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Abstract

This thesis addresses two topics that play a significant role in modern control theory:
design of experiments (DoE) and parameter estimation methods for continuous-time
(CT) models. In this context, DoE focuses on the impact of experimental design re-
garding the accuracy of a subsequent estimation of unknown model parameters and
applying the theory to real-world applications and its detailed analysis. We introduce
the Fisher-information matrix (FIM), consisting of the parameter sensitivities and the
resulting highly nonlinear optimization task. By a first-order system, we demonstrate
the computation of the information content, its visualization, and an illustration of the
effects of higher Fisher information on parameter estimation quality. After that, the
topic optimal input design (OID), a subarea of DoE, will be thoroughly explored on
the practice-relevant linear and nonlinear model of a 1D-position servo system. Com-
parison with standard excitation signals shows that the OID signals generally provide
higher information content and lead to more accurate parameter estimates using least-
squares methods. Besides, this approach allows taking into account constraints on
input, output, and state variables.

In the second major topic of this thesis, we treat parameter estimation methods for
CT systems, which provide several advantages to identify discrete-time (DT) systems,
e.g., allows physical insight into model parameters. We focus on modulating function
method (MFM) or Poisson moment functionals (PMF) and least-squares to estimate
unknown model parameters. In the case of noisy measurement data, the problem of
biased parameter estimation arises immediately. That is why we discuss the computa-
tion and compensation of the so-called estimation bias in detail. Besides the detailed
elaboration of a bias compensating estimation method, this work’s main contribu-
tion is, based on PMF and least squares for linear systems, the extension to at least
slightly nonlinear systems. The derived bias-compensated ordinary least-squares (BC-
OLS) approach for obtaining asymptotically unbiased parameter estimates is tested on
a nonlinear 1D-servo model in the simulation and measurement. A comparison with
other methods for bias compensation or avoidance, e.g., total least-squares (TLS), is
performed. Additionally, the BC-OLS method is applied to the more general MFM.
Furthermore, a practical issue of parameter estimation is discussed, which occurs when
the system behavior leaves and re-enters the space covered by the identification equa-
tion. Using the 1D-servo system, one can show that disabling and re-enabling the
PMF filters with appropriate initialization can solve this problem.





Kurzfassung

Diese Arbeit behandelt die Themengebiete Design of Experiments (DoE) und Parame-
terschätzung für zeitkontinuierliche Systeme, welche in der modernen Regelungstheorie
eine wichtige Rolle spielen. Im gewählten Kontext untersucht DoE die Auswirkun-
gen von verschiedenen Rahmenbedingungen von Simulations- bzw. Messexperimenten
auf die Qualität der Parameterschätzung, wobei der Fokus auf der Anwendung der
Theorie auf praxisrelevante Problemstellungen liegt. Dafür wird die weithin bekan-
nte Fisher-Matrix eingeführt und die resultierende nicht lineare Optimierungsaufgabe
angeschrieben. An einem PT1-System wird der Informationsgehalt von Signalen und
dessen Auswirkungen auf die Parameterschätzung gezeigt. Danach konzentriert sich
die Arbeit auf ein Teilgebiet von DoE, nämlich Optimal Input Design (OID), und
wird am Beispiel eines 1D-Positioniersystems im Detail untersucht. Ein Vergleich mit
häufig verwendeten Anregungssignalen zeigt, dass generierte Anregungssignale (OID)
oft einen höheren Informationsgehalt aufweisen und mit genaueren Schätzwerten ein-
hergeht. Zusätzlicher Benefit ist, dass Beschränkungen an Eingangs-, Ausgangs- und
Zustandsgrößen einfach in die Optimierungsaufgabe integriert werden können.

Der zweite Teil der Arbeit behandelt Methoden zur Parameterschätzung von zeitkon-
tinuierlichen Modellen mit dem Fokus auf der Verwendung von Modulationsfunktio-
nen (MF) bzw. Poisson-Moment Functionals (PMF) zur Vermeidung der zeitlichen
Ableitungen und Least-Squares zur Lösung des resultierenden überbestimmten Gle-
ichungssystems. Bei verrauschten Messsignalen ergibt sich daraus sofort die Prob-
lematik von nicht erwartungstreuen Schätzergebnissen (Bias). Aus diesem Grund wer-
den Methoden zur Schätzung und Kompensation von Bias Termen diskutiert. Beitrag
dieser Arbeit ist vor allem die detaillierte Aufarbeitung eines Ansatzes zur Biaskompen-
sation bei Verwendung von PMF und Least-Squares für lineare Systeme und dessen Er-
weiterung auf (leicht) nicht lineare Systeme. Der vorgestellte Ansatz zur Biaskompen-
sation (BC-OLS) wird am nicht linearen 1D-Servo in der Simulation und mit Messdaten
validiert und in der Simulation mit anderen Methoden, z. B., Total-Least-Squares ver-
glichen. Zusätzlich wird der Ansatz von PMF auf die weiter gefasste Systemklasse
der Modulationsfunktionen (MF) erweitert. Des Weiteren wird ein praxisrelevantes
Problem der Parameteridentifikation diskutiert, welches auftritt, wenn das Systemver-
halten nicht gänzlich von der Identifikationsgleichung beschrieben wird. Am 1D-Servo
wird gezeigt, dass ein Deaktivieren und Reaktivieren der PMF Filter mit geeigneter
Initialisierung diese Problematik einfach löst.
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ỹ(i) i-th derivative of filtered output y
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1 Introduction

