. However, considering as an example a
nMOS, the source n' electrons are able to cross the p substrate potential barrier and
enter in the channel region. Therefore a transistor in this condition is able to provide
a small drain current. In this situation the nMOS operates as a npn Bipolar Junction
Transistor, where the source acts like an emitter, the substrate as the base and the
drain as a collector[5]. This way of operation is called weak inversion or subthreshold.
In figure 4.11 is plotted the /I over Vj, characteristic of a nMOS, showing the square
law characteristic (being /T plot a straight line) and the small current when Vs < Vp
is highlighted with a log-linear scale figure.

In [5] the weak inversion nMOS is analysed as a npn bipolar transistor and the sub-

threshold current is found to be
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FIGURE 4.11: Transfer characteristic of a MOSFET that shows the weak inversion
exponential behaviour [5].

W [Vgs| — [Vrn| |Vis|
Ij=—T1, g 1- - 4.7
1= g ey (2 cap (-3 (4.7)
where I; is a constant, Vp = —kf”lT ~ 26mV is the thermal voltage and n =1+ —gii This

last factor models the control of the gate source voltage over the surface potential through
a voltage divider over the depletion region capacitance Cjs and the oxide capacitance
Cog; usually 1 < n < 3[4]. From equation 4.7 it is possible to see that as Vg, increases,
the last term approaches unity and when |Vys| > 3Vp the transistor can be assumed
as a constant current source, assuming the channel-length modulation negligible. This
fact shows that the minimum drain source voltage that allows the consideration of the
weak inversion MOSFET as a current source is not dependent on the overdrive voltage,
differently from the strong inversion model. Therefore as the overdrive decreases and
becomes zero, it is necessary to switch from a strong to a weak inversion model. However
it is important to point out that this transition does not come abruptly but in between

there is a small operating area called moderate inversion, as stated in [5].

In the strong inversion region the transconductance parameter expresses the ability of
the MOSFET to provide a drain current variation in response to a gate source voltage

variation. Its expression is

ol w 21 21,
9m = 4 = ,Ulcoxi (‘/gs - VTh) = d = d

8‘/93 B L VVgsfvTh ‘/OU

Differently for the weak inversion operation it results
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w It H/gs’ - |VTh| ‘Vds’ Id
g L vy P < nVp “rp Vr nVr (49)

In [12] it is highlighted that the maximum transconductance, for a given drain current,

is provide by transistors operating in weak inversion region.

Another fact that deserves a small investigation is the statistical variation of weak in-
version MOSFETSs in relation to random mismatches that arises between two identically
devices. As explained in appendix A these variations are responsible for statistical errors
and deviations from the circuit typical behaviour.

Random variations of a transistor’s parameter can be characterized by a Gaussian dis-
tribution. Once two identically devices are designed, the mismatches between these two

transistors can be mainly characterized by a threshold voltage mismatch AVy, with a

C . A . .
standard deviation of ogavy, = \/;%, and a current factor mismatch % with a stan-
VTh

A . . .
\/ﬁ [5]. The last two equations suggest that the mismatch is

inversely proportional to the square root of the transistor area. In fact the bigger the

dard deviation of cag =
]

transistor are, the more likely the random variations cancel them out in two matched
transistors. Since the two variations are not correlated, it is possible to express the drain
current mismatch of two transistor with equal Vs and the gate source voltage mismatch

of two transistors with the same drain current [13]

(4.10)

As said in precedence the transconductance and so the g,,/I; factor has a maximum
in subthreshold region; thus oy, is usually large, while oy, is instead small. Therefore
when designing a circuit operating in subthreshold region, it is important to design

current mirrors with large area transistors to improve the current matching.

4.3.2 Super source follower

Previously a source follower has been analysed. Its output resistance was not considered
even if it is an important parameter for a voltage buffer, especially if it has to drive
a resistor load as our circuit has to do. The output resistance of a source follower is

approximately Rout = 1/(gm + gmp). Therefore this parameter is sometimes too high
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when the transconductance has a small value.
In order to design a better voltage buffer a super source follower can be used (figure

4.12(a)). This circuit uses a negative feedback to obtain a lower output resistance.

Vdd

Vo
Vin | M1
| pEE
2
p
(a) Super source follower. (b) Super source follower’s small signal circuit.

FIGURE 4.12: Super source follower circuit.

Assuming that the input voltage is constant and there is an output voltage increase,
the gate source voltage of M1 raises, enhancing the drain current of M1 that in turns
increases the gate source voltage of M2. The rise of Vys2 leads to a decrease of the
output voltage as M2’s current increase. The dc mode of operation is the same as for
a normal source follower, with the output voltage equal to the input voltage shifted by
the Vs of M1. The dc current that bias M2 is given by the difference between the two
current I; and Is, therefore 11 > Is.

