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Abstract

Digital video is broadcast in an encoded form. For standard definition video, acceptable quality
can be obtained using a bit rate of 6 megabits per second or higher. However, bandwidth con-
straints often lead broadcasters to reduce the bit rate. And especially for Internet Video, it is not
uncommon to have bit rates as low as 300 kilobits per second.

Low bit rates lead to degradation in picture quality, commonly called in the literature coding
artefacts. These include the blocking artefact, ringing, mosquito noise, etc. Philips Electronics
N.V. develops algorithms to repair these artefacts, especially for the higher bit rates.

This thesis gives an overview of existing approaches for artefact repair to improve the quality of
low bit rate Internet Video by reducing the blocking artefact especially, the most annoying visible
degradation. Since prior work on this topic was mainly based on spatial post-processing of still
images, special interest goes to algorithms that model the process of motion compensation (MC).
Several MC approaches have been proposed and assessed both objectively and subjectively.

Conclusions

e Many existing algorithms model the process of block discrete cosine transform coding and
quantization for still images, but do not take into account the process of motion compensation
{(MC) when extending traditional algorithms to digital video. Amongst existing algorithms,
spatial adaptive filters are the most popular in the industry.

e MC methods are able to reduce the blocking artefact. Though compared to existing meth-
ods, whether or not using quantization information from the bit stream, the unconstrained
MC methods developed in this study on average yield worse results than existing non-MC
methods.

e The result of a MC filter strongly depends on the reliability of the motion vectors. With
reliable vectors, an improvement in image fidelity as well as blocking artefact reduction can
be achieved comparable to that of existing methods. Turning off the processing for non-
reliable vectors preserves the blocking artefact. In those cases, reliable fall-back processing
improves the result. Considering the complexity of MC methods, less complex non-motion
compensated algorithms still provide the best alternative for blocking artefact repair. How-
ever, the fall-back median approach does give better subjective results in terms of ringing
artefact and mosquito noise.

o The Peak Signal-to-Noise Ratio (PSNR) metric guards the post-processed image fidelity and
has to be observed next to the General Block Impairment Metric (GBIM) metric. Subjective
evaluation remains necessary for the assessment of algorithms on picture quality improve-
ment.

Keywords

anisotropic diffusion, artefact repair, artifact repair, block-based transform coding, constrained
least squares, corner outlier, block-edge impairment, de-blocking, compression, digital video, dis-
crete cosine transform, grid noise, image enhancement, image restoration, maximum a posteriori,
motion compensation, MPEG, post-processing, projection onto convex sets, staircase noise.



Preface

This thesis is the result of my graduation project, proposed by the Consumer Electronics division
of the Royal Philips Electronics company, to obtain the degree Master of Science in Informa-
tion Technology from the Department of Electrical Engineering at the Eindhoven University of
Technology.

Innovations in digital video technology made digital video very popular among consumers
through multimedia products. To make these innovations economically profitable, digital video is
broadcast and stored in an encoded form that requires less information than the original, at the
cost of picture quality. Post-processing of digital video, the subject of this report, is an acceptable
means to improve visual perception of a distorted signal. Many implementations are available in
hardware and as software plug-ins. Those who are interested in and want to keep up with the latest
technologies, I recommend nternet forums like Neuron2’s Video Processing Forum (neuron2.net)
and Doom9’s Forum (forum.doom9.org) as very interesting sources.

The research field of digital video processing involves many topics in electrical engineering and
information technology. I wrote this document assuming that the reader is familiar with basic
issues in electrical engineering, like linear algebra (vector algebra, matrix algebra, orthogonal
vector spaces), information theory (entropy, information, bits, the source coding theorem, Pulse
Code Modulation, variable length codes), and signal processing (Fourier transform, Finite and
Infinite Impulse Response filters, sampling theorem). Knowledge of the image formation process,
digital video, and digital video processing is desirable. The tutorials and resources on these
topics in the literature and at the Internet are manifold. While writing this document, it was very
tempting trying to be complete and to go into specific detail. Instead, I tried to be brief, providing
many references to additional literature in the text.

It is common practice to use mathematics as a tool to describe algorithms. Though I agree
that mathematics is helpful for an implementational approach, it is not always easy to grasp the
author’s idea visually. Therefore, I added illustrations where the mathematics might be unclear.

I owe gratitude to Gerard de Haan, professor at the Department of Electrical Engineering of
the Eindhoven University of Technology and Research Fellow of the Video Processing and Visual
Perception group at the Philips Research Laboratories in Eindhoven, who introduced and inter-
ested me in the field of video processing, put me in contact with Philips Consumer Electronics, and
guided me through this project. Furthermore, I would like to thank Philips Consumer Electronics
for giving me the opportunity to perform this project at their Connected Displays Innovation
Laboratory in Eindhoven. Specially, I thank Age van Dalfsen, Eric Funke, Ingrid Heynderickx,
Tanya Kwaaitaal, and Robert Jan Schutten for their support, comments, and reviews, and the
many other people of the Innovation Lab and the Video Processing and Visual Perception group,
being very helpful in providing me information, software, and other means.

Etienne Coezijn,
Eindhoven, April 2005.
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Chapter 1

Introduction

Assisting the human visual perception, images and image sequences (i.e. video) are powerful media
for communication, information transfer, and artistic expression. The significance of images since
the very beginning of human history pushed the innovations in video technology.

As silicon technology improved, digital storage and transmission of image sequences, or digital
video, became a rapidly developing technology [55]. Digital video has many advantages over the
mature analogue techniques. For example, digital video is easier to store and to transmit, and
can be duplicated without loss of quality, as opposed to analogue video. Moreover, digital video
has the ability to provide pictures with better quality, which can more easily be accessed and ma-
nipulated. Other means for transmission and storage became available, enabling new applications
such as video conferencing, video telephony, video-on-demand, Digital Video Broadcast (DVB),
and Internet television (TV over IP). One of the most popular applications of digital video are
those in multimedia products such as the multimedia PC or TV, which integrate digital video
interactively with other media like sound, animation, graphics, pictures, and text.

Innovations in digital video technology lead to the use of infrastructures (Digital Video Broad-
cast, Internet television, etc.) and storage media (Compact Disks, Digital Versatile Disks, etc.)
for digital transmission and storage of image sequences, that made digital video very popular
among consumers through multimedia products. Recent innovations, for example high-definition
DVD (HD-DVD) and Blu-ray disks, meet the growing demand for capacity. Other innovations,
like Advanced Video Coding (AVC), aim at more efficient coding techniques while preserving the
perceived picture quality. However, bandwidth and storage capacity are scarce, and broadcasters
try to transmit as many video channels per multiplex as possible to make these techniques econom-
ically profitable. Therefore, digital video is broadcast and stored in an encoded form that requires
less information (bits) than the original, at the cost of picture quality. For standard definition
video, acceptable quality can be obtained using a bit rate of 6 megabits per second (6Mbit/s) or
higher [102]. Especially for Internet Video, it is not uncommon to have bit rates as low as 300
kilobits per second (300kbit/s).

Severe bit rate reduction introduces visual degradation of picture quality, commonly called in
the literature coding artefacts. These include blocking artefacts, ringing noise, mosquito noise,
etc.

Philips Electronics develops algorithms to repair these artefacts, especially for the higher bit
rates. With the advent of Internet Video, low bit rate video enters multimedia devices and with the
current high-resolution display systems, these artefacts become even more visible. Since picture
quality is an important selling point for multimedia products, there is a strong need for methods
to reduce these impairments.



(a) (b)

Figure 1.1: A 352 x 288 sample frame from a tennis game sequence (a}, MPEG-2 coded at 500kbps
and decoded. (b) is a detail of the tennis player’s face, showing extreme blocking artefact due to the fast
moving tennis player and the panning background.

1.1 Scope and outline

Common compression techniques are founded on a coding scheme that divides the image into blocks
of typically 8 by 8 samples. The lossy coding of these blocks causes the loss of the interdependency
between adjacent blocks, that manifests as discontinuities along the block borders (blocking). The
human visual system (HVS) is very susceptible to these discontinuities. Especially fast moving
sequences suffer from this annoying blocking artefact. Efforts have been made to reduce the
blocking effect at the encoder side, for example, using another encoder scheme with overlapped
blocks (the lapped orthogonal transform [54]), or, more recently, using a reconstruction filter in
both encoder and decoder that smoothes the image along the block boundaries (in Advanced
Video Coding [78]). However, most compression schemes currently in use are based on a non-
overlapping block coding scheme. Post-processing of the decoded video stream gives acceptable
results [80]. This project focuses on the removal of the most visible degradation for low bit
rate, block transform coded video, the blocking artefact. Figure 1.1 shows an extreme example of
the blocking artefact. Most algorithms for de-blocking are designed and evaluated for greyscale
video only, as done throughout this project. These algorithms can easily be modified for coloured
sequences. Furthermore, we will limit to de-interlaced or progressive-scanned sequences, since
interlaced video complicates video processing [23, page 145]. This report first gives an overview of
existing approaches for de-blocking found in the literature and in the industry. Since prior work
on this topic was mainly based on spatial post-processing of still (two-dimensional) images, special
interest goes to algorithms that operate in the temporal domain (a third dimension) as well. We
propose several methods that model the process of motion estimation and compensation used in
digital video coding. The motion compensated approaches are then assessed both objectively and
subjectively.

This report is organized as follows. Chapter 2 is an introductory text on lossy video coding and
associated artefacts due to the quantization process. In this chapter, the necessary mathematics is
defined for the remainder of this report. Chapter 3 is an overview of different spatial and temporal
algorithms existing in the literature, accompanied by some examples. In Chapter 4, some motion
compensated techniques are proposed that are evaluated in Chapters 5 and 6.



1.2 Mathematical conventions

Mathematics is a powerful means to show algorithms in an implementational approach. We will
use some conventions on mathematical notations that are more appropriate for image and video
processing. The scope of these conventions encompasses the entire report, unless explicitly specified
otherwise.

Mathematical sets are written in calligraphic capitals A, with the size of the set (the number
of elements), denoted as |A|. Vectors are always column vectors printed in lowercase, with their
respective elements starting with index 0, such that an N point vector ¥ is defined as

—~ T
'U=(’U0,’U1,4..,’UN_1) , (11)

with the transpose operator denoted with the superscript 7.

Digital video deals with a finite, three-dimensional space-time lattice that can be addressed by
integer coordinates. The generic variables z, y and i, j are used as indices in the spatial domain
(and as we see later, in the wavelet domain), whereas u and v are used in the transform domain.
An integer n describes the position in the temporal domain. .

Variables that are subject to modification are indicated with a hat: F.

Functions have their normal mathematical meaning. We explicitly define the sign function:

—1,ifz <0,
sign{z) =<0 ,ifz =0, and (1.2)
1 ,ifz>0.

The clip[z] function clips  between two values a < b:

a, if z < a,
cliplz]® = z,ifa< z < b, and (1.3)
b,ifz>b.

We further define the argmaz function,
argmax{/ (7)), (14)

which finds the vector ¥ that maximizes the vector function f(#). The argmin function is defined
analogous. Lastly, we define the 3-point median filter which selects the centre value of the ordered
set of three (the least extreme value):

a,ifb<a<core<a<hy,
median {a,b,c} ={b,ifa<b<corc<b<a, (1.5)
¢, otherwise.



Chapter 2

Video coding and artefacts

This chapter provides an introduction to digital video, compression techniques and their associated
artefacts. Special interest goes to the MPEG standards, popular standards used in for example
DVDs and Internet Video. Moreover, MPEG is the basis for many video codecs currently in use,
suffering to certain extend from the same artefacts.

2.1 Digital video principles

A digital video stream can be thought of as a chronological ordered sequence of images or frames,
sampled in time. Each frame is a mapping of a three-dimensional real world scene onto a finite
two-dimensional grid. A point on this grid describes a pizel, or picture element, which is the basic
element of a picture, a digital representation of the continuous real world. Note that a pixel has
no dimensions, although we represent pixels as squares in figures. If we assume an orthogonal,
equidistant sampling grid, normalized to the sampling distance in both horizontal and vertical
directions, we can address a pixel by its integer position

z= (;) , (2.1)

where z and y denote the horizontal and the vertical offset respectively, relative to the image
origin, which we will define at the upper-left corner of an image (see Figure 2.1). An image with
N columns and M rows is a matrix of samples defined by the set J of pixel positions

I={feN?|0<z<NAO<y<M}. (2.2)

Each pixel with spatial position £ and temporal position n is associated with at least one sam-
ple value F(Z,n), limited in both time and area, of a physical quantity called luminance® [25].
Luminance is the amount of incident luminous energy (i.e. light) per second at a surface.

In colour images, a pixel consists of multiple samples, each being a vector coordinate in a
colour space. Any colour can be synthesized by a linear combination of these vectors called colour
primaries. Since the human eye has receptors for Red, Green, and Blue spectral response, these
three colours are often used as primaries (RGB colour space). Another colour space more suitable
for digital video, as we will see later, is known as YCrCb, where Y represents the luminance, and
Cr and Cb are the colour difference signals for red and blue chrominance respectively. A colour
image in digital video consists of three two-dimensional matrices, one for luminance, and two for
chrominance. Unless explicitly specified otherwise, we will associate the term pixel with a single
sample of the luminance component.

1‘Luminance’ is the quantity related to the visible part of the electromagnetic spectrum. Generally, the term
‘irradiance’ refers to the entire electromagnetic spectrum.
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Figure 2.1: The integer pixel grid, its origin in the upper-left corner of the image. Though pixels are
scalars, they are represented as squares, bounded by the grid lines.

Conventionally, broadcasted picture sequences (television) were transmitted in two main for-
mats, one at a resolution of 625 scanning lines (576 active display lines) at 50Hz (PAL or SE-
CAM?), and one at a resolution of 525 scanning lines (480 active display lines) at 60Hz (NTSC3).
These two main television formats are referred to as standard definition (SD) television. Early
broadcast limitations forced broadcasters to transmit pictures at a rate of 25 respectively 30 frames
per second, potentially causing large area flicker. To avoid this, both SD formats were and still
are broadcast interlaced, i.e. even and odd lines of the image are transmitted as two temporally
separated fields sequentially. Interlaced video, however, complicates video processing [23, page
145]. Therefore, we will limit to progressive (frame-based) and de-interlaced video. The process
of de-interlacing is a key technology in video processing. A complete overview of de-interlacing
methods can be found in [23, pages 145-174].

The high sampling rate of the video camera results in high rate bit streams. If no compression
were applied, raw, 8-bit SD video data would require a bandwidth of 720 pixels x 576 lines x 25
frames per second X 3 colour primaries X 8 bits per sample = 248Mbit/s, equivalent to 112GB
{(Gigabytes) for an hour of video, far too demanding for common transmission channels, magnetic
and optical storage devices such as Compact Disks (CDs), Digital Versatile Disks (DVDs), and
Blu-ray Disks (BDs), which hold up to an approximate maximum of 0.7GB, 9.4GB, and 54GB
respectively. These limited bandwidth and capacity constraints force bit rates to be reduced in
order to make digital video economically profitable. Bit rate reduction techniques, or compression
technigues, are means to use the transmission channel bandwidth or storage device capacity more
efficiently by using a format that requires fewer bits than the original. Naturally, a video signal
contains a lot of redundant {mutually dependent) information. It is the purpose of a compressor or
encoder to remove as much as redundancy without visual degradation of picture quality. Typically,
both lossless and lossy compression are used to minimize bit rates. Lossless compression is an
invertible process that involves a compressor to encode raw video data to a data format that
requires fewer bits, from which a decoder or de-compressor can reconstruct an exact replica of the
original data. This as opposed to lossy compression, where the data is approximated based on the
spatial and temporal redundancy. The lossy compression techniques introduce visual degradation
of the image quality, called coding artefacts. For a better understanding of the origin of artefacts,
the next sections give a brief overview of compression techniques commonly used in video coding.

Note that next to compression techniques, also channel coding techniques are required for
reliable transmission over a physical, lossy channel. These techniques include encryption, error
control, packetizing, multiplexing, and modulation. Transmission over a lossy channel can cause
transmisston artefacts, which are out of the scope of this work. Channel coding adds to the
bandwidth required for transmission, emphasizing the need for compression.

2PAL (Phase Alternation Line) and SECAM (Systéme Electronique Couleur Avec Mémoire) are European
television standards.

3NTCS (National Television Systems Committee) is the United States television standard of the Electronic
Industries Association



2.2 Compression techniques

There are several ways to categorize compression techniques. We distinguished lossless and lossy
compression schemes earlier. Another classification distinguishes between entropy coding and
source coding [91]. Entropy is a measure, initially developed for thermodynamics, used in in-
formation theory, for the amount of uncertainty in a signal. Entropy coding does not use the
characteristics of the source, but instead it uses the statistics of the data itself. Entropy coding is
lossless. Source coding can be either lossless or lossy. The encoder uses its prior knowledge of the
source to remove redundancy. Manning [55] proposes the following classification, which we will
adopt here as well: general-purpose compression that can be applied to any kind of data, inter
frame compression, using spatial redundancy in still images, and intra frame compression, using
temporal redundancy in image sequences.

2.2.1 General-purpose compression techniques

General-purpose compression techniques exploit the fact that most data has redundant symbols.
The symbols in a video stream are in fact the pixel sample values mentioned earlier. The techniques
discussed below, used in video compression, are in general lossless.

Run length encoding

Run length encoding is useful where long runs of identical symbols occur. These runs can be
replaced by pairs of numbers each holding the repetition count or run length and the symbol
value. Though natural video does generally not contain long runs of identical samples in the
spatial domain, a variation on this technique for the compression of long runs of zero values called
zero run length coding, is very useful in the frequency domain, as clarified later this chapter. Run
length encoding is a kind of entropy coding.

Differential or relative encoding

When data samples are slowly varying, one can code the difference with respect to the previous
value instead of the values themselves (source coding). Difference values (a sign and a magnitude)
often have a smaller range and can be assigned fewer code bits than the original sample value.
This technique is especially suited for video compression, where there is a lot spatial and temporal
consistency. The technique is also referred to as predictive or relative coding. When the difference
values exceed the maximum range, the method becomes lossy.

Huffman coding

Huffman coding is an entropy coding technique. A statistical modelling algorithm analyses the
data and assigns probabilities to the symbols. Next, the encoder produces variable length codes
(VLCs) for these probabilities such that fewer code bits are assigned to more likely symbols and
more code bits are assigned to less likely symbols. The Huffman coding is optimal when the
symbol probabilities are integer powers of two.

Other compression techniques

There are many other, less used data compression techniques. For example, arithmetic coding is
a more efficient and complex scheme similar to Huffman coding, that is also optimal for symbol
probabilities not equal to integer powers of two. The Advanced Video Coding (AVC) standard
defines Context-based Adaptive Binary Arithmetic Coding (CABAC), which chooses a context
model depending on the probability distribution of the data [76].
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Figure 2.2: Quantization example. The line above represents a sample space as a line with possible
sample values and their quantization bins. The open dot is a sample at a certain spatial and temporal
position. The line below shows the same sample space with the quantized samples, typically in the middle
of the corresponding bin above. In this example, the quantization step sizes are not equal, making the
quantization non-linear.

2.2.2 Intra frame compression

Intra frame coding is developed to compress still image data. It uses the spatial redundancy in a
signal. The techniques are generally lossy and use the characteristics of the source.

Sub-sampling

Sub-sampling is the process of reducing the bit rate by simply discarding information. Digital
video formats exploit the fact that the human visual system (HVS) is less sensitive for detail in
chrominance than in luminance. Video compression schemes use this psychovisual redundancy to
drop every other chrominance sample, both in horizontal and vertical direction [29].

Quantization

Intrinsic to digital video is the quantization process. In order to describe a physical quantity with
a finite number of binary digits (bits), a range of continuous values has to be mapped onto a finite
number of discrete quantization levels. This round off process gives rise to errors in the form
of quantization noise?. The image acquisition process itself is, therefore, a kind of lossy coding.
Instead of reducing the number of samples with sub-sampling, an encoder can choose to reduce
the number of bits per pixel, thus reducing the number of quantization levels and increasing the
quantization step sizes. Figure 2.2 shows this effect. If the quantization steps are large enough
for the quantization noise to be annoying, the quantization is called coarse. Quantization, or bit
depth reduction, is, of course, lossy. From a mathematical point of view, the quantization process
is a many-to-one mapping.

Transform coding

Transform coding removes the correlation in a signal and packs the signal energy in as few trans-
form coeflicients as possible. To understand the theory behind transform coding, we will observe
the one-dimensional case first. Transform coding is the rotation of a set of sample vectors with
length K from the original K-dimensional space to a set of coefficient vectors of length L in an-
other L-dimensional transform space, with I, < K. If L < K, the compression is obvious. One
can choose L basis vectors of the L-dimensional transform space such that the first basis vector
(the first principal component) contributes the most to the variance (i.e. the signal energy) of all
sample vectors in the set, the second basis vector (the second principal component) contributes the
second most, etc. In this way, later principal components are less important and can be discarded,
so achieving compression. The optimal set of basis vectors, found with a method called Principal

4Quantization noise is just one of the many disturbances that occur in the image acquisition process. Van der
Heijden [25, pages 52-53] enumerates many other noise sources.
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Figure 2.3: Transform coding example. f(z) is the original signal, g(z) is the reconstruction from the
inverse transform of G(u), h(z) is the reconstruction of H(u) after quantization of G(u), and k(z) is the
reconstruction of K (u) after coarse quantization of G(u) (see text).

Component Analysis (PCA) [82)], are in fact the eigenvectors of the covariance matrix5, ordered
by their corresponding eigenvalues in descending order. The corresponding transformation is also
known as the Karhunen-Loéve transform or Hotelling transform. The calculation of the eigenvec-
tors is computationally expensive and, therefore, more general basis vectors such as cosine waves
(discrete cosine transform or DCT), both sine and cosine waves (discrete Fourier transform or
DFT), wavelets (discrete wavelet transform or DWT), or square waves ( Walsh-Hadamard trans-
form) are used for transform coding. The sample vectors with length K have to be long enough to
achieve acceptable compression and they have to be short enough to use the spatial redundancy.
Instead of one-dimensional vectors, two-dimensional blocks are used for images. Common block
sizes in transform coding are 4 x 4 and 8 x 8 pixels.

Transform coding, that is in itself lossless, is usually followed by quantization of the trans-
form coefficients. To illustrate the concept of transform coding with quantization, consider a set
{¥, 71, T2, U3} (L = 4) of basis functions in Figure 2.3(a) and a sample vector f (with K = 8) in
Figure 2.3(b) to be encoded. The original signal f can be approximated by a linear combination
of the basis vectors: 2 times the vector ¥y, 0.75- %1, 0.75- T2, and 0.25-73. The results of transform
is the vector of coefficients G = (2, 0.75, 0.75, 0.25)T. The coeflicients can, for example, be rep-
resented by a number in the range from 0 to 2 with equal quantization step sizes of 0.25, making
9 quantization bins in total as shown in the figure. The encoder has to encode for 9 different
values. Reconstructing the original signal given the vector of coefficients and the basis vectors
(inverse transform) results in the signal §. Now suppose a quantization scheme with only three
quantization bins, 0, 1 and 2, achieving a compression of a factor three. The vector of rounded
coefficients is now H = (2, 1, 1, 0)7, yielding the reconstruction h. Since the later components
contribute less to the signal vector’s energy, the coefficients for these components can be quantized
more, or even be zeroed (which is the ultimate form of quantization leaving just one quantiza-
tion bin which is represented by the value zero). Coarse quantization of the vector, discarding

SThe covariance matrix is a matrix describing the variances between each pair of (random) variables, in this
case the K sample values, for all available observations, i.e. all vectors in the set of sample vectors.



the third and the fourth coefficient (thus achieving another compression factor of two), gives the
vector K = (2, 1, 0, 0)T with the reconstructed signal k. Each step, transform, quantization,
and coarse quantization introduces a further deviation from the original signal.