Methods and algorithms of modern control engineering and system theory are used in
almost all technical areas, and their importance is even growing due to the increasing
demands on intelligent systems. For example, this could be the automation or con-
trol of manufacturing and production processes and its online failure monitoring or
high-speed positioning systems in the industrial sector. Another descriptive example
from the automotive industry is the model-based estimation of vehicle dynamics or
unknown parameters to improve vehicle control and stabilization or apply novel drive-
train concepts, e.g., hybrid drive trains. Furthermore, intelligent mechatronic systems
are also essential to overcome the arising challenges of the climate crisis. Control en-
gineering methods and algorithms are used in all these systems, such as in smart grids
with decentralized energy generators or failure monitoring in photovoltaic systems, to
name but a few. The underlying mathematical models’ quality significantly influences
the performance of these control engineering methods and algorithms. For this reason,
system identification is a must-have in control engineering. As stated in [1], the four
essential tasks in system theory are modeling, analysis, estimation, and control. Of
course, these tasks of control engineering interact with each other in many ways. From
a system identification point of view, plant modeling and parameter estimation are
essential, as these are directly related to the system identification problem. The con-
cept of system identification describes the methodology of creating such mathematical
models and consists of:

(i) obtaining input and output measurement data in time or frequency domain

(ii) selecting an appropriate model structure

(iii) estimating unknown model parameters

(iv) verifying the accuracy of the estimated model

Regarding choosing a suitable model structure (Item (ii)), there are two funda-
mentally different approaches: black-box and white-box models. They differ in the
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physical background used in the respective models. While white-box models are com-
pletely physics-based (theoretical modeling), black-box models are the opposite (ex-
perimental modeling), being entirely data-driven. Unsurprisingly, mixed forms are
called gray-box models. Literature provides a good overview of the different types of
models and their characteristics, e.g., [2,3]. In this thesis, the focus is not on the model
structure’s choice, and it is assumed that an appropriate model structure is obtained
due to physics-based considerations. Measurement data generation (Item (i)) and the
estimation of unknown model parameters (Item (iii)) remain the tasks to be solved.

This thesis addresses two selected issues in modern control theory; both of them
inevitable for system identification. On the one hand, the generation of optimal ex-
periments for dynamical systems, also known as DoE, and the estimation of unknown
plant parameters, focusing on online capability, on the other hand. In terms of content,
this work ranges from fundamental investigations on the topic of DoE for dynamical
systems based on the FIM, initially introduced by [4], in Chapter 2, to methods for pa-
rameter estimation like modulating function (MF) approaches or PMF [5], calculation
and compensation of estimation bias [5–7] in Chapter 3 and application of the investi-
gated methods to selected practical applications in Chapter 4. Finally, the necessary
fundamentals of random variables (RVs) and random processes (RPs) are treated in
Section A.1 and Section A.3.

At first glance, DoE and parameter estimation are thematically decoupled research
topics, which is why they are dealt with separately in Chapter 2 and Chapter 3, re-
spectively. However, it appears obvious to use DoE methods to improve parameter
estimation results, independent of the chosen approach later on for parameter estima-
tion. DoE includes, among other things, the generation of input signals in compliance
with restrictions, e.g., mechanical, the finding of optimal measurement time instances,
or the optimal placement of sensors to obtain more accurate parameter estimates. DoE
is often used to generate excitation (input) signals or informative input signals adjusted
to the respective system. We call this subdomain optimal input design (OID).