In figure 4.12(b) the small signal circuit of the super source follower is reported. Doing

the KCL at the output node it is possible to find the dc gain that is

Vo _ Imi1Tol (4 11)

Vi 1+ (gml + gmbl)rol + (7'1||r022)?r171+01gm2r2)

Considering ideal current sources, therefore r; — 0o and ro — oo, the dc gain sim-

plifies as follows:

gmi1Tol
Avo = (4.12)
’ 1+ (gml + gmbl)Tol + L

Im2To2

Comparing equation 4.12 to the dc gain of the source follower (equation 4.5), it is clear
how the one of the super source follower deviates more from the unity gain. However if
the factor g,orse > 1, the deviation is really small and it is possible to infer that the

super source follower open-circuit behaviour is the same as the source follower[5].
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The output resistance is then found. Let us consider a small signal voltage variation
AVy at the output node of the super source follower. This variation has the effect of
varying the gate source voltage of the input transistor (V;, is assumed to be constant).
A variation of the gate source voltage produces a variation in the current flowing in the
transistor, that is proportional to its transconductance, therefore A4 = AVagp,1. This
current, then, varies the gate source voltage of the second transistor, that determines a

variation in its current, that is Aly = gm19gmaro1AVs. The output resistance is then

AV, 1
Ry = = 4.13
T AL gmigmaTor (4.13)

Using the Blackman formula or a KCL at the drain of M1, and considering r1,ry — 00

(as in [5]) the result is similar

1 1
Rout = (4.14)
gm1 + Gmbl gm2Tol

The output resistance of a source follower is 1/gy,1, therefore the super source follower
configuration reduces it by a factor g,,271-

The main potential problem of this circuit is its internal feedback loop, that results in
instability when it drives a large capacitive load [5]. In this case the load is mainly
resistive and it does not show instability. The closed loop gain magnitude and phase
Bode diagrams of the super source follower show a phase margin of 47.7°, figure 4.13.

A step input voltage is then applied and shows the stability of the circuit, figure 4.14.
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Transient Response
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FIGURE 4.14: Step response of super source follower.
4.3.3 Super source follower current generator
Previously it was said that a senior engineer suggested the use of the circuit in figure

4.15 for the generation of the proportional current. The circuit was derived using two

different super source follower topologies reported in [14] and [15].

Vdd
1
I, M-
+ I. 1efl \'b
@ ret Iom I—O
I |
| SYE |EM6
Ilef \/\Nﬁ ) ¥ llc
R

<
I
L=~
_D—l
113
-
—
el
—
o

cut-res M2 j I—\c}yi"2
M3 JF—— i et

(P 20 (p Lt

FIGURE 4.15: Circuit proposed for the generation of the V;,1 — V;,2 dependent current
(implemented from [14] and [15] revision).

How it is possible to notice, there is a super source follower (formed by M2 and M3)

that fixes the node V, the lower voltage Vi1 — Vgs1. The other super source follower
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is the one composed by transistors M1, M4 and M) and fixes the higher voltage at
Vy = Vina — Vys2. Its configuration is slightly different since M5 is used to extrapolate the
differential current. The second source follower has therefore a ”folded” configuration; in
fact transistor M1 is the common drain that senses the input voltage, M4 is in a folded
configuration and finally M5 is the actuator of the feedback loop; this configuration is
mentioned in [15] as the cascoded flipped voltage follower. The resistor R has then a
difference voltage applied at its nodes equal to Vg = V=V, = Vip1 — Vg1 — (Vina — Vys2);
if Vys1 = Vyso then Vg = Vi1 — Vine and it is therefore possible to obtain a current
dependent from the difference of two voltage. This current flows through M5 and M3.
The folded configuration enables then the extrapolation of the current using a transistor
M6 that copies it.

In order to obtain the condition Vs = Vs, two pMOS have been chosen as input
transistors of the two source followers, since they have the possibility of bonding together
source and bulk and avoid body effect. The supply voltage is set to 1.2V while the input
voltage are divided through a resistive divider by a factor of 6, obtaining V;,,; = 3.6/6 =
600mV, Vip1 = 1.7/6 = 283mV and Vj,2 = 1.2/6 = 200mV. The advantage of this
solution is that it can operate in weak inversion, using a low current I,.; = 10nA.
Therefore the consumption is mainly determined by the output current. This has been

chosen to be I, = 500nA (when Vi, 1 = 3.6V), using a resistor R = IV—R = Vini=Vina _

out [out
400mV
500nA

The circuit is reported in figure 4.16 comprehensive of the biasing circuit.
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FIGURE 4.16: Circuit proposed for the generation of the V;,,1 — V;,2 dependent current
with the biasing circuitry.

In the circuit design it is important to obtain a high g¢,,r, factor for the transistor
that actuates the feedback, in order to obtain a voltage gain as closest as possible to
1, as found in equation 4.12. However, operating in weak inversion, it results that

JmTo = nITdT)%Id = ﬁ ~ 103 that respects the condition ¢,,r, > 1. The transistors



Chapter 4. Current generator 67

used in the mirror configuration for the biasing, must be chosen with a large gate area,
in order to decrease the oy, as suggested in section 4.3.1. Once the circuit is designed,
a Monte-Carlo analysis is done in order to verify the standard deviation of the output
current in relation to process and mismatch variations. In table 4.1 the design process

is reported.

