261 research outputs found

    Cramer–Rao lower bounds for change points in additive and multiplicative noise

    Get PDF
    The paper addresses the problem of determining the Cramer–Rao lower bounds (CRLBs) for noise and change-point parameters, for steplike signals corrupted by multiplicative and/or additive white noise. Closed-form expressions for the signal and noise CRLBs are first derived for an ideal step with a known change point. For an unknown change-point, the noise-free signal is modeled by a sigmoidal function parametrized by location and step rise parameters. The noise and step change CRLBs corresponding to this model are shown to be well approximated by the more tractable expressions derived for a known change-point. The paper also shows that the step location parameter is asymptotically decoupled from the other parameters, which allows us to derive simple CRLBs for the step location. These bounds are then compared with the corresponding mean square errors of the maximum likelihood estimators in the pure multiplicative case. The comparison illustrates convergence and efficiency of the ML estimator. An extension to colored multiplicative noise is also discussed

    Maximum Likelihood Estimation of Exponentials in Unknown Colored Noise for Target Identification in Synthetic Aperture Radar Images

    Get PDF
    This dissertation develops techniques for estimating exponential signals in unknown colored noise. The Maximum Likelihood (ML) estimators of the exponential parameters are developed. Techniques are developed for one and two dimensional exponentials, for both the deterministic and stochastic ML model. The techniques are applied to Synthetic Aperture Radar (SAR) data whose point scatterers are modeled as damped exponentials. These estimated scatterer locations (exponentials frequencies) are potential features for model-based target recognition. The estimators developed in this dissertation may be applied with any parametrically modeled noise having a zero mean and a consistent estimator of the noise covariance matrix. ML techniques are developed for a single instance of data in colored noise which is modeled in one dimension as (1) stationary noise, (2) autoregressive (AR) noise and (3) autoregressive moving-average (ARMA) noise and in two dimensions as (1) stationary noise, and (2) white noise driving an exponential filter. The classical ML approach is used to solve for parameters which can be decoupled from the estimation problem. The remaining nonlinear optimization to find the exponential frequencies is then solved by extending white noise ML techniques to colored noise. In the case of deterministic ML, the computationally efficient, one and two-dimensional Iterative Quadratic Maximum Likelihood (IQML) methods are extended to colored noise. In the case of stochastic ML, the one and two-dimensional Method of Direction Estimation (MODE) techniques are extended to colored noise. Simulations show that the techniques perform close to the Cramer-Rao bound when the model matches the observed noise

    Maximum Likelihood Estimation of Exponentials in Unknown Colored Noise for Target in Identification Synthetic Aperture Radar Images

    Get PDF
    This dissertation develops techniques for estimating exponential signals in unknown colored noise. The Maximum Likelihood ML estimators of the exponential parameters are developed. Techniques are developed for one and two dimensional exponentials, for both the deterministic and stochastic ML model. The techniques are applied to Synthetic Aperture Radar SAR data whose point scatterers are modeled as damped exponentials. These estimated scatterer locations exponentials frequencies are potential features for model-based target recognition. The estimators developed in this dissertation may be applied with any parametrically modeled noise having a zero mean and a consistent estimator of the noise covariance matrix. ML techniques are developed for a single instance of data in colored noise which is modeled in one dimension as 1 stationary noise, 2 autoregressive AR noise and 3 autoregressive moving-average ARMA noise and in two dimensions as 1 stationary noise, and 2 white noise driving an exponential filter. The classical ML approach is used to solve for parameters which can be decoupled from the estimation problem. The remaining nonlinear optimization to find the exponential frequencies is then solved by extending white noise ML techniques to colored noise. In the case of deterministic ML, the computationally efficient, one and two-dimensional Iterative Quadratic Maximum Likelihood IQML methods are extended to colored noise. In the case of stochastic ML, the one and two-dimensional Method of Direction Estimation MODE techniques are extended to colored noise. Simulations show that the techniques perform close to the Cramer-Rao bound when the model matches the observed noise

    Optimal input design and parameter estimation for continuous-time dynamical systems

