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Abstract

In this article, we propose a new frame rate up-conversion (FRU) method for temporal quality enhancement. The
proposed FRU algorithm employs gradual and adaptive motion estimation based on confidence priority for
selecting more accurate motion vectors (MVs). In order to estimate accurate MVs, we adaptively alternate a search
range and the order of blocks to be searched depending on the confidence level in hierarchical motion estimation.
The precedence of the proposed algorithm is conducted based on the confidence level that is decided by the
complexity of pixel values in a block. In addition, we perform bi-directional motion compensation and spatial linear
interpolation to fill occlusion regions. In our experiments, we found that the proposed algorithm is about 2 dB
better than several conventional methods. Furthermore, block artifacts and blur artifacts are significantly diminished
by the proposed algorithm.

Keywords: Video coding, Frame rate up-conversion, Hierarchical motion estimation, Adaptive search range,
Bi-directional motion estimation
1. Introduction
As the technology of display devices is developed, various
high-performance display devices have become available
to users in the market. While several current video coding
and transmission specifications have been defined for rela-
tively old devices having HD spatial resolution and a tem-
poral rate of 30 fps, spatial and temporal resolutions of
many commercial display devices have become higher [1].
Furthermore, they have the functionality to enhance
spatial and temporal resolution during post-processing.
Frame rate up-conversion (FRU) methods are suited for
the post-processing of display devices for high perceptual
quality, as FRU algorithms can enhance temporal quality
without increasing the bitrates [1-14].
Up-conversion methods in a temporal axis can be used

to produce an inter-frame in between two consecutive
frames at a decoder side without any direct information for
generation of the inter frame from an encoder. Many FRU
algorithms have been developed, and they can be classified
into two categories [3,6-22]. One approach employs frame
repetition or linear interpolation regardless of object mo-
tion. Although this approach provides acceptable video
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quality in absence of fast motion with minimum complex-
ity, we can easily see motion jerkiness and blurring from
moving objects at an interpolated frame. For the second
category, motion compensation (MC) techniques are used
to reduce these artifacts based on a block matching algo-
rithm (BMA) based on redundancy between consecutive
frames. This approach can improve the perceptual quality
of videos by reducing annoying discontinuity between
reconstructed frames and interpolated frames, as interpo-
lated frames are generated by exploring the assumption of
linear motion between consecutive frames.
However, it is not easy to estimate the real motion of objects

and background, because motion estimation is regarded as an
underdetermined problem. The block having the least sum of
absolute difference (SAD) should be selected, even if there is
no proper matching point for a target block. Therefore, several
conventional algorithms employed weighted median filters,
weighted zero MVs, and bi-directional motion estimation to
refine or select true motion vectors (MVs). As it is hard to
achieve satisfactory performance with only one constraint, two
or more constraints were used in several conventional algo-
rithms [3-9]. In order to remove blocking artifacts which are
frequently founded at block boundaries in an interpolated
frame, an overlapped block motion estimation and compensa-
tion (OBME/MC) method can be used.
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There are several existing algorithms to estimate true
MV field [23]. True MVs would be helpful in generating
interpolated frames. However, these algorithms require
relatively a large number of computations. In order to
utilize the redundancy of consecutive frames, we designed
a new FRU algorithm based on BMA. As it is hard to find
true MVs with only pixel values, the proposed method
takes into account not only pixel values, but also motion
relations between a target block and adjacent blocks in
motion estimation. Note that the adjacent MVs are highly
correlated, thus, accurate MVs in motion estimation could
propagate positive effects to neighboring vectors, with the
result that the accuracy of MVs in the neighboring blocks
can be improved. In order to employ more accurate neigh-
boring MVs in estimating an MV in a target block, the
order and search range of motion estimation are deter-
mined based on the confidence levels of blocks. In
addition, bi-directional MC and spatial linear interpolation
are adopted in order to fill occlusion regions without
blocking artifacts, because MVs of some objects cannot be
estimated with linear motion estimations and/or some
objects exist in only one-side frame. Note that BMA could
suffer from blocking artifacts. In the proposed algorithm,
the artifacts are alleviated by employing OBME/MC.
The remainder of this article is organized as follows.

Section 2 presents previous works in brief. In Section 3,
the proposed method is presented. Experimental results
are given in Section 4. Finally, the conclusions are given
in Section 5.

