4,794 research outputs found

    Adaptive deinterlacing of video sequences using motion data

    Get PDF
    In this work an efficient motion adaptive deinterlacing method with considerable improvement in picture quality is proposed. A temporal deinterlacing method has a high performance in static images while a spatial method has a better performance in dynamic parts. In the proposed deinterlacing method, a motion adaptive interpolator combines the results of a spatial method and a temporal method based on motion activity level of video sequence. A high performance and low complexity algorithm for motion detection is introduced. This algorithm uses five consecutive interlaced video fields for motion detection. It is able to capture a wide range of motions from slow to fast. The algorithm benefits from a hierarchal structure. It starts with detecting motion in large partitions of a given field. Depending on the detected motion activity level for that partition, the motion detection algorithm might recursively be applied to sub-blocks of the original partition. Two different low pass filters are used during the motion detection to increase the algorithm accuracy. The result of motion detection is then used in the proposed motion adaptive interpolator. The performance of the proposed deinterlacing algorithm is compared to previous methods in the literature. Experimenting with several standard video sequences, the method proposed in this work shows excellent results for motion detection and deinterlacing performance

    Performance evaluation of H.264/AVC decoding and visualization using the GPU

    Get PDF
    The coding efficiency of the H.264/AVC standard makes the decoding process computationally demanding. This has limited the availability of cost-effective, high-performance solutions. Modern computers are typically equipped with powerful yet cost-effective Graphics Processing Units (GPUs) to accelerate graphics operations. These GPUs can be addressed by means of a 3-D graphics API such as Microsoft Direct3D or OpenGL, using programmable shaders as generic processing units for vector data. The new CUDA (Compute Unified Device Architecture) platform of NVIDIA provides a straightforward way to address the GPU directly, without the need for a 3-D graphics API in the middle. In CUDA, a compiler generates executable code from C code with specific modifiers that determine the execution model. This paper first presents an own-developed H.264/AVC renderer, which is capable of executing motion compensation (MC), reconstruction, and Color Space Conversion (CSC) entirely on the GPU. To steer the GPU, Direct3D combined with programmable pixel and vertex shaders is used. Next, we also present a GPU-enabled decoder utilizing the new CUDA architecture from NVIDIA. This decoder performs MC, reconstruction, and CSC on the GPU as well. Our results compare both GPU-enabled decoders, as well as a CPU-only decoder in terms of speed, complexity, and CPU requirements. Our measurements show that a significant speedup is possible, relative to a CPU-only solution. As an example, real-time playback of high-definition video (1080p) was achieved with our Direct3D and CUDA-based H.264/AVC renderers

    Motion Scalability for Video Coding with Flexible Spatio-Temporal Decompositions

    Get PDF
    PhDThe research presented in this thesis aims to extend the scalability range of the wavelet-based video coding systems in order to achieve fully scalable coding with a wide range of available decoding points. Since the temporal redundancy regularly comprises the main portion of the global video sequence redundancy, the techniques that can be generally termed motion decorrelation techniques have a central role in the overall compression performance. For this reason the scalable motion modelling and coding are of utmost importance, and specifically, in this thesis possible solutions are identified and analysed. The main contributions of the presented research are grouped into two interrelated and complementary topics. Firstly a flexible motion model with rateoptimised estimation technique is introduced. The proposed motion model is based on tree structures and allows high adaptability needed for layered motion coding. The flexible structure for motion compensation allows for optimisation at different stages of the adaptive spatio-temporal decomposition, which is crucial for scalable coding that targets decoding on different resolutions. By utilising an adaptive choice of wavelet filterbank, the model enables high compression based on efficient mode selection. Secondly, solutions for scalable motion modelling and coding are developed. These solutions are based on precision limiting of motion vectors and creation of a layered motion structure that describes hierarchically coded motion. The solution based on precision limiting relies on layered bit-plane coding of motion vector values. The second solution builds on recently established techniques that impose scalability on a motion structure. The new approach is based on two major improvements: the evaluation of distortion in temporal Subbands and motion search in temporal subbands that finds the optimal motion vectors for layered motion structure. Exhaustive tests on the rate-distortion performance in demanding scalable video coding scenarios show benefits of application of both developed flexible motion model and various solutions for scalable motion coding

    A high performance hardware architecture for one bit transform based motion estimation

    Get PDF
    Motion Estimation (ME) is the most computationally intensive part of video compression and video enhancement systems. One bit transform (IBT) based ME algorithms have low computational complexity. Therefore, in this paper, we propose a high performance systolic hardware architecture for IBT based ME. The proposed hardware performs full search ME for 4 Macroblocks in parallel and it is the fastest IBT based ME hardware reported in the literature. In addition, it uses less on-chip memory than the previous IBT based ME hardware by using a novel data reuse scheme and memory organization. The proposed hardware is implemented in Verilog HDL. It consumes %34 of the slices in a Xilinx XC2VP30-7 FPGA. It works at 115 MHz in the same FPGA and is capable of processing 50 1920x1080 full High Definition frames per second. Therefore, it can be used in consumer electronics products that require real-time video processing or compression

    Confidence-based adaptive frame rate up-conversion

    Get PDF

    Motion Estimation at the Decoder

    Get PDF

    Fast image interpolation for motion estimation using graphics hardware

    Full text link

    Optimization of the motion estimation for parallel embedded systems in the context of new video standards

    Get PDF
    15 pagesInternational audienceThe effciency of video compression methods mainly depends on the motion compensation stage, and the design of effcient motion estimation techniques is still an important issue. An highly accurate motion estimation can significantly reduce the bit-rate, but involves a high computational complexity. This is particularly true for new generations of video compression standards, MPEG AVC and HEVC, which involves techniques such as different reference frames, sub-pixel estimation, variable block sizes. In this context, the design of fast motion estimation solutions is necessary, and can concerned two linked aspects: a high quality algorithm and its effcient implementation. This paper summarizes our main contributions in this domain. In particular, we first present the HME (Hierarchical Motion Estimation) technique. It is based on a multi-level refinement process where the motion estimation vectors are first estimated on a sub-sampled image. The multi-levels decomposition provides robust predictions and is particularly suited for variable block sizes motion estimations. The HME method has been integrated in a AVC encoder, and we propose a parallel implementation of this technique, with the motion estimation at pixel level performed by a DSP processor, and the sub-pixel refinement realized in an FPGA. The second technique that we present is called HDS for Hierarchical Diamond Search. It combines the multi-level refinement of HME, with a fast search at pixel-accuracy inspired by the EPZS method. This paper also presents its parallel implementation onto a multi-DSP platform and the its use in the HEVC context
    corecore