    Get PDF
    Diese Arbeit behandelt die Themengebiete Design of Experiments (DoE) und ParameterschĂ€tzung fĂŒr zeitkontinuierliche Systeme, welche in der modernen Regelungstheorie eine wichtige Rolle spielen. Im gewĂ€hlten Kontext untersucht DoE die Auswirkungen von verschiedenen Rahmenbedingungen von Simulations- bzw. Messexperimenten auf die QualitĂ€t der ParameterschĂ€tzung, wobei der Fokus auf der Anwendung der Theorie auf praxisrelevante Problemstellungen liegt. DafĂŒr wird die weithin bekannte Fisher-Matrix eingefĂŒhrt und die resultierende nicht lineare Optimierungsaufgabe angeschrieben. An einem PT1-System wird der Informationsgehalt von Signalen und dessen Auswirkungen auf die ParameterschĂ€tzung gezeigt. Danach konzentriert sich die Arbeit auf ein Teilgebiet von DoE, nĂ€mlich Optimal Input Design (OID), und wird am Beispiel eines 1D-Positioniersystems im Detail untersucht. Ein Vergleich mit hĂ€ufig verwendeten Anregungssignalen zeigt, dass generierte Anregungssignale (OID) oft einen höheren Informationsgehalt aufweisen und mit genaueren SchĂ€tzwerten einhergeht. ZusĂ€tzlicher Benefit ist, dass BeschrĂ€nkungen an Eingangs-, Ausgangs- und ZustandsgrĂ¶ĂŸen einfach in die Optimierungsaufgabe integriert werden können. Der zweite Teil der Arbeit behandelt Methoden zur ParameterschĂ€tzung von zeitkontinuierlichen Modellen mit dem Fokus auf der Verwendung von Modulationsfunktionen (MF) bzw. Poisson-Moment Functionals (PMF) zur Vermeidung der zeitlichen Ableitungen und Least-Squares zur Lösung des resultierenden ĂŒberbestimmten Gleichungssystems. Bei verrauschten Messsignalen ergibt sich daraus sofort die Problematik von nicht erwartungstreuen SchĂ€tzergebnissen (Bias). Aus diesem Grund werden Methoden zur SchĂ€tzung und Kompensation von Bias Termen diskutiert. Beitrag dieser Arbeit ist vor allem die detaillierte Aufarbeitung eines Ansatzes zur Biaskompensation bei Verwendung von PMF und Least-Squares fĂŒr lineare Systeme und dessen Erweiterung auf (leicht) nicht lineare Systeme. Der vorgestellte Ansatz zur Biaskompensation (BC-OLS) wird am nicht linearen 1D-Servo in der Simulation und mit Messdaten validiert und in der Simulation mit anderen Methoden, z.B., Total-Least-Squares verglichen. ZusĂ€tzlich wird der Ansatz von PMF auf die weiter gefasste Systemklasse der Modulationsfunktionen (MF) erweitert. Des Weiteren wird ein praxisrelevantes Problem der Parameteridentifikation diskutiert, welches auftritt, wenn das Systemverhalten nicht gĂ€nzlich von der Identifikationsgleichung beschrieben wird. Am 1D-Servo wird gezeigt, dass ein Deaktivieren und Reaktivieren der PMF Filter mit geeigneter Initialisierung diese Problematik einfach löst.This thesis addresses two topics that play a significant role in modern control theory: design of experiments (DoE) and parameter estimation methods for continuous-time (CT) models. In this context, DoE focuses on the impact of experimental design regarding the accuracy of a subsequent estimation of unknown model parameters and applying the theory to real-world applications and its detailed analysis. We introduce the Fisher-information matrix (FIM), consisting of the parameter sensitivities and the resulting highly nonlinear optimization task. By a first-order system, we demonstrate the computation of the information content, its visualization, and an illustration of the effects of higher Fisher information on parameter estimation quality. After that, the topic optimal input design (OID), a subarea of DoE, will be thoroughly explored on the practice-relevant linear and nonlinear model of a 1D-position servo system. Comparison with standard excitation signals shows that the OID signals generally provide higher information content and lead to more accurate parameter estimates using least-squares methods. Besides, this approach allows taking into account constraints on input, output, and state variables. In the second major topic of this thesis, we treat parameter estimation methods for CT systems, which provide several advantages to identify discrete-time (DT) systems, e.g., allows physical insight into model parameters. We focus on modulating function method (MFM) or Poisson moment functionals (PMF) and least-squares to estimate unknown model parameters. In the case of noisy measurement data, the problem of biased parameter estimation arises immediately. That is why we discuss the computation and compensation of the so-called estimation bias in detail. Besides the detailed elaboration of a bias compensating estimation method, this work’s main contribution is, based on PMF and least squares for linear systems, the extension to at least slightly nonlinear systems. The derived bias-compensated ordinary least-squares (BCOLS) approach for obtaining asymptotically unbiased parameter estimates is tested on a nonlinear 1D-servo model in the simulation and measurement. A comparison with other methods for bias compensation or avoidance, e.g., total least-squares (TLS), is performed. Additionally, the BC-OLS method is applied to the more general MFM. Furthermore, a practical issue of parameter estimation is discussed, which occurs when the system behavior leaves and re-enters the space covered by the identification equation. Using the 1D-servo system, one can show that disabling and re-enabling the PMF filters with appropriate initialization can solve this problem