As a first introduction to the topic of DoE, we illustrate the effect of an arbitrary
choice of evaluation time instances on parameter estimates of a simple first-order sys-
tem. We consider a first-order single-input single-output (SISO) linear time-invariant
(LTI) system with transfer function

G (s) = ŷ (s)
û (s) = V

1 + sT1
(1.1)

where s describes the Laplace variable. Its physics-based model parameters V (gain)
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and T1 (time constant) should be estimated as best possible. The nominal model
parameters are V = 3 and T1 = 1. The system is assumed to be excited with a unit
step u (t) = σ (t) for which the system response in time-domain y (t) is called step-
response, and can be analytically derived by, e.g., application of the inverse Laplace
transform

y (t) = L−1 (û (s)G (s))

= L−1
(1
s

V

1 + sT1

)
= V

(
1− e−

t
T1

)
.

(1.2)

Furthermore, we assume that the measured output ym (t) is sampled at discrete time
instances tk = kT, 1 ≤ k ≤ N , with sample time T and the total number of samples
N , and noise corrupted with ek ∼ N (0, σ2), where σ = 0.1, i.e.,

ym (tk) = ym;k = yk + ek . (1.3)

The input and output signals are visualized in Fig. 1.1. To determine the unknown

0 2 4 6 8 10
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Figure 1.1: Step response ym (t) = y (t) + e (t), where e ∼ N (0, σ2) with σ = 0.1 .

parameters, (1.2) must be evaluated at two different t1 and t2, respectively. When
looking at (1.2) or Fig. 1.1, it is evident that the DC-gain V can be estimated by
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tending t2 towards infinity

V̂ = lim
t2→∞

V
(

1− e−
t2
T1

)
= ym (t2) = ym;2 (1.4)

with t2 > t1. For the time constant, one obtains

T̂1 = − t1

ln
(
1− ym;1

V̂

) = − t1

ln
(
1− ym;1

ym;2

) . (1.5)

The choice of a suitable, or even optimal, time instance t1 remains open. To show the
effects of different evaluation time pairs {t1, t2} on the estimation result V̂ , T̂1, and
to demonstrate the effectiveness of DoE methods, three different value pairs and the
respective resulting parameter estimates are compared in the following. We take the
liberty to anticipate Chapter 2 and briefly introduce the DoE method for dynamical
systems without presenting detailed background knowledge and mathematical deriva-
tions. Of course, this is discussed in much more detail in Chapter 2. In a nutshell,
the DoE method for dynamical systems generates experiments that are as informative
as possible. This information content is described by the so-called Fisher-information
matrix (FIM) or a scalar quantity of the same matrix. The FIM is mainly composed of
system outputs’ sensitivities concerning selected, maybe unknown, model parameters.
Thus, the FIM applied to (1.2) with nominal parameter vector p0 = (V, T1)> read as

F(u,p0)|u=σ(t) =
2∑

k=1

1
σ2


(
∂y
∂V

)2∣∣∣
p0,tk

(
∂y
∂V

∂y
∂T1

)∣∣∣
p0,tk(

∂y
∂T1

∂y
∂V

)∣∣∣
p0,tk

(
∂y
∂T1

)2∣∣∣
p0,tk



= 1
σ2

2∑
k=1


(
1− e−tk/T1

)2 (
1− e−tk/T1

)(
− tkV

T 2
1
e
− tk
T1

)
(
1− e−tk/T1

) (
− tkV

T 2
1
e
− tk
T1

) (
− tkV

T 2
1
e
− tk
T1

)2


(1.6)

with the respective local sensitivities

s1 (tk) = ∂y

∂V

∣∣∣∣∣
p0,tk

= 1− e−
tk
T1

s2 (tk) = ∂y

∂T1

∣∣∣∣∣
p0,tk

= −tkV
T 2

1
e
− tk
T1

(1.7)

and output noise variance σ2 = 0.01 . For optimization purposes, the determinant
of the FIM is used as a scalar objective function. We end up with the constrained
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optimization problem
max
t1,t2

det (F (u,p0))

t1 ∈ [0, 10]
t2 ∈ [0, 10]

(1.8)

to obtain optimal time instances.1 In Fig. 1.2, the obtained information content (1.8)
is shown as a function of the chosen time instances t1 and t2. It is easy to see that
the information content reaches a maximum with {t1, t2} = {1 s, 10 s} or {t1, t2} =
{10 s, 1 s}, respectively. The prior knowledge to tend t2 → ∞, as assumed in (1.4),
is also a direct result of the DoE task. The DoE result seems quite plausible since it
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Figure 1.2: Optimal measurement points t1 and t2 for estimating the model parameters
V and T1 using D-criterion for evaluating the Fisher matrix.

means that the gain factor V can be determined best in the steady-state range and
the time constant T1 within the range of large slope.
To determine whether the parameter estimation (1.4) and (1.5) is affected by choice

of evaluation time instances thousand simulation runs are performed, each evaluated
at three different pair of time values:

(i) {t1, t2} = {0.25 s, 10 s}

(ii) {t1, t2} = {1 s, 10 s} (optimal)

(iii) {t1, t2} = {3 s, 10 s}
1Of course, the nominal parameters are usually not known or are subject to inaccuracies. Inves-

tigations of the effects of parameter uncertainties on the DoE task and approaches to solving this
problem are discussed in Chapter 2.
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As shown in Fig. 1.3(b), the parameter covariance ellipse is reduced by evaluating
the model output at the optimal points in time (blue) obtained by the DoE task. A
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information.
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Fig. 1.3(a). For better readability, only
every tenth point is shown.