2. Conventional FRU algorithms
The many conventional FRU algorithms can be classified
into two categories: non-motion compensated and motion
compensated FRU methods. Repetition-based methods and
linear interpolation methods have been proposed, and they
can be classified as non-motion-compensated approaches
[3-6]. The repetition-based FRU method is quite simple
and can be fast worked. However, jerky artifacts are fre-
quently observed, because the repetition method does not
take into account moving objects. The linear interpolation
method can reduce jerky artifacts, compared with the repe-
tition methods [2]. Linear interpolation algorithms are not
so complicated and moderately fast. Relatively high PSNR
is expected at many target frames for slow-moving video.
However, we can easily observe blur artifacts in the interpo-
lated frames of videos with fast-moving objects.
Because the non-motion compensated methods do not

make use of motion information, they cannot recover accur-
ate interpolated frames for videos having high motion activ-
ity. To recover higher-frequency components in temporal
domain, motion compensated interpolation algorithms have
been proposed and they usually employ a BMA to estimate
MVs for moving objects [4,7-9,17-20]. In order to improve
the accuracy of MVs, conventional algorithms were proposed
to determine MVs by employing weighted median filter,
weighted zero MVs, and/or bi-directional motion estimation
algorithms [4,7,9]. On the other hand, the weighted median
filter was employed to adjust estimated MVs [4,7]. This
weighted median filter is performed based on the hypothesis
that the majority of estimated neighboring MVs are likely to
be correct. In addition, a weighted zero MV method was
proposed to keep consistency of MVs in background regions
by giving favors into zero MVs [6,7]. Moglia et al. [16] pro-
posed a bi-directional ME which improves the accuracy of
motion estimation with backward and forward frames. This
FRU algorithm performs forward motion estimation to esti-
mate an initial interpolated frame from the (t) frame to the
(t – 1) frame. Then, the initial interpolation frame is divided
into 4 × 4, 8 × 8, or 16 × 16 blocks. The bi-directional ME is
performed, as the second stage motion estimation, to find
the best matching blocks in the backward and forward
frames from a block in the initial interpolated frame [9].
However, the block-based MC suffers from blocky artifacts.
The OBME/MC method was proposed to reduce blocking
artifacts. The OBME method performs motion estimation
with partially overlapped blocks and the compensated frame
is reconstructed by weighted summation of overlapped cor-
responding blocks [7-9,14]. Although the OBMC has high
computational complexity, blocky artifacts can significantly
be reduced.
Many motion estimation algorithms have been proposed,

however, one tool cannot produce satisfactory outcomes.
Recent work tries to combine multiple tools to improve
the accuracy of FRU. A combination of non-motion-based
and motion-based methods was proposed [14]. This com-
bined method generates multiple layers based on Gaussian
and Laplacian pyramids. The target frame at the finer reso-
lution is reconstructed with the up-sampled frame as well
as the previous and next frames at the same resolution.
The hierarchical algorithm is stable in estimating MVs by
using not only the previous and next frames, but also inter-
polated frames in a coarse resolution. In general, MVs at
the coarse resolution increase reliability and stability in fur-
ther motion estimation because dominant MVs are com-
puted at the coarse resolution. However, this hierarchical
FRU method requires high computational complexity and
it could still have blocky artifacts. Fujiwara and Taguchi [4]
proposed a combination of weighted zero MV and
weighted median filter. The block size is adaptively selected
depending on the MV distribution of adjacent blocks. In
addition, multi-frame FRU algorithm was proposed to re-
duce motion ambiguity instead of using two consecutive
frames [11]. On the other hand, pixel-based auto-regressive
model was presented and it would be useful in generating
accurate interpolated frames; however, it requires relatively
a large number of computations [12]. For real-time appli-
cations, a low complexity frame rate up-convertion (FRUC)
was proposed by alleviate illumination change effects [13].



Figure 1 Flowchart of the proposed method.
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3. The proposed confidence-based adaptive FRU
Consecutive frames of a video have lots of similarity.
Conventional FRU algorithms have been developed by
utilizing temporal redundancy, as they perform motion
estimation with pixel intensity within a fixed search
range. However, it is hard to estimate true MVs, because
there are many pixels at which estimated MVs are not
unique. In order to decide on MVs, many conventional
algorithms were proposed by finding a block having a
smallest SAD for a target block. However, motion esti-
mation in homogenous regions suffers from the aperture
problem which does not have a unique solution even
with several constraints. Furthermore, blocks in which
wrong MVs are estimated can improperly influence mo-
tion estimation in neighboring blocks.
For the proposed algorithm, motion estimation is con-