Iteration | ., | o1, | correlation | (W-L) increase

1 498.3nA | 4.28-1078 | 1.res_siblk_rb_snd —0.77 (W-L)
2.m8_vfoomm —0.32
3.mI9_vfoomm 0.24

inat

2 496n A 3.62-107% | 1.res_siblk_rb_snd —0.91 2. (W- L)8,9,im’t
2.lintl_snd —0.22
3.res_siblk_rh_snd —0.18

3 499.1nA | 3.53-1078 | 1.res_siblk_rb_snd —0.96 2-(W-L)
2.lintl_snd —0.19
3.m13_yfbomm —0.16

4 500.97nA | 3.34 - 1078 | 1.res_siblk_rb_snd —0.967 2. (W-L)
2nufb_snd —0.18
3.lint1_snd —0.18

5 498.2nA | 3.28-1078 | 1.res_siblk_rb_snd —0.97 2. (W-L)
2.lint1_snd —0.20
3mi3_nch.-mm —0.15

TABLE 4.1: Monte Carlo design iteration process.

The results show a standard deviation equal to the 6.6% of the mean current. This value
is higher than the requirement set in the beginning of the section. Unfortunately it is
impossible to obtain a better result from this technology since the statistical variations
of the output current are mainly given by the statistical variations of the resistor(97% of
correlation). However the consumption of the circuit I.ons = 550nA is much lower than
the 2.8511A obtained by the voltage regulators circuit. The advantage given by the lower
consumption is so important that suggests the use of this circuit for the generation of the
differential current. In order to improve the statistical behaviour, a trimming technique

can be used. In figure 4.17 the results of the Monte-Carlo are shown.
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FIGURE 4.17: Statistical results for the output current.



Chapter 5
Monostable implementation

This chapter describes the implementation of the monostable. Therefore the circuit
designed are combined together in order to obtain a monostable that fulfils the require-

ments set in chapter 2.

5.1 Voltage ramp signal generation

The generation of the ramp voltage signal is needed for the timing of the monostable
pulse. A ramp voltage signal can be easily obtained charging a capacitor. In fact when
a constant current source charges a capacitor, the voltage at its nodes is a ramp with
a slope that depends on the magnitude of the capacitor and of the current; in equation

5.1 this consideration is mathematically shown.

av(t)

I(t) = C—=

= V(t) = V(to) + % /tt I(r)dr  with I(r)=I¢ -

V() = Vlto) + Tt ~ to)

Once a current and a capacitor are fixed, the voltage increases of a quantity AV =

V(t1) — V(tp) in a time At = t1 — to (figure 5.1) hence

Ic
AV = = At 2
Vv c (5.2)

The voltage reference has been set to be 300mV knowing that its future bandgap realiza-

tion assures a low current consumption. Therefore the time interval At and the voltage

69
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FIGURE 5.1: Ramp signal generated by the current generator circuit for the two ex-
treme Buck’s input voltages.

interval AV are known and set while the constant current I and the capacitor C have
to be chosen. The current varies depending on the input and output voltage of the Buck
converter and it increases as the difference increases. Differently as the time interval
increases, the current I proportionally decreases, as equation 5.2 states. Therefore the
maximum charging current is the one that defines the smallest period of 24ns, while the
lowest I is the one that defines the longest period of 111ns. An important requirement
is the one regarding the current consumption, therefore the value of the capacitor is
chosen defining the maximum current.

In the previous implementation of the monostable, the maximum current was set to be

Ic = 2.5uA, obtaining a capacitor of

O IcAt  2.5pA - 24ns
AV 300mV

= 200fF (5.3)

The longest period results At = A}g ¢ — 3007?2‘652030 E— 115ns, that is slightly higher
than the 111ns of the requirements. In fact in chapter 2 the smallest period has been
set to 24ns instead of 23.2ns. However the difference between the two times is not
significant both for the maximum and minimum on time since it does not provide a

malfunction or a greater power loss of the Buck converter.

Analysing equation 5.2 it is clear that the slope of the ramp voltage depends on the
ratio of Ic and C. Therefore a bigger capacitor forces the use of a bigger current and
vice versa. The lowest current consumption is pursued in this design, thus the lowest
current possible is used for the generation of the ramp voltage. With ideal circuits the
current could be set to an arbitrarily low value, but unfortunately in the reality there
are some constraints. In fact using a small current forces the use of a small capacitor
but the comparator input capacitance has to be accounted at that node. In fact the
comparator has a non-zero input capacitance that results in parallel to the capacitor

that is used for the generation of the ramp voltage. Therefore the minimum capacitor
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that can be used to obtain the timing signal is the comparator’s input capacitance. In
chapter 3 the designing for the realization of the comparator has been described and
table 3.5 shows that the input MOSFETSs area was increased in order to obtain a better
result in response to mismatch variations. Unfortunately, the resulting input devices
have a considerable gate area, determining an increase of the input capacitance; this

results to be Cip, comp = 110 fF. For this reason the lowest current results to be

_AVC  300mV -110fF

1
¢ At 24ns

— 1.375uA (5.4)

Once the value of the capacitor has been chosen, the first thing to do is to obtain the
Ic from the current generator circuit design. This is done through a pMOS M6 as in
figure 4.15. The gate of this device is connected to that of M5, the device in which flows
the current that depends on the difference between the input and output voltage of the
Buck converter. Since the sources of both transistors are connected to Vg4, they have
the same gate source voltage. Therefore their mode of operation is similar to that of a

current mirror, that is

Coz (W
Iy5 = MPQ (L> (Vyss — Vrn)®
C. (W ’ Iis (')
_ HpCoz (W v > 2= Ll6 (5.5)
I = 5 (L >6(Vgs,6 Vrn) I (%)5
Vyss — Vrn = Vyse — Vrn