    Optimal denoising of rotationally invariant rectangular matrices

    Full text link
    In this manuscript we consider denoising of large rectangular matrices: given a noisy observation of a signal matrix, what is the best way of recovering the signal matrix itself? For Gaussian noise and rotationally-invariant signal priors, we completely characterize the optimal denoiser and its performance in the high-dimensional limit, in which the size of the signal matrix goes to infinity with fixed aspects ratio, and under the Bayes optimal setting, that is when the statistician knows how the signal and the observations were generated. Our results generalise previous works that considered only symmetric matrices to the more general case of non-symmetric and rectangular ones. We explore analytically and numerically a particular choice of factorized signal prior that models cross-covariance matrices and the matrix factorization problem. As a byproduct of our analysis, we provide an explicit asymptotic evaluation of the rectangular Harish-Chandra-Itzykson-Zuber integral in a special case

    Estimation of Radio Channel Parameters

    Get PDF
    Kurzfassung Diese Dissertation behandelt die SchĂ€tzung der Modellparameter einer Momentanaufnahme des Mobilfunkkanals. Das besondere Augenmerk liegt zum einen auf der Entwicklung eines generischen Datenmodells fĂŒr den gemessenen Funkkanal, welches fĂŒr die hochauflösende ParameterschĂ€tzung geeignet ist. Der zweite Schwerpunkt dieser Arbeit ist die Entwicklung eines robusten ParameterschĂ€tzers fĂŒr die Bestimmung der Parameter des entworfenen Modells aus Funkkanalmessdaten. Entsprechend dieser logischen Abfolge ist auch der Aufbau dieser Arbeit. Im ersten Teil wird ausgehend von einem aus der Literatur bekannten strahlenoptischen Modell eine algebraisch handhabbare Darstellung von beobachteten Wellenausbreitungspfaden entwickelt. Das mathematische Modell erlaubt die Beschreibung von SISO (single-input-single-output)- Übertragungssystemen, also von Systemen mit einer Sendeantenne und einer Empfangsantenne, als auch die Beschreibung von solchen Systemen mit mehreren Sende- und/oder Empfangsantennen. Diese Systeme werden im Allgemeinen auch als SIMO- (single-input-multiple-output), MISO- (multiple-input-single-output) oder MIMO-Systeme (multiple-input-multiple-output) bezeichnet. Im Gegensatz zu bekannten Konzepten enthĂ€lt das entwickelte Modell keine Restriktionen bezĂŒglich der modellierbaren Antennenarrayarchitekturen. Dies ist besonders wichtig in Hinblick auf die möglichst vollstĂ€ndige Erfassung der rĂ€umlichen Struktur des Funkkanals. Die FlexibilitĂ€t des Modells ist eine Grundvoraussetzung fĂŒr die optimale Anpassung der Antennenstruktur an die Messaufgabe. Eine solche angepasste Antennenarraystruktur ist zum Beispiel eine zylindrische Anordnung von Antennenelementen. Sie ist gut geeignet fĂŒr die Erfassung der rĂ€umlichen Struktur des Funkkanals (Azimut und Elevation) in so genannten Outdoor- Funkszenarien. Weiterhin wird im ersten Teil eine neue Komponente des Funkkanaldatenmodells eingefĂŒhrt, welche den Beitrag verteilter (diffuser) Streuungen zur FunkĂŒbertragung beschreibt. Die neue Modellkomponente spielt eine SchlĂŒsselrolle bei der Entwicklung eines robusten ParameterschĂ€tzers im Hauptteil dieser Arbeit. Die fehlende Modellierung der verteilten Streuungen ist eine der Hauptursachen fĂŒr die begrenzte Anwendbarkeit und die oft kritisierte fehlende Robustheit von hochauflösenden FunkkanalparameterschĂ€tzern, die in der Literatur etabliert sind. Das neue Datenmodell beschreibt die so genannten dominanten Ausbreitungspfade durch eine deterministische Abbildung der Pfadparameter auf den gemessenen Funkkanal. Der Beitrag der verteilten Streuungen wird mit Hilfe eines zirkularen mittelwertfreien Gaußschen Prozesses beschrieben. Die Modellparameter der verteilten Streuungen beschreiben dabei die Kovarianzmatrix dieses Prozesses. Basierend auf dem entwickelten Datenmodell wird im Anschluss kurz ĂŒber aktuelle Konzepte fĂŒr FunkkanalmessgerĂ€te, so genannte Channel-Sounder, diskutiert. Im zweiten Teil dieser Arbeit werden in erster Linie AusdrĂŒcke zur Bestimmung der erzielbaren Messgenauigkeit eines Channel-Sounders abgeleitet. Zu diesem Zweck wird die untere Schranke fĂŒr die Varianz der geschĂ€tzten Modellparameter, das heißt der Messwerte, bestimmt. Als Grundlage fĂŒr die VarianzabschĂ€tzung wird das aus der ParameterschĂ€tztheorie bekannte Konzept der CramĂ©r-Rao-Schranke angewandt. Im Rahmen der Ableitung der CramĂ©r-Rao-Schranke werden außerdem wichtige Gesichtspunkte fĂŒr die Entwicklung eines effizienten ParameterschĂ€tzers diskutiert. Im dritten Teil der Arbeit wird ein SchĂ€tzer fĂŒr die Bestimmung der Ausbreitungspfadparameter nach dem Maximum-Likelihood-Prinzip