ducted based on highest confidence first. Unique motion
can be determined in edge and corner regions unlike
homogenous regions. In addition, we estimate MVs at
blocks having complex texture without the aperture prob-
lem. Therefore, we can assume that the MV matched with
a block having higher variance is more reliable than those
matched with other blocks. Based on high confidence first,
the reliability of the high confidence blocks can propagate
into neighboring blocks. With this propagation, accuracy
of motion estimation can dramatically be improved even
in homogenous regions.
The proposed algorithm performs a hierarchical OBME

according to a confidence evaluation with adaptive search
ranges and adaptive ordering in motion estimation. Because
edge and corner regions have a large variance in general, the
confidence value is estimated by the variance of a block in
the proposed algorithm. Therefore, the proposed algorithm
can increase the probability that an estimated MV is more
accurate, as the adaptive search range and block ordering
are employed. In addition, as a hierarchical motion estima-
tion method is utilized in the proposed method and, thus,
we can prevent the solution from being stuck in local max-
ima and reduce the computational complexity.
Figure 1 is the flowchart of the proposed method. At first,

two consecutive frames are used as input images for the pro-
posed system. N hierarchical layers (k = 1, . . ., N) are gener-
ated and OBME is performed in each layer. Motion
estimation is performed in a descending order of block vari-
ance, and the search range of each block is adaptively deter-
mined, depending on the MV in adjacent interpolated blocks
at the interpolated frame. The search range is set not to over-
lap regions covered with neighboring reliable MVs. As a re-
sult, it can increase the accuracy of MVs at not only complex
texture, but also homogenous regions. In addition, the mo-
tion estimation is performed from the coarse resolution to
the fine resolution in order to improve performance of hier-
archical motion estimation. The MV field is projected for the
finer resolution using up-sampling filtering. Note that we
make use of the OBME to reduce blocky artifacts and
stabilize the estimated MVs. OBMC is also employed to esti-
mate the final MVs at the finest resolution layer of which size
is the same as the original. While the conventional algorithm
makes use of OBMC in all the layers, the proposed algorithm
employs the OBMC in the last layer with interpolation of
MV fields to reduce computational complexity.
In some regions, correspondence cannot be accom-

plished between the previous and next frames in cases
that some regions in the two frames are occluded or oc-
cluding. Furthermore, MVs cannot be estimated for rota-
tional movement because the proposed algorithm works
with the assumption of translational rigid body motion.
We can see several regions that are not compensated
frame with OBMC and they are called hole regions. In
the proposed algorithm, we perform a forward motion
estimation to reconstruct a hole region with the neigh-
boring area excluding the target hole pixels in matching.
Then, the backward motion estimation is conducted for
the hole regions again. The matched block having a
smaller distance between them for each hole is selected.
When the minimum distance value is larger than a
threshold, a spatial linear interpolation is conducted in
order to fill the occlusion regions to reduce blocking
artifacts.

3. 1 Generation of hierarchical layers
Hierarchical motion estimation can reduce computa-
tional complexity and avoid being stuck in local maxima.
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The proposed method employs hierarchical motion esti-
mation to enhance stability of motion estimation. For
hierarchical motion estimation, MVs should be projected
from a coarse layer (layer k) to the next enhanced layer
(layer k – 1), as shown in Figure 2.
To reduce aliasing artifacts based on sub-sampling, we

employ a simple low-pass filter prior to sub-sampling,
when hierarchical layers are generated. With the down-
scaling factor of 2, the down-sampled frame at the kth
layer (Lk) can be computed by

LK j; ið Þ ¼ 1
4
ðLk�1 2j; 2ið Þ þ Lk�1 2j; 2iþ 1ð Þ

þ Lk�1 2jþ 1; 2ið Þ
þ Lk�1 2jþ 1; 2iþ 1ð Þ ð1Þ

where (j, i) is the index indicating the position of a pixel.
Note that j(i) ranges from 0 to J – 1 (I – 1) for the col-
umn (row) index.

3. 2 Overlapped block motion estimation based on
adaptive search ranges with confidence levels
Interpolated frames can be generated with block-based mo-
tion estimation algorithms; however, BMAs generally suffer
from blocking artifacts. Because the proposed method is also
one of the block-based algorithms, we employed OBME/
MC to reduce blocking artifacts. Thus, the OBMC can in-
crease computational complexity of the proposed algorithm.
In the proposed algorithm, the search range is adaptively

adjusted at all the hierarchical layers according to the con-
fidence level, with proper projection of the estimated MVs
between adjacent layers. The confidence level of a block is
defined by a block variance. Thus, the confidence level for

each block is computed by C m; n; tð Þ ¼
XM
j¼0

XN
i¼0

f t; j; ið Þ�j

�f t; j; ið Þj2 , where f(t,j,i) represents the intensity on the (j,i)
th position at the time t and �f t; j; ið Þ is the mean value of
the M × N window. The confidence-based hierarchical
OBME is sequentially conducted in descending order of the
confidence levels. For conventional FRU algorithms, motion
(t-1) frame