Since Ij5 = 500nA then %;z = lézg)ilff = 2.75. Once the current generator is able to
provide this current, the ramp signal generation is tested. In figure 5.2 is reported the
ramp voltage signal generated with the current generator that charges a real capacitor
C = 110fF initially discharged, in blue, and an ideal current source charging an ideal
capacitor C = 110fF, in red. It is possible to notice that the current generator works
as an ideal current source in the voltage interval of interest; when the capacitor volt-
age increases, then the Vj, ¢ decreases carrying M6 out from the saturation region and

decreasing the current it can provide.

Non idealities of the reset switch

In the reality the monostable has to provide not only one but many pulses, then a
device able to reset the capacitor and discharge it is necessary. This is done by a switch,

turned on when the ramp voltage is not needed, it sets to zero the voltage across the
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FIGURE 5.2: Ramp signal generated by the current generator circuit (blue) and with
an ideal current source (red).

capacitor. Obviously the switch used is a MOSFET, that is a good switch, but it
introduces some non-idealities. First of all when it acts as a short circuit, it shows a
non-zero on resistance, differently from an ideal switch. In fact when a MOSFET is

used as a switch it is biased in triode region, with a current that depends on the Vg

2
(Vgs is fixed at Vgq) from the equation Iy = MCW% [(V;,S — Virp) Vs — Vgs . Assuming
Vis — 0, it is possible to avoid the VT‘iQS term and relate the on resistance as
w Vis 1
Iy~ uCop— (Vs — Vipp) Vgs = Rop = = 5.6
d HC oz L ( gs Th) ds on Id 'ucox% (‘/gs _ VTh) ( )

The on resistance represents a strong non-ideality since it forces the reset of the capacitor
to a value different from 0V. It introduces an offset voltage to the ramp signal equal
to Vs = IggRon. Therefore R,, has to be the smallest possible, in order to keep this
voltage very low. For the achievement of this result it is necessary to increase the W/L
of the nMOS transistor used as reset switch, as equation 5.6 suggests. Unfortunately
the transistor size cannot be indefinitely increased because the parasitic capacitance
that it adds is proportional to its gate area W - L. This capacitor is then added to the
comparator C;,. Moreover when a large gate is used, the charge sharing effect has to
be accounted in the non ideal effects. In fact as W/L is increased the charge necessary
to form the conducting channel also increases; this charge represents a problem when
the nMOS is switched off since the channel has to be discharged. Thus a small amount

of current flows in the transistor in order to discharge the channel, with the effect of
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creating a small negative step in the capacitor voltage. A tradeoff determines the choice
between small on resistance and small adding capacitance; a switch with a W/L = 16 was
chosen, obtaining a R, &~ 600 (Vos = Ronlgs ~ 800uV') and a negligible capacitance
of 3fF. In figure 5.3 it is reported the ramp signal of the current generator and the
ideal current source with the addition of the MOSFET switch; it is clear how the choices

done make negligible the switch’s non-idealities.

Transient Response
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FIGURE 5.3: Ramp signal generated by the current generator circuit (blue) and with
an ideal current source (red) introducing the nMOS as a switch.

Comparator insertion

Finally the capacitor is deleted and substituted by the comparator and the ramp voltage
signal of figure 5.4 is obtained. The ramp signal is not the one pursued and moreover
it has 2 very different slopes. This represents therefore a great non ideality. The effect
is mainly determined by the switching behaviour of the comparator. In fact in chapter
3 a switch was added in the biasing branch, in order to obtain a lower consumption.
Therefore when the switch is off, the comparator is not biased, the input gate is forced
to zero while the other is fixed at the reference voltage. Thus the voltage at the drain
of the transistor that provides the tail current is V4, while the voltage at the drain of
the switch at 0V. The comparator is then biased when the ramp voltage begins to raise.
Therefore the triggering input signal turns off the capacitor’s switch while it turns on
the comparator’s biasing switch. In this moment the comparator starts to be biased but
its nodes are initially still discharged, and the tail current shows a transient behaviour

with a dynamic current higher than the 5uA set in chapter 3. Since the input voltage
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in much lower than the reference one, this current flows in M1 and determines a faster
charge of the input capacitance, that last until all comparator’s nodes are biased and
the tail current is fixed at 5uA. This higher current determines the higher slope of the

ramp voltage.

Transient Response
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FIGURE 5.4: Ramp signal generated by the current generator circuit charging the
comparator’s input capacitance.

The comparator designed introduces a strong non ideality, that forces some considera-
tions, in order to be able of overcoming it. A first possibility is that of decreasing the
comparator’s input capacitance so a small capacitor in parallel to it is enough to make
negligible the transient effect. Unfortunately this is not a good choice since the com-
parator’s input devices area has to be decreased, forcing a worsening of the comparator’s
statistical behaviour.