Other intra frame compression techniques

Other techniques have been investigated to remove spatial redundancy in an image. Vector quanti-
zation replaces a vector, or the in two-dimensional case, a block of image data with its best match
to a predefined (source coding) or dynamically constructed (entropy coding) code-book of images.
Another method called fractal coding mathematically describes an image in terms of translation,
scaling, rotation, and mirroring of repeating (self-similar) patterns that occur in a natural image.
Fractal encoding is extremely computationally expensive, but can yield high compression rates.
Intra-prediction coding is a technique used in AVC that uses the information of previously de-
coded blocks of samples to predict the current block of samples, given a prediction mode [77]. The
prediction mode indicates the direction of the prediction such that the decoder can calculate the
interpolated pixel values as a weighted average of the previously decoded pixels. The compression
algorithms mentioned here return an estimation of the original data, making them lossy.

2.2.3 Inter frame compression

Inter frame coding profits from the temporal redundancy in consecutive images. These source
coding techniques are in general lossy. Because there is high consistency between pixels at the
same spatial position of two temporal consecutive frames, differential coding is one way to code
the differences between the two. However, if there is a lot of motion between frames, for example
during a tilt, pan or zoom of the camera, all pixels require update, making the technique inefficient.
Other techniques are discussed below.

Sub-sampling

Like sub-sampling in the spatial domain, one can also apply sub-sampling in the temporal do-
main. Simply removing pictures from the stream reduces the bit rate. The missing pictures can
be restored at the decoder by interpolation (Picture rate conversion, [23, pages 99-144]). The
interlacing process mentioned earlier is in fact a kind of sub-sampling in both the spatial and the
temporal domain.

Motion estimation

Motion estimation is a lossy technique that estimates (at encoder side) and predicts (at decoder
side) an image by reusing data from past and, if bi-directional estimation is used, future reference
images. Note that bi-directional motion estimation requires a future reference image to be available
which implies that the images have to be transmitted in a different order than the order in which
they will be displayed. Motion estimation can be pixel based, (hierarchical) block based, or
object based [23]. The vector that describes the displacement of a pixel, block or object from a
spatial position at a given temporal location to ancther spatial and temporal location is called
displacement vector or motion vector. For a pixel, the motion vector is defined mathematically as:

o= (345).

where £ is the spatial position on an integer pixel grid and n is the temporal position for which
the vector is valid. D, and D, are the displacements in the horizontal and vertical direction
respectively, typically with sub-pixel accuracy, i.e. Dz, Dy € Q. We assume the frame rate to be
constant throughout a sequence, so we can assign integer temporal positions to each consecutive
frame, normalizing the time by the sampling time.
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Figure 2.4: Block-based motion estimation example. The figure shows the current frame n and its
previous frame 7 - I with an object (grey) moving in a static background (white). The motion estimation
block grid is shown as dotted lines. The current frame shows the displacement of a motion vector block
with respect to the previous frame.

Throughout this report, we will use the convention that all vector quantities are positive, both
spatially and temporally, for the (three-dimensional) coordinate system depicted in Figure 2.4.
Because the prediction will generally not be the same as the original, the technique is lossy. The
difference between the prediction and the original is called the prediction error ¢, defined for each
pixel as:

E(Ean) =Fo(fvn) —Fp(fan), (24)

where F, is the original sample value and F, is the sample value of the motion compensated
prediction. If the motion compensated prediction is based on reference frame m with sample value
F, this prediction is defined as

—

Fp(Z,n) = F(&m,m), Tm =% — (n—m) - D(Z,n). (2.5)

Since the vector Z,, will generally not be on the integer pixel grid, we will use bilinear inter-
polation to estimate the sample value for non-integer positions. For that purpose, let us define

fm — (zint + $frac) , with

Yint + Yfrac (26)
Tint = Lmea Yint = |.me1 Zfrac = Tm — Tint, and Yfrac = Ym — Yint,
then the bilinear interpolated value is given by
Fo(Z,n) = (1 = Tfrac)-(1— Yirac) F((Tint, Yint )T»m) +
T frac (1 - yfrac)'F((zint + lyyint )Tym) + (27)
(1 - xfrac)'yfrac ‘F((zint, Yint + l)T,m) +
zfrac 'yfrac ‘F((xint + layint + l)Ta m)

2.3 Compression standards

In the development of common compression methods for digital video applications, standardization
is a very important issue where it comes to interoperability of these applications [88]. In 1982,
the International Organization for Standardization (ISO) and the International Electrotechnical
Commission (IEC) started a working group for the development of digital (multiplexed audio
and) video standards for compression, decompression, processing, and representation, the Moving
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Pictures Ezperts Group (MPEG) [2]. The work of the group resulted in several standards for video
compression, based on the JPEG standard for photographic images and the H.261 standard for
video conferencing [59]. MPEG-1 (ISO/IEC 11172) is a standard accepted in 1991 and intended
for the efficient storage of progressive SD video with VHS (Video Home System) picture quality
at bit rates up to 1.5Mbit/s. Video CD (VCD) is an application of MPEG-1 for encoding movies
on two CDs. MPEG-2 (ISO/IEC 13818) supports interlaced video at different spatial resolutions
including high-definition television (HDTV), making it suitable for digital broadcast television. Its
application can be found in digital television set top boxes, Super Video CD (SVCD), and DVDs.
The standard was accepted in 1994. MPEG-4 (ISO/IEC 14496) supports coding for individual
objects, achieving high compression. It is intended for Internet and multimedia applications. It
is suitable for both low and high bit rates and became an International Standard in 1999. A new
state-of-the-art codec, officially called the Advanced Video Coding standard (AVC), was finalized in
May 2003 by the Video Coding Experts Group VCEG from the International Telecommunication
Union (ITU) and the ISO/IEC MPEG group, joint in the Joint Video Team (JVT). AVC is also
known under its project name, H.264, H.26L, ISO/IEC MPEG-4 Advanced Video Coding, or
MPEG-4 Part 10 [24]. AVC is not yet widely used because it suffers from lack of interoperability:
it comes in different container formatsS.

For MPEG-2, the most popular standard used for DVDs, a bandwidth of 3 to 8Mbit/s is
available [109]. Streaming Internet Video has to settle for less bandwidth, setting developers of
coder-decoder schemes (codecs) the aim to deliver DVD quality for less than a single megabit per
second. Many of such codecs are available, all promising DVD quality. Recent propriety codecs
like On2 Truemotion VP7, RealVideo 10, Sorenson Video 3 Pro, and Windows Media Video 9
can achieve AVC video quality or better. Other codecs like Dicas mpegable, DivX 5.2.1, Apple
QuickTime MPEG-4, Sorenson MPEG-4 Pro, and XviD are conformable to the MPEG-4 Simple
profile standard. Just like MPEG-2, profiles and levels are defined that restrict the bit stream’s
syntax and semantics respectively, so decoders can limit to a range of specific bit streams. MPEG-
4 (Advanced) Simple Profile (MPEG-4 ASP) and MPEG-2 Main Profile at Main Level (MPEG-2
MP@ML) are the most popular combination of constraints. The coding system described by the
MPEG standards share the same principles with many codecs in use.

2.3.1 MPEG coding

This section introduces the MPEG video coding system, which is the basis for many DCT-based
codecs. MPEG compression is a hybrid technique in that it is mainly based on two compression
techniques discussed earlier: spatial redundancy is reduced by a block DCT-based (BDCT) coding
system and temporal redundancy is minimized using block-based motion estimation. For specific
details, refer to the standards of MPEG-2 [26] or MPEG-4 [27].

Figure 2.5 shows the global structure of the MPEG-2 MP@ML hierarchy, together with some
relevant elements, discussed in this report. Note that most layers begin with a start code that
marks the beginning of a specific syntactic sequence of layer-specific parameters, including image
size, frame rate, quantization parameters, and required buffer sizes. Furthermore, start codes
provide an entry point for the decoder for random access or for recovery after bit stream errors.
An MPEG video sequence is divided into groups of pictures”, that provide entry points for the
decoder at a random point, given the time stamp that is encoded within each group. Each
group holds an intra coded picture, or I-picture, that acts as a reference frame, or key frame,
from which frames can be predicted using block-based motion compensation. Next to I-pictures,
an MPEG stream contains forward predictive coded pictures (P-pictures) and bi-directionally
predictive coded pictures (B-pictures). P-pictures are predicted with reference to previous decoded
I or P-pictures. B-pictures can contain references to previous I or P-pictures, future I or P-pictures,
or both. In case that both forward and backward prediction is present, the reconstructed motion
estimated block is simply the pointwise average of the two.

6A container format is a wrapper around the compressed data that specifies how audio, video, metadata, etc.
are interleaved in a bit stream.
7 Another word for ‘picture’ in Recommendations and International Standards is ‘Video Object Plane’ (VOP).
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Figure 2.5: Hierarchical structure of an MPEG-2 video sequence, from top to bottom. The structures
on the left show the bit stream layers, the drawings on the right visualize the corresponding elements of
the physical video stream. Elements between square brackets are optional, depending on parameters.

A single picture is divided into rows of 16 x 16 non-overlapping sample blocks called mac-
roblocks, that are organized in non-overlapping slices in order to spatially localize errors due to
lossy, packetized transmission. Figure 2.6 shows a picture sequence, each picture divided into
macroblocks. Depending on the type of picture, there exist several macroblock modes. Forward
or backward predicted macroblocks contain motion vectors to past or future reference frames re-
spectively. Each 16 x 16 macroblock consists of four 8 x 8 luminance blocks and optionally several
chrominance blocks, depending on the chrominance sub-sampling scheme used (see Figure 2.5).
As we only observe the luminance component, we define a block Bz, as the set of 8 x 8 pixel
positions, characterized by the position of its upper left pixel Zy, as

Y 3, = (z:) €9,3Bz, ={F€T |z, <z<z+8AY <y <uy+8}, (2.8)

with the luminance sample values for each block
bz, n(z — Zb,y — ¥») = F(Z,n), VT € Bgz,. (2.9)

The non-overlapping coding blocks are located at pixel positions that are integer multiples of 8.
We define this set of pixels formally as

B={Z€J|zmod8=0Aymod8 =0}, (2.10)

so that z, € B. Block-based motion estimation in MPE_G—Z or MPEG-4 is performed on each
macroblock or each block. The motion vector for a block D(Zp,n) is identical for all pixels in that
block, so each pixel has an identical displacement:

D(Z,n) = D(@s,n), VZ € Bs,. (2.11)

The same can be defined for macroblock-based motion estimation. Because the motion compen-
sated prediction is generally not the same as the original, the encoder can choose to code the
residual errors € (cf. Equation 2.4). Residual coding is a kind of differential coding.
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Figure 2.6: Display order sequence of pictures showing macroblocks with different modes.

2.3.2 Block discrete cosine transform

Intra coded blocks and residual coded blocks are transform coded by the two-dimensional discrete
cosine transform in order to concentrate the signal energy in the transform coefficients associated
with low-frequency basis images. The one-dimensional DCT of an N-dimensional sample vector f
is in fact the real part of the Discrete Fourier Transform. The N elements of the coeflicient vector
F can be found with the equation:

N-1
/2 .
F, = a(u) N Iz=:o fzpu(z), with u,z, N € N, (2.12)
where «(u) is a scaling factor to normalize the basis waveforms
1 -
a(u) =4 Vo foru=0, (2.13)
1 ,foruz0,

and p,(z) are the orthogonal DCT basis functions

pa(z) = cos (%’ﬂ) , (2.14)

for N = 8 shown in Figure 2.7. The reconstruction of the N signal sample vector f from the
transform coefficients vector F' follows from the Inverse Discrete Cosine Transform (IDCT):

PN s S UM oty 3 s P ot

Equation 2.15 shows the transform coefficients split up into a DC component Fy and AC compo-
nents F, for u # 0. The two-dimensional transform and inverse transform for a block bz, » with
N columns and M rows simply follow from the one-dimensional case and are defined in Equations
2.16 and 2.17, dropping the dependencies on ¥ and n.

B(u,v) =a(u)a(v)\/%\/— NZIMZIIJ (2,7) cos( (22 ;]:)““) cos (W) (2.16)

r=0 y=0

bz, ) [fN 23 a(v)B(u,v)cos(%)cos(W). (2.17)

u=0 v—O

Figure 2.8(a) shows the basis functions for the 8x 8 (i.e. N = 8, M = 8) DCT for all values of u and
v. Note the similarity between these two-dimensional DCT basis images and the one-dimensional
functions (Figure 2.7). The top-leftmost coefficient B(0,0) is called the DC coefficient, the other
63 coefficients are AC coefficients.

The DCT of an 8 x 8 block bz, ,(,j) of data results in a matrix of 8 x 8 DCT coefficients
Bgz, n(u,v) from which the original block can be reconstructed via IDCT. When we arrange the
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Figure 2.7: DCT basis functions p,(z) of Equation 2.14 with N = 8, shown as dots. The solid line shows
the corresponding continuous cosine waves.
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Figure 2.8: Figure (a) shows the two-dimensional DCT basis functions of Equations 2.16 and 2.17 with
N = 8 and M = 8, represented as images. Full white represents the value 1, full black the value —1. Each
individual image has a coordinate system similar to the one defined in Figure 2.1. Figure (b) shows the
default quantization matrix used in MPEG-2 for intra coded blocks.

DCT matrix with v and v like in Figure 2.8(a), the coefficients are ordered by increasing fre-
quency from the top-leftmost coefficient until the bottom-rightmost coefficient. The DCT tends
to concentrate the energy of the signals into the top-left corner of the coefficient matrix, leaving
the rest of the coefficients near zero. Furthermore, the human visual system is less perceptible for
fine spatial detail, i.e. the higher frequencies [88]. A first compression step is to remove psychovi-
sual redundancy by quantizing those frequencies more severe that are less visible for the human
eye. Therefore, each transform coefficient is divided by the corresponding entry in a quantization
matrix, resulting in the higher frequencies to be coarser quantized than the lower frequencies,
allowing fewer quantization levels and more compression for those coefficients. A default matrix
for MPEG-2 intra coded blocks can be found in Figure 2.8(b), though the MPEG standards allow
for custom defined matrices to be encoded in the bit stream.

Typically, when traversing the sparse coefficient matrix in 2igzag direction, as demonstrated in
Figure 2.9, the result is a linear AC coefficient vector with long runs of zeros. A zero-run-length-
decoder translates the AC coefficient vector to an array of two-dimensional vectors, each vector
indicating a non-zero value and the preceding number of zeros. These vectors are variable length
coded and then transmitted. The more zeros occur, the longer the zero-runs and the smaller the
variable length codes. DC coefficients are encoded somewhat different. Exploiting the fact that
spatial consistency between DC coeflicients of neighbouring blocks is high, the DC coefficient is
differentially decoded with respect to the previous decoded block.
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Figure 2.9: Block encoding process (see text).

To achieve more compression, the DCT coefficients can be even coarser quantized. By dividing
the DCT coefficients by a quantization scale parameter, which we further refer to as gscale, more
coefficients become zero and more compression is achieved. A second effect of coarser quantization
is that more likely values occur, resulting in variable length codes with fewer bits. Appendix A
shows a block coding example for a reference MPEG-2 implementation. The quantization scale
parameter is as such a means to control the bit rate of the encoded stream. The decoder can,
when the video buffer defined in the sequence header is about to underflow or overflow, adjust the
quantization scale parameter. Some MPEG-encoders first calculate the video statistics in order to
adjust the quantization scale parameter with fewer visual consequences (two pass encoding). We
assume linear quantization, which means that gscale is the same as the quantization step size.

The concept of adjusting the quantization parameter while encoding is called variable bit rate
coding. The bit rate can then be adjusted to keep constant quality of video. For Internet Video,
the bandwidth is constrained, causing the encoder to code at constant bit rate while the quality
varies from picture to picture.

2.4 Coding artefacts

Prior to discussing existing artefact repair techniques, we will discuss the typical artefacts that
come with quantization in the DCT domain. A large gscale introduces larger quantization steps
and more quantization noise. This is the cause for coding artefacts like the blocking artefact and
the ringing artefact. Artefacts can be caused by the image acquisition process, compression, trans-
mission, and display [1, 25]. This section only concentrates on compression artefacts, associated
with quantization in the DCT domain.

2.4.1 Blocking artefact

The blocking artefact (or grid noise [74]) is an effect that is caused by all block-based coding
techniques. It is the most visible image degradation of all artefacts [40, 92]. Due to coarse
quantization, the correlation between the blocks is lost. Especially mismatched low-frequency
components contribute to the blocking effects. The coarse quantization causes the low-frequency
DCT coefficients of neighbouring blocks to be put in different bins, introducing discontinuity along
the block boundaries. This effect is illustrated in Figure 2.10. Figure 2.10(a) shows two adjacent
8 x 8 blocks with their 8-bit sample values, constant within a block in horizontal direction. The
blocks are in fact two-dimensional DCT basis images for v = 0 and v = 4. The sample values
are chosen such that there is an unnoticeable difference between the original blocks. Figure
2.10(b) demonstrates what the values of the DCT coefficients become after quantization and
de-quantization with gscale = 24. Quantization and de-quantization with gscale = 56 results
in a reconstruction shown in Figure 2.10(c), clearly showing the block boundary. The coarser
the quantization is, the more noticeable the discontinuities become. The blocking artefact can
also occur when the motion vectors are corrupted such that the motion compensated prediction
mismatches the surrounding blocks. In the extreme case that the bit rate does not allow for AC
coeflicients to be coded, the blocking artefact is very severe. This is the case with fast motion
sequences where nearly all macroblocks require update or at very low bit rates, so that the available
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Figure 2.10: Figure (a) shows two adjacent 8 x 8 blocks with their DCT coefficients B(0,4). (b) is
the reconstruction with gscale = 24 and (c) is the reconstruction with gscale = 56 with quantized DCT
coefficients Q(0,4) and reconstructed coefficients B(0, 4).

(2) (b)

Figure 2.11: Frame no. 85 (I-frame) (2) of the tennis sequence, MPEG-2 encoded at 500kbits/s, and an
image detail (b) showing both blocking and ringing effect.

number of bits has to be divided among those macroblocks. Figure 2.11 shows large blocks with
few or no AC coeflicients.

The visibility of the blocking artefact depends on the magnitude of the discontinuity, the
position of the blocks, the local contrast in the image, the spatial frequency content, the presence
of motion, the viewing distance [45], etcetera. Especially in smooth regions, the human visual
system is very perceptive for inconsistencies along block borders. Typically, I-frames suffer the
most from the blocking artefact. I-frames have a regular 8 x 8 square pattern that is not interrupted
by motion compensated predicted blocks. If the residual coding mechanism provides insufficient
compensation, the grid can propagate through P and B-frames as well, resulting in a shifted block
grid as illustrated in figure 2.4. This propagation of the block grid is referred by Jung [32] as grid
shift artefact, and by Wu et al. [92] as false edges.

2.4.2 Ringing artefact

The ringing artefact is visible for all sub-band and wavelet compressed video schemes, including
MPEG-2. It appears as repeating ghost edges along sharp edges in the original sequence (Figure
2.11), or as a texture deviation in high textured areas. The artefact is the result of absence of
high frequency components, also known as the Gibbs effect. Ringing occurs within the length of
the filter’s impulse response, i.e. within an 8 x 8 block. Appendix A shows a coding example of
an edge showing ringing after reconstruction. The ringing artefact is visible for all compression
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techniques involving quantization in the frequency domain.

2.4.3 Blurring

Blurring is another artefact resulting from the absence of high frequencies in low bit rate MPEG
video. Sharp edges and colours are blurred and high textures are smoothed (tezture deviation).
This smoothing effect can also be observed in Figure 2.11. The effect depends strongly on the
viewing distance: when the distance is large enough for the missing frequencies to fall outside the
pass-band of the human visual system, the artefact is not annoying anymore.

2.4.4 Mosquito noise

Mosquito noise is a typical temporal artefact that shows up as fluctuations in luminance and
chrominance values in blocks at the boundary of objects moving with respect to other objects
or the background [10], also known as occlusion blocks. Moreover, blocks with the same image
content can be coded with different quantization scales, resulting in small fluctuations over time.
Though the fluctuations are small and the area is confined to the block area, the artefact can
be considered annoying. Mosquito noise manifests itself also as flickering [80] (or stationary area
granular noise [92]) in the background.

2.4.5 Other artefacts

Some other less visible artefacts resulting from coarse quantization can be found in Internet Video.
‘We will mention them shortly. DCT basis image blocks appear when the signal energy is concen-
trated in a single basis image, showing the particular image on top of the DC component. Staircase
effect or corner outliers occur when edges are misaligned at the block boundary, or when edges
are not coded for in a block intersecting an edge. The latter artefacts are often associated with the
blocking artefact as well. Though some publications treat them as different artefacts, they have
the same origin. Colour bleeding is the blurring effect of coarsely quantified chrominance blocks,
such that the colour smears across an edge that is clearly defined in the luminance blocks. If a
motion vector in a motion area is zero, it appears static with respect to its surrounding blocks,
experienced as the dirty window effect.

Other kinds of coding artefacts exist in MPEG-like coding schemes, that are not caused by
quantization of the transform coefficients. An example is motion jerkiness, the perception of
discontinuous motion due to temporal sub-sampling. Another artefact, the down-sampling effect,
causes spatial and temporal business due to down-scaling of the image. Object based transform
schemes use mathematical descriptions of objects for image synthesis. When crucial features are
changed, geometrical deformation {of e.g. a human face) appears. The MPEG-2 standard allows
for both interlaced and progressive macroblocks within the same picture. When not well de-
interlaced, blocks show information at another temporal position every even or odd line, within a
macroblock. The artefact is visible as jagged edges.

The focus of this project lies on the blocking artefact, the most visible of all coding artefacts.
Numerous algorithms have been proposed in the last decades. The following chapter gives an
overview of existing approaches for de-blocking.
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Chapter 3

Blocking artefact repair

At some point in the current video broadcast chain, video compression is applied to reduce band-
width or storage size. As shown in the previous chapter, severe quantization in the frequency
domain gives rise to annoying distortion or artefacts. Post-processing of the decoded image se-
quence is an widely accepted technique to achieve better perceived picture quality [80]. Fur-
thermore, modern consumer vision products like televisions and PCs use image enhancement and
restoration techniques to improve the objective and subjective picture quality [23, page 21]. These
algorithms, for example sharpness improvement and contrast improvement techniques, make the
coding artefacts more visible [102], emphasizing the need for artefact repair. This chapter provides
an overview of blocking artefact repair algorithms existing in the literature and in the industry.

3.1 Objective detection and measurement

When fighting the blocking artefact, knowledge of the position of the block coding grid is of great
help. For digital television, this knowledge is directly available from the bit stream. However, when
a classic analogue video signal enters for example a television set, one cannot assume the coding
grid to be an 8 x 8 grid with its position exactly in the upper left corner of the image [13, 44]. The
original signal has been subject to scaling, sampling, image processing, and conversion operations
that result in a shifted, scaled coding grid at the television input. For these signals, a first step
in the post-processing chain is the detection of the coding grid. The video post-processing chain
is depicted in Figure 3.1. Philips Research Laboratories developed several effective algorithms for
block grid detection, such as DADAR (Digital Artifact Detection And Repair) [13], BAM (Blocking
Artifact Meter) [44], DATES (Digital Artifact Estimator), BGD (Block Grid Detector), and, just
recently, BEACoN, that return accurate information of the coding grid size, the offset with respect
to the image origin, as well as a measurement for the severeness of the blocking artefact. Since
we are focusing on low bit rate Internet Video, we assume the coding parameters to be directly
available from the decoder. All the algorithms in this report assume an 8 x 8 coding block grid,
and image dimensions that are integer multiples of 8.

For optimal blocking artefact reduction, we need a metric to measure the severeness of the
artefact. Furthermore, we need a metric to compare different algorithms. Another term for
blocking artefact is grid noise. The word noise suggest a noise-like measurement of the grid noise
level.

Widely used benchmark metrics for the comparison of the artefact reduction algorithm’s effec-
tiveness are the Mean Squared Error (MSE) and the Peak Signal-to-Noise Ratio (PSNR), defined
for the n** image as:

MI.NZ (F(f,n)—Fo(i‘,n))2 and (3.1)

Ted

MSE(n) =
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Figure 3.2: Two image segments used for block impairment metric calculation.

2
PSNR(n) = 10log,, (%E?(M) [dB], (3.2)

where F,(Z,n) is the original signal and F(%,n) is the reconstructed (post-processed) signal. Fop
is the peak-to-peak amplitude of the signal (for an 8-bit signal, Fp, = 255). Comparable to the n*"
image, we can define the MSE and PSNR for an entire sequence of images, summing over all pixels
in all images available in the sequence. The MSE and PSNR indicators tell how much the original
sequence differs from the post-processed sequence and as such, they indicate the post-processed
image’s fidelity.