entworfen. Nach einer kurzen Übersicht ĂŒber existierende Konzepte zur hochauflösenden FunkkanalparameterschĂ€tzung wird die vorliegende SchĂ€tzaufgabe analysiert und in Hinsicht ihres Typs klassifiziert. Unter der Voraussetzung, dass die Parameter der verteilten Streuungen bekannt sind, lĂ€sst sich zeigen, daß sich die SchĂ€tzung der Parameter der Ausbreitungspfade als ein nichtlineares gewichtetes kleinstes Fehlerquadratproblem auffassen lĂ€sst. Basierend auf dieser Erkenntnis wird ein generischer Algorithmus zur Bestimmung einer globalen Startlösung fĂŒr die Parameter eines Ausbreitungspfades vorgeschlagen. Hierbei wird von dem Konzept der Structure-Least-Squares (SLS)-Probleme Gebrauch gemacht, um die KomplexitĂ€t des SchĂ€tzproblems zu reduzieren. Im folgenden Teil dieses Abschnitts wird basierend auf aus der Literatur bekannten robusten numerischen Algorithmen ein SchĂ€tzer zur genauen Bestimmung der Ausbreitungspfadparameter abgeleitet. Im letzten Teil dieses Abschnitts wird die Anwendung unterraumbasierter SchĂ€tzer zur Bestimmung der Ausbreitungspfadparameter diskutiert. Es wird ein speichereffizienter Algorithmus zur SignalraumschĂ€tzung entwickelt. Dieser Algorithmus ist eine Grundvoraussetzung fĂŒr die Anwendung von mehrdimensionalen ParameterschĂ€tzern wie zum Beispiel des R-D unitary ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) zur Bestimmung von Funkkanalparametern aus MIMO-Funkkanalmessungen. Traditionelle Verfahren zur SignalraumschĂ€tzung sind hier im Allgemeinen nicht anwendbar, da sie einen zu großen Speicheraufwand erfordern. Außerdem wird in diesem Teil gezeigt, dass ESPRIT-Algorithmen auch zur ParameterschĂ€tzung von Daten mit so genannter versteckter Rotations-Invarianzstruktur eingesetzt werden können. Als Beispiel wird ein ESPRIT-basierter Algorithmus zur RichtungsschĂ€tzung in Verbindung mit multibeam-Antennenarrays (CUBA) abgeleitet. Im letzten Teil dieser Arbeit wird ein Maximum-Likelihood-SchĂ€tzer fĂŒr die neue Komponente des Funkkanals, welche die verteilten Streuungen beschreibt, entworfen. Ausgehend vom Konzept des iterativen Maximum-Likelihood-SchĂ€tzers wird ein Algorithmus entwickelt, der hinreichend geringe numerische KomplexitĂ€t besitzt, so dass er praktisch anwendbar ist. In erster Linie wird dabei von der Toeplitzstruktur der zu schĂ€tzenden Kovarianzmatrix Gebrauch gemacht. Aufbauend auf dem SchĂ€tzer fĂŒr die Parameter der Ausbreitungspfade und dem SchĂ€tzer fĂŒr die Parameter der verteilten Streuungen wird ein Maximum-Likelihood-SchĂ€tzer entwickelt (RIMAX), der alle Parameter des in Teil I entwickelten Modells der Funkanalmessung im Verbund schĂ€tzt. Neben den geschĂ€tzten Parametern des Datenmodells liefert der SchĂ€tzer zusĂ€tzlich ZuverlĂ€ssigkeitsinformationen. Diese werden unter anderem zur Bestimmung der Modellordnung, das heißt zur Bestimmung der Anzahl der dominanten Ausbreitungspfade, herangezogen. Außerdem stellen die ZuverlĂ€ssigkeitsinformationen aber auch ein wichtiges SchĂ€tzergebnis dar. Die ZuverlĂ€ssigkeitsinformationen machen die weitere Verarbeitung und Wertung der Messergebnisse möglich.The theme of this thesis is the estimation of model parameters of a radio channel snapshot. The main focus was the development of a general data model for the measured radio channel, suitable for both high resolution channel parameter estimation on the one hand, and the development of a robust parameter estimator for the parameters of the designed parametric radio channel model, in line with this logical work flow is this thesis. In the first part of this work an algebraic representation of observed propagation paths is developed using a ray-optical model known from literature. The algebraic framework is suitable for the description of SISO (single-input-single-output) radio transmission systems. A SISO system uses one antenna as the transmitter (Tx) and one antenna as the receiver (Rx). The derived expression for the propagation paths is also suitable to describe SIMO (single-input-multiple-output), MISO (multiple-input-single-output), and MIMO (multiple-input-multiple-output) radio channel measurements. In contrast to other models used for high resolution channel parameter estimation the derived model makes no restriction regarding the structure of the antenna array used throughout the measurement. This is important since the ultimate goal in radio channel sounding is the complete description of the spatial (angular) structure of the radio channel at Tx and Rx. The flexibility of the data model is a prerequisite for the optimisation of the antenna array structure with respect to the measurement task. Such an optimised antenna structure is a stacked uniform circular beam array, i.e., a cylindrical arrangement of antenna elements. This antenna array configuration is