The other possibility is to add a big capacitor in parallel to the input node so that
the input capacitance susceptible to the transient non ideal effect is negligible. A higher
capacitor, however, needs a higher current for its charge, increasing the circuit consump-
tion. In figure 5.5 it is possible to see how the transient effect becomes negligible with

a capacitor of 220fF and a current of 4.125u.A.

However, in order to keep the current consumption low, it is possible to cope with this
non ideal effect relating it as a kind of offset voltage. Observing the ramp voltage, it is
possible to notice two ramps with different slopes, one that is determined by the transient
current, and the other one determined by the total capacitance at the comparator’s input
node. Therefore it is possible to keep the same current and add a small capacitance
whose approximative value has been found observing that the first ramp increases by

Vos = 180mV in t,s =~ 5ns. Therefore the capacitor that has to be added is
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Transient Response
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FIGURE 5.5: Ramp signal generated by the current generator circuit with a 220nF
capacitor and a 4.125uA.

o (t —tos) o _ 1.375uA (24ns — 5ns)
Ve — Vi meomp = T s00m Y — 180mV

C —110fF =~ 100fF  (5.7)

Adding such a capacitor satisfies the requirements and the two desired voltage ramps

can be obtained, as it is possible to see in figure 5.6.

Transient Response
Hame
M ¥ramp_real 34 125
. et 1
B vamp el 24
et
1.0+
75 4
z
=

0.0 2.0 50.0 7.0 100.0 125.0
time (ns)

FIGURE 5.6: Ramp signal generated by the current generator circuit with the 100fF
adding capacitor.
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Finally it was possible to find a solution for the generation of the ramp voltage with
a lower current consumption than the previous version. The overall old current was
approximately Icons,oid = Icons,currentgenerator + 1o = 2.85uA+2.5uA = 5.35uA, while in
this case it was improved up to leonsnew = Leons,currentgenerator+1c ~ 550nA+1.375uA =
1.925u.A.

5.2 Digital reset

The ramp voltage signal that varies proportionally to the difference between the input
and output voltage of the Buck converter has been designed. It is now needed a digital
circuitry capable of providing the signal for driving the switch and reset the capacitor,
together with the output monostable voltage pulse. The starting digital signals are

reported in figure 5.7.
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FIGURE 5.7: Signals available for the designing of the digital reset circuit.

The resetting switch is a nMOS and it needs a gate signal Vs equal to Vyg when it
has to reset the capacitor voltage, while it has to be at zero when the ramp voltage
is generated. Differently the comparator’s output Vouscomp is at zero except after the
moment in which the ramp voltage crosses the reference. The monostable output has
to be at zero before the trigger signal, at Vyy after it and then return to zero after the
comparator switches. This signal can be obtained through an AND port with Vout comp
and Vyeset as input signal (figure 5.8. The monostable signal Vo0, then, is at Vgg when

the AND input signals are at the logic 1.
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FIGURE 5.8: Introduction of the output circuitry.

It is now important to obtain a correct Vies: from the triggering input signal. The
monostable has to be edge sensitive and not level sensitive, therefore a D flip-flop is
used to provide the beginning of the reset signal. This device gives at the output Q the
logic value at the pin D when the clock has a rising edge (the one of the trigger signal
for example), while it gives 0 when the CLRZ is set to 0.

Vdd
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j . J) \’vm.comp \+ v
rgg - out_com; -
28 COI].lp . DC v out.mono
y T ref
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t Input/reset
Q < (J)i IOgIC
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g e P
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j i\"mgg

Ficure 5.9: D flip-flop introduction in the digital reset in order to set the beginning
of the capacitor reset signal.

Hence D is set at Vg and given at the output Q when the trigger signal has a rising
edge; the capacitor is then reset when the CLRZ is active and equal to 0 (figure 5.9.
This last signal has to be equal to 0 only for a small time because after the capacitor

has been discharged, the flip-flop has to be ready for the next triggering signal. In
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addition the possibility of resetting the capacitor from an external CLRZ signal has to
be added. Therefore the flip-flop CLRZ is given by an AND port with the external
CLRZ (usually at 1 except for the initialization) as an input, and another signal that
can be at zero for a small time sufficient to put the flip-flop output to 0; it can be

provided by a monostable (figure 5.10).
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FIGURE 5.10: Introduction of the monostable to determine the end of the reset signal.

Thus it is employed a XINOR with two inputs that have a different logic value for a
sufficient time that has to last less than the smallest period, hence 24ns. This two inputs
are generated applying the same signal, slightly delayed in one input and with no delay
in the other. The delay is set to bns. It has been realized by a two buffers and in
between a resistor and a capacitor capable of providing the desired time constant. The
resistor’s value has been chosen in order to obtain the lowest current consumption. This
results to be equal to Icons detay =~ 600nA. This signal has to be provided only at the
end of every period therefore it is generated from Vi,ono using a counter, a T flip-flop.
The CLRZ pulse has to be provided only at the falling edge of the monostable output
pulse. A counter, a T flip-flop positive edge-triggered, is used in order to trigger the
CLRZ pulse only when it is needed, hence when the output pulse finishes. A T flip-flop
is a toggle memory. It provides at the output Q the negated value of T for every positive
edge that the CLK input sees. Hence this input is provided by W

In figure 5.11 the digital reset circuit is reported.