Figure 2 Projection of MV in between consecutive layers.
estimation is performed with a fixed search range, which
suffers from wrong overlapping in the (t) frame. Wrong esti-
mated MVs could also affect adjacent blocks even though
accurate MVs are estimated at the adjacent block. Therefore,
the search range of the proposed algorithm is adaptively set
by reliable MVs of neighboring blocks. That can prevent in-
correct overlapping among blocks. The restriction can be
interpreted as a smoothness constraint on MVs for
homogenous regions.
Figure 3 shows several examples of how to determine

adaptive search ranges at the (t – 1) frame in motion esti-
mation. Note that matched blocks are denoted with gray
and they have been matched in previous matching steps,
because variance of the matched block is larger than those
of neighboring blocks. Then, we can restrict a search
range denoted by a solid box for the neighboring target
block and the search range is smaller than the original
maximum rectangle, as shown in Figure 3a. If there are
not any matched neighboring blocks, the search range is
set to the maximum one, as the first example in Figure 3b.
If there are matched blocks, the search range can reduce
based on matching consistency. Restriction of a search
range can prohibit overlapping of two adjacent blocks in
an interpolated frame. However, the proposed algorithm
employs OBME/MC and the overlapping for OBMC is
accounted for the reduction of artificial blocking. Note
that the corresponding block in the restricted search range
(solid line) of the (t – 1) frame is selected by finding a
block having the smallest SAD value between pixels in the
target block and searched block by

SAD m; n;MVj;MVi; t
� � ¼ XM

j¼0

XN
i¼0

f t; jþMm; iþ Nnð Þj

�f t � 1; jþMmþMVj; iþ NnþMVi
� ��� ð2Þ

where f means pixel value, (t, j, i) means temporal index
and position indices, and M × N means the block size. (m,
n) and (Mj, Mi) represent the target block indices and MV
for the (m, n)th target block. Note that each searched
block should be in the search area that is determined in
Projection

kth layer

(k-1)th layer

t frame

MV

2MV



(a)

Maximum search range

Restrited search range

Target block

Target block

Maximum search range

Early matched blocks

Restricted search range

(b)
Figure 3 Adaptation of search range in the (t – 1) frame.

NSADt�1 ¼ 1
XJ ;I
j;i

M j; ið Þ

XJ

j

XI

i

M j; ið Þ

f t � 1
2
; j; i

� �
� f t � 1; jþMVj; iþMVi

� �� �2

ð4Þ
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the previous step, as shown in Figure 3. In this study, we
employed the full search algorithm in the search area.
We decide each block corresponded with any block at

the (t – 1) frame if the associated SAD is smaller than a
threshold. If so, the block is compensated for the
interpolated frame. Otherwise, it is left not interpolated as
a hole region. Due to occlusion, we can see several hole
regions in the interpolated frame. The hole regions
are compensated by bi-directional ME/MC or spatial
interpolation.

3. 3 Overlapped block MC
The proposed method makes use of OBMC, in order to
reduce the block artifacts, as mentioned before. We gener-
ate the interpolated frame with the average pixel values of
matched blocks which are decided by motion estimation
between previous and next frames. We perform the
OBMC only on the last layer and the MC is defined by

f t þ 1
2
; jþMVj

2
; iþMVi

2

� �

¼ f t � 1; jþMVj; iþMVi
� �þ f t; j; ið Þ

2
ð3Þ

for each block. The block is overlapped with neighboring
blocks in one pixel, as shown in Figure 4. Depending on
the location, one to four overlaps occur. As shown in
Figure 4, four prediction values are used for the four cor-
ner points. For boundary pixels, two prediction values are
used. For the center region, there is no overlap, as shown
in the figure. For the regions, the interpolated values are
computed by averaging all the overlapped pixel values.