Figure 1.3: 95% confidence ellipse of two-dimensional Gaussian distributed parameter
covariance error.

closer look at the results shows that the uncertainties in the estimation of the gain V̂
are in the same range of values, which makes sense because, in all three comparisons,
t2 = 10 s. In contrast to this, the spread is much greater when estimating the time
constant T̂1. Generally, the higher the information content of the respective value pair
{t1, t2}, the lower the uncertainty of the estimated parameter, c.f., Fig. 1.3. By far,
the best result is achieved by the pair of values generated by the DoE method. Thus,
one can show that DoE significantly improves the parameter estimation result.

Another of this thesis’s core topics, namely parameter estimation and its bias, is
explained using the same introductory example. Without knowing the analytical so-
lution of the differential equation, c.f. (1.2), the parameter estimation of CT models
consists of the two main tasks:

(i) approximation or elimination of the time derivatives, resulting in a purely alge-
braic system of equations

(ii) determination of the parameters from the resulting algebraic system of equations,
e.g., by the method of ordinary least-squares (OLS)

Without further details in this introduction, one possibility for the exact elimination of
time derivatives of signals is the so-called modulating function method (MFM), which
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is essentially based on partial integration. One possible realization of this method,
called Poisson moment functionals (PMF), can be interpreted as the convolution of a
signal with impulse response of a known stable linear filter, e.g.,

ỹ(i) (t) = di
dt{ỹ (t)} =

(
giFn ∗ y

)
(t) (1.9)

where (giF ∗ y) (t) describes the convolution of a signal y (t) with the impulse response
giF (t) = L−1 {F i (s)} of a stable linear filter F i (s). The first order (ordinary) differ-
ential equation, equivalent to (1.1), reads

y (t) + T1ẏ (t) = V u (t) (1.10)

with input u (t) ∈ R, output y (t) ∈ R, and the unknown (constant) parameter vector
p = (T1, V )>. Using PMF, one obtains the algebraic equation for parameter estimation

ỹ (t) =
(
−˜̇y (t) ũ (t)

)T1

V

 (1.11)

linear in the parameters. For a single time instance tk, one obtains

ỹ (tk)︸ ︷︷ ︸
=yLSQ;k

=
(
−˜̇y (tk) ũ (tk)

)
︸ ︷︷ ︸

=w>
k

T1

V


︸ ︷︷ ︸

=p

. (1.12)

Equation (1.12) is evaluated at N discrete-time instances tk, i.e.,

yLSQ;1

yLSQ;2
...

yLSQ;k
...

yLSQ;N


︸ ︷︷ ︸

=yLSQ

=



w>1
w>2
...

w>k
...

w>N


︸ ︷︷ ︸

W


p1

p2
...
pnp


︸ ︷︷ ︸

p

. (1.13)
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By extending the set of equations by a generalized equation error (EE)


yLSQ;1

yLSQ;2
...

yLSQ;k
...

yLSQ;N


︸ ︷︷ ︸

=yLSQ

=



w>1
w>2
...

w>k
...

w>N


︸ ︷︷ ︸

W


p1

p2
...
pnp


︸ ︷︷ ︸

p

+


v1

v2
...
vN


︸ ︷︷ ︸

v

(1.14)

the optimal parameter estimates in the least-squares sense are obtaind by

p̂ =
(
W>W

)−1
W>yLSQ . (1.15)

The statistical properties of the least-squares estimator are described in detail in Sec-
tion 3.3.3.1. However, allow to anticipate that one of the most important properties
is that the estimator yields an unbiased result when assuming a zero mean indepen-
dent and identically distributed (i.i.d.) equation error v. Consequently, assuming a
deterministic system output y (t), i.e.,

ỹ (t) =
(
−˜̇y (t) ũ (t)

)T1

V

+ v (t) , v (t) ∼ i.i.d
(
0, σ2

)
(1.16)

the estimation result is unbiased, i.e., p̂ = p. In case of distorted measurements, i.e.,

ym (t) = y (t) + e (t) , e (t) ∼ i.i.d
(
0, σ2

)
(1.17)

the equation for identification (1.11) turns into

ỹm (t) =
(