5.3 Final circuit

After the designing the digital reset of the monostable, the whole circuit can be assem-

bled, resulting in the one in figure 5.14. The monostable is then tested. The input



Chapter 5. Monostable implementation 79

vd

+) IC'lll'I' gen

(=N

)

%

comp.enz

vV reset
e

>

V out.mono
}_‘3

f’

|, CLRZ external

L
Vdd N ) CLK
~ CLRZ D

CLEFoV

FIGURE 5.11: Digital reset circuit.

signals are:

Buck’s input voltage 1.7V < Vi, pyck < 3.6V

Buck’s output voltage V,ut, Buck = 1.2V

triggering digital signal V};.;44 for the beginning of the pulse

external CLRZ for the initialization of the digital circuitry. It is initially set to 0.

The circuit is tested and the results of V0,0 fulfils the requirements. In figures 5.12 and
5.13 the variable time pulses are shown and as it is possible to notice the monostable
pulses varying proportionally to the difference between Vi, pycr and Viu Buck- The
longer pulse results equal to 109ns since the comparator delay is in percentage lower
than the one obtained with the 24ns ramp signal. Anyway a Buck T,, 2ns smaller does
not represent a problem for the de-dc converter and can be accepted.

The capacitor that is charged has been reduced in order to account the comparator’s
propagation delay and obtain the sought correct pulse width. The average current
consumption per period is then the sum of the current generator current consumption,
the current that charges the capacitor and the comparator’s consumption. This results

in an overall consumption of
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Teons = Iref + Leurrgen + 10 + Leomp + Lactayeen = 100nA 4 550nA + 1.3751A + 3.36A + 600n A
~ 5.98uA for the 24ns pulse, Buck period of 100ns (section 2.3)
Leons = Inef + Leurrgen + 10 + Teomp + Ldetaycen = 100nA + 154nA + 286nA + 4.11pA + 250nA
~4.9uA for the 111ns pulse, Buck period of 250ns (section 2.3)
(5.8)

The simulations, figures 5.12(a) and 5.12(b), show a consumption of I.ons = 6.34uA
for T,, = 24ns and I.,s = 5uA for T,, = 111ns. These values represent the lowest
possible monostable current consumption that has been achieved. In the next paragraph
the incredible improvements lead by this design in respect of the previous design are

showed.

Thu Apr 3 10:57.55 2014 Th Apr 3 11:01:34 2014
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(a) 24ns output pulse with current consumption (b) 111ns output pulse with current consumption

(blue). (blue).

FIGURE 5.12: Output monostable pulses.

The last requirement that has to be fulfilled is the one regarding the circuit’s statistical
behaviour and it is tested by a Monte Carlo analysis. Since the standard variation of
the current generator output current is approximately the 6.5% of its mean value, the
same value is expected for the time width pulse. In tables 5.1 and 5.2 the results are

summarized and it can be noticed that the expectations have been respected.

Temperature | pur,, OTon or,, in % of Ton
—40°C 25.86ns | 1.88-1077 7.27%
27°C 24.18ns | 1.597 - 1077 6.6%
95°C 22.64ns | 1.357 - 1077 6%

TABLE 5.1: Monte-Carlo temperature analysis for the 24ns period.

A trimming technique will be necessary in order to fulfil the requirements. Using a

ideal resistor for the generation of the current for the capacitor charge, it is possible
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Transient Response

Name
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FIGURE 5.13: Monostable output pulses in response to Vj,, puycr that varies from 1.7V

to 3.6V.
Temperature | pur,, OTon ore, in % of Ton
—40°C 116.7ns | 10.5- 1079 9%
27°C 108.6ns | 9-107? 8.3%
95°C' 102ns | 7.73-107Y 7.5%

TABLE 5.2: Monte-Carlo temperature analysis for the 111ns period.

to fulfil even the statistical requirements. A Monte Carlo simulation shows in fact that
or,, ~ 2.5% of Top.

5.4 Monostables consumption related to the Buck load

current

In chapter 2 the Buck regulator was described, together with its controller. After the
realization of the monostable a significant analysis is represented by the evaluation of
the two monostables current consumption impact on the Buck load current, in order to

understand even its impact on the Buck efficiency.
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The maximum current consumption of the monostables is achieved when Vj, pyck =
3.6V . The energy transferred from the input to the output is always the same, since

Ipk, Ton and T,y are fixed (chapter 2). The charge is then equal to

_ Lepr(Ton + Topy)  7-5mA - (24ns + 46ns)

@ 2 2

= 262.5pC (5.9)

The load current is thus maintained at a defined value varying the frequency of the
charge quantity transferred to the load. Therefore let us assume that a defined current

Iyt is required by the load for a period of T' = 10us. Then the number of single amount
of charge @) = 262.5pC' delivered to the load in T are

QN _ T Tou

7 5 (5.10)

Iout =
The current consumed by the monostables for every 100ns period, during which the

charge @ is transferred to the load, is given by:

® leonsT,, = 6pA, T,, monostable average consumption in 100ns period
® leonsT, - 6uA, Topp monostable average consumption in 100ns period

® leonsidle =~ 2.5 A + 2.5uA = 5uA, current consumed by the constant references
and the current /¢ during the time in which on and off time pulses do not need to

be set

The number of ”charge pulses” needed in 10us in order to obtain a load of I,,; = 2.65mA
are N = 101. Therefore the percentage of load current consumed by the two monostables

is given by

Icons,monostables o 12MA - 100

— = = 0.452 5.11
Tout 2.65mA % (5-11)

Using the old monostables this would be 5%?;;20 = 1.9%, 4.2 times bigger.