3. 4 Bidirectional motion estimation in hole regions
When an object is shown in only one of the consecutive
frames, SAD could be bigger than the threshold, because the
correct correspondence cannot be accomplished. As a result,
the interpolated frame could have several occlusion regions.
Figure 5 shows the block diagram of the proposed bidir-

ectional motion estimation for hole regions. The hole
regions should be filled with forward or backward frames.
In the proposed algorithm, a matched area is detected with
neighboring pixels of a hole region, as shown in Figure 5.
The hole is filled with the region enclosed by the match
area. This algorithm can work if an object appears in a for-
ward or backward frame.
Figure 6 shows an example in which the bi-directional

motion estimation is performed at occlusion regions. We
assume that white region (a) is an occlusion region and
the other region in the block is an interpolated region in



t frame(t-1) frame (t-½) frame

Figure 4 Overlapped block MC.

t-1, t -
1

2
, t frames

Find a hole in t -
1

2
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Find a target window enclosing the hole

Search the matched block in t-1 frame  
and get minimum NSADt-1

Find hole?

Fill the hole with the 
matched block of t frame

N
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Y

Search the matched block in t frame  
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Fill the hole with the 
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N

Y

Y

N

Figure 5 Flowchart for bidirectional motion estimation for
hole regions.
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the previous stage. Then, we make use of a block enclos-
ing a to find minimum normalized cost between NSADt–1

and NSADt. The cost NSADt–1 can be denoted by
where M(i,j) is a mask that represent hole pixel or not.
M(i,j) is set to 0 when the pixel is in a hole in the inter-
polated frame f(t – 1/2,j,i). Otherwise, it is set to 1.
Only interpolated pixel values are used in computing

the NSAD. The corresponding block in the (t – 1) frame
is identified by finding minimum NSADt–1 with only an
interpolated square block enclosing the interpolated re-
gion in the (t – 1/2) frame. Then, we also find the corre-
sponding block in the (t) frame by computing NSADt

with the interpolated region in the (t – 1/2) frame.
Either block is selected by finding the smaller NSAD
value between the previous or next frames. If the mini-
mum normalized SAD is less than a threshold, we com-
pensate the hole pixels with the corresponding block.
3. 5 Spatial linear interpolation
While consecutive frames in a video have lots of tem-
poral similarity, it is hard to find temporal similarity in
part of an image for several reasons such as occlusion
and homogenous background. This causes many small
holes and blocking artifacts to appear because of the
compensation of motion estimation at such regions in
the interpolated frame. In order to compensate the oc-
clusion regions without blocking artifacts, we employ a
spatial linear interpolation using only spatial correl-
ation. Figure 7 shows an example of spatial interpo-
lation being conducted at the interpolated frame. We
assume that the shaded block is the hole pixels and the
white regions are interpolated pixels. A pixel a in
the occlusion region is compensated with four interpo-
lated pixels from four directions. In computing the



t− 1 frame t−
1

2
frame t frame

− 1

Figure 6 Bi-directional motion estimation.
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interpolation value, we make use of four weighted pixel
values and it can be defined by
f t þ 1
2
; j; i

� �
¼ Dleft

�1f t þ 1
2 ; j; i� Dleft

� �þ Dright
�1f t þ 1

2 ; j; iþ Dright
� �þ Dup

�1f t þ 1
2 ; j� Dup; i

� �þ Ddown
�1f t þ 1

2 ; jþ Ddown; i
� �� �

Dleft
�1 þ Dright

�1 þ Dup
�1 þ Ddown

�1

ð5Þ
where D represents the distance between the target
pixel and the nearest neighboring interpolated pixel.
Spatial linear interpolation makes blur artifacts. How-
ever, occlusion regions are very small and frames
change fast. Therefore, people cannot exactly see the
blur artifacts clearly.

4. Experimental results and discussion
For performance evaluation, we used six test sequences:
‘Akko’, ‘Ballroom’, ‘Exit’, ‘Flamenco2’, ‘Race1’, and ‘Rena’. The
sequences include slow-, middle-, and fast-translational/
rotational motions and camera panning. ‘Race1’ is an out-
door sequence and the others are indoor sequences. The
color format and dimension of all the sequences are 4:0:0
YUV and 640 × 480 pixels, respectively. In addition,
a

Hole pixel Interpolated pixel

Figure 7 Spatial linear interpolation at interpolated frame.
performance of the proposed and conventional methods
[4-6] was evaluated for not only original videos, but also
decoded videos from H.264/AVC bitstreams. The bit-
streams werecoded with JM17.2. The frame rate for ‘Akko’,
‘Flamenco2’, ‘Race1’, and ‘Rena’ sequences is 15 fps and that
for ‘Ballroom’ and ‘Exit’ is 12.5 fps. These sequences were
used for video compression standardization. In our experi-
ment, we used 50 frames for each sequence. We used four
QP values (22, 27, 32, and 37). Two layers are used in the
proposed hierarchical motion estimation based on the
trade-off between complexity and motion estimation ac-
curacy. The block size is set to 16 × 16 in all the layers and
7 × 7 in the bi-directional ME. In addition, the search
range is set to ±32 in the coarse layer and ±16 in the fine
layer. Hierarchical OBME/MC is conducted when a SAD
value between two matched blocks is smaller than the
threshold (6000). Otherwise, the block is set to a hole. For
the hole, bi-directional interpolation is used when the nor-
malized SAD is smaller than 10. Otherwise, the spatial linear
interpolation is used to fill hole regions. All the thresholds
are empirically determined. Computational loads are evalu-
ated with the Intel dual core system.
Figure 8a–c shows original ‘Akko’ frames of which