well suited for the measurement of the spatial structure of the radio channel at Tx and/or Rx in outdoor-scenarios. Furthermore, a new component of the radio channel model is introduced in the first part of this work. It describes the contribution of distributed (diffuse) scattering to the radio transmission. The new component is key for the development of a robust radio channel parameter estimator, which is derived in the main part of this work. The ignorance of the contribution of distributed scattering to radio propagation is one of the main reasons why high-resolution radio channel parameter estimators fail in practice. Since the underlying data model is wrong the estimators produce erroneous results. The improved model describes the so called dominant propagation paths by a deterministic mapping of the propagation path parameters to the channel observation. The contribution of the distributed scattering is modelled as a zero-mean circular Gaussian process. The parameters of the distributed scattering process determine the structure of the covariance matrix of this process. Based on this data model current concepts for radio channel sounding devices are discussed. In the second part of this work expressions for the accuracy achievable by a radio channel sounder are derived. To this end the lower bound on the variance of the measurements i.e. the parameter estimates is derived. As a basis for this evaluation the concept of the CramĂ©r-Rao lower bound is employed. On the way to the CramĂ©r-Rao lower bound for all channel model parameters, important issues for the development of an appropriate parameter estimator are discussed. Among other things the coupling of model parameters is also discussed. In the third part of this thesis, an estimator, for the propagation path parameters is derived. For the estimator the 'maximum-likelihood' approach is employed. After a short overview of existing high-resolution channel parameter estimators the estimation problem is classified. It is shown, that the estimation of the parameters of the propagation paths can be understood as a nonlinear weighted least squares problem, provided the parameters of the distributed scattering process are known. Based on this observation a general algorithm for the estimation of raw parameters for the observed propagation paths is developed. The algorithm uses the concept of structured-least-squares (SLS) and compressed maximum likelihood to reduce the numerical complexity of the estimation problem. A robust estimator for the precise estimation of the propagation path parameters is derived. The estimator is based on concepts well known from nonlinear local optimisation theory. In the last part of this chapter the application of subspace based parameter estimation algorithms for path parameter estimation is discussed. A memory efficient estimator for the signal subspace needed by, e.g., R-D unitary ESPRIT is derived. This algorithm is a prerequisite for the application of signal subspace based algorithms to MIMO-channel sounding measurements. Standard algorithms for signal subspace estimation (economy size SVD, singular value decomposition) are not suitable since they require an amount of memory which is too large. Furthermore, it is shown that ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) based algorithms can also be employed for parameter estimation from data having hidden rotation invariance structure. As an example an ESPRIT algorithm for angle estimation using circular uniform beam arrays (circular multi-beam antennas) is derived. In the final part of this work a maximum likelihood estimator for the new component of the channel model is developed. Starting with the concept of iterative maximum likelihood estimation, an algorithm is developed having a low computational complexity. The low complexity of the algorithm is achieved by exploiting the Toeplitz-structure of the covariance matrix to estimate. Using the estimator for the (concentrated, dominant, specular-alike) propagation paths and the parametric estimator for the covariance matrix of the process describing the distributed diffuse scattering a joint estimator for all channel parameter is derived (RIMAX). The estimator is a 'maximum likelihood' estimator and uses the genuine SAGE concept to reduce the computational complexity. The estimator provides additional information about the reliability of the estimated channel parameters. This reliability information is used to determine an appropriate model for the observation. Furthermore, the reliability information i.e. the estimate of the covariance matrix of all parameter estimates is also an important parameter estimation result. This information is a prerequisite for further processing and evaluation of the measured channel parameters