However, these traditional metrics have a poor relation with the human visual perception of
coding impairments. Another drawback of the MSE and the PSNR is that they require the original
sequence as a reference. A metric showing a strong consistency with subjective evaluations was
introduced by Wu et ol. [93], who introduced the General Block Impairment Metric (GBIM) for
the most annoying artefact, the blocking artefact, especially. Let us first define the set H of
leftmost pixels of all horizontal 8 x 1 image segments like illustrated in Figure 3.2:

H={feI|zmod8 =0} (3.3)

We shall refer to this set often for the de-blocking algorithms in the remainder of this report. A
similar set exists for the vertical 1 x 8 image segments. GBIM calculates the one-dimensional
means u(Z;), p(Zit1) and standard deviations o(Z;), o(£it1) of the luminance sample values on
both sides of a DCT block boundary (Figure 3.2):

VE = (z"> €K,
Yi
7 (3.4)

3 o(&) = %é(p ((z; k) ,n) —-u(:i','))2, w(@) = %ZF (2 kyirn)

k=0

Now define the mean p»(%;) = %(u(Z:) + u(&i+1)) and mean standard deviation o3(Z;) =
2(0(Z;) + 0(Fi41)) of two adjacent 8 x 1 block segments as depicted in Figure 3.2, then we can
calculate the sum of weighted absolute differences between each pair of adjacent boundary pixels
to get a metric for the blocking artefact Mp:

Mi= S w@)|F ((‘”"yf 7) ,n) -F ((Iiyt 8) ,n) ‘ : (3.5)

x5 ef}{,z,-;éN—S
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The weighting factors w(Z;) account for the HVS masking of the blocking artefact in dark and
bright areas:

In(1+ /Fpp — ¢) In (1 4 _”2_(_@) if ua(Z;) < ¢,

: Fop — 12(%0) o '
In (1 + 1?0—2(5".{)) , if po(Z:) > ¢,

where ( is the average luminance value for which the weighting function has its maximum. In [93],
¢ = 81. The same calculation can be done for the non-edge pixels:

Eh=%i 3 w(:Ic'i)F((zi;k),n)—F((zi+ylr+l),n>’. (3.7)

k=0, €M, z,#N—8

Normalizing My by Ej yields a metric for the horizontal blocking artefact (i.e. the vertical
edges) Mygprim = My /Er. The same metric can be found for the vertical artefact Mygprm =
M,/ E,. The average of the two is the GBIM metric, Mgpra = %(MhGBIM + Mygsrm). GBIM
gives an estimate of the severeness of the blocking artefact without the presence of the original
sequence.

Furthermore, some propriety metrics are available, like the JNDmetrix™ (Just Noticeable
Difference) metric from the Sarnoff company [109]. It is based on a model of the human visual
system that was obtained during numerous subjective quality assessments. The unit of 1 JND
corresponds to a probability of 75 % that a viewer notices a difference between the original and
the reconstructed sequence. The technology is, however, only available under licence. Note that
the MSE, PSNR, and JND metrics require the original sequence to be available, as opposed to the
GBIM metric.

Now that we defined the GBIM metric, we will give an overview of existing de-blocking methods
in the literature. One can distinguish three main approaches for artefact repair:

e Adaptive filtering tries to smooth the block boundaries without affecting the natural edges
in the image.

o Set theoretic methods like Projection Onto Convex Sets (POCS) and Constrained Least
Squares (CLS) try to narrow down the set of solutions by setting constraints.

o Statistical estimation methods like Maximum A Posteriori (MAP) probability based restora-
tion and anisotropic diffusion.

The first category of techniques are image enhancement techniques, meant to improve the
subjective picture quality. The latter two are image restoration approaches, trying to recover
the original sequence given the distorted image and its properties. The algorithms found in
the literature and in the industry are manifold, yet they share some basic approaches. In the
following sections, we will give an overview of the different approaches including some examples.
The overview is not meant to be exhaustive, but instead it enumerates the approaches that are
illustrative for the methods found in the literature and applied in the industry.

3.2 Adaptive filtering

This section provides an overview of heuristic, adaptive filter approaches. Non-adaptive methods
often result in excessive blurring [74]. For example, one can apply an approximately 3 x 3 Gaussian
filter at the block boundary pixels to reduce the blocking artefact [75]. Gaussian filters are a very
popular choice for low-pass filters. Theoretically, the Gaussian filter is defined as:

F(in)—i i L _p((=+! L (3.8)
A 2n0202 y+i) ") P\ 2 ) '

i=—o00 j=—00 z Yy
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Figure 3.5: Sobel filter kernels for vertical
Figure 3.4: 3 x 3 Gaussian filter weights with edges (a) and horizontal edges (b), for the centre
oz = oy = 1.0, for the centre pixel to be filtered. pixel to be evaluated (grey).

with variances ¢2 and 03 of the Gaussian along the horizontal and the vertical axes respectively.

Figure 3.4 shows an example kernel used in [75]. Another popular class of filters consists of those
who apply one-dimensional low-pass filtering orthogonal to the block edge. Such a filter alters
the pixel value near the block boundary by a weighted average of the pixels in the support size.
The support size is in general small in high-detail areas to avoid over-smoothing. The size can be
larger in smooth areas. The adaptation of the filter support and its weights is the topic of the
next subsection. A commonly used pixel support for one-dimensional filters is depicted in Figure
3.3. In the remainder of this report, we will refer to pixel v; as both its position in the figure and
its luminance value v;. The context determines which of the two is meant.

3.2.1 Spatial adaptive filtering

Filtering without considering local spatial statistics causes the loss of natural high frequencies.
Spatial adaptive filtering was proposed to overcome such blurring. Adaptive filters have coeffi-
cients that vary depending on the local content. Generally, adaptive filtering requires a step of
classification and/or edge detection, followed by linear or non-linear filtering. Classification is
often based on first-order (mean) and second-order (variance) statistics.

Filtering based on local spatial characteristics

For example, Ramamurthi et al. [74] introduced a generic filter for the removal of the blocking
artefact and the staircase effect, that uses local statistics like mean and variance to differentiate
between monotone and edge blocks. Monotone blocks contain little spatial detail, exhibiting low
variance. Edge blocks have a higher variance, revealing the presence of one of more edges. The
filter further classifies edge blocks into four classes for four different orientations. Next, two-
dimensional filtering is applied for monotone blocks, and one-dimensional, directional filtering is
applied for edge blocks. Spatial median filters were found to be ineffective in reducing the blocking
artefact. They are more appropriate for random and spot-like noise.

An example of adaptive filters combined with an edge detector can be found in [42]. For edge
detection, the Sobel filter kernels are among the most popular found in the literature. These
filters calculate the gradient VF(Z,n) of the nt* image at pixel position £ while they smooth in
the orthogonal direction, making them less sensitive to noise. If the Sobel filter kernels S, (Z) and
Sy (Z) are defined for -1 < z <1 and —1 < y < 1 as in Figure 3.5(a) and 3.5(b) respectively,
the horizontal and the vertical gradient components G;(z;n) and Gy (z;n) of the n'* image are
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obtained by convolution

VF(Z n) = (gzg Zg) \Go(#,n) = F(Z,n) * Sx(3), and G, (Z,n) = F(&,n)+S,(3). (3.9)

The approximated gradient magnitude M (Z,n) and the gradient angle 8(Z,n) are then defined by

M(Z,n) = \/Gg(:i:', n) + G2(Z,n) = |G(Z,n)| +|Gy(Z,n)| and (3.10a)
= _ Gy(fy n)
6(%,n) = arctan C.GEn) (3.10b)

One can locate the edge pixels in an image by thresholding the gradient magnitude. Edge and
non-edge pixels are treated separately in [42]:

e First step of the algorithm is to reduce staircase noise in edge areas by filtering the edge
pixels with a one-dimensional filter in the direction parallel to the direction of the edge.
Example one-dimensional directional filters for the quantized angles 0°,4-45°, £90°, +135°
or 180° can be found in Figure 3.6. An implementation of such a filter was registered in [20].
In [96] a similar approach is described with median (non-linear) filters.

e For non-edge areas, the grid noise is reduced by a signal adaptive filter. The algorithm
classifies a pixel within a block as a local edge pixel if the gradient magnitude exceeds
a certain threshold that depends on the local mean and variance in that block. A two-
dimensional filter kernel smoothes those pixels that are not classified as edge pixels. The
pixel weights for the filter aperture can be found in Figure 3.7. If one or more pixels in the
aperture are classified as edge pixels, those pixels including its successors are excluded from
the aperture. The successors are indicated by the direction of the arrows. If there is not a
single edge pixel in the filter aperture, the weights assigned are all one. Filters like these are
also used for the removal of the ringing artefact.

Another simple adaptive filter that takes into account the local characteristics was introduced
by Kim et al. [37]. A pixel is filtered with a 3 x 3 Gaussian kernel with variance 02 = 0% /c%, where
0% bounds the amount of smoothing and ¢ is the local variance. Triantafyllidis et al. [86] use
another adaptive Gaussian filter, where the variances ¢, and ¢, of the Gaussian in Equation 3.8
depend on the smoothed image gradient (the windowed second moment matriz). These filters are
non-linear in the sense that their smoothing strength depend on the local inter-pixel differences.
Generally, filters of which the weights can be written as a ratio between two polynomials are called
rational filters. The nominators have a low-pass characteristic, the denominators are a function of
the local inter-pixel differences.

Derviaux et al. [11] incorporated some characteristics of the HSV. They propose a one-dimen-
sional FIR filter to be applied perpendicular to the block edge, its coefficients depending on the
visibility v of the impairment (see Figure 3.8):

V= — (3.11)
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where (), is the local mean contrast based on the local contrast C' = %v;; - %v4 + %'us - %vs

along the block edge (cf. Figure 3.3) and weighted by the local mean luminance. Parameter A
represents the spatial masking of the HVS, based on a weighted sum of AC coefficients. Another
characteristic of the HVS is that high-motion objects are harder to track. For high-motion objects,
they propose a temporal filter discussed further on in this section.

Multistage median filters

Liu et al. [49] use multistage median filters to preserve edges. For the different directions of edge
pixels in Figure 3.6, a one-dimensional 5-point median operation is performed on the centre pixel
and its four closest neighbours. Let us denote those results as Fpo(Z,n), Fys0(Z, 1), Foge(Z,n) and
Fizse(£,n). Define the maximum and the minimum of those median values as

Fraz(Z,n) = max{Fye(Z,n), Fyso (£, 1), Fope (T, n), Fizse (T, n)}, (3.12a)

Frin(Z,n) = min{Fye (%, n), Fase(Z, n), Fope (Z, n), Fi3s0 (Z,7)}, (3.12b)
then the filtered output of the multistage median filter is given by

F(Z,n) = median{ F(Z,n), Fmaz(Z,n), Fnin(Z,n)}, (3.13)

for edge pixels. Non-edge pixels are two-stage median filtered (5 x 5 median of 5 x 5 medians) for
smooth area’s, and 3 x 3 median filtered for non-smooth areas with motion.

Classification based on DCT coefficients

Some methods make a classification based on the DCT coefficients and then perform spatial
filtering. A simple algorithm [8] filters the edge pixels, pixels vy and vs in Figure 3.3, to compensate
for an artificial discontinuity d = v4 — vs:

vg — ad, for |d| < ¢, vs + ad, for |d| < t,
g=<Kvs—at,ford>t, andds=1< vs+at,ford>t, (3.14)

vy + at, for d < —t, vs — at, for d < —t,
a = t;—t” is a proportionality constant based on the visibility threshold v (= 0.025 the mean

image luminance) and t is a threshold based on the probability distribution p, ,(y) of the DCT
coeficients B(u,v). The distribution can be modelled as the Gaussian distribution, with mean
and variance directly calculated from the decoded DCT coefficients B(u,v):

; B(u,v)+’%—°e(y — B(u,v))?py »(y)dy

7
_ 1 B(u,u)—L;q1
t=2 64 Z Z B(uv)+ 422

u=0v=0 fB(u’v)_gizeg Puyv (y)dy

(3.15)

To avoid discontinuities caused by the modified pixels, the algorithm is applied iteratively to the
pixel pairs vz, v4 and vs, vg and so forth, until the centre of the block is reached.

A combination of edge detection and classification in the DCT domain is also reported. Park
et al. [70] de-block four neighbouring low-frequency blocks (i.e. blocks for which all pixels other
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than B(0,0), B(0,1) and B(1,0) are zero) by iteratively interpolating non-edge pixels only. The
algorithm is illustrated in Figure 3.9. At the first iteration, given pixels v4, vg, vc and vp, pixels
vg is filtered by the average of pixel v4, vg, vc and vp. Since v4 is an edge pixel, the pixel does
not participate in the averaging process, resulting in the pixel value vg = %(vB +ve +vp). The
second iteration calculates pixel values vp, vg, and vy. Pixel vy is an edge pixel and is, therefore,
not interpolated. The iteration continues until all pixels have been evaluated.

Region growing

Meier et al. [56] choose an iterative region-based approach. An adaptive segmentation algorithm
calculates the means of regions of pixels along the block boundary and merges them if they are close
to each other. Then a 3 x 3 Gaussian filter is applied on those pixels of which the 8 neighbouring
pixels belong to the same region. After filtering, the quantization constraint (which shall be dealt
with in the next section) is applied and the process is repeated until convergence is reached.

Filtering based on training sets

Zhao et al. [107] proposed a content adaptive image de-blocking method. Therefore, observe the
decoded pixel vg to be filtered and its filter aperture in Figure 3.10. Each pixel ve belongs to a
class ¢ of pixels with a similar local pattern. The class number ¢ is depends on the surrounding
decoded pixels vg to v12 and is calculated by Adaptive Dynamic Range Coding (ADRC):

12

c= ZZké(vk), with §(vg) = {(1)’ ﬁ 11;: ; Z’ (3.16)
k=0 ) 2 Hy

where p is the average pixel value in the aperture. Each centre pixel value vg € J is then replaced
by a weighted average of the samples within the filter aperture of that pixel:

12
Vo =D Wke Vk (3.17)
k=0

The weights wy . for each pixel k in the filter aperture depend on the class ¢ and can be found
in a look-up table. The weights for each class are obtained from a training set such that they
minimize the summed squared errors in the aperture between the original and the corresponding
encoded and decoded pixels from that class. The results can be improved by taking into account
the relative position of the pixel with respect to the block grid, involving multiple look-up tables
for each relative position.

The latter technique uses a database obtained by a large training set. Good results have
also been reported with the use of neural networks. The technique of neural networks in [72]
corrects the value of the boundary pixels v; and vs in Figure 3.24 by the output 7 = (y1,y2)T of
a Multi-Layer Perceptron (MLP) neutral network

U4 = vg + Y1,

- 3.18
V5 = v + Y2, ( )
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Figure 3.11: A block and a diagonally shifted block.
given the input vector T = (x1, 72, 73)T with z; = vg — vs, 2o = v5 — vy, and z3 = vg — vs.

3.2.2 Filtering in the frequency domain

Yang et al. [98] used the Lapped Orthogonal Transform (LOT) as a starting point of an algorithm.
The one-dimensional DCT is performed on the pixels across the block boundary, pixels v; to vs
in Figure 3.3. They assumed the blocking artefacts are caused by the first two odd-symmetric
coefficients F; and F3 (cf. p1(z) and ps(z) of Figure 2.7). By updating those coefficients according
to

lp s 10
; 3L i [P <e . 1p,if |F) < &
= 2 ’ —_ 2 ’ 2 )
h {F 1 , otherwise, and Fy F3 , otherwise, ’ (3.19)

where € is a small experimentally determined energy threshold, the blocking artefact can be re-
duced. Coefficients higher than the threshold are likely to result from natural edges and remain
unmodified. A similar algorithm is discussed later in the theory on projections onto convex sets.
Chen et al. [4] introduce a filter in the frequency domain that uses the sensitivity of the HVS.
Therefore, they define the activity Az, of a block Bz,, zy € B given the BDCT B;,, as:

Azyn = m Z Z (ng (v,u) — B, (0, o)). (3.20)

u=0v=0

Furthermore, consider the set of BDCT matrices of the shifted blocks Bz, (5,7 » of their respective
shifted blocks Bz, 1 (z 7 (cf. Figure 3.11). If the activity is lower than a experimentally determined
threshold, the coefficients are filtered by a weighted average of the BDCT matrices of the shifted
variants in a 5 x 5 neighbourhood

2 2
1
Bi’b,n(vau) = % Z Z Bib+(x,y)T,n(v»u)a (3'21)

r=—2y=-2

otherwise by a weighted average of the BDCT matrices of the shifted variants in a 3 x 3 neigh-
bourhood

1 1
1
Bz, n(v,u) = 53 > Y Baieyyra(v,u) + 2 Bz n(v,u), (3.22)

rz=-1y=-—1

where the original coefficient weighs three times.

Nosratinia [64] calculates the BDCT on 64 shifts F;(Z,n) = F(Z + £,,n), for 0 < 7, < 8
and 0 € y, < 8, of the decoded image. Then he performs the same quantization and inverse
quantization operation as the MPEG encoder and decoder on those shifts. Over the resulting 64
images, the average value for each pixel form the filtered result.

Other DCT filtering algorithms are often combined with the theory of projection onto convex
sets, discussed further on in this report.
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AC prediction

Shin et al. [81] use a technique called DC sequencing to predict corrupted AC coefficients. The
DC image D(%,n) with 0 < z < % and 0 < y < % is an % X %" image containing the DC
coefficients of the nt* image obtained from the decoder. For I-pictures, the DC-image is obvious:
D(yv/8,24/8)T,n) = Bz, (0,0) for all blocks Bz, € 3. For P and B-pictures, the DC values
are calculated from the reference frames. Therefore, observe a generic reference frame in Figure
3.12 and the four blocks by, by, b3, by with their respective BDCTs By, By, B3, By from which the
block in the current frame is predicted. Then the estimated DC value for the motion compensated

prediction is calculated from:

4

B2nl0,0) = 1 4 P00, (323)
where w; and h; are the widths and the heights, respectively, of the overlap of the motion com-
pensated prediction with the respective reference blocks, in number of pixels (cf. Figure 3.12). For
bi-directionally predicted blocks, the estimated DC values are simply averaged. Next step in the
process is the filtering of the BDCT coefficients for each block in the video sequence. If one or
more of the first five AC coefficients in zigzag order are zero, indicating block impairment, AC
prediction is performed based on the DC values in the DC image neighbourhood shown in Figure
3.13:

Bz ,(0,1) = 1.13884 %(D‘; — Dg),

Bz n(1,0) = 1.13884 - 1(D; — Dg),

Bzn(0,2) = 0.27881 - 1(Dy + D — 2Ds), (3.24)
Bz (2,0) = 0.27881 i(Dz + Dg — 2Ds),

B-',n(l, l) = 0.16213 %(Dl + Dg — D3 — D7).

The prediction in Equation 3.24 can be adaptively changed if the block to be filtered contains an
edge, which is further left undocumented. An implementation using AC prediction can be found
in [35].

3.2.3 Filtering in the wavelet domain

Recently, filtering in the sub-band domain has become a popular solution to tackle the blocking
artefact. Donoho [12] proposed a noise reduction technique that suppresses noise by limiting the
coefficients in the Discrete Wavelet Transform (DWT) domain, which showed to be nearly optimal
for white Gaussian noise reduction [6]. The two-dimensional DWT decomposition splits an image
into several complementary sub-band images. A popular realization of the two-dimensional wavelet
transform at scale j recursively splits a low-pass image Spj-1(£,n) into two high-pass images
for the horizontal W);(£,n) and the vertical W} (Z,n) frequencies (the detailed images) and a
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complementary low-pass image Sy; (the coarse or smooth image). An implementation with digital
filters was proposed by Mallat [53] using high-pass G; and low-pass filters H; for all Z € J:

W3 (Z,n) = Spi-1(&,n) * Gj_1, (3.25a)
W3 (Z,n) = Spi-1(&,n) * G]_1, (3.25b)
S5 (&,n) = Sp—1(Z,n) * Hy_y * H]_, (3.25¢)

where Sg0(Z,n) = F(&,n) is the original image and the j*" filter is dilated by a factor 2/ (forming
a diadic sequence). After each iteration, the two sub-band images and the smooth image contain
redundant data and are typically down-sampled (decimated) by factor two. However, for singular-
ity (edge) analysis we do not down-sample the images, so that the transform coefficients spatially
correspond to the pixels in the original image, keeping the redundant data and making the trans-
form over-complete. Moreover, filtering of the un-decimated transform coeflicients outperforms
filtering of the decimated transform coefficients in noise reduction [6]. The filtered image can be
reconstructed from the modified transform coeflicients with the iteration

Spi-1(Z,n) = WL(Z,n)* K;_1 « LT | + W2 (Z,n) * Lj_1 KJT_1+

) 3.26
SZJ'(zan)*Hj—l*Hj—l’ ( )

where K; and L; are high-pass reconstruction filters and H; is the space-reversed of H, defined in
[53]. Figure 3.14 shows the two-dimensional over-complete wavelet transform on a blocky image.

Soft thresholding

Gopinath et al. [18] applied the concept of noise reduction in the wavelet domain to smooth the
blocking artefact. Therefore, the coefficients of the horizontal and vertical high-pass images are
modified by soft thresholding the coefficients according to

Wai (Z,n) — T, for Wy, (Z,n) > T,
W, (Z,n) =40 yfor =T < Woi(z,n) < T, (3.27)
Woi(Z,n) + T, for Wy, (Z,n) < —T,

where T' = §v/21n N is a threshold depending on the square image size N X N and an estimation
of the granular noise variance defined by:

L
5 % Z o2, (3.28)
k=1

with L is the number of high-frequency sub-bands and 012- is the variance per 8 x 8 block in the
7" sub-band.

Another thresholding method has been proposed by Xiong et al. [95]. We will demonstrate
their method for the horizontal artefacts only. Define the set Jg as the set of high-pass transform
coefficients that affect the horizontal blocking artefact (the vertical edges). This is the same set
we defined earlier as H{ in Equation 3.3. Then for all £ € Jy, the high-pass transform coefficients
of the first scale are low-pass filtered:

Wh(Z - (1,00T,n) + WL (Z,n) + WL F(Z+ (1,0)T,n)
3 .

Furthermore, the high-pass coefficients for all £ € Jy at scales 7 = 1 and j = 2 are zeroed if the
cross-scale high-pass coefficients exceed a certain threshold T, or otherwise remain untouched, as
in Equation 3.30.

W (Z,n) ={

The smooth image at the second scale is further low-pass filtered if the cross-scale high-pass
coefficients lie below that threshold T (VZ € Jp). The threshold T is estimated as the mean
squared inter-pixel difference between all horizontal and vertical boundary pixels.

WZI:l (Il_,", n) =

(3.29)

0 , for Wh(Z,n) * Wh(Z,n) + WA (Z,n) * Wi(Z,n) > T,

WL, (Z,n), otherwise. (3.30)
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Figure 3.14: Over-complete two-dimensional discrete wavelet transform of frame 481 of the tennis se-
quence, up to the third scale. The modulus of the first scale is M1 is squared to make the block edges
more visible.
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Figure 3.15: Wy (£,n) showing the pixel site for each sub-set. The bold lines are the block boundaries,
the thin lines are the pixel boundaries.

Linear minimum mean squared error

Choi et al. [6] extend the idea above with Linear Minimum Mean Squared Error (LMMSE) filters.
Observe the high-pass image for the horizontal frequency of the first scale W), F(&,n) in Figure
3.14. Now define the subsets of sub-sampled pixel positions

Jh={FeN’|0<z<NAO<Ly<M Azmod8=2k Aymod2 =0} (3.31)

for k=10,1,2,3, as illustrated in Figure 3.15, with their respective variances

ol = Iﬂl_kl 3 (WhE ), (3.32)

ZFeli

assuming zero mean. The variance az for k = 0 is significantly higher than for k = 1,2, 3, caused
by the blocking artefact. The blocking artefact noise is estimated by o2 = of — %(a? + 02 +02).
This yields a LMMSE estimate of the transform coefficients that are responsible for the blocking
artefact:

2
Wh(%,n) = —2—Wh(7,n) VE € To. (3.33)

2 2
og+oy

03 is the local variance in a local window in the set 3; UJ, UJ3. The same is done for the vertical
artefact prior to inverse transformation.