frame indexes are 14, 15, and 16, respectively. Note that
the 14th and 16th frames are used as input frames for
FRU. The objective of the FRU is to estimate an
interpolation frame which is close to the original 15th
frame. Figure 8d shows an intermediate interpolated
frame with the proposed hierarchical OBME/MC for the
input frames (Figure 8a, c). Figure 8e is the interpolated
frame performing the hierarchical OBME/MC and bidir-
ectional ME/MC. Figure 8f is the final interpolated
frame by the proposed FRU. Owing to the confidence-



(a)  14th original frame (b)15th original frame 16th original frame

(d) Interpolated frame with the 
hierarchical OBME/MC step

(e) I nterpolated frame with 
hierarchical OBME/MC and 
bidirectional ME/MC

(f) Interpolated frame with the 
complete proposed algorithm.

(c)

Figure 8 Interpolated frame at each step for ‘Akko’ sequence.
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based iteration, the estimated MVs of blocks having
complex textures propagate the adjacent blocks in the
homogenous regions. Therefore, the interpolated frame
by the proposed algorithm does not have visual artifacts,
as shown in Figure 8d. However, regions near moving objects
can be influenced by the MVs of the moving objects. Fur-
thermore, the regions, in general, belong to covered or
uncovered regions. In order to properly compensate the
occluded regions, bi-directional ME and weighted spatial
interpolation are employed in the proposed method. When
the occluded background regions are homogenous, we
hardly see visual artifacts even with inaccurate MVs from
(a) HME [4]

(c) MRF [6]

Figure 9 Interpolated frames of the conventional and proposed algor
that of a moving object. However, when the occluded regions
have complicated textures, some visual artifacts can be found
not only conventional algorithms, but also the proposed al-
gorithm, as shown in Figure 8e, f.
Figure 9 shows the original and interpolated frames by the

proposed and conventional algorithms for the ‘Flamenco2’
sequence. For comparative study, we selected three conven-
tional algorithms based on hierarchical ME (HME) [4], di-
verse block sizes (DBS) [5], and multiple reference frames
(MRF) [6]. We can see that the proposed algorithm is better
around edge regions in terms of blur and blocking artifacts
for arms, face, and dresses areas. The interpolated frames by
(b)DBS [5]

(d)  Proposed method 

ithms for ‘Flamenco2’ sequence.



Table 1 PSNR comparison of interpolation frames with
the proposed and conventional algorithm

Test sequence QP HME [4] DBS [5] MRF [6] Proposed

Akko Original 24.70 31.29 32.10 34.12

22 24.68 31.04 32.09 33.23

27 24.66 30.72 31.91 33.23

32 24.62 29.96 31.40 32.54

37 24.52 28.85 30.59 31.43

Average 24.62 30.14 31.50 32.61

Ballroom Original 24.11 27.54 28.28 29.19

22 24.08 27.47 27.95 28.86

27 24.03 27.35 27.84 28.68

32 23.93 26.94 27.59 28.35

37 23.76 26.33 27.11 27.63

Average 23.95 27.02 27.62 28.38

Exit Original 32.63 35.97 37.32 37.12

22 32.56 35.96 37.02 36.95

27 32.45 35.79 36.67 36.66

32 32.08 35.01 35.83 35.66

37 31.45 33.66 34.50 34.28

Average 32.14 35.11 36.01 35.89

Flamenco2 Original 27.32 28.70 30.97 31.41

22 27.33 28.65 31.29 31.18

27 27.33 28.53 31.24 31.03

32 27.31 28.38 31.03 30.23

37 27.25 27.93 30.60 30.23

Average 27.31 28.37 31.04 30.67

Race1 Original 20.69 25.51 24.16 28.98

22 20.64 25.34 24.11 28.37

27 20.61 25.08 24.02 28.20

32 20.54 24.63 23.84 27.84

37 20.46 23.92 23.60 27.60

Average 20.56 24.74 23.89 28.00

Rena Original 31.82 33.80 35.14 35.67

22 31.56 33.56 34.85 35.17

27 31.45 33.39 34.58 34.89

32 31.24 32.87 34.04 34.41

37 30.91 32.09 33.26 33.45

Average 31.29 32.98 34.18 34.48

Average 26.64 29.73 30.71 31.67

Table 2 Quality comparison of interpolation frames with
the proposed and conventional algorithms in terms of
various metrics