Considering a Ij,,q = 1mA, we obtain N = 38, that means that the consumption is
12p4A for 3.8us and 5uA for 6.2us. Thus Ieons monostabies = 0.766% of Iy, where with

. . I
the previous version it was -<2rsmonostables ~ 507

out

Finally, considering a I,,; = 26.25uA, it is obtained N = 1 and Ieons monostables = 19.3%
of Ty, while it was 190% for the previous design.
For lighter load than 26.25uA it will be necessary to turn off all the references in order to

reduce the consumption of the monostables, with the consequence of slower monostables’
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start-up.

The monostable’s start-up time results to be approximately 70us. This time could be
too high for some applications and it could lead to an excessive discharge of the output
capacitance. Therefore a faster turn on time is needed and a way for reducing it has been
investigated. A close investigation highlighted that the main problem was represented
by the slow turn on of the current mirror used for the bias of the current generator (the
biasing current is really low, 10nA). In order to reduce the turn on, a sample and hold
circuit has been used to provide a fast bias to the gate of the current mirror transistor,
as it is commonly done in TT circuits. This device employs a capacitor with a voltage
that is refreshed every a T' &~ 1lms, so as not to add a significant current consumption.
Moreover the current used to bias the current generator has been increased up to 30nA
(from 10nA) in order to reduce the turn on time, determining an increase of the overall
consumption of 100nA. Using these solutions, the turn on time has been reduced up
to 19us; it could be reduced further increasing the current generator I,..r, but this

determines an increasing in the current consumption of the entire monostable.
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FIGURE 5.14: Monostable complete circuit schematic.
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Summary

A monostable for the controller of a Buck converter has been realized. This circuit can
vary its pulse width proportionally to the difference between the input and output volt-
age of the regulator. In fact the controller is designed to set a constant peak inductor
current and for this reason the Buck’s on period must be able of vary in response to a

variation of the input voltage.

The pulse of this device starts from an external triggering input. This causes the charg-
ing of a capacitor by a constant current proportional to the difference between the input
and output voltage. A ramp voltage signal is obtained and when it crosses a fixed volt-
age reference, a comparator sets the end of the pulse. A digital reset is needed in order

to discharge the capacitor for the next period.

The optimization started from the comparator. The requirements were fixed and many
topologies have been analysed. A tradeoff between speed, consumption and statistical
accuracy has been found and overcome. The adaptive bias of a CSDA (that is itself a
comparator) has been exploited in order to obtain a low current consumption. The final
solution employed a first pre-amplifier with a CSDA second stage in order to achieve a

current consumption of 3.2uA with a delay of 3.3ns.

Afterwards the circuit responsible for providing the proportional current has been op-
timized. Two circuits have been analysed: one employed two linear regulators for the
extraction of two proportional currents then subtracted by a mirror, while another used
two super source followers to fix the differential voltage on a resistor and generate di-

rectly the differential current. The second circuit has been chosen due to its lower current
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consumption, 550nA.

Finally the capacitor responsible for the timing of the entire circuit has been minimized
in order to use the lowest current to charge it, that was 1.375u4A. A digital reset has
been added for the discharge of the capacitor.

The circuit shows an average consumption in a Buck period of 5uA, while the previous
version consumed 251A. Monte Carlo analysis has shown a standard deviation equal to
the 6% of the pulse width, but a careful review revealed that the responsible for this result
was the resistor employed for the extrapolation of the proportional current. Therefore
a trimming technique is suggested for the optimization of this result. Simulations using

a trimmed resistor yield to an improved standard deviation of 2.5% of the pulse width.
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Appendix A

Variability and mismatch

When an integrated circuit is manufactured, the random variations that affects impor-
tant parameters like electrical properties and effective sizes, highly affect the accuracy
of the designed device. These random mismatches play an important role in the design
of analog integrated circuits. Therefore the derivation of accurate models, in order to
understand the phenomena, helps the designer to minimize the effect of these variations
on the accuracy of the circuits.

These effects can be divided into three categories: systematic variations, process varia-

tions and random variations|6].

Systematic variations

Systematic variations account for every systematic error during the manufacturing pro-
cess. Integrated circuits are produced using lithographic techniques and many effects can
determine the effective sizes of the devices to differ from the ones of the layout masks.
Systematic variations are for example the ones that arise from the lateral diffusion under
Si092 mask, from overetching and channel width narrowing (figure A.1). These effects
are observed repeatedly when a circuit is mass-produced. Systematic variations can be
avoided using appropriate layout techniques even if they determine some penalties in

term of layout size and performances|6].

Process variations

Process variations affect the performances of different devices. These effects also arise
during the manufacturing process; an example is the temperature at which integrated

circuits are fabricated. Small temperature variations affect transistors parameters. In
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FiIGURE A.l: Examples of two-dimensional effects that determine systematic
variations[6].

spite of the efforts for reducing these changes, they persist and are important since they
determine alterations in the oxide thickness, dopant concentration and other parame-
ters. Since these problems cannot be avoided, every integrated circuit factory derives
some models for accounting these variations and test the circuit functionalities through

simulations.