Wavelet transform modulus maxima

By observing the modulus maxima across different wavelet scales, step edges like the blocking
artefact can be recognized by a typical decay of the modulus across the wavelet scales [48]. The
wavelet modulus of the j** scale is defined as:

My (Z,n) = /| @ n)[2 + [WE (,m) 2. (3.34)

Figure 3.16 shows the decomposition of a one-dimensional signal with three typical features at
three wavelet scales. The ratios of the modulus maxima of a step edge are Moz /My = 0.75 and
Mays /My = 0.6875, and the ratios of the modulus maxima of an impulse are Moz /M = 0.375
and Mays /M5 = 0.171875. Liew et al. decided to define the three thresholds for the three wavelet
scales to be the average of the wavelet modulus maxima responses for a step discontinuity and an
impulse:

T22 = 0.3164 - Tzl, (335)
Tys = 0.1846 - Ty1, (3.36)

with Ty the root-mean-square of all inter-pixel differences in the image. If the modulus My; (Z,n)
is below the threshold Tys, then the coefficients W, (Z,n) and W2(Z,n) are set to zero for the
scales j = 1,2, 3, prior to inverse transformation.
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Figure 3.16: A signal F(z) and its corresponding un-decimated high-pass wavelet decompositions at
three scales Wyk. From left to right, the signal shows an impulse, a step edge, and a ramp.

Another method using the modulus maxima was introduced by Fan et al. [14], who directly
smooth the wavelet modulus image. The reconstruction of the detailed images from the wavelet
modulus maxima can be done with the wavelet phase function, defined as

Wzlj (fa TL)

'W;zj-('r'n’) . (3-37)

Agi(Z,n) = arctan

Numerous other methods can be found in the literature. Nosratinia [63] for example, performs
wavelet encoding and decoding according to the JPEG-2000 standard on several shifts of the image,
and then averages over all results. The result, however, is slightly blurred. Wavelet filtering is
also effective in removing the ringing artefact.

3.2.4 Temporal filtering

In [96], a method is introduced for the reduction of noise in general, including grid noise. The
output of the filter is an Infinite Impulse Response (IIR) filter that calculates a weighted average
of the current frame and its motion compensated prediction from the previous filtered frame:

F(Z,n) = aF(&,n)+ (1 — a)F(Z — D(Z,n),n —1). (3.38)

Best results were found with a = 0.1 to 0.5 for D(Z,n) = 0, and a = 1 for motion blocks.
Derviaux et al. [11] proposed a similar method based on a three-frame motion compensated
prediction, using the motion vectors from the MPEG-stream:

F(Z,n) = aF(Z - D(Z,n),n—1)+ (1 — a = B)F(&,n) + BF(E+ D(Z n),n+1), (3.39)

with the weighting factors a and $ depending on the temporal distance between the motion
compensated frame and the reference frames. Liu et al. [49] chooses these parametersasa = 3 = %,
if both motion compensated predictions are reliable!. Note that the reference frames in Equation
3.39 are the previous and the next frame in the sequence, while the reference frames in [11] are
those from the MPEG stream.

1In Chapter 4 we will define some reliability metrics.
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Figure 3.17: Two-dimensional Hilbert space with three constraint sets and the solution space €p. The
dots represent the vectors, and the norm function is simply the Euclidian distance between the vectors.
The arrows denote the projection operators. Here, the initial vector lies outside all constraint sets, which
is generally not the case for image restoration.

3.2.5 Other domains

Some less common techniques can be found in the literature, for other domains than mentioned
above. For example, filtering in the Hermite transform domain [61] or low-pass filtering of the
coefficients in the cepstral? domain [5] can be found.

3.3 Projection onto convex sets

Quantization is the process of assigning ranges of DCT coefficient values to several quantization
bins. At the decoder side, the reconstructed value is typically the value in the middle of the
corresponding bin, as illustrated in Figure 2.2. Mathematically, this is equivalent to mapping
a range of coefficient values onto a single coefficient value. This implies that the quantization
function is not injective and has no inverse function; an input value does not have a unique output
value, so many combinations of input sequences yield the same output sequence. The decoded
sequence is just one out of many solutions, probably not the original sequence. Let A be a set of
all sequences that leads to the same encoded signal. This implies that the set A is the set of all
possible solutions from that encoded signal. Now let B be the set of all sequences without artefacts,
then our target is to choose a solution from the intersection A N B. Projection onto convex sets
(POCS) is a set-theoretic method that defines constraint sets with the purpose to narrow down the
number of solutions in the solution space in order to estimate the original sequence, and is as such
a restoration technique. POCS is a mathematical information recovery technique, introduced in
the field of image processing by Youla et al. [104, 105]. Let ¥ = (vo,v1,...,V(m.N—1)) be a vector
of length M - N in Hilbert space® 8, and let 7y represent the initial decoded image samples F(Z,n):

o = {7 € RM N |o(yniz) = F(En)VO<z< NAO Sy < M} (3.40)
By iteratively projecting this initial image onto a number, say m, closed convex sets €1,Co, ...,
G € 8§ with their respective projection operators Py, P, ..., Py, then the iteration

’l_)‘.,;+1 = Pum_.l . Pl’l‘)‘.,; (341)

converges towards a solution ¥

1—00

2The cepstrum is the inverse Fourier transform of the logarithm of the forward Fourier transform.
3 A Hilbert space is a vector space for which the inner product (norm) is defined which satisfies certain require-
ments.
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in the solution space Cg

Co= ﬁ C; #0, (3.43)

i=1

which is the non-empty intersection of all m sets. The projection P;¥ onto constraint set C; is the
closest (in terms of the norm function) element in € given ¥:

|7 — P:#]| = min||7 — g (3.44)
gets

In practice, the iteration stops when the distance reaches a certain minimum. The process is
clarified in Figure 3.17. Since the solution set Cg is generally contains more than one vector, the
solution ¢ depends on the initial vector 7% and the order of the projections [100]. The challenge
for set-theoretic methods is to find the constraint sets €;. This is the topic in many papers. The
next subsections give some constraints found in the literature.

3.3.1 Intensity constraint

The intensity constraint simply projects a filtered sample onto the range of available sample values,
given by:

P:Z— N,F(Zn) = clip[F(Z,n)]g" . (3.45)

3.3.2 Quantization constraint

A second constraint claims that every processed DCT coefficient Bx-,”n(u, v) must lie in the quan-
tization bin of the original decoded DCT coefficient. Introduced by Zakhor [106], the quantization
constraint is always used in POCS-based methods. For each block Bjz,, the de-quantized two-
dimensional DCT coefficient lies between the quantization bin boundaries (cf. Equation A.2):

gscale
2

The different rounding operations and the quantization matrix quant, , are ignored for con-
venience. The corresponding projection operator is simply the clip function, clipping the de-
quantized coefficients to the closest value in a valid range.

gscale
2

Bib,n(uav) - S Bib,n(uv ’U) S Bib,'n.(uav) +

(3.46)

3.3.3 Smoothness constraints

Zakhor [106] was one of the first to use constraints. Zakhor proposed a band-kmitation constraint
by filtering the entire image with a low-pass 3 x 3 FIR filter, assuming that the block discontinuities
cause frequencies not present in the original image. Unfortunately, this method over-smoothed
the image when applied iterative. Though its design was POCS-based, the proposed FIR operator
was not a projection operator.

Smoothing in the spatial domain

Another smoothness constraint to smooth the boundaries between blocks has been introduced by
Yang [99]. The constraint chooses the images for which the sum S of squared boundary pixel
differences is smaller than a certain threshold E. Observe Figure 3.2 and define the set of leftmost
pixel positions of 8 x 1 image segments as H as in Equation 3.3, then the constraint is given by:

e={F(z,n)€7| S < E}, with (3.47)

-5 )~ (C2))
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The image is smoothed by the projection (VZ € H):

(l—a)Fi((Z:z),n)+aFi z+;_1 ), fori=0,

Fi+1((z+l),n>= aF‘i((z;l),n)+(1—a)Fi z+;+1 ,n), fori=717, (3.49)

y
Fi( I;’),n) for0<i<7,

with o = 2(E/S +1). The constraint uses a GBIM-like metric. In fact, the GBIM metric is
based on this constraint. A similar algorithm was registered by Zhou [108]. Yang et al. [100]
proposed a better constraint set, incorporating the weight of Equation 3.6 to the sum S. Later
work from Yang et al. [101] extended the constraint sets with directional smoothness constraints
for the diagonal directions, in order to reduce the ringing artefact as well. For low bit rate video,
however, the block discontinuity is not restricted to the boundary pixels, giving poor results on
highly compressed sequences.

Smoothing in the frequency domain

A third smoothness constraint was proposed by Paek et al. [67]. Observe the two neighbouring
8 x 1 block segments in Figure 3.2 again. Paek proposed to cut off high frequencies in the
DCT domain, in order to remove any discontinuity between blocks. Therefore, the 8-point DCTs
are calculated from both the left and the right segment, as well as the 16-point DCT of both
segments. The assumption is that the frequency characteristics of two adjacent blocks are highly
correlated. If high-frequency components exist in the 16-point DCT coefficients, which are not
present in both 8-point DCT coefficients, these are likely to result from the blocking artefact. By
zeroing these coefficients before performing the 16-point IDCT, the discontinuity can be removed.
Paek observed that only odd-numbered coefficients were responsible for the discontinuities. Let
i = (ug,u1,...,uy7) and ¥ = (vp,v1,...,v7) represent the sample values from the left and the right
block respectively. Furthermore, let W = (ug,...,uq,v0,...,v7) be the concatenation of both
segments, and let U, V, and W be the one-dimensional DCTs of the corresponding segments.
Then the non-zero operator N Z returns the location of the last non-zero coefficient in the DCT
vector:

NZ(X)=max{0 < i<8|X;#0}. (3.50)
The 16-point DCT W is modified to I/:V according to:
(3.51)

W. o 0 forimod2=1A:> (2 -max{NZ(0),NZ(V)}+2),
¢ W;, otherwise.

The filter is applied in both horizontal and vertical direction. Gesnot [16, 58] implemented
and extended this idea with a simple edge detector to prevent post-processing in high textured
areas. In later work [67], Pack et al. excluded those segments from processing which have larger
inter-pixel differences than the boundary pixel difference.

Kim et al. [38] proposed a similar algorithm, considering a coding block and a diagonally shifted
variant as in Figure 3.11. Both blocks are transformed to the two-dimensional DCT domain. Let
the coefficient vector U = (ug, us, .. -, ue3) be the zigzag reordered coefficient vector of the original
block, and V the same coefficient vector of the shifted block. A non-zero function similar to the
one defined in Equation 3.50 determines the last non-zero coefficient in the vector U. The high
frequencies of the shifted block are zeroed prior to inverse transformation, according to:

> [0,ifi>NZ@O) +p,
Vi= {V,-, otherwise, (3.52)
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where p is a factor representing how many DCT coefficients contribute to the blocking artefact,
depending on the local statistics and the properties of the HVS:

Vi + Vo + V& 17
p=Ln\/ 1+ Vot Vet Vat Vs | 51 with =10, (3.53)

Vo+1

3.3.4 Multi-frame constraints

The use of the temporal dimension in constraint sets was first explored by Gunturk et al. [19].
They introduced a POCS-based de-blocking algorithm over multiple frames using accurate motion
estimation. A multi-frame constraint set is proposed using the quantization bounds available from
the bit stream. To make the technique clear, consider Figure 2.4 again and the 8 x 8 coding block
in frame n. Its best match in the previous frame n — 1 or, more generic, its best match in any
reference frame m, is generally not aligned with the block grid, so it may contain the blocking
artefact, as illustrated in the figure. From the MPEG-bit stream, the quantization parameter
for the transform coefficients of the block in the current frame n and the blocks in the reference
frame m are known. Using these quantization constraints on the best-match block in the reference
frame m, one can reduce the blocking artefact for this particular block. For the method to work
correctly, the motion vectors have to be reliable. It has been concluded that motion vectors from
the MPEG stream are inaccurate.

The method of POCS is also a technique to obtain a high-resolution image from several low-
resolution input images (superresolution) and as a means for error concealment, to recover from
errors due to lossy transmission. Transmission artefacts are outside the scope of this project.

3.4 Constrained least square regularization

The Constrained Least Square (CLS) regularization is an image recovery technique that finds the
optimum of two contradictory constraints [80]. Let an image F(£,n) defined by a column vector
f that concatenates all rows of the image:

feRMNXL ¢ . =F(Zn),VEeJ. (3.54)

In the reminder of this section, we will use this mapping next to each other. The decoded image
fo can be modelled with the image degradation model:

fo=Ff+é (3.55)

where f is the original image we try to estimate and & € RM VX1 is a noise vector. Let us define
the set G, of all images f that are close to the decoded image fp

Co ={f1 17~ fl* <&}, (3.56)
and the set C,, of all images f that have a certain smoothness
€, = {f1ISfI* < &}, (3.57)

where S is a MN x MN matrix called the regularization operator, usually implemented as a
Laplacian high-pass filter:

Ffiltered(j.a n) = (F (f>n) -F (f_ (laO)Tan)) + (F (fv n) -F (f_ (01 I)Tan)) ? (358)
such that
ISFl =" (F(zn) - F(z - (1,007, ) + (F (& n) - F(Z - (0,1)7,n))>. (3.59)
zel
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Figure 3.18: Filter support of the CLS iteration. Pixels above the bold line are already updated.

€2 is an upper bound for the allowed error and € is the upper bound for the smoothness. The

CLS solution for the restored image is the minimum of the two contradictory constraints joint in
a cost function:

I = 1= fol® + uls 1%, (3.60)

with the regularization parameter that controls the smoothness of the result:

b= (:—:)2 (3.61)

The regularization parameter depends on the noise variance: the higher p, the smoother the result-
ing image is. Several choices for p are given in [15]. A mathematical solution to the minimization
problem in the DCT domain was found by Yang et al. [99] as an iteration. Therefore, divide an
image as defined in Equation 3.54 into 8 x 8 sample blocks and perform the 8 x 8 DCT on each
of them. Then reorder the coefficient image in the same way as f in the Equation 3.54 to get the
vector F of the coefficient image. Given that the DCT coefficients are linear combinations of the
samples in the corresponding coding block, there exists a MN x M N matrix B that transforms
f into F by a matrix multiplication:

F = Bf. (3.62)

The rows of the DCT matrix form an orthogonal basis, and so do the rows of the transform
matrix B. For an orthogonal matrix, the inverse is simply its transpose, so we can write for
Yang’s iterative solution:

Fy = Fooy + (B — (1+ uBS"SBT) By, (3.63)

with I the MN x MN identity matrix, Fy the DCT transformed image of the initial decoded
image fo, and the relazation parameter 8 somewhere between

2

0<f<— .
P < T+ uS78]

(3.64)

If the previous DCT coefficients Fi_ are first projected onto the quantization constraint in Equa-
tion 3.46, the results improve considerably. Crouse et al. [9] modified the regularization operator
|SF]l (Equation 3.59) such that is only adds the clipped inter-pixel differences of the boundary
pixels.

A practical implementation using small filters was introduced by Kaup [34]. The method was
designed to reduce both the blocking and the ringing artefact. Minimizing the cost function leads
to an approximate iterative solution, an averaging filter that is applied from left to right and top
to bottom:

] jjﬂ (Fo(Z,n) + 1 (Fx (- (1,007,n) + Fi (7 - (0,1)T,n) +

Fr_, (.’E—{- (1,0)T,TL) + Fr—1 (.’E—f— (0, l)T,n))) s

Fi(@,n) = (3.65)
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Figure 3.19: Pixel support for the calculation Figure 3.20: Subsets of coding blocks used by
of the squared block boundary discontinuity. the least square block discontinuity iteration.

with j = 4. Figure 3.18 shows the filter support of the averaging filter. Mayor drawback is that the
filter does not differentiate between natural edges and block edges. To solve this, the filter support
can be adapted so that it only averages over those pixels which differ less than a certain threshold
T from the centre pixel in order not to smooth natural edges (sigma filter), or over those pixels
which are situated in another coding block than the centre pixel (to reduce the blocking effect).
The parameter j in Equation 3.65 changes correspondingly with the number of pixels supported
in the kernel. The threshold T is actually the gscale parameter for intra-coded images, twice the
gscale parameter for predicted images. The best results were found with u lying in the range from
0.125 to 0.25.

Least square block discontinuity

Jeon et al. [30] developed an iterative technique to filter the DCT coefficients. Therefore, define
the difference signal vectors ), gz, g3, J4 € R8*1:

(@) = F z:tf | —F zby-::z n), for z=0,---,7,
(92)z=F Bt ynj—F Tt ,n|,for z=0,---,7,
¥ +8 w+7 (3.66)
a zp ~1 Ty
=F — =0,
(93);/ vty y F yb+y T ,fOI' Yy Oa a71
(94)y=ﬁ| :;:_I-I:,S T - F 'f/:‘t;)7n ,fOI‘ y__‘oa' 77’

where F(Z,n) is the decoded image and F'(Z,n) the de-blocked estimate of the original. Figure
3.19 shows the pixels involved in the calculation. Initializing the estimate with the decoded image,
the algorithm aims at minimizing the square block discontinuity D for each block bz, » in the nth
frame,

4
D=> g eg, (3.67)
i=1

for F(Z,n) = F(&,n). For each block of samples bz, n, the de-blocked estimation 55,,,11 can be
found by adding a compensation signal Abz, , that minimizes D:

be,'n = bfh,'n + Abf;,,n- (3.68)

The minimization is performed in the DCT domain. Using the properties of the HVS with respect
to the artefact visibility, it is sufficient to compensate only the lower DCT coeflicients. The
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Figure 3.21: Pixel support for the calculation of the mean squared difference of slope {grey) and for the
MSDS> across the boundary (thick lines).

authors use the four lowest DCT coefficients for compensation, with the following iteration applied
alternatively on each subset of 8 x 8 blocks, depicted in Figure 3.20:

B(0,0) = 3G+ (Ga)o : (Gs)o+(Galo.
B0 =B B e
o
s - i G B 00,

where G; is the 8-point one-dimensional DCT of §;. The coefficients are updated under the
quantization constraint.

The mean squared difference of slope

The Mean Squared Difference of Slope (MSDS) is a minimization technique that, as opposed
to the previous metric, not tries to minimize the difference between the pixel values across the
block boundaries, but instead it minimizes the difference between the derivatives across the block
boundaries. The metric was presented by Minami et al. [57]. For the pixels in Figure 3.3, the
squared difference of slope is defined as

SDS = ((v5 — ) - (”“ — Y ”G”—”f’»z (3.70)

2 2

The MSDS of a block bz, r is then defined as the sum of all for all squared differences along the
block borders as illustrated in Figure 3.21. The goal of the approach is to modify the pixels in
block bz, » such that it minimizes the M SDS.

In [87], a second metric MSDS, has been added to the original MSDS, that includes the
squared difference of slope for the corner pixels (the pixels indicated by a dot in Figure 3.21), with
the aim of reducing corner outliers. The problem of minimization of the total MSDS, MSDS; =
MSDS + MSDS,, is investigated in the DCT domain and has a rather complex solution:

Bz, n(u,v) = ((Bz,+0.8)7 n () + Bz, 1 (0,-8)T n(u, ) (-1)*¢2+
(Bz,+(8.0)7 n(u,0) + Bz, 1 (—8,0)7,n(u,v)) (—1)"g2+
(3.71a)
B:?b+(—s,—s)T,n(u»U) + be+(8,—8)T,n(uaU)+
Bz, +(-88)7n(% V) + Bz, (8 8)7,n(,v)) R) / (2(g2 + ¢2) + 4R) ,
R = 9p2(0)p2(0) — 6pu(0)p.(0)pu(1)p. (1) — P2 (1)P2(2), (3.71b)
qu = 3pu(0) - pu(l) (3710)

pu(z) is defined in Equation 2.14. The modified coefficients are projected onto the quantization
constraint.
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Figure 3.22: The Huber minimax function, parabolic for |z| < T, linear elsewhere.

3.4.1 Temporal regularization

Yao et al. [103] extend the idea of regularization in the spatial domain to the temporal domain,
such that Equation 3.60 changes to:

J(H) = If = fol* + ulISFI? + I = Fmell, (3.72)

with regularization parameter v and where fmc is a motion compensated prediction of f based on
any reference frame. The observation leads to an iterative solution, described in their paper.

3.5 Maximum a posteriori probability based restoration

The Mazimum A Posteriori (MAP) based restoration technique maximizes the probability P that
the reconstructed image is the original image, given the decoded image and an image model.
Define an image f again as in Equation 3.54. Then the problem is for all f e RMNx1 15 find the
maximum
. . - - likelihood
fmap = argmax{P(f|fo)} (B argmax { P(fg(%l))m} Gostighood)
7 "

. - - (3.73)
argmax {log P(fy|f) + log P() ~ log P(fo)}
f

where f is the decoded image. Because fo doe not dependent on the chosen solution, the prob-
ability log P(fy) can be dropped. Furthermore, let F be the set of possible decoded images given

the decoded image fo (as in the POCS theory), then the probability that the decoded image oc-

curs given an input image from the set JF is always unity, so the probability P( ff)| f ) can also be
dropped, leaving the problem:

fvap = arg_ma.x{log P(f)} = argmin{— log P(f)} (3.74)
fex feg

The probability P( f) depends on a stochastic image model. A good model is the Markov
Random Field (MRF) model [66]. MRFs are modelled with the Gibbs distribution given by

P(f) = —eXP ( > Vel ﬂ) (3.75)

Z being a normalization constant, € is any group (clique) of data, and Ve (f) is a potential function
of clique € in f. The choice of the potential function is essential. A comparison between potential
functions used in signal and image recovery can be found in [62]. Though yielding slightly blurred,

a common potential function used in the literature is the Huber minimaz function (see Figure
3.22):

z? ,for |z| < T,
vie) = {T2 + 2T (|z| = T), for |z| > T. (3.76)
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Figure 3.23: A pixel (grey) and its 26-neighbourhood for the motion compensated temporal MAP filter,
showing the motion trajectory.

O’Rourke et al. [66] define the clique €z, of a pixel Z; as all pixels in a 8-connected neighbour-
hood of that pixel,

Co={Ff|ri- 1<z +1Ayi—-1<y<y+1 A(z#z:Vy#u)} (8.77)

so the minimization problem reduces to

fMApzargmin Z Z V(F(Z;,n) — F(£;,mn)) ¢ .~ (3.78)
feF | zierz5ee5,

The solution of this problem can be found by initializing the iteration with the decoded image fé,
iterating towards a solution using the gradient projection method to find the steepest descent to
the minimum:

firr = fi+ aV fi, (3.79)

with step size o and gradient V f;‘ defined in [66]. Since the iteration might result in a vector
outside ¥, the vector is projected onto F in the DCT domain, using the quantization constraint,
before entering the next iteration. In experiments, T is chosen at 1.0. The same algorithm can be
applied in the decimated wavelet domain [46] to reduce computational speed. In an improvement
of the above algorithm by Luo et al. [51] they distinguish between boundary and non-boundary
pixels by choosing different thresholds T for boundary and non-boundary pixels. Furthermore,
the iteration is done locally per pixel so convergence is reached faster (iterative conditional mode).
Another method to reach a MAP solution is used by Ozcelik et al. [65] using a technique called
mean field annealing.

3.5.1 Temporal extension

The MAP filtering method can also be extended to a motion compensated temporal MAP-based
(MC-TMAP) method [47]. Therefore, the 8-neighbourhood of Equation 3.77 is enlarged to a
motion compensated 26-neighbourhood as depicted in Figure 3.23.