Test sequence Metric HME [4] DBS [5] MRF [6] Proposed

Akko NQM 9.68 19.05 19.25 21.00

IFC 2.19 5.26 5.40 5.58

SSIM 0.76 0.94 0.93 0.95

VIF 0.33 0.67 0.67 0.72

UQI 0.55 0.86 0.84 0.86

Ballroom NQM 8.82 14.70 15.40 15.84

IFC 2.49 4.15 4.35 4.28

SSIM 0.81 0.89 0.91 0.90

VIF 0.36 0.56 0.58 0.58

UQI 0.62 0.73 0.75 0.75

Exit NQM 17.25 27.36 29.72 28.18

IFC 1.67 2.97 3.20 3.16

SSIM 0.85 0.92 0.94 0.93

VIF 0.31 0.51 0.53 0.53

UQI 0.47 0.56 0.60 0.60

Flamenco2 NQM 14.32 17.69 20.66 20.30

IFC 1.30 2.20 2.76 2.63

SSIM 0.84 0.89 0.93 0.93

VIF 0.23 0.36 0.45 0.44

UQI 0.57 0.69 0.74 0.74

Race1 NQM 7.28 15.50 13.45 18.52

IFC 0.75 2.43 1.95 3.00

SSIM 0.64 0.80 0.77 0.89

VIF 0.11 0.34 0.26 0.44

UQI 0.29 0.58 0.50 0.66

Rena NQM 8.47 12.40 12.77 13.61

IFC 2.45 4.57 5.24 5.05

SSIM 0.92 0.96 0.97 0.97

VIF 0.45 0.69 0.76 0.73

UQI 0.58 0.76 0.80 0.79

Average NQM 8.09 13.22 13.59 14.88

IFC 1.53 3.10 3.28 3.42

SSIM 0.66 0.74 0.75 0.77

VIF 0.25 0.44 0.45 0.48

UQI 0.43 0.60 0.60 0.63
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conventional algorithms have artifacts from incorrect
interpolation (e.g., the woman’s arm) and blur artifacts. How-
ever, the interpolated frame by the proposed method is with-
out blur and blocking artifacts.
Table 1 shows PSNRs of the interpolated images with

the proposed and conventional algorithms [4-6]. The
PSNRs are evaluated with the original videos and
degraded ones with multiple QP values. Note that 50
interpolated frames are used for each sequence. The tar-
get frame rate is twice of the input frame rate. PSNR
values of the proposed algorithm are higher than those
of conventional algorithms for not only original but also
decoded videos. Because the conventional algorithms re-
fine MVs in the raster scanning order, early wrong



Table 3 PNSs in terms of various input frame rates for degraded video

Test sequence Input frame rate (fps) Output frame rate (fps) HME [4] DBS [5] MRF [6] Proposed

Akko 15.0 30 24.68 31.04 32.84 33.23

7.50 20.87 26.48 20.43 29.35

3.750 18.55 21.09 20.79 24.15

Average 21.37 26.20 24.69 28.91

Ballroom 12.5 25 24.08 27.47 28.31 28.86

6.25 20.90 23.64 21.08 24.65

3.125 19.04 20.74 20.24 20.48

Average 21.34 23.95 23.21 24.66

Exit 12.5 25 32.56 35.96 37.37 36.95

6.25 28.58 33.17 28.73 34.00

3.125 26.90 29.84 29.12 30.51

Average 29.35 32.99 31.74 33.82

Flamenco2 15.0 30 27.33 28.65 31.39 31.18

7.50 24.37 26.22 24.67 27.46

3.75 22.47 24.15 24.67 24.74

Average 24.72 26.34 26.91 27.79

Race1 15.0 30 20.64 25.34 24.33 28.37

7.50 18.43 21.37 19.34 24.04

3.75 17.05 18.70 18.84 18.94

Average 18.71 21.80 20.84 23.78

Rena 15.0 30 31.56 33.56 35.08 35.17

7.50 28.05 30.88 28.13 31.85

3.75 26.76 28.49 28.64 29.17

Average 28.79 30.98 30.62 32.06

Average 24.05 27.04 26.33 28.51
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estimation can improperly influence on consecutive
blocks. However, as the proposed method estimates MVs
with adaptive modification of the search range according
to confidence levels, the estimated MVs can have a
proper effect on consecutive blocks. Therefore, the pro-
posed algorithm is better than the three conventional
algorithms by around 5, 1.9, and 0.9 dB for the original
input and decoded videos.
Table 4 Computational complexity comparison of the
proposed and conventional algorithms for interpolating
frame