    Statistical signal processing for mechanical systems

    Get PDF
    Random processes such as temperature and acoustic noise are found in all types of mechanical systems. Knowledge of these processes can lead to improved design and detection methods related to faulty operation. The goal of this dissertation is to contribute to the knowledge base of such processes. Specifically, we address statistical signal processing methods that are appropriate and consistent relative to the physics of these systems. Two generic problems associated with random signal measurements from mechanical systems are addressed.;Random processes associated with mechanical systems usually have complex spectral structure containing both continuous and line spectral components. Accordingly, they are called mixed random processes. One problem addressed is to use variability related to families of spectral estimators for a mixed random process to better characterize its spectral information. We show that tones are a significant source of bias and variability of families of spectral estimators. Expressions for estimating statistical and arithmetic variability of three common families of spectral estimators are provided. An important and immediate application of these results is tone detection.;We also address the statistical problem of estimating the bandwidth parameter of a Gauss-Markov process from a realization of fixed and finite duration at selectable sampling interval. The motivation is that continuous-time processes are often sampled at a rate far higher than their underlying dynamics. It is commonly assumed a faster sample rate is better. But in many real world situations, such as in adaptive feedback control schemes design, short time changes demand only limited time being utilized. Thus this problem is investigated. The bias and variance expressions of the parameter estimator are derived with a second order expansion. Three sample rate regions---finite, large and very large ones, corresponding to substantial, gradual, and very slight variance drop, are quantitatively identified. Guidelines in choosing sampling rate based on estimator performance requirement are provided.;The results are used to characterize the stochastic structure of the sound pressure process from an engine cooling fan with and without mock engine, and to perform a hypothesis test for deciding whether a design change has a significant effect on the sound
    • 

    corecore