3.6 Anisotropic diffusion

Perona et al. [71] were the first to introduce the theory of heat conduction (which occurs by
diffusion) into the field of image processing to remove speckle noise. The heat conduction equation
for two dimensions gives the temperature Ti(Z) at diffusion time ¢t and spatial position Z and is
given by the partial differential equation

OT3(%)
at

T
=cVe (VTy(Z)), V= (6%,8%) , (3.80)
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boundary pixel block boundary

Figure 3.24: Filter support for the two-mode filter.

with the gradient operator V and diffusion coefficient ¢. Now translate temperature to lumi-
nance in image n, T;(£) = F;(Z,n) with z and y as pixel coordinates, then for initial condition
F,(Z,n)|t=0 = Fo(Z,n) (the original decoded image), the solution is the Gaussian blurred im-
age, where the blurring becomes heavier as more diffusion time elapses. However, the blurring is
isotropic (rotationally invariant), resulting in edges to become blurred too. The solution given in
[71] is to incorporate a diffusion coefficient ¢(Z,n) to make the diffusion spatially and directionally
dependent, changing Equation 3.80 into

aFt(f, ’Il)

5 = Ve @ OVE(E n) = c(Z,)V  (VE(Z,n)) + VelZ, 6)VF(Z, 1), (3.81)

which reduces to the original equation if the diffusion coefficient ¢(Z,t) = ¢ is a constant. The
diffusion coeflicient must be equal to 1 in smooth areas and 0 in areas where smoothing is not
desired. An example of such a function is

1
C(Ea t) =

= - (3.82)
1+ ( VF(&::),nM)

2

where A is the gradient below which blurring occurs and above which enhancement occurs. In
[97], A is set to a multiple of the average gradient across the block edge. Furthermore, deviation
from the original image is penalized by biasing the diffusion equation

Bﬂéf, n) = g(F(Z,n) — Fo(F,n)) + V e (c(Z,t) VF(Z,n)), (3.83)

where ¢ is proportional with the MSDS and the number of non-zero AC coefficients in the coding
block.

The two-dimensional equations can be easily extended to three-dimensional equations, adding
the temporal dimension to the definition of the gradient [41]. This non-motion compensated
method reduces also the temporal flickering.

3.7 Hybrid algorithms

Methods found in the literature often use a combination of de-blocking approaches in the previous
sections. A widely used MPEG post-processing algorithm found in many multimedia PC appli-
cations video coders and encoders {AviSynth, DivX, FFDirectShow, XviD, amongst others) and
players (MPlayer, VideoLan Client, etc.) is a combination of a de-blocking filter and a de-ringing
filter that can be applied individually or both. The filters are recommended as standard post-
processing in the MPEG-4 standard [27]. The de-blocking filter is often used as a reference and
will be explained next.

3.7.1 MPEG-4 two-mode de-blocking

For an explanation of the filter, again observe Figure 3.24 with the vector ¥ = (vp,...,v9)T of
sample values. The first step of the de-blocking process is to determine which of the two modes
to apply, smooth region mode or default mode. The smooth region mode is chosen if the flatness
measure S(7) is equal to or greater than a certain flatness threshold T; = 6. The flatness measure
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counts how many samples in the vector ¢ have an inter-pixel difference less than or equal to a
threshold 77 = 2:

$ 1, if i —vipa| < T
S(@) = $(v; — viga), with ¢(v; — vig1) = {0’ i os viil o7 (3.84)
i=0 ? 1 i3 .

In smooth region mode, no filtering (7 = ¥) is applied if Vpmaz — Vmin = 2 - gscale, with
VUpazr = max{v; | 0 <1 < 8}, Upmin = min{v; | 0 < i < 8} and gscale is the quantization scale of
the block containing pixel vs. Otherwise, strong filtering with a 9-tap filter is applied. The filtered
vector is then calculated with:

4
A 1
Un = Ej=2—4bk * Pntk, 1 S n S 87 where (385a)
_ vo, if |’U1 - 'UO| < qSCllle, (3 85b)
0 v;, otherwise. .
_ g, if |ve — vs] < gscale, (3.85¢)
P9 = 1 vg, otherwise. .
po , ifm< 1,
Prm =< Um, if 1 <m <8, (3.85d)
P9, ifm > 8.
B=(bosr..,ba)T = (1,1,2,2,4,2,2,1,1)7. (3.85¢)

In default mode, only the boundary pixels are affected. To analyse the local statistics, an
approximation of the 4-point DCT is applied on the pixels left to the block boundary 7 =
(v1,v2,v3,v4)7, right to the block boundary #r = (vs,vs, v7,vg)T, and at the block boundary
U = (v3,v4, v5, )7, for wave number 3, the wave form most contributing to the blocking artefact
(cf. Equation 2.12 with N = 4 and u = 3). This yields the transform coefficients:

1

ay, = §(2 -5 5 -2)7, (3.86a)
1

ar = §(2 -5 5 -2)7g, (3.86Db)
1 ~

ac = §(2 -5 5 -2)¥c. (3.86¢)

If |ac| > gscale, the boundary pixels remain unaffected. If not, the pixels are updated by scaling
the transform coefficient, smoothing flatter areas more than complex areas:

94 = v4 — d and 95 = vs + d, where (3.87)
5 U‘;DE
d = clip [g(&c — ac)] and éc = sign(ac) - min(laL|, |ac|, |ar|)- (3.88)
0

The reference implementation was presented by Kim et al. [36]. Note that for low bit rate
Internet Video, the low pass filter is chosen more frequently. Cahill et al. [3] distinguishes a third
mode, an intermediate mode for which the boundary pixels are filtered with a 3 x 3 Gaussian filter
if |vg — v7| < gscale.

Methods found in the industry are often based on this two-mode filtering scheme because of
its ease of implementation (e.g. [33, 35, 43]). For example, Maclnnis et al. [52] proposes a similar
technique for interlaced sequences.
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3.8 Discussion

This section showed an overview of approaches that are commonly found in the literature and
industry. Though researchers all over the world invented solutions that provide good results,
the techniques are not always suitable for a real time implementation due to their complexity.
Especially iterative techniques are too expensive for consumer electronics products and, therefore,
not found in the industry. Some complex techniques are available for off-line processing as software
plug-ins. Table 3.1 shows a comparison of the discussed methods.

method domain iterative complexity
adaptive spatial no low

adaptive DCT no low /intermediate
adaptive wavelet no high

adaptive temporal no low

POCS all yes high

CLS all yes high

MAP all yes high

anisotropic diffusion all yes high

Table 3.1: Comparison of the different blocking artefact repair approaches.

We explicitly do not give a comparison in terms of picture quality improvement. The results
of each algorithm strongly depend on its implementation and a real comparison would require an
exhaustive assessment of all methods. Instead, we will make some observations that lead us to the
proposal of a new approach to deal with the blocking artefact.

All methods for de-blocking report that non-adaptive smoothing causes excess blurring of the
decoded image. Simply constraining the signal bandwidth to remove high-frequency block edges
also removes the natural high frequencies that are present in an image, as an ideal low-pass filter
cannot be realized. To avoid smoothing of natural edges, previous work suggested to exploit edge
information. The detection of edges from highly compressed images is, however, a very difficult
task. Edges are sensitive to quantization and, therefore, distorted [80]. To this respect, filtering
in the sub-band domain gives results that are more satisfying.

The success of set-theoretic methods like POCS depends on the constraint sets. Bandwidth
constraints on the entire image yield over-smoothing, whereas methods that only affect the edge
pixels are not sufficient for very low bit rates (for example, the constraint-based algorithm in
proposed by Yang et al. [99]). In the extreme case that a sequence does not have the bandwidth
to code for any AC coefficients, the blocking effect concerns all pixels in the block. An algorithm
has, therefore, to take into account the spatial masking properties of the human visual system.
Though there exists a multitude of constraints that can be combined, the solution space still leaves
too many feasible images, making POCS-based methods not perform well [19].

Mayor drawback of all iterative methods (POCS, CLS) and statistical methods (MAP, ani-
sotropic diffusion) is that they require several iterations to converge to a solution, making the
techniques less suitable for real-time implementations. This observation is supported by the num-
ber of solutions found in the industry. Most registered solutions are found in spatial adaptive
approaches that have low computational complexity and do not require mayor adaptation of ex-
isting architectures. We focus on a solution that can be implemented in a real-time system.

Some algorithms use quantization information from the bit stream as an input for post-pro-
cessing algorithms. These include motion vectors and quantization scale parameters. Often, these
parameters are not available for the post-processor because the decoder is an embedded component
that has a bit stream as input and a sequence of images as output. Parameter extraction requires
modification of the decoder, so we aim at “pure” post-processing techniques for which bit stream
parameters are not available.

A drawback of most of the algorithms discussed before is that they are initially adopted from
still image de-blocking techniques. The algorithms cannot be simply extended to video because
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the blocking artefact behaves more complex in digital video. A model that takes into account the
process of motion compensated prediction is desirable.

Considering the aspects discussed above, we seek a solution that meets the following require-
ments:

o The filtering scheme has to be adaptive, preferably not based on an edge map.

e The algorithm must have a limited computational complexity to make it suitable for real-
time implementations.

¢ The technique must model the process of motion compensation that takes place in block-
DCT-based video coding schemes.

e To avoid modification of existing decoders, the post-processor does not use coding parame-
ters, except for the size and location of the coding grid.

‘We will keep these requirements in mind in the development and evaluation of a de-blocking filter
in the next chapters.
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Chapter 4

Motion compensated blocking
artefact repair

Almost all algorithms used for blocking artefact repair are based on adaptive filtering of a single
image. The filters can be driven by the coding parameters from the bit stream or by parameters
derived from local characteristics in the pixel domain, DCT domain, sub-band domain, etcetera.
Most de-blocking algorithms for video reviewed in the previous chapter were adopted from still
image (JPEG) de-blocking methods that are essentially two-dimensional. Few methods exploit
the fact that video has a third, temporal dimension [19].

The risk of spatial methods is that blocking artefacts coinciding with natural edges are filtered
too. Moreover, for video, the blocking artefact is not limited to the fixed 8 x 8 coding grid, but
instead it propagates to the current picture by motion compensated (MC) prediction, especially
if the residual coding mechanism does not provide sufficient data to compensate for the artefact.
The propagation of the block edges in an MPEG-2 sequence is illustrated in Figure 4.1 and Figure
4.2. Where traditional algorithms assume an encoding scheme that solely performs 8 x 8 block
DCT followed by quantization, we extend the encoder model with the motion estimation and
compensation process. As shown in Chapter 2, the process of motion estimation yields a residual
image that is calculated by

F.(Z,n) = F,(Z,n) — Fp(Z,n), VZ €7, (4.1)

where F, is the residual image, F, is the original sequence, and F, is the MC prediction. The
residual image is then block DCT transformed and quantized. The decoder de-quantizes and in-
verse transforms the residual image, then adds this to the MC prediction. For bi-directionally
predicted pictures, a de-blocking algorithm should have access to a future reference image that is
only available in the decoder or at the end of a group of pictures (GOP). For optimal blocking
artefact reduction, a post-processor should de-block these reference frames before predicting de-
rived pictures. Such a filter scheme is proposed in the AVC standard [78] and is applied in several
implementations ([17], [31]). However, we do not have access to the decoder parameters, so we
lack information about the picture types, reference frames, quantization scale parameters, and the
motion vectors. Instead, we try to estimate the motion from neighbouring frames to make a MC
prediction of the image to be filtered.

Our starting point for MC artefact repair is a robust motion estimator which provides accurate
motion vectors. Motion vectors from the decoder relate a frame with one or more reference frames,
which are generally not the neighbouring frames and which are not available behind the decoder.
We need a dense and accurate motion estimation based on the neighbouring (previous or next
in sequence) frames [19], that yields the true motion in a sequence instead of the best matching
block. Philips Electronics developed several robust and accurate motion estimation algorithms
for different MC video processing tasks such as noise-filtering, picture rate conversion, and de-
interlacing. A commercial available IC is described in [22].
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Figure 4.1: Propagation of the blocking artefact.

0
| BBPBBPBBPBBI BBPBBPBBEPEB! BBPEBPEBPBBI BBPBRPBEPEBI

Figure 4.2: Propagation of the blocking artefact from I pictures to P and B pictures. The graph shows
the GBIM of frames 505 to 553 from the 500kbps MPEG-2 encoded tennis sequence.

For the experiments used in this project, a state-of-the-art Philips propriety motion estimator
was used, requiring three consecutive frames. The estimator is based on a sub-pixel accurate
three-dimensional recursive search (3-D RS) block matcher, assisted by a global motion model to
account for panning, zooming, rotation, or travelling of the camera [23, pages 175-226]. 3-D RS
block matchers give a high spatial and temporal consistent (smooth) motion vector fields with
relatively low computational effort [21]. The three-frame approach has the advantage over two-
frame methods that it is able to solve the occlusion! problem and it is more robust in the sense
that spurious vectors occur less frequently [50]. Drawback of the estimator is that it needs access
to three frames and that it needs on average twice as much computational effort than a classical
two-frame 3-D RS block matcher. To prevent the estimator from biasing, the original pictures are
fed to the estimator prior to post-processing.

From an initial approach, based on an observation in the literature, we will propose an al-
gorithm and describe some experiments in Section 4.1. From the observations, we come to an
improved model in Chapter 4.2, working towards a solution that can be implemented next to a
three-frame based motion estimator such that the existing architecture does not change consider-
ably in Section 4.3.

4.1 Step discontinuity compensation

Refer to a two-frame motion estimation method as shown in Figure 4.3. Suppose the block
emphasized in the Figure contains the blocking artefact, located at the coding grid in frame n.
Generally, its MC prediction from the previous frame n — 1 will not be located at the coding grid.
As a result, the predicted image may not contain the blocking artefact at the same spatial position
as the original decoded block. We can exploit this fact to use the MC prediction to compensate
for the data near the coding block edges.

A similar idea has been proposed earlier by Park et al. [69], who exploited the self-similarity
in a natural image to remove discontinuities. In Figure 4.4, a range block bz, »(z,y), shifted
horizontally by half a block size with respect to the coding grid, overlaps two neighbouring coding
grid blocks, showing a horizontal discontinuity (vertical edge) in the centre. The algorithm searches
its best matching block located at the coding grid (Z, € B) within the same image n, called the

1 Occlusion is the covering and uncovering of an object (or the background) by another object.
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range block
frame n-1 frame n /F

D(x,. n)

domain block <—

Figure 4.3: Two-frame motion estimation. Figure 4.4: Domain and range blocks
used by Park et al.. The solid grid is the
coding grid. The arrow represents the best
match.

domain block bz, (i, 7). Because the match is less reliable at the block boundary, the MSE metric
is changed into a weighted MSE (WM SE):

7 7
WMSE = > wiw; (bz,n(i> ) — bz n (i, 5))°. (4.2)

i=0 j=0

The weights w; depend on the type of the two overlapped coding blocks: both blocks can be low-
frequency blocks (case 1), one block can be a low-frequency block and the other a high-frequency
block (case 2), and both blocks can be high-frequency blocks (case 3):

(0.2, 0.5, 0.1, 0.05 0.05 0.1, 015 027  incasel,
w=4¢ (015 0.5 0.1, 01, 0.1, 0.1, 015 0.15)7,in case?2, (4.3)
(0135, 0.3, 0.125, 0.11, 0.11, 0.125, 0.3, 0.35)7, in case 3.

The classification is made in the DCT domain, where a block is a low-frequency block if all DCT
coeflicients other than B(0,0), B(1,0) B(0,1) are zero, and a block is a high-frequency block if one
or more coefficients with u > 2 and v > 2 are nonzero. Using the fact that the range block contains
a discontinuity in the centre and that domain block is continuous in the centre, the range block
can be recovered by a linear combination of the original decoded range block and its corresponding
domain block, which is further left undocumented. The same procedure follows for the vertical
blocking artefact.

Motion estimation on a shifted grid

We extend the algorithm above to the temporal domain, where the range block is in the current
frame and the domain block is more likely to be found in a temporal neighbouring frame by the
process of motion estimation. For this reason, let us define a motion estimation grid that is shifted
by half the block size, both horizontally and vertically:

Va':',,:(zs)eﬂ, ABsr ={fecT |z, <z, +8Ay, <y<ys+8}, (4.4)

with the upper left corner £; € § given by:
8={feJ|rsmod8=4Aymod8=4 AT#N—-4Ay#M—4}, (4.5)
as illustrated in Figure 4.5.
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Figure 4.5: Coding block grid Figure 4.6: One-dimensional compensation signals with
(solid) versus motion estimation grid different strengths to remove the (positive) step disconti-
(dotted). nuity at the block boundary.
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Figure 4.7: Discontinuity compensation, the vertical axis representing the block boundary.

Discontinuity compensation

Wang et al. [90] model the blocking artefact as a two-dimensional step discontinuity due to impaired
DC coeflicients. To compensate for this step, a two-dimensional compensation signal is added to
the blocky signal. The length of the compensation signal, equal to its strength, depends on the
visibility of the artefact, derived from the DCT coefficients of the decoded image. For the one-
dimensional case, these linear compensation signals are depicted in Figure 4.6, for discontinuities
that are positive for increasing pixel position.

A first approach is to compensate for the step located at the block boundary, given the predicted
step size from the MC predicted image. For an initial solution, observe Figure 4.7 for the one-
dimensional approach. Let signal f be a signal with a discontinuity dy across the block boundary
(the vertical coordinate axis). Let § be its MC prediction, not showing the discontinuity at the
location of the block border. At the block boundary, § has a natural discontinuity dy. If we want
to compensate for the false edge, we can add a for example a linear compensation signal § with

discontinuity dy — d; at the position of the border. Signal f gives the de-blocked result with the
original discontinuity d,.

Compensation signal

From earlier observations, we have seen that for very low bit rates and high velocity motion
sequences, the temporal redundancy in the sequence is reduced so that more coding blocks require
updating. Because the encoder has to divide the available bits over all coding blocks, only a few
(or even no) AC coefficients are encoded. With only low frequency components present, it is not
sufficient to filter the border pixels alone. Therefore, we use the compensation signal with strength
3 in Figure 4.6, defined by

wi = —— -, 0<i< (4.6)

N - 2’
where N is the horizontal (or vertical) block size. For % < 1 < N the signal has a similar form
(cf. Figure 4.8). Such a compensation signal was also chosen by Kryukov et al. [39].
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Figure 4.8: Linear and sinusoidal compensation signal to remove the (positive) step discontinuity at the
block boundary.

The use of linear compensation functions might cause a new artefact in the centre of the coding
block, because the continuity of the derivative is not guaranteed. We solve this with a smooth,
sinusoidal compensation signal, which has a flat slope at in the centre of the coding block:

mH N
i = — s ) a5 4.
w cos(N_1)+1 0<‘L<2 (4.7

4.1.1 Experiments

Though the concept described above has not yet been optimized, we did perform some experiments
to verify the concept. For testing of the algorithms, we initially used a tennis game sequence which
has lots of complex motion (pan and zoom), different scales of detail (faces, court lines, logos),
and difficult objects to track with a motion estimator (occlusion, transparent scoreboard overlay).
The sequence consists of five shots. The first shot shows a close-up of a tennis player serving a ball
(frames 1 to 83). The motion magnitude clips to the maximum magnitude allowed by MPEG-2.
Next, a long shot of the tennis court is shown, with the sharp court lines and brand logos (frames
84 to 373). The next two shots show a medium shot (frames 374 to 442) and a close-up (frames
443 to 493) of a walking tennis player in front of a panning background. The sequence ends with
a pan showing the audience (frames 494 to 600). Some screen shots are shown in Figure 4.9.

The video material is progressive and originally MPEG-2 compressed with a bit rate of 1,984
kbps. The codec that has been used has been developed by the MPEG Software Simulation Group
(MSSG)[60]. The format is known as Common Intermediate Format (CIF) (352 x 288 pixels), at
a frame rate of 25 frames per second. In Table 4.1, the effect of the bit rate on the distortion is
measured in PSNR and GBIM. Figure 4.10 shows the effect quantitatively.

bit rate MSE PSNR MhGBIM MvGBIM MGBIM
[kbps] [4B]

1,984 0 o0 1.12562 1.29680 1.21121

1,500 53.995  30.807 1.19107 1.39440 1.29274

1,000 86.399 28.766 1.27510 1.50659  1.39085

750 114.317  27.550 1.38079 1.63678  1.50879

o00 167.202  25.898 1.66603 1.99692 1.83148

300 287.932 23.538 2.29145 2.91899  2.60522

250 306.671 23.264 2.40951 3.19175  2.80063

Table 4.1: Bit rate versus distortion, for the luminance signal only.

The algorithm proposed above has been tested on the 500kbps MPEG-2 encoded and de-
coded tennis sequence, for the linear compensation signal (comp. linear), the sinusoidal signal
(comp. sine), and a recursive alternative (comp. rec.) which uses the filtered output to make
the next prediction, so preventing the propagation of the artefact. The motion estimation of the
latter method was based on the original decoded sequence. The algorithms have been compared
with the MPEG-4 de-blocking algorithm proposed in [36] and explained in Subsection 3.7.1. The
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(a) frame 76 (b) frame 280

(d) frame 472 (e) frame 524

Figure 4.9: Frames from each shot of the original tennis sequence. White overlayed arrows indicate
motion of the background, black arrows that of individual “objects”. The arrow tail lengths give an
indication of the motion magnitude.
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Figure 4.10: Bit rate versus distortion in GBIM (bullets) and PSNR (triangles).

(a) original (b) MPEG-4 (c) proposed

Figure 4.11: Results of different post-processing algorithms on an image detail of frame 481 from the
tennis sequence. (a) shows the decoded image, (b) the MPEG-4 de-blocked image, and (c) is the recursively
de-blocked image with the proposed sinusoidal compensation signal.
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Figure 4.12: Objective test results for the step edge compensation algorithm in block impairment (GBIM)
(a) and image fidelity (PSNR) (b).

results in terms of image fidelity (PSNR) and block impairment (GBIM) are given in Table 4.2
and in Figure 4.12. Because the motion compensated filter needs the first and the last frame for
three-frame motion estimation, the non-motion compensated algorithm has a slight advantage.
Therefore, we calculated the metrics only for the intermediate frames. Figure 4.11 shows the post-
processing results for an image detail of frame 471, where a part of the tennis player’s shoulder
(light) is shown, moving against a panning background (dark).

The PSNR metric measures the image fidelity. To compare the improvement with respect
to the original decoded sequence, the table includes the PSNR improvement, APSNR. The
improvements or deteriorations are within tenths of dBs. A better indicator of the blocking
artefact is given by the GBIM. However, PSNG and GBIM are averaged over each image and over
the entire sequence, so severe local artefacts will not appear in the metrics. This indicates the
need for a subjective evaluation of the sequences.

algorithm MSE PSNR APSNR Mieeiv Mucsimv MeBim
dB] __ [dB]
original 0 o0 o0 1.12552 1.29699  1.21126
decoded 166.901  25.906 0 1.66517  1.99610 1.83064
mpeg-4 de-blocked 164.643  25.965 +0.059  0.97651 1.09317 1.03484
compensated (linear) 172.028  25.774 -0.132 1.18346 1.35707  1.27027
compensated (sinusoidal) 167.609  25.887 -0.019 1.19348 1.37107  1.28228
compensated (recursive)  167.800  25.883 -0.023 1.02726 1.18095  1.10411

Table 4.2: Objective test results for the step edge compensation algorithm.

4.1.2 Evaluation

The results show that, when not imposing restrictions on the motion vector reliability, the proposed
algorithm performs reasonably well in terms of blocking impairment, even though slightly dete-
riorating the image fidelity with respect to its initial decoded reference. Subjective observations
show that the algorithm correctly smoothes the artefact where the motion vectors are reliable, yet
introduces many false edges where the predictions are not reliable. This can be seen in high-motion
sequences, areas with sharp edges and high texture, and in occlusion areas, as in Figure 4.11(c).
The reason is that even a sub-pixel shift of the motion vectors cause the predicted step edge to
become unreliable. The robustness of any motion compensated filter, therefore, depends on the
reliability of the motion vectors, for which we introduce two metrics.
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Figure 4.13: Frame 481 of the decoded tennis game sequence, showing a moving tennis player at a
panning background. The overlay (a) shows the nonzero clipped MAD and the rounded non-zero LSI (b)
values for each coding block.