Test sequence HME [4] (%) DBS [5] (%) MRF [6] (%)

Akko 73 33 45

Ballroom 74 37 48

Exit 71 30 42

Flamenco2 73 32 44

Race 77 42 52

Rena 73 32 44
Table 2 shows the objective evaluations of the interpo-
lated frames by the proposed and conventional methods
for original videos in terms of various metrics. However,
we know that the subjective quality is quite important in
real applications. For more various quality evaluations,
we added performance evaluation results with several
metrics: noise quality measure (NQM) [24], information
fidelity criterion (IFC) [25], structural similarity (SSIM)
[26], visual information fidelity (VIF) [27], and universal
quality index (UQI) [28]. Some of them are widely used
for perceptual evaluation. As you know, PSNR and
NQM are used for objective quality. For perceptual qual-
ity, IFC can give the quantity of mutual information be-
tween original and degraded sequences. SSIM is referred
as an SSIM index and it is known to be highly correlated
with the subjective quality. VIF can quantify the mutual
information of distorted videos in terms of the human
visual system. UQI estimates degradation as a combin-
ation of three factors that are loss of correlation, lumi-
nance distortion, and contrast distortion. Note that
larger values with the metrics mean superior visual
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quality. These objective metrics cannot give exact sub-
jective assessments; however, they have been verified to
be highly correlated with subjective quality. Table 2
shows the objective evaluations of the interpolated
frames by the proposed and conventional methods. All
the average values of NQM, IFC, SSIM, VIF, and UQI of
the proposed are higher than those of conventional
methods, as shown in the table. That implies the pro-
posed method has quite good performance for not only
objective quality but also perceptual quality.
Performances of the proposed and conventional meth-

ods were also evaluated for various conversion ratios for
degraded frames by the H.264/AVC with QP of 22. The
frame rates of the test sequences are 25 and 30 fps, and
we evaluated PSNRs of the interpolated frames by redu-
cing the input frame rates to 12.5, 6.25, and 3.125 fps for
25 fps output videos and 15, 7.5, and 3.75 fps for 30 fps
output videos, respectively. As shown in Table 3, we
found that the PSNRs for interpolated frame drop as the
input rate decreases. With lower frame rates, larger MVs
should be estimated and larger occlusion areas are dealt
with. Thus, we can say that the PSNR drop could signifi-
cantly reduce for practical applications with higher input
frame rates. However, the proposed algorithm is better
than the conventional algorithms even for the degraded
videos having much lower input rates. For higher input
rate, we can expect much higher PSNR outcomes.
Table 4 shows relative computational loads of the con-

ventional algorithms with respect to that of the proposed
algorithm to evaluate computational complexity. The
relative complexity ratio is defined by

CP � CC

CP
� 100 ð6Þ

where CP is the computation time of the proposed
method and CC is the computation time of a conven-
tional algorithm. The proposed algorithm requires more
computational time than the conventional algorithms,
because the proposed method sequentially performs mo-
tion estimation in descending order of block variances.
To speed up the proposed algorithm, a frame can be
divided into multiple slices. Then, each slice can be per-
formed in parallel with some loss of estimation accuracy.

However, as the proposed method refines MVs based
on reliability, more effective motion estimation can be
performed. The search range and order of block proces-
sing depend on block variances and are adaptively
adjusted. For the higher block variance, the more accur-
ate motion estimation is performed. In addition, we use
spatial linear interpolation in the occlusion region, so we
can compensate occlusion regions without blocking
artifacts. This leads to improved perceptional quality
and PSNR, especially at edge regions.

5. Conclusions
In this article, we proposed a new adaptive FRU method
based on confidence levels. In addition, we employed the
HME with the adaptively modified search range accord-
ing to the confidence level. With the proposed algo-
rithm, the accurate MVs influence neighboring vector
fields and we can estimate consistent MV field to gener-
ate accurate interpolated frames. Experimental results
show that the proposed algorithm is better than several
conventional methods in not only objective but also per-
ceptual quality. However, the proposed method requires
high computational complexity due to the sequential
confidence-based ME. Further work can focus on reduc-
tion of computational complexity of the FRU algorithms
for real-time processing.
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