Random mismatches

Even in the absence of process and systematic variations, it is impossible to ensure that
two identical designed transistors will have the same number and locations of dopants
since these parameters varies randomly. Therefore transistor parameters like voltage
threshold, vary randomly from device to device.

In [16] a theoretical analysis of the statistical variations shows that the statistical dis-

tribution of random mismatches is a Gaussian distribution with a variance of

A2
o*(AP) = L + S3D? (A1)

WL
where AP accounts for the difference of a generic parameter P of two devices, while D
is the distance between the two transistors, W and L the gate width and length, Ap and
Sp are constants experimentally obtained. Since usually D < 1mm the second term of
equation A.1 can be neglected.
A precise and complete characterization and modeling of mismatch for MOS transistors

is reported in [17]. They are usually operated in strong inversion, thus

f(Vgs — Virp)? = B(Vys — Virp)? (A.2)

The mismatches can be measured in variation of threshold voltage V7, and conductance

constant 3.
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The threshold voltage is given by Vpp = ¢ms + 205 + %{Lﬂm; the authors anal-

yse analytically and experimentally its mismatch variations and derive a model for the

standard deviation that is

AVTh
Oavy, =

Vrh vWL

(A.3)

where Ay, is a proportional constant obtain from experimental results and W and L
are the effective gate width and length. In figure A.2 is reported o avy, over 1/ VWL for
pMOS and NMOS, and it shows the optimal accordance between ‘:ﬁg theoretical model
and the experimental results. The most important outcome of this model is that an

increasing in the transistors gate size, decreases the standard deviation of Vp, random

mismatches.
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FIGURE A.2: Threshold voltage mismatch over transistor dimensions[17].

A similar model is derived for the conductance constant /3, obtaining

(A4)

e

oag =
B

The last important result highlighted in [17] is the correlation between mismatches in
Vi, and B. In fact both theoretical and experimental results show that its value is close
to zero. Therefore it is commonly accepted that these two mismatch contributions are

independent.

The two most common examples for the evaluation of mismatches in simple circuits are
the current mismatch resulting from a current mirror (where the two MOS have same
Vys) and from a differential input pair. They results in a standard deviation regarding

respectively the drain current and the offset input voltage, that are
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1 g 2
=— /| A2 2 A2
O-Al—fid /WL\/ 5+ <Id> Vrh
1 2 Iq ? 2
MWos = T \/AVTh + <gm> A

These two equalities show again the connection between transistor size and random mis-

matches variations. Therefore an analog designer have to increase the area of the tran-
sistors in order to increase the circuit’s accuracy. Unfortunately the gate area increase
yields to the rise of parasitic elements that can directly affect the correct functionality
of the integrated circuit designed. Thus an analog designer is always put in front of a

tradeoff between speed and accuracy.

A.1 Accuracy analysis simulation method

When an integrated circuit is designed, it is important to evaluate its accuracy, therefore
a method for its evaluation has to be used. This can be achieved by Monte Carlo
analysis.

Halton defined in 1970 the Monte Carlo method as "representing the solution of a
problem as a parameter of a hypothetical population, and using a random sequence of
numbers to construct a sample of the population, from which statistical estimates of
the parameter can be obtained”. Therefore in every Monte Carlo run the transistor
parameters are chosen randomly. In each simulation a defined element is evaluated
and the results are used to derive its statistical distribution. In our case these are the
mean value p and the standard deviation o, since the distribution is Gaussian. If the
comparator is considered as an example, its delay time is evaluated for every Monte
Carlo run and finally the statistical parameters are given as an output. Obviously the
more are the runs, the more accurate is the evaluation of the statistical distribution.
Unfortunately a great number of runs determines a long simulation time. A reasonable
number of runs is 300, since it allows a sufficient accuracy in the distribution evaluation
without causing a long time for its derivation. For this reason this is the number of runs
adopted for the Monte Carlo simulations in this work.

When a Monte Carlo analysis is employed, it is provided the correlation table of the
obtained statistical distribution. Therefore it is possible to obtain the correlation of
every transistor parameter in the resulted standard deviation. In the simulations done
the most recurring parameters are vfb_mm and nch_mm, mismatches that derive from

the threshold voltage model. For this reason the increase of gate are W L determines
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a decrease of vfbomm and nch_mm influence and so a decrease of the overall standard
deviation of the parameter evaluated.

The design procedure adopted for every circuit is reported in figure A.3. Monte Carlo
analysis is applied at every topology, obtaining the mean value p and the standard
deviation o. If these two parameters fulfil the requirements, then the circuit is the final
one, otherwise the design has to be modified. This is done after evaluating the correlation
table and increasing the gate area of the transistor with the strongest influence on o.
The Monte Carlo analysis and the design flow is applied again until the requirements
are fulfilled.

Initial design

» Monte Carlo
analysis

Y

Teg glifements

fulfilled? Final design

Correlation table
evaluation

1

WL increased

1

Modified design

FI1GURE A.3: Design procedure for the fulfilment of the statistical requirements.
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