Motion vector reliability

The usual reliability metric for motion vectors is the Sum of Absolute Differences or SAD, summing
the errors between the original block and its MC prediction:

SAD(Zy,n) = Y | |e(Zn)|- (4.8)

:Z‘Eﬁirb

Another similar metric commonly found in the literature is the Mean Absolute Difference (MAD),
which is in fact the SAD averaged over the number of pixels in a block:

MAD(Zy,n) = :cl Z le(E,n)| = —|SAD(xb,n). (4.9)

As a measure for the inconsistency of a motion vector, we introduce the Local Spatial Incon-
sistency (LSI) metric, based on the smoothness metric in [23, pages 175-226], defined for a block

Bz, as:
5 i 81
D.’E (xbvn)_D:z: (mb_ (8;) )n)

n) - D, (:‘5,, _ (2;) n) .

The LSI measure calculates the first order approximation of the vector differences between a block
and its eight spatial neighbouring blocks.

For frame 481 of the tennis sequence, the reliability metrics are overlayed in Figure 4.13. Where
the reliability is low, the compensation algorithm is more likely to introduce false edges, as the
detail in 4.11(c) shows.

1 1

LSIEm) =5 3 3

i=—1j=-1

+

(4.10)

4.2 Three-frame approach

The use of a three-frame motion estimator was introduced to overcome the occlusion problems
with the two-frame approach. The three-frame motion estimator gives, apart from the previous
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field, also access to the next frame. The problem that rises is to make a prediction out of two
frames instead of one.

The use of order statistical filters, such as the median filter, has been proven successful in
interpolation operations such as picture rate conversion. Picture rate conversion typically deals
with interpolating data from neighbouring frames. At locations degraded by quantization, we can
possibly use interpolated data from neighbouring frames to reduce the blocking artefact as in the
previous section. To make a MC prediction from two neighbouring frames, the dynamic median
yields good results, as assessed by De Haan in [23, pages 136-143]. The dynamic median Fg,, is
defined as:

F(£n~1)+F(Zn+1)
- 2 ?
Fuyn(Z,n) = median { F(z ~ D(%,n),n— 1), ¢ - (4.11)
F(Z+ D(Z,n),n+1)

Another simple prediction obtaining similar objective and subjective results is the motion
compensated average, defined as

F(Z — D(&,n),n—1) + F(Z + D(Z,n),n + 1)

5 (4.12)

cha(f, n) =

Because the current field is also available, we can also use this information for making a predic-
tion. If we take into account that, for occlusion areas, the covering areas are better represented in
the previous frame and the uncovering areas are better represented in the next frame, we propose
an interpolation that is weighted by the sum of absolute differences between the two:

_ SAD;yaF(Z ~ D(Z,n),n — 1) + SADpackwaF (Z + D(Z,n),n+ 1)

chwa —‘7 , 4.13
(&m) SADjwa+ SADpackwad (4.13)
where the match errors are defined as

SADgya= Y |F(Z - D(Z,n),n - 1) — F(Z,n)| (4.14)

5:‘635,,

for the forward prediction and

SADsackwa = Y |F(Z+ D(Z,n),n+1) — F(Z,n)| (4.15)

56355
for the backward prediction.
Lastly, we will evaluate a MC median, defined as:
Frnemea = median { F(Z — D(Z,n),n — 1), F(Z,7), F(& + D(Z,n),n + n}. (4.16)

The four interpolation methods above are performed on the shifted coding grid introduced in
the previous section and then compared to the original sequence, with the results listed in Table
4.3 and Figure 4.14.

As shown in Table 4.3, the motion compensated median gives results closest to the original
sequence. Though the median filter yields the most reliable interpolation, the figures in terms
of block impairment reveal that algorithm just performs moderate. This can also be seen in the
pictures in Figure 4.15. We can explain this by the fact that the median filter often chooses the
original decoded value, which is the blocky source. The MC weighted average does not use the
original pixel directly, gives the second best results in image reliability, and performs average on
block impairment. It should be noted that the MC median does give good subjective results with
respect of other noise such as ringing and mosquito noise. Another drawback of the MC median
is that moving objects change in size and that very small moving objects are erased entirely.
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Figure 4.14: Objective test results for the step edge compensation algorithm in block impairment (GBIM)
(a) and image fidelity (PSNR) (b).

algorithm MSE PSNR APSNR MM Muceiv Meeim
48] [dB]

decoded 166.901  25.906 0 1.66517 1.99610 1.83064

dynamic median 220.239  24.701 -1.204 1.24643 1.44100 1.34372

MC average 206.341  24.984 -0.921 1.19235 1.36294  1.27765

MC weighted average 174.442 25.714 -0.192 1.18930 1.34995  1.26963

MC median 164.880  25.959 +0.053 1.34664 1.55070  1.44867

Table 4.3: Objective test results for interpolation.

To investigate the combination of the interpolation algorithms with the step edge compensation
algorithm from the previous section, we will apply the sinusoidal step edge compensation algorithm
again, described in the previous chapter. The results can be found in Table 4.4 and in Figure 4.16.

The results also show that reusing the filtered frame as a reference for the next interpolation
increases the performance of the filter in terms of blocking impairment. Assuming the previous
frame to be already de-blocked, the image can be used for predicting the erroneous information
in the current field. This proves again that recursive filtering yields better results, because the
artefact will propagate less to the consecutive frames. The motion vectors used for interpolation
were extracted from a shifted grid, on the original, non-filtered sequence.

Soft thresholding

In the previous section, we introduced two reliability metrics for the motion vectors. Here, we will
assess the influence of thresholding on the mean absolute difference (MAD) and the local spatial
inconsistency (LSI). Two-mode, or more general, multi-mode filtering techniques in the literature,
often set a threshold to choose between one type of processing and another type of processing. In
ambiguous areas, this leads to a new artefact where the algorithm switches between the different
kinds of processing. This effect can be seen in Figure 4.17.

To avoid this kind of artefact, we will use a soft thresholding scheme that gradually switches
from full post-processing to no post-processing as the reliability decreases, as depicted in Figure
4.18. The output image Fjoz; is then calculated from:

Fsoﬂ(f, n) = kF(f, n) + (1 — k)F_filtered(fy n), (4.17)

where F(Z,n) is the decoded sample, Fyierea(F,n) is the filtered sample, and k is the weighting
function from Figure 4.18:

MAD;z; .
‘o {—LM L2051 if MADsy < MAD s, (4.18)

1 ,if MADg; > MADppqs.
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(a) dynamic median (b) MC average

(c) MC weighted average (d) MC median

Figure 4.15: Frame no. 25 (I-frame) interpolated with different interpolation algorithms. The overlayed
circles on the left show a piece of the collar of the tennis player’s shirt where the median filter leaves the
most blockiness. On the other hand, the median filter does not blur the natural edge of the collar, as the
other algorithms do, indicated by the overlayed circles on the right.

MADj3; is the three-frame match error, which we will choose as the minimum of the forward and
the backward prediction error, like in [50]:

MAD3f = min{MAwad, MADbackwd}- (419)

Similarly, we soft threshold the LSI metric (LSImez). Table 4.5 lists the results for different
MADs and LSIs for the recursive MC weighted average algorithm. Infinite values mean that the
processing is always turned on, i.e. k = 0.

The optimal three-frame match error lies around 32 (see Figure 4.19). The GBIM is then
close to the original value. Any threshold for the local spatial inconsistency does not contribute
considerably to a better performance. We use soft thresholding on the M ADj3y instead to prevent
the introduction of false edges.

Fall-back processing

The M AD value still can locally jump from low values to high values, as illustrated in Figure 4.13.
The soft threshold introduced earlier causes some blocks to be processed heavily and others to be
not processed at all. For the non-reliable estimates, a non-motion compensated fall-back function
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Figure 4.16: Objective test results for the step edge compensation algorithm on a three-frame interpo-
lation in block impairment GBIM (a) and image fidelity (PSNR) (b).
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Figure 4.17: Detail of the tennis sequence, de- Figure 4.18: Mean absolute differences versus
blocked with the MPEG-4 post-processing algo- the weight k.
rithm, showing the effect of a hard threshold.
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Figure 4.19: MAD (a) and LSI (b) thresholds versus the distortion.
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algorithm recur- MSE PSNR APSNR Migeiy MugeiM MeeiMm

sive [dB] [dB]
original 0 00 o0 1.12552 1.29699  1.21126
decoded 166.901  25.906 0 1.66517 1.99610 1.83064
dynamic median 169.716  25.834 -0.072 1.13445 1.29315 1.21380
dynamic median 169.084  25.850 -0.056 1.06631 1.22802  1.14717
MC average 166.584  25.914 +0.008 1.10936 1.26448  1.18692
MC average 166.031  25.929 +0.023 1.05710 1.20692 1.13201

v

v
MC weighted avg. 165.351  25.947 +0.041 1.11022 1.25857  1.18440
MC weighted avg. Vv 165.149  25.952 +0.046 1.06593 1.21113  1.13833
MC median 164.089  29.980 +0.074 1.28497 1.47962  1.38230
MC median v 164.016  25.982 +0.076 1.26992 1.46368 1.36680

Table 4.4: Performance results for the step edge compensation signals.

MAD,.,, LSln.. MSE PSNR APSNR Mucoin Mycoim Mcpim
/64 [dB] [dB]

o0 oo 165.149  25.952 +0.046 1.06593 1.21113  1.13853
128 oo 164.067 25.981 +0.075 1.08052 1.22777  1.15415
64 oo 163.290 26.001 +0.095 1.10242 1.25209 1.17726
40 oo 162.730  26.016 +0.110 1.13717 1.29081  1.21399
32 oo 162.562  26.021 +0.115 1.16331 1.32070  1.24201
24 oo 162.591  26.020 +0.114 1.21004 1.37578  1.29291
16 oo 163.309  26.001 +0.095 1.30048 1.48730 1.24389
00 32.0 164.820 25.961 +0.055 1.10161 1.25083 1.17622
00 16.0 164.713  25.964 +0.058 1.16525 1.32120 1.24323
00 4.0 164.873 25.959 +0.053 1.43150 1.62244  1.52697
00 1.0 165.021  25.955 +0.049 1.57125 1.80862  1.68994
00 0.5 165.852 25.934 +0.027 1.60378 1.86035 1.73207

Table 4.5: Performance results of soft thresholding on the recursive compensation algorithm based on
the MC weighted average.

can be used to reduce this artefact, with the risk of over-smoothing edges that coincide with block
edges (see Figure 4.20). Equation 4.17 then changes to

Fsoft(i, n) = anon—mc(f) n) + (1 - k)Fnon—mc(fa n), (4'20)

where Fion—mc iS the output of a conventional non-motion compensated de-blocking algorithm.
As an example, we will use a blind version of the MPEG-4 de-blocking algorithm, i.e. it assumes
an infinitely high gscale. Table 4.6 contains the results for fall-back processing for MAD e, = 32.

Motion compensated median filtering

As we already remarked before in this section, the use of the median filter gives good results for
noise like ringing and mosquito noise, but preserves the blocking artefact because it is likely to
choose the original decoded sequence. A way to remove the blockiness as well is to use a non-
motion compensated filtered frame as a prediction of the current frame instead of the original
decoded sequence. The filtered output then becomes:

Frnedian—sb = median {F(:E' - 13(5:', n),n — 1), Fyina(Z,n), F(T + 13(:3:', n),n+ 1)} ,  (4.21)
where Fyjing the non-motion compensated filtered image with the blind MPEG-4 de-blocking

algorithm. There is no reason to use the shifted grid motion compensation scheme that we used
in previous approaches, so we use the motion vectors from a non-shifted motion estimator. Like
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(a) soft thresholding (b) fall-back processing

Figure 4.20: Figure (a) shows some remaining artefacts were the motion vectors are not reliable. Figure
(b) is the same image with fall-back processing.

algorithm MSE PSNR APSNR Migerm Muerv Meerm
dB) 5]

original 0 o] o0 1.12552 1.29699 1.21126

decoded 166.901 25.906 0 1.66517 1.99610 1.83064

step edge comp.  165.149  25.952 +0.046 1.06593 1.21113  1.13853
soft thresholding 162.562  26.021 +0.115 1.16331 1.32070  1.24201
blind MPEG-4 165.584  25.941 +0.035 1.35693 0.95856  1.15775
fall-back 164.373  25.972 +0.066 1.00682 1.18062  1.09372

Table 4.6: Performance results for fall-back processing for M ADpmqr = 32.

for the previous algorithms, we can apply the MC median recursively and with soft thresholding
with M AD ... = 32. Because we do not use shifted vectors, we can also assess the performance
of the median approach with a commercial available 3-D RS block matcher.

algorithm soft recur- 3-D PSNR APSNR Mgy Myceiv MeBiMm

thr. sive RS [dB] [dB]
original o0 00 1.12552 1.29699  1.21126
decoded 25.906 0 1.66517 1.99610 1.83064
median-fb v 25.941 +0.035 1.35693 0.95856  1.15775
median-fb v v 25.963 +0.057 0.91904 1.09324 1.00614
median-fb v 26.087 +0.181 1.07647 1.21274  1.14461
median v v v 25.941 +0.035 0.91307 1.09073  1.00190
median-fb v v 26.069 +0.163 1.07391 1.21873  1.14632

Table 4.7: Performance results for fall-back median filtering approach processing without shifted motion
estimation and compensation.

Table 4.7 shows the results of the fall-back median filter with different modifiers. The results
show that the recursive scheme performs better in block impairment (GBIM), but gives a slightly
worse signal-to-noise ratio (PSNR). Since we are after blocking artefact reduction, we will include
the latter filter in our assessment. We will refer to this algorithm, the recursive median filter with
fallback processing, as the median-fb filter. It can also be seen that the fall-back median filter
gives good results in combination with a commercial available 3-D RD block matcher, which was
one of the goals to be met.
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Figure 4.21: Objective test results for the step edge compensation algorithm and fall-back processing in
block impairment (GBIM) (a) and image fidelity (PSNR) (b).
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Figure 4.22: General loop filter design.

4.2.1 Evaluation

In the previous section, some improvements have been proposed for the initial algorithm. The best
results were obtained when applying a sinusoidal compensation signal to the block edges of the
original frame, based on the step size of the same edge of an interpolated frame. The interpolation
was performed with a motion compensated weighted average based on the previous and the next
frame, as defined in Equation 4.13. The filtered result is then used for the calculation of the
next interpolation. It was not possible to do the motion estimation on the filtered result, so both
recursive and non-recursive algorithms use the same motion vectors. Figure 4.21 shows the result
of the algorithm (step edge comp.) and of the proposed further processing:

e Soft thresholding (soft thr.) prevents new edges from being created but also leaves more
edges unaffected, increasing the blockiness.

e Fall-back processing (fallback) with a blind MPEG-4 (blind MPEG-4) processor improves
the results again for the non-processed image parts. The latter introduces the risk of real
sharp edges coinciding with block edges being blurred. However, we consider this a small
risk since natural sharp edges are already blurred for low bit rates.

The blocking artefact is, for highly compressed image sequences, not limited to only the bound-
ary discontinuity. In the next section, we propose a noise-filtering approach.

4.3 Noise-filtering

Another word for the blocking artefact is grid noise (see Chapter 3). The word noise suggests a
noise-like approach for filtering. Temporal noise filters are often implemented as recursive filters
(Infinite Impulse Response filters) to avoid expensive field or frame memories. Moreover, Infinite
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Impulse Response (IIR) filters have stronger noise suppression than Finite Impulse Response filters
[23, page 56]. This was also experienced in the previous sections. The general design for a noise
reduction filter is given in Figure 4.22. The output F(Z,n) of the filter is given as:

F(Z,n) = kF(Z,n) + (1 — k)F(& — D(&,n),n — 1). (4.22)

Here, k is a control parameter that lies between 0 and 1 and weighs the amount of recursion. A
motion detector calculates for each pixel the probability of motion. Generally, this motion detector
calculates the difference between two frames, low-pass filters the result to reduce the noise in the
difference image, then smoothes the result again to obtain a consistent motion detection. Where in
the past accurate motion estimation was not feasible, high performance accurate motion estimators
are now available in consumer electronics. We will use the motion estimator introduced before to
filter the pixels along the motion trajectory. In this way, we can access temporal neighbouring
pixels that have a strong correlation with the pixel under observation.

Error distribution

In the previous sections, we modelled the blocking artefact as a step discontinuity that can be
smoothed with a smooth compensation function. However, the blocking artefact is not limited to
this step continuity. To illustrate that, we will have a closer look at the error distribution within
each coding block. For each 8 x 8 coding block in an image n, we calculate the SAD between
the original picture and its corresponding MPEG-2 encoded and decoded picture for each relative
pixel position in the coding block:

Ty +1 Ty +1 .
F, N\ on)—F N 2l vo<ij<s, 4.23
((ybH) ") ((ybH) ")‘ bJ (4.23)

where F, is the original source sample and F is the encoded and decoded sample. Figure 4.23(a)
illustrates the distribution of the SAD for all blocks in an I-frame. The figure shows that pixels
near the block boundary deviate most from the original sequence, and that pixels in the centre of
the block are more reliable. With a numerical minimum of 6,079 and maximum of 11,274, the
amount of error is about twice as much at the border as in the centre. As an illustration, Figure
4.23(b) shows the same distribution for an bi-directionally predicted image (B-picture) which
contains high velocity motion (a moving tennis player against a panning background, cf. Figure
4.9(d)). The distribution is somewhat noisier and with a minimum of 9,379 and a maximum of
11, 819, the sample values in the centre are less reliable as in I-pictures, but the distribution still
shows the characteristic pattern. Now observe the distributions of the shifted blocks. From Figure
4.23(c) and 4.23(d) it can be found that near the centre, the predicted data is more reliable than
near the block borders. We can exploit the characteristics of this distribution of interpolated data
to reconstruct the original image. Because of the absence of correct data in the neighbourhood of
block edges, the de-blocking algorithm again becomes an interpolation problem.

Using the observations above, we will propose a new filter scheme that uses the distribution of
the errors with respect to the pixel position in the block. This position is characterized by the first
order approximation of the pixel distance (the Manhattan distance) to the block border, defined
for an 8 x 8 block as

-~ _ V) _ . _Jzmod 8 , if z mod 8 < 4,
d(z)=4d ((y)) = d(z) + d(y), with d(z) = {7 — (zmod8), if z mod 8 > 4, (4.24)

SADG,j)= )

F,€B

see also Figure 4.24.

Instead of a motion detector, we can use a motion estimator to control the value of k. Therefore,
we adapt the control parameter k such that it becomes dependent on the distance in the shifted
coding grid, just like we constrained the recursion with a soft threshold for the SAD. Such a
function is proposed in Figure 4.25. Here, dpmq. is the maximum pixel distance to the block
boundary, i.e. 6 for an 8 x 8 coding block. Note that for zero distance, the output is determined
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Figure 4.23: Sum of absolute differences (SAD) between the original tennis sequence and its MPEG-2
encoded (500kbps) reconstruction, sumnmed for each pixel position in an 8 x 8 block. Full white represents
the greatest SAD (unreliable), black the smallest (reliable). (a) is the distribution of I-frame 481, (b) of
B-frame 474. (c) and (d) are the respective distributions of the shifted grids.
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Figure 4.24: Manhattan distance to the block border.

only by the interpolation. Because the interpolation is also based on a future frame, errors will
slowly decay in time. To make errors decay faster, a more robust weighing scheme can be proposed
like shown in Figure 4.26, giving up some reduction in block impairment. The outcome of both
algorithms is found in Table 4.8. -
For the interpolation, the MC weighted average proposed in Equation 4.13 is used. The motion
compensation is performed on a shifted grid to profit from the continuity of the MC interpolation
at the location of the coding block boundaries. As in the previous section, we can apply soft
thresholding on the vector reliability and do fall-back processing with a non-motion compensated
algorithm. For the noise-filtering approach, the results can be found in Table 4.8.

algorithm MSE PSNR APSNR Mueeim Moceim Mebim
48] |dB]
original 0 (o] (o] 1.12552 1.29699 1.21126
decoded 166.901 25.906 0 1.66517 1.99610 1.83064
noise filtered 161.786  26.041 +0.135 1.20042 1.37814  1.28928
noise filtered, soft threshold 158.903 26.119 +0.213 1.28976 148710 1.38843
noise filtered, robust 160.040  26.089 +0.183 1.38491 1.62182 1.50337
noise filtered, fall-back 159.856  26.094 +0.188 1.12062 1.32772 1.22417

Table 4.8: Performance results for noise-filtering approach processing.

Algorithmic cost

Motion estimation on a shifted grid requires a mayor adaptation of the motion estimation to the
shifted grid. Furthermore, an advanced motion estimator that was used for the experiments would
require at least twice as much computational effort than an existing 3-D RS block matcher [50].
One of our goals was to implement a MC algorithm next to an existing architecture. Here we will
evaluate a similar noise reduction algorithm as above, using a less complex motion estimator that
is available in consumer electronics products as a non-shifted 3-D RS block matcher. The block
diagram of the post-processor is depicted in Figure 4.27. The motion estimator uses the previously
filtered frame for motion estimation, so saving an extra frame memory for the filtered result.
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Figure 4.27: Motion compensated de-blocking.

From Table 4.9, it can be seen that the non-shifted interpolation is not able to profit from the
continuity at the coding block grid and, therefore, is not able to reduce the blocking artefact as
effective as the shifted version does. Moreover, the motion estimation is less accurate, introducing
higher values for the MAD so that the fall-back algorithm is called more often, introducing more
blurring. A screen shot of the shifted and the non-shifted noise-filtering algorithm with fall-back
processing is shown in Figure 4.28.

4.3.1 Evaluation

In this chapter, we proposed several MC methods to deal with the blocking artefact. From an
initial algorithm that uses a smooth compensation signal to remove the discontinuities at block
boundaries, we arrived at a recursive noise-filtering method that both give good results in terms
of PSNR and GBIM when compared to a common non-motion compensated method. For the
step edge compensated algorithm (comp) and the noise-filtering algorithm (noise), the numerical
results are depicted in Figure 4.29 for the unrestricted, the soft thresholded (st) and the fall-back
processed (fb) tennis sequence. Furthermore, the median-fb filter dealt with in the previous
subsection is evaluated.

MC methods can reduce the blocking artefact, but with an effort that is much higher than
that of existing methods. When restricting the motion vector reliability, the blocking artefact
reduction will be less, but the image fidelity rises. Fall-back processing is a good alternative to
improve the image quality where the motion vectors are unreliable.

The non-shifted algorithm was found inferior to the shifted grid algorithm, except for the fall-
back median filter. In the next chapter, we will assess the three shifted MC methods, the step
edge compensation, the noise-filtering approach, with and without soft thresholding and fall-back
processing, and the fall-back median filter, on several regular and demanding sequences.
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algorithm MSE PSNR APSNR Mnceiv Muesim MeeiM

4B]  [dB]
original 0 0 0 1.12552 1.29699 1.21126
decoded 166.901 25.906 0 1.66517 1.99610 1.83064
non-shifted 170.152 25.822 -0.084 1.31943 1.49902 1.40923
non-shifted, soft threshold 160.682 26.071 +0.165 1.38689 1.60721 1.49705
non-shifted, fall-back 174.494 25.713 -0.193 0.90252 1.19453  1.04853

Table 4.9: Performance results for noise-filtering approach processing without shifted motion estimation
and compensation. The difference is especially visible at the edge indicated by a white circle.

(a) (b)

Figure 4.28: Image post-processed with the noise-filtering algorithm with fall-back processing, with
prediction on a shifted grid (a) and a non-shifted grid (b).
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Figure 4.29: Objective test results for both step edge compensation and noise reduction algorithms in
block impairment (GBIM) (a) and image fidelity (PSNR) (b).
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Chapter 5

Evaluation

In the previous chapter, we presented several algorithms for the removal of the blocking artefact.
For the evaluation of the algorithms, we will compare them to some existing non-motion com-
pensated algorithms in the literature and industry since a reference implementation of a motion
compensated de-blocking algorithm was absent. A de-blocking algorithm from the Moscow State
University, available as software plug-in and for which the implementation is not documented, is
also assessed. Both methods that use bit stream parameters as well as “pure” post-processing
algorithms that lack bit stream information are evaluated.

5.1 Sequences

To assess the algorithms, some more and less critical sequences are chosen with respect to motion
estimation. Though the objective of the test is not to test the quality of the motion estimator,
the filter must be robust to erroneous estimates. The following sequences were evaluated, with
the corresponding criteria:

e birds. Panning sky with flying birds. Their wings are smaller than the block size, making it
hard to find the motion vectors. The air has a smooth gradient that makes it very susceptible
to quantization. The sequence consists of 50 frames.

e golf. Panning background with high frequency details (grass, tree). Occlusion of the back-
ground by the golf player. The scene has 48 frames.

e k3. Video clip, 60 frames, containing high velocity vertical motion.

e ngc. Sequence of 77 frames captured from National Geographic Channel. Contains motion
in all directions with high velocities.

e ngc2. Another 60 frames from National Geographic Channel, with transparency, high ve-
locities, and combined video formats. Very hard to estimate motion.

e susie. Susie on the phone, 50 frames. Almost no motion, so motion estimation should give
near-zero motion vectors here. An artificial alignment stripe pattern is present at the top
and at the bottom of the image.

The sources are uncompressed, or at least compressed at such a bit rate that there is hardly
noticeable degradation of the image quality. The resolution of the sequences is 720 x 576 pixels at
25 frames per second (PAL), except for the birds sequence, which has a resolution of 720 x 480
at 30 frames per second (NTSC). Each sequence has a duration close to two seconds. A screen
shot for each sequence is pictured in Figure 5.1.
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(a) birds (b) golf (c) k3

(d) ngc (e) ngc2 (f) susie

Figure 5.1: Test sequences used for evaluation.

5.2 Algorithms

The MPEG-2 codec is used for the experiments. The reference encoder and decoder are provided
by the MPEG Software Simulation Group (MSSG)[60]. Because we focus on low bit rate Internet
Video, we also want to measure the performance of de-blocking algorithms for different low bit
rates. Therefore, each sequence is evaluated for an encoding bit rate of 500kbps and 1, 000kbps.
The following algorithms were selected for evaluation:

mpeg-4. MPEG-4 de-blocking algorithm proposed in [36] and explained in Subsection 3.7.1.
The post-processing was done inside the reference MPEG-2 decoder, since the algorithm
uses the quantization scale parameters that are encoded in the bit stream. The technique
requires a modification of the decoder and is as such not “pure”.

msu. Version 2.0 of the de-blocking algorithm developed at the Graphics and Media Lab-
oratory of the Moscow State University (MSU) [89]. The filter is meant as a VideoCD
(MPEG-1) restoration filter and is used as a software plug-in for video processing software
(VirtualDub).

shift. Shifted grid filter proposed by Nosratinia et al. [64] in Subsection 3.2.2. The method
uses an estimated quantization scale parameter, obtained by the DATES block grid estimator
developed at Philips Research Laboratories.

3-mode. Three-mode filter, implemented by Philips Research Laboratories, that uses three
different compensation signals with three different strengths (cf. Figure 4.6). The algorithm
does not use stream information, but measures the local activity like the MPEG-4 de-blocking
algorithm.

blind. The same MPEG-4 de-blocking algorithm observed before, but with no knowledge
of the quantization parameter. The quantization parameter is assumed infinite.
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e comp. The MC recursive step edge compensation algorithm proposed in Chapter 4, with the
sinusoidal compensation signal. The implementation using soft thresholding with M AD ., =
32 is referred to as the comp-st algorithm, whereas the algorithm that incorporates blind
MPEG-4 fall-back processing is called comp-£b.

e noise. The MC recursive noise-filtering method proposed in Chapter 4. Again, noise-st
and noise-£b refer to the method using soft thresholding and fall-back processing respec-
tively.

e median-fb. The recursive MC median filter with fall-back processing, proposed in Chapter
4.

5.3 Objective results

The motion estimator requires the previous image and the next image in the sequence and as a
result, the first and the last frames are not post-processed. Therefore, the first and the last frame
of each sequence were not included in the calculation of the metrics.

The results in terms of image fidelity (MSE, PSNR) and blocking artefact (GBIM) are listed
in Appendix B. Figures 5.4 and 5.5 give the PSNR improvement (positive axis) with respect to
the decoded sequence. Figures 5.2 and 5.3 show the GBIM metric for each algorithm, with the
original sequence as a reference. A GBIM close to the original GBIM indicates a good estimate,
a GBIM above the original GBIM means that the algorithm on average preserves some blocking
artefact, while a GBIM lower than the original indicates over-smoothing. PSNR is a measure for
image fidelity. A positive value represents an improvement with respect to the initial decoded
sequence. The filtered result is then closer to the original sequence. Note that GBIM and PSNR
are global metrics: severe local errors are levelled out over the entire image and over the entire
sequence, and are not represented by the metrics.

The figures reveal that for different bit rates, all algorithms behave quite similarly. Both
500kbps and 1,000kbps encoded sequences show almost the same amount of blockiness for mod-
erate and high velocity motion. Differences in blockiness for the two bit rates become visible for
sequences with low velocity motion (e.g. the golf and susie). Still the post-processed results
arrive at around the same quality in terms of blockiness and PSNR improvement, except for the
methods using soft thresholding. In that case, the blockiness will depend more on the blockiness
in the original sequence.

Objective observations show that MC methods are able to reduce the blocking effect. However,
the differences with existing methods, whether or not using the quantization parameter from the
bit stream, are hardly noticeable in areas where the motion estimation is accurate (see Figures
5.6, 5.7, and 5.8). As an example, observe the motion vector reliability in Figure 5.9 and compare
an existing non-motion compensated method such as MPEG-4 de-blocking (Figure 5.6(c)) with a
MC method (Figure 5.7(a) or 5.7(b)). Where the motion estimation is not reliable, unconstrained
processing leads to the introduction of new edges in case of the step edge compensation signal
(Figure 5.7(a)). Constraining the motion vector reliability prevents this new artefact, but instead
leaves the blocky original unaffected (Figure 5.7(c)). A non-motion compensated fall-back algo-
rithm can remove those unfiltered areas (Figure 5.7(e)). MC de-blocking with fall-back processing
does not give a substantial improvement over fall-back processing alone. In fact, it was observed
that the MC filter leaves some block edges untouched where both the interpolation is reliable and
the motion vectors are zero, or more in general, where the motion vector components are zero
modulo the block size (0 mod 8).

For the noise-filtering approach, unconstrained filtering yields the best possible results in terms
of blocking impairment (GBIM), but can cause severe artefacts in fast changing sequences (see
screen shot in Figure 5.7(b)), which explains the strong deviation in the PSNR improvement figure
for the ngc2 sequence. Here, the motion cannot be tracked and the scenes change to quickly for the
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Figure 5.2: Objective test results for all test sequences in block impairment (GBIM).
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Figure 5.3: Objective test results for all test sequences in block impairment (GBIM).
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Figure 5.4: Objective test results for all test sequences in image fidelity (PSNR).
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Figure 5.5: Objective test results for all test sequences in image fidelity (PSNR).
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Figure 5.6: Frame 39 from the NGC2 sequence at 1,000kbps (non-motion compensated methods).
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Figure 5.7: Frame 39 from the NGC2 sequence at 1,000kbps (motion compensated methods).
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(a) median-fb

Figure 5.8: Frame 39 from the NGC2 sequence at 1,000kbps.

Figure 5.10: Smearing of artificial edges due to blind post-processing in the susie sequence.
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errors to fade. The artefact remains visible even with soft thresholding and fall-back processing
(cf. Figures 5.7(d) and 5.7(f)).

In general, step edge compensation yields slightly better results for de-blocking than the noise-
filtering approach.

The large deviation in PSNR improvement for the susie sequence can be explained by a failing
fall-back algorithm. The artificial alignment stripe pattern contains ambiguous areas where the
algorithm flips between strong and weak filtering, showing smeared edges near the original sharp
edges (Figure 5.10). This suggests the use of a more reliable fall-back algorithm.

The difference in PSNR improvement for all non-motion compensated and MC methods in
image fidelity is lies roughly in the order of tenths of dBs.

5.4 Subjective evaluation

GBIM gives an indication of the block impairment for still images, but does not give a measure for
the blocking artefact that are not aligned with the coding grid. Furthermore, the GBIM metric
does not give the warranty that a picture is not over-smoothed. The PSNR must be observed next
to the GBIM to guard the image fidelity. Both GBIM and PSNR are global metrics, averaged over
the entire image and over the entire sequence, not taking into account local errors. For example,
the nge2 sequence shows a post-processing artefact (cf. Figure 5.7(f)) which is not reflected by the
PSNR improvement (+0.118dB). A more reliable comparison follows from a subjective assessment.

A simple method to compare different algorithms to each other is by paired comparison. In
a paired comparison, a representative number of observers is presented several pairs of sequences
in split screen (left and right) on a single monitor, each for which they have to decide which
one of the two they prefer. For the analysis afterwards, it is obligatory that the viewer makes a
decision. Since the difference in block impairment and image fidelity is low for the best-performing
algorithms assessed before, we expect the observers to need more time (one minute maximum) to
make a decision. Therefore, we aim at a reduced number of stimuli (pairs) per observer, limiting
the number of algorithms to be evaluated and the number of sequences. An average duration of
15 minutes was acceptable for most people.

We decided to compare a low-cost, well-performing non-motion compensated algorithm and
three motion compensated methods that gave the best objective results in terms of block impair-
ment (GBIM), four algorithms in total:

e mpeg-4, a common, low-cost de-blocking technique that is popular in the industry and often
used as a reference in the literature [36].

o comp-fb, the MC step edge compensation algorithm with blind MPEG-4 fall-back processing
proposed in Chapter 4.

e noise-fb, the MC noise-filtering approach proposed in Chapter 4, including fall-back pro-
cessing.

e median-fb, the fall-back median proposed in Chapter 4.

Without the decoded sequence, there are (3

decoded sequence is left out on purpose. The reason for this is that the difference between the
decoded sequence and any post-processed sequence is that obvious, that a comparison would yield
a statistically significant difference between decoded sequence and the post-processed sequences,
leaving the post-processed sequences clustered with no statistical significant mutual difference.
The six combinations appear in random order, and at random screen positions (left or right), to
prevent biasing of the test results by the display order or the screen position.

The chosen sequences include both moderate and high velocity motion in different directions,
different scale of detail, and other difficulties like gradients and logos. Three sequences meeting
those requirements are selected, birds, golf, and nge, making a total of 3 x 6 = 18 stimuli per

) = 6 possible combinations of algorithms. The
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Figure 5.11: Perception test results.

observer (about 15 minutes). A repetition measurement is not performed for the same reason
mentioned before. The two-second sequences are concatenated in palindromical order to make
a longer, continuous sequence. As for the objective measurements, the first and last frames of
each sequence are left out. These are typical I-frames, showing heavy blockiness when displayed
unprocessed. To avoid the influence of artefacts in the chrominance pictures, the observers are
only presented with luminance information.

Prior to the actual test, the observers were given a set of two training pairs. The first pair
showed the decoded sequence and a randomly chosen post-processed sequence (again at random
screen position) to demonstrate the maximum possible difference. The second pair showed two
different randomly chosen post-processed sequences to demonstrate the minimum difference they
might expect. The blockiness in all sequences was almost identical, so the observers were asked
to rate the overall picture quality.

The test setup was made in a visual perception room on a 37” flat panel LCD monitor against
a grey wall. The room is visually isolated from its environment, providing a moderate amount
of background illumination to prevent eyestrain. The original SD resolution was kept in order to
prevent the introduction of scaling artefacts. Since the performance difference of the algorithms
was almost imperceivable at the standardized viewing distance of 6 times the active screen height,
the viewing distance was reduced to 3 times the active screen height, a normal viewing distance
for a customer in a shop.

5.5 Subjective results

Among the viewers, 2 women and 13 men, were several people with experience with picture quality
(about 10), along with some less experienced viewers. Less experienced viewers on average took
more time to make a judgement (around 60 seconds) than experienced viewers (around 30 seconds).
Most of the observers reported that it was difficult to differentiate between the algorithms.

The results of the test can be found in Table C.1 in Appendix C. At first glance, each particular
pair of algorithms shows a different score for different sequences. A numerical analysis indeed
supports the observation that the results depend on the sequence, assuming that a maximum of
5% of the decisions in the experiment were false [73]. For more details, see Appendix C. This
means that the results have to be evaluated per sequence, and not as a total.

Table C.1 gives a multi-dimensional comparison of the algorithms. The easiest way to compare
different algorithms is to evaluate them one-dimensionally. The Thurstone model is the most
common statistical model for paired comparisons. This model yields so-called z-scores for each
algorithm. The z-score is a measure that indicates how much the ratio between “better” and
“worse” deviates from the fifty-fifty situation, normalized by the worst performing algorithm (in
our case the mpeg-4 algorithm). The calculated values that result from the Thurstone model,
described in 73], can be found in table C.2 in Appendix C. The one-dimensional visual result is
shown in Figure 5.11

The relations have to be thought of in terms of statistical significant difference. For example,
for the birds sequence, the distance along the z-axis between median-fb and comp-£b is relatively
small, indicating no significant difference, as well as the distance between comp-fb and noise-fb,
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and between median-fb and noise-fb. We group these mutual close algorithms by underlining
them like

mpeg — 4 < median — fb < comp — fb < noise — fb, (5.1)

where the “less than” operator in a < b indicates that algorithm b performs better than algorithm
a. The meaning of the underline is that the grouped algorithms lie in each other’s confidence
intervals, which means that their mutual order could change in another experiment, assuming
that the observers made a wrong decision in a maximum of 5% of the cases. Similarly, we can
write such a relationship for the golf and the ngc sequence:

mpeg — 4 < comp — fb < noise — fb < median — fb, for the golf sequence, (5.2)

mpeg — 4 < noise — fb < comp — fb < median — fb, for the ngc sequence. (5.3)

When investigating equations 5.1, 5.2, and 5.3, the only conclusion that can be drawn is that
the both comp-fb and noise-fb perform equally. As also remarked during the perception test,
the birds and the ngc sequences will not occur often in an average television broadcast, and if
they occur, their appearance will be short. To this respect, the golf sequence is a more natural
sequence that is more likely to occur in normal television broadcast. If we assume this sequence
to be more representative for broadcast content, the beneficial properties of the fall-back median
filter with respect to reduction of noise like ringing and mosquito noise becomes clear from the
outlying z-value, as previously remarked in Section 4.2. The noise-filtering characteristics of the
fall-back median filter was also noticed by some observers, who reported the mosquito noise in the
detailed parts (e.g. grass) of the golf sequence as most annoying.
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Chapter 6

Conclusions and
Recommendations

6.1 Conclusions

In the last decades, numerous approaches have been developed to repair the most objectionable
degradation of block transformed images and video sequences, the blocking artefact. Next to
adaptive filtering methods that target on image enhancement and are very popular in the industry,
image restoration techniques can be found in the literature. These approaches can be subdivided
into set theoretic methods such as Projection Onto Convex Sets (POCS) and Constrained Least
Squares (CLS), and statistical estimation methods like Maximum A Posteriori (MAP) probability
based restoration and anisotropic diffusion.

We concluded in Chapter 3 that non-adaptive filtering offers no improvement and that edge-
based filtering is not appropriate since the edges of highly compressed images are heavily distorted.

Set theoretic methods rely on the definition of the constraint sets. Often, these constraints
leave too many images in the solution set, including many distorted images, making POCS-based
methods not perform very well, especially considering their high computational load. Generally,
iterative restoration techniques are too expensive for real-time applications and will be only found
in off-line processing applications.

There are algorithms that use bit stream information, often the quantization parameter, to
repair the distorted sequence. We aimed at a method that does not use this information, because
a decoder is often implemented as a standard component, which has an input bit stream and
presents the decoded pictures at the output. Parameter extraction would require a modification
of the decoder.

Many existing algorithms model the process of block DCT coding and quantization for still
images, but do not take into account the process of motion compensation (MC) when extending
traditional algorithms to digital video. In this report, we presented a motion compensated ap-
proach for the removal of the blocking artefact. In Chapter 3, we set up the following requirements
for a post-processor. We repeat these requirements here:

The filtering scheme has to be adaptive, preferably not based on an edge map.

e The algorithm must have a limited computational complexity to make it suitable for real-
time implementations.

The technique must model the process of motion compensation that takes place in block-
DCT-based video coding schemes.

To avoid modification of existing decoders, the post-processor does not use coding parame-
ters, except for the size and location of the coding grid.
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All but one requirement from above list has been met. The real-time implementation intro-
duced in the Chapter 4 was not able to give satisfying results, except for the MC median with
fall-back processing. The use of a state-of-the-art motion estimator on a shifted coding grid makes
the observations in this report more of academical value instead of practical. We will list further
conclusions below.

¢ Motion compensated methods are able to reduce the blocking artefact. Though compared
to existing methods, whether or not using the quantization scale parameter, the methods
that use unrestricted step edge compensation or noise-filtering developed in this study on
average yield worse results than existing methods and are far more complex.

¢ The result of a motion compensated filter strongly depends on the reliability of the motion
vectors. With reliable vectors, an improvement in image fidelity as well as subjective results
can be achieved comparable to non-motion compensated methods. Without reliable vectors,
some artefacts remain. In those cases, reliable fall-back processing improves the result. Non-
motion compensated fall-back processing introduces the risk of real sharp edges coinciding
with block edges being blurred too. Because natural sharp edges are already blurred for low
bit rates we consider this a small risk. Even if the vectors are reliable, the MC interpolation
does not always give useful information. If both the interpolation is reliable and the motion
vectors are zero (or more in general, when the motion vector components are zero modulo
the block size (0 mod 8)), the blocking artefact is still present in the interpolation and the
artefact remains after filtering.

e Comparing the MC techniques presented in this report with the fall-back processing alone,
there is no considerable gain in blocking artefact reduction, nor in image fidelity. The
calculation of a MC interpolation requires accurate and dense motion vectors. The state-
of-the-art motion estimator that was used for the experiments would require almost all
the resources of a current commercial multimedia processor. Considering the complexity,
less complex non-motion compensated algorithms still provide the best alternative for de-
blocking. However, the MC median with fall-back processing does give better subjective
results in terms of ringing artefact and mosquito noise.

¢ Lastly, we found that the GBIM metric does not give a measure for those blocking artefact
that are not aligned with the coding grid and does not give any warranty that a picture is not
over-smoothed. The Peak Signal-to-Noise Ratio (PSNR) metric guards the post-processed
image fidelity and has to be observed next to the GBIM metric. Subjective evaluation
remains necessary for the assessment of algorithms on picture quality improvement.

6.2 Recommendations

In this project, a few motion compensated algorithms were proposed and evaluated for the removal
of the blocking artefact. The process of motion compensation was added to the model of block-
based transformation and quantization. Since a well-documented existing MC method could not
be found, we compared the proposed algorithms to existing adaptive methods, optionally using
parameters from the encoder.

e As stated in Chapter 4, an optimal de-blocking algorithm has access to the decoder, were
the picture types, motion vectors, reference images, and quantization scale parameters are
available. Future research might include the extraction of these parameters, and how they
can optimally be used to improve picture quality.

o It was assumed that the pictures were directly available from the decoder, such that the block
sizes are 8 x 8 samples and the blocks are aligned to the image origin. Block edges were
not blurred by spatial down and up-sampling elsewhere in the video chain. Post-processors
should also consider non-aligned coding grids. For the detection of the coding grid and
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its offset from a re-sampled sequence, accurate algorithms are already available at Philips
Electronics.

e The motion estimator that was used is a advanced propriety 8 x 8 block matcher from
Philips Research Laboratories. Less complex motion estimators are available for consumer
electronics, but the performance of such an algorithm was not evaluated.

e The motion vector reliability threshold used in this project, expressed in Mean Absolute
Differences (MAD), was experimentally determined. Song et al. [83] proposes that this
threshold depends on a noise figure. This can be implemented with a noise estimator.

o A simple model for occlusion problems was proposed. Possibly, better results can be gained
with a more advanced occlusion model. For example, instead of block-based interpolation,
also pixel-based interpolation can be evaluated. The calculation of motion vectors per pixel
is often implemented with median filters as a process called block erosion, which is com-
putationally expensive. The block-based approach was also preferred over the pixel-based
approach by Tang et al. [85].

e The influence of post-processing filters like sharpness and contrast improvement was not
evaluated. These image enhancement methods are often part of the video chain, and can
have an effect opposite to that of artefact reduction techniques.

6.3 Final remarks

Although post-processing is a means to reduce artefacts caused by lost information, none of the
techniques is fully able to restore the lost data. In the development of next-generation video
codecs, more effort is dedicated to the reduction of coding artefacts at the encoder side. The
lapped orthogonal transform, mentioned in the Chapter 1, is such a technique. To conclude this
report, we will give a short overview of the recent developments, with the Advanced Video Coding
(AVC) scheme as an example.

The ITU Video coding Experts Group VCEG and the ISO/IEC MPEG, joint in the Joint Video
Team (JVT), established an Advanced Video Coding standard called H.264, H.26L, ISO/IEC
MPEG-4 Advanced Video Coding, or MPEG-4 Part 10 [24]. The codec claims to achieve an
average gain of 5.8dB over MPEG-2 at a transmission rate of 1024kbit/s and a frame rate of
30frames/s. We will list some improvements with respect to MPEG-2.

e In AVC, an alternative 4 x 4 DCT using integer arithmetic is applied, achieving a trans-
formation to the frequency domain with less computational effort, but with the advantages
of the frequency domain transform [79]. The smaller block size reduces the ringing arte-
fact, and the integer transform reduces the mismatch between encoder and decoder that was
previously caused by different implementations of the DCT and IDCT.

e AVC uses a block-based coding scheme similar to that of MPEG-2 and MPEG-4. It reduces
the blocking artefact by an adaptive in-loop de-blocking filter that is present in both the
encoder and decoder system [78]. The filter smoothes block edges based on prediction type
(intra or inter macroblock coding), motion vector values, prediction error energy (the number

of coded transform coeflicients), difference in reference pictures, and the gradient along the
block edge.

e Further compression is achieved by spatial prediction, the use of context adaptive entropy
coding, and the use of multiple reference pictures with motion compensation at different
block sizes (see Chapter 2).

As techniques like AVC gradually come into use, future systems will make post-processing for
e.g. ringing and blocking artefacts more and more obsolete.
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Abbreviations and Acronyms

3-D RS
AC
ADRC
ASP
AVC
BAM
BD
BDCT
BGD
CABAC
CD
CIF
CLS
DADAR
DATES
DC
DCT
DFT
DVB
DVD
DWT
FIR
GB
GBIM
GOP
HD
HVS
IDCT
IEC
IEEE
IIR

IP

ISO
ITU
JND
JPEG
JVT

Three-dimensional Recursive Search
Alternating Current

Adaptive Dynamic Range Coding
Advanced Simple Profile

Advanced Video Coding

Blocking Artefact Meter

Blu-ray Disk

Block Discrete Cosine Transform

Block Grid Detector

Context-based Adaptive Binary Arithmetic Coding
Compact Disk

Common Intermediate Format
Constrained Least Squares

Digital Artifact Detection And Repair
Digital Artifact Estimator

Direct Current

Discrete Cosine Transform

Discrete Fourier Transform

Digital Video Broadcast

Digital Versatile Disk

Discrete Wavelet Transform

Finite Impulse Response

Gigabyte, 1,024 kilobytes

General Block Impairment Metric

Group of Pictures

High Definition

Human Visual System

Inverse Discrete Cosine Transform
International Electrotechnical Commission
Institute of Electrical and Electronics Engineers
Infinite Impulse Response

Internet Protocol

International Organization for Standardization
International Telecommunication Union
Just Noticeable Difference

Joint Photographic Experts Group

Joint Video Team
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kbit
kbps
LCD
LMMSE
LOT
LSI
MAD
MAP
Mbit
MC
MLP
MPEG
MP@ML
MSDS
MSE
MSSG
MSU
NTSC
PAL
PCA
POCS
PSNR
RGB
SAD
SAF
SD

SP
SECAM
SVCD
TMAP
vV
VCEG
VHS
VLC
VOP
YCbCr

kilobit, one thousand bits (1,000, not 1,024)
kbit per second

Liquid Crystal Display

Linear Minimum Mean Squared Error
Lapped Orthogonal Transform

Local Spatial Inconsistency

Mean Absolute Difference

Maximum A Posteriori

Megabit, one thousand kilobits (1,000, not 1,024)
Motion Compensated

Multi-Layer Perceptron

Moving Picture Expert Group

Main Profile at Mail Level

Mean Squared Difference of Slope

Mean Squared Error

MPEG Software Simulation Group

Moscow State University

National Television Systems Committee
Phase Alternation Line

Principal Component Analysis

Projection Onto Convex Sets

Peak Signal-to-Noise Ratio

Red, Green, and Blue colour space

Sum of Absolute Differences

Spatial Adaptive Filtering

Standard Definition

Simple Profile

Systéme Electronique Couleur Avec Mémoire
Super Video CD

Temporal Maximum A Posteriori

Television

Video Coding Experts Group

Video Home System

Variable Length Code

Video Object Plane

Y (luminance), Cb and Cr (chrominance signal for blue and red colour differences
respectively) colour space
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Appendix A

A block coding example

This Appendix illustrates the consequences of quantization with an example. Therefore, we use a
codec developed by the MPEG Software Simulation Group (MSSG) as a reference [60]. Observe
an intra coded 8 x 8 image detail in Figure A.1(a). The corresponding 8-bit sample values b(z, y)
are shown in Figure A.1(b), where full white represents the value +127, and full black the value
—128. For convenience, we will drop the spatial (Z) and temporal (n) dependencies. The encoder
performs the DCT transform of Equation 2.16, resulting in the DCT coeflicient block B(u,v) in
A.1(c), where the coefficients are rounded to integer values according to the function

B'(v,u) = | B(v,u) + 0.499999. (A.1)

Compare the coefficients with the contributions of the basis images in Figure 2.8(a) to the orig-
inal image. Figure A.1(d) shows the DCT coefficients as an image, normalized by its maximum
amplitude, where intermediate grey is the zero level. The more the coefficient deviates from zero,
the more the corresponding basis image is present in the original image. Note that DCT coef-
ficients can range from the value —1024 to +1016, which is representable using 12-bit numbers.
Suppose the encoder uses the quantization matrix from Figure 2.8(b) with elements quant(u, v).
The quantized coefficients Q(u,v) can be calculated with Equation A.2.

32’|B'("s“)|+[%(u’v)JJ + L3~qscale+2J
. B . gquant(u,v) 4 0V 0,
Qu,v) = sign(B'(u,v) - | 2 - gscale Lu#oves (A.2)

B’ 4
sign(B’(u,v)) - [%—J ,u=0Av=0.
Suppose the encoder decides to use a quantization scale gscale = 24. Then the quantized
coefficients become as in the matrix of Figure A.1(e). Traversing the quantized coefficients in
zigzag order as indicated in Figure 2.9, yields the following sequence of zero run-length and value
pairs (for the AC coefficients), where the EOB marker signals the End Of the Block:

(1,—-1)(0, —5)(5,1)(0, 5)(8, —1)(0, —2)(0, —3)(13, 3)(0, 1}(EOB).

Negative values are encoded as if they were positive. An additional bit added later encodes for
the sign. Each pair is assigned a variable length code, as demonstrated in Table A.1. A total of 79
bits is required to encode the AC coefficients. The decoder reconstructs the quantized coefficients
and de-quantizes them according to Equation A.3 (see Figure A.1(f)). The quant parameter is

encoded in the stream.
|Q(u, v)| - quant(u,v) - gscale

Fuw) = {sign(o(u, o) | = J foru 0V o £0, (A.9)
8- Q(u,v) ,foru=0Av=0.

The reconstructed samples can be found by rounding the IDCT samples (Figure A.1(g)). Figure
A.1(h) shows the reconstructed result.
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(run-length, absolute value) variable length code sign bit
@, 1) 010 1
0, 5) 11101 1
(5, 1) 000111 0
0, 5) 11101 0
8, 1) 0000101 1
0, 2) 110 1
0, 3) 0111 1
(8, 1) 0000101 1
(13, 3), no VLC defined, use escape code 000001

6 bits to encode a zero-run-length of 13 001101

12 bits to encode the value (2’s complement) 000000000011

0, 1) 10 0
end-of-block marker 0110

Table A.1: Encoded AC coefficients for gscale = 24.

Now suppose the encoder decided to use gscale = 112. Then the quantized coeflicient matrix
would look like Figure A.1(i), yielding the zero-run length and value pairs

(2,-1)(6,1)(24,1)(EOB)

and their corresponding variable length codes in Table A.2. The encoder now outputs only 32
bits, gaining compression with a factor of more than two. After de-quantization (Figure A.1(j)),
the reconstructed samples (Figure A.1(k)) look like in Figure A.1(1), clearly showing a ghost edge
near the original edge (ringing artefact).

(run-length, absolute value) variable length code sign bit
1) 00101 1

6, 1) 0000110 0

(24, 1) 0000000011101 0
end-of-block marker 0110

Table A.2: Encoded AC coefficients for gscale = 112.
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Figure A.1: MPEG-2 block coding example. Figure (a) is an original image detail. The correspond-
ing sample values and its DCT coefficient matrix are shown in (b) and (c) respectively. (d) shows the
DCT coefficient matrix as a scaled image. After quantization (e), the inverse quantization leads to an
approximated coeflicient block (f) from which a reconstruction can be made (g). (i) is the result of coarse
quantization, yielding in coefficient matrix (j) and reconstruction (k). (h) and (1) show the reconstructed
images after moderate quantization and after coarse quantization respectively.
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Appendix B

Measurement results

The following tables show the numerical objective measurement results for the experiments in this
report. The results of the MSU de-blocking algorithm could not be expressed in terms of image
fidelity, because the reference decoder could not be used. Furthermore, the output format required
conversion into another colour space, introducing more deviation from the original and biasing the
error measures. The PSNR improvement with respect to the decoded sequence after colour space
conversion, as well as the GBIM metric, could in fact be calculated.

For all sequences, the first and the last frames were not included in the measurement for reasons
found in Chapter 4.
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algorithm MSE PSNR APSNR Myeeiv MM MeBim

dB]  [dB]
original 0 o0 o0 1.25771 1.54992 1.40382
decoded 84.907 28.841 0 3.03044 4.07051  3.55047
mpeg-4 74.623  29.402 +0.561 1.31613 1.68223  1.49923
msu +0.490 1.19963 1.43915 1.31990
shift 70.853 29.627 +0.786 1.58516 1.85251  1.64577
3-mode 76.853 29.274 +0.433 1.22271 1.29609 1.25940
blind 73.300 29.421 +0.580 1.25295 1.49302 1.37299
comp 76.126 29.315 +0.474 1.06332 1.13404 1.09686

comp-st 76.054  29.320 +0.479 1.85294 2.23922  2.04608
comp-fb 75.220  29.367 +0.526 1.07413 1.19666  1.13540
noise 87.010 28.735 -0.106 1.36753 1.58733  1.47743
noise-st  77.020 29.265 +0.424 2.10398 2.60001  2.35200
noise-fb  75.893  29.329 +0.488 1.26647 1.50416  1.39032
median-fb 74.451 29.412 +0.571 1.50687 1.77963  1.64325

Table B.1: Measurement results for the birds sequence, encoded with 500kbps.

algorithm MSE PSNR APSNR Mpgeim MugeiM MeBim

dB] __ [dB]
original 0 o0 o0 1.25771 1.54992  1.40382
decoded 80.221 29.088 0 2.94276 3.92994  3.43635
mpeg—4 70.312 29.661 +0.573 1.30390 1.66612  1.48501
msu +0.470 1.23129 1.46911 1.35020
shift 66.839 29.881 +0.793 1.57362 1.83665 1.70514
3-mode 72.071 29.553 +0.465 1.18420 1.28453  1.23437
blind 70.156  29.670 +0.583 1.24225 1.48296 1.36261
comp 71.955 29.560 +0.472 1.05171 1.10604 1.07888
comp-st 71.681 29.577 +0.489 1.80309 2.13673 1.96991
comp-fb 70.955 29.621 -0.533 1.06341 1.18046 1.12194
noise 83.069 28.936 -0.152 1.34768 1.55196  1.45282

noise-st  72.714  29.515 +0.428 2.05226 2.49789  2.27508
noise-fb  71.730 29.574 +0.483 1.26193 1.48536  1.37365
median-fb 70.229  29.666 +0.578 1.49103 1.76279  1.62691

Table B.2: Measurement results for the birds sequence, encoded with 1, 000kbps.
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algorithm MSE PSNR APSNR MhGBlM MvGBlM MG’B[M
[4B] [dB]
original 0 00 00 1.02611 1.16694 1.09653
decoded 58.239 30479 0 2.66344 2.38934 3.02639
mpeg-4 56.387  30.619 +0.140 1.21650 1.19292  1.20471
msu +0.040 1.36497 1.34408 1.35453
shift 55.631  30.678 +0.199 1.23465 1.31979  1.27722
3-mode 56.958  30.575 +0.096 0.89871 0.90227  0.90049
blind 57.023  30.570 +0.091 1.11914 1.07612 1.09763
comp 56.696  30.595 +0.116 1.26239 1.54099  1.40169
comp-st 57.065  30.567 +0.088 1.88326 1.90267  1.89297
comp-fb 57.827  30.509 +0.030 1.10487 1.20925 1.15706
noise 56.008  30.648 +0.169 1.46824 1.70658 1.58741
noise-st 56.535  30.608 +0.129 1.99942 2.00558  2.00250
noise-fb 57.372  30.544 +0.065 1.24040 1.31816  1.21928
median-fb 55.579  30.682 +0.203 1.22429 1.23058 1.22744

Table B.3: Measurement results for the golf sequence, encoded with 500kbps.

algorithm MSE PSNR APSNR MhG’BlM MvG’BlM MG’B[M
4B
original 0 00 00 1.02611 1.16694 1.09653
decoded 30.237  33.325 0 1.65807 1.63111  1.64459
mpeg—4 29.148  33.485 +0.160 1.06532 1.08482  1.07507
msu +0.034 1.21272 1.26603  1.23938
shift 28.732  33.547 +0.222 1.19275 1.25503  1.22389
3-mode 30.220  33.328 +0.003 0.76882 0.78717  0.77800
blind 30.033  33.355 +0.030 0.98838 0.98750 0.98794
comp 29.391  33.449 +0.124 1.01794 1.15929 1.08862
comp-st 29.361  33.453 +0.128 1.21748 1.28090 1.24919
comp-fb 30.630 33.269 -0.056 0.96209 1.03302  0.99756
noise 29.151 33.484 +0.159 1.14627 1.28503 1.21565
moise-st 28.959  33.513 +0.188 1.31302 1.37520 1.34411
noise-fb 30.288  33.318 -0.007 1.05842 1.12845 1.09344
median-fb 29.057 33.498 +0.173 1.05761 1.09005 1.07383

Table B.4: Measurement results for the golf sequence, encoded with 1, 000kbps.
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algorithm MSE PSNR APSNR Mieeiv My MeBim
[4B] [¢B]
original 0 (o) o0 1.35546 1.17273  1.26410
decoded 40.702  32.035 0 4.17340 4.50997 4.34169
mpeg-4 34.082 32.741 +0.706 1.53486 1.69861 1.61674
msu +0.207 1.22451 1.48821 1.35636
shift 34.844 32.710 +0.675 1.97939 2.49571 2.23755
3-mode 35.157  32.671 +0.636 1.17659 1.32927 1.25293
blind 33.775  32.845 +0.810 1.37661 1.52132  1.44897
comp 36.083  32.558 +0.523 1.86521 2.45947 2.16234
comp-st 37.560 32.384 +0.349 2.81938 3.31506  3.06722
comp-fb 34.146  32.797 +0.762 1.34236 1.67461 1.50854
noise 37.820 32.354 +0.319 2.13241 2.71087 2.42164
noise-st 37978  32.335 +0.300 2.99358 3.48212  3.23785
noise-fb 34.446  32.759 +0.724 1.53387 1.84417 1.68902
median-fb 33.798 32.842 +0.807 1.64048 1.88111 1.76080
Table B.5: Measurement results for the k3 sequence, encoded with 500kbps.
algorithm MSE PSNR APSNR Micsim Muceimy Meeim
[dB] [dB]
original 0 fo'e] o0 1.35546 1.17273  1.26410
decoded 35.889  32.580 0 3.95674 4.25623 4.10649
mpeg-4 30.398  33.302 +0.772 1.49885 1.68033 1.58959
msu +0.206 1.22329 1.40942 1.31636
shift 30.531 33.283 +0.703 1.90344 2.43646  2.16995
3-mode 30.977  33.220 +0.640 1.14925 1.29892  1.22409
blind 29.861 33.380 +0.800 1.35507 1.50991  1.43249
comp 31.643 33.128 +0.548 1.76547 2.29509  2.03028
comp-st 32.799 32972 +0.392 2.57873 3.04436  2.81155
comp-£fb 30.450  33.295 +0.715 1.30195 1.54729  1.42462
noise 33.406 32.893 +0.313 2.01922 2.54477  2.28200
noise-st 33.262 32911 +0.331 2.76065 3.22018  2.99042
noise-£fb 30.798  33.246 +0.666 1.49742 1.72625 1.61184
median-fb 29.815 33.469 +0.889 1.60585 1.85456 1.73021
Table B.6: Measurement results for the k3 sequence, encoded with 1,000kbps.
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algorithm MSE PSNR APSNR MpeeimM Myeeiv MeeiMm
[dB] [dB]
original 0 00 o0 1.18883 1.00864 1.09874
decoded 20.466  35.021 0 4.74410 4.93828 4.84119
mpeg-4 17.476  35.706 +0.685 1.55637 1.57295 1.56466
msu -0.018 1.71648 1.74497 1.73073
shift 16.109  36.060 +1.039 1.50293 1.36281 1.43287
3-mode 17.762  35.636 +0.615 1.16588 1.15495 1.16042
blind 17.217  35.771 +0.750 1.40486 1.38532  1.39509
comp 18.001 35.578 +0.557 2.22937 219771 2.21354
comp-st 18.724  35.407 +0.386 3.26967 3.25373  3.26170
comp-fb 17.558 35.686 +0.665 1.36973 1.35849 1.36411
noise 20.776  34.955 -0.066 2.50591 2.47810  2.49201
noise-st 18.966 35.351 +0.330 3.41716 3.39747  3.40732
noise-fb 17.737  35.642 +0.621 1.55707 1.56123  1.55915
median-fb 17.272  35.757 +0.736 1.72208 1.63684 1.67946
Table B.7: Measurement results for the ngc sequence, encoded with 500kbps.
algorithm  MSE PSNR APSNR MiceiM MucimM MeiMm
@Bl [dB]
original 0 [’s) o0 1.18883 1.00864 1.09874
decoded 19.769  35.171 0 4.53701 4.74176  4.63939
mpeg-4 16.983  35.831 +0.660 1.54234 1.56791 1.55513
msu -0.022 1.72389 1.74309 1.73349
shift 15.659  36.183 +1.012 1.49971 1.35914  1.42943
3-mode 17.243  35.765 +0.594 1.15864 1.15185 1.15525
blind 16.748  35.891 +0.720 1.39026 1.37665 1.38351
comp 17.423  35.719 +0.548 2.22869 2.10805 2.16837
comp-st 17.988  35.581 +0.410 3.07613 2.98492  3.03053
comp-fb 17.063  35.810 +0.639 1.38551 1.34916 1.36734
noise 20.308  35.054 -0.117 2.48143 2.39775  2.43955
noise-st 18.215  35.526 +0.355 3.23366 3.16508  3.19936
noise-fb 17.236  35.766 +0.595 1.57566 1.56731 1.57149
median-fb 16.766  35.886 +0.715 1.68193 1.61641 1.64917

Table B.8: Measurement results for the nge sequence, encoded with 1,000kbps.
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algorithm MSE PSNR APSNR Mpceiv MucsiM Mesim
@8] [4B]
original 0 oo ) 1.28188 1.04333  1.16261
decoded 50.509  31.097 0 4.06136 4.11716  4.08926
mpeg-4 45.556  31.545 +0.448 1.35256 1.54353  1.44805
msu +0.114 1.43767 1.64712  1.54240
shift 43.528  31.743 +0.646 1.47635 1.48215  1.47925
3-mode 46.060 31.498 +0.401 1.04796 1.20882 1.12839
blind 45.180 31.581 +0.484 1.19958 1.38743  1.28351
comp 47.706  31.345 +0.248 2.23166 2.36101 2.29634
comp-st 49.496  31.185 +0.088 3.51285 3.66047 3.58716
comp-fb 46.780  31.430 +0.333 1.12667 1.53798 1.33233
noise 77.363 29.245 -1.852 2.29691 2.36676  2.33184
noise-st 50.380 31.108 +0.011 3.52537 3.65671  3.59104
noise-fb 47.639 31.351 +0.254 1.21080 1.58537 1.39809
median~-fb 47.786 31.338 +0.241 1.62473 1.80094 1.71784

Table B.9: Measurement results for the ngc2 sequence,

encoded with 500kbps.

algorithm MSE PSNR APSNR MuiceiM Muceimy Mesim
dB]  [dB]
original 0 00 ['s) 1.28188 1.04333 1.16261
decoded 37.542  32.386 0  3.27603  3.46846  3.37225
mpeg-4 33.766  32.846 +0.460 1.22710 1.46068  1.34389
msu +0.090 1.29674  1.55920  1.42797
shift 32.071  33.070 +0.684 1.33006 1.38020 1.35513
3-mode 34.267 32.782 +0.396 0.92518 1.10985 1.01752
blind 33.983 32.818 +0.432 1.10003 1.30643  1.20323
comp 35.162  32.670 +0.284 1.81570  2.12447 1.97009
comp-st 36.727  32.481 +0.095 2.86936  3.07161 2.97049
comp-fb 35.625  32.613 +0.227 1.11778 1.42606 1.27192
noise 54.854  30.739 -1.647 1.90441 2.13386 2.01914
noise-st  37.643 32.374 -0.012 2.86066  3.06143  2.96105
noise-fb  36.529  32.504 +0.118 1.17074 1.46427 1.31751
median-fb 36.226  32.541 +0.155 1.47655 1.67570 1.57613

Table B.10: Measurement results for the nge2 sequence, encoded with 1,000kbps.
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algorithm MSE PSNR APSNR MyceiM MyeeiM MgerMm
[4B] [dB]
original 0 o0 00 1.15184 1.22066  1.18625
decoded 22.580  34.594 0 2.98830  4.42371 3.70601
mpeg-4 20.370  35.041 +0.447 1.18050 1.67918  1.42984
msu -0.115 1.77001 2.38677 2.07839
shift 18.839  35.380 +0.786 1.12077 1.85169  1.48623
3-mode 20.652 34.981 +0.387  0.95976 1.36523 1.16251
blind 22.904 34.532 -0.062 0.98548 1.43508 1.21028
comp 21.596  34.787 +0.193 2.19665 2.75365 2.47515
comp-st 22.447  34.619 +0.025 2.91022 4.21101  3.56062
comp-fb 24.928  34.164 -0.430 1.00337 1.60090 1.30214
noise 21.027  34.903 +0.309 2.33057  2.92710 2.61645
noise-st  22.385 34.631 +0.037 2.91876  4.21320 3.56598
noise-fb  24.873 34.174 -0.420 1.02586 1.62904 1.32745
median-fb 19.940 35.134 +0.540 1.37736 1.85851 1.61794

Table B.11: Measurement results for the susie sequence, encoded with 500kbps.

algorithm MSE PSNR APSNR Mgy Muyceim Mesiu
dB] _ [dB]
original 0 0o o0 1.15184 1.22066 1.18625
decoded 3.946  42.169 0 1.49360 1.87070 1.68215
mpeg-4 3.680 42.472 +0.303 . 1.10970 1.41260 1.26115
msu 4-0.041 1.21868 149614 1.35741
gs 3.760  42.379 4-0.210 1.03886 1.30387 1.17137
3-mode 4.291 41.805 -0.364 0.64659 0.88250 0.76455
blind 11.684  37.455 -4.714 0.87556 1.26520 1.07038
comp 3.937 42.180 40.011 1.32200 1.68687 1.50444
comp-st 3.919 42199 +0.030 1.46407 1.83061 1.64734
comp-fb 14.096  36.640 -5.529 0.88101 1.28673  1.08387
noise 3.656  42.500 +0.331 1.36706 1.73774  1.55240
noise-st 3.896  42.225 4-0.056 1.46942 1.83969 1.65456
noise-fb 14.088  36.642 -5.527 0.89326 1.29879  1.09603
median-fb  4.807 41.312 -0.857 1.03194 1.41999  1.22597

Table B.12: Measurement results for the susie sequence, encoded with 1,000kbps.
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Appendix C

Perception test results

This Appendix contains the results of the paired comparison perception test results dealt with in
Chapter 5. A summary of the test parameters is listed below.

¢ Four algorithms were evaluated (mpeg-4, comp-fb, noise_fb, median-fb), making 6 com-
binations for each source.

e Three sources were shown (birds, golf, ngc), making a total of 18 pairs to be rated for
overall picture quality by each test person.

e The sequences were shown in greyscale, displayed in palindromic order, excluding the first
and last frame.

e Display: Sharp 37" large flat panel LCD monitor, type LC-M3700.

e The screen is situated in a moderately illuminated perception room against a grey back-
ground.

e Screen distance was 3 times the active display height. The SD content was not scaled to
avoid scaling artefacts.

e 15 people, experienced and non-experienced viewers, were asked for their judgement on
overall quality.

Table C.1 shows the result of the test, indicating the number of times that the sequence
marked with “1” was preferred over the sequence marked with “2”, for each combination and for
each sequence. The table also indicates the percentage of the total number of comparisons. The
percentage can also be thought of as fractions, which is simply the number in the last column in
Table C.1 divided by the total number of times that the specific comparison was made (15 in this
case).

A statistical model to evaluate the relationship between the algorithms one-dimensionally is
the Thurstone Model, which is a special case of the Generalized Linear Model [73]. For a simple
two-algorithm comparison, the model assumes a normal distribution of the probabilities:

P(z) = 1 eixz__ﬁﬁ_ (C.1)

oV2r

If $(z) is the cumulative normal probability function that equals the fraction,

1 7 e-w? 1 z—p
3(z) = et dr =~ [1+4erf C.2
(2) a%/_m“ g z(*(ﬁ)) 2

i.e. the surface below the probability distribution function drawn in Figure C.1, the z-score is a
measure that indicates how much the ratio between “better” and “worse” deviates from the fifty-
fifty situation. In the fifty-fifty case, both algorithms perform equally and their z-score is zero.
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sequence mpeg-4 comp—fb noise-fb median-fb # (sequence 1 preferred
over sequence 2)

birds 1 2 0 (0.00 %)
golf 1 2 6 (40.0 %)
nge 1 2 5 (33.3 %)
birds 1 2 1 (6.67 %)
golf 1 2 5(33.3 %)
ngce 1 2 8 (53.3 %)
birds 1 2 2 (133 %)
golf 1 2 2 (13.3 %)
ngc 1 2 1 (6.67 %)
birds 1 2 9 (60.0 %)
golf 1 2 7 (46.7 %)
ngc 1 2 7 (46.7 %)
birds 1 2 7 (46.7 %)
golf 1 2 1 (6.67 %)
ngc 1 2 4 (26.7 %)
birds 1 2 12 (80.0 %)
golf 1 2 4(26.7 %)
ngc 1 2 2 (13.3 %)

Table C.1: Visual perception test results for the listed sequences at 1, 000kbps.

—> z-score

-2 0 11 2

Figure C.1: The normal distribution probability function for 4 = 0 and ¢ = 1, showing the relation
between the cumulative probability function and the z-score.

Note that we forced the observer to make a decision, so that the probabilities of “1 better than 2”
and “2 better than 1” add to unity. For two or more algorithms, or in this case 4, the calculation
can be generalized using a regression technique as described in [73].

Furthermore, the numbers in Table C.1 show sequence-dependency. A numerical analysis (by
means of a x? test) with statistical data-mining software S-Plus 6.0 Professional Release from the
Insightful corporation indeed supports the observation that the results depend on the sequence,
assuming that a maximum of 5% of the decisions in the perception test were false [73]. The results,
therefore, have to be evaluated individually.

mpeg-4 comp-fb noise-fb median-fb
birds 0 1.4326535422828564 0.18173456751485273  0.34130954418739745
golf 0 1.5357219276276166 0.4261479436595028 0.14923344530221638
ngc 0 1.1336589430669815 1.2335817955761954 1.1932447812559164

Table C.2: Z-scores for each algorithm, for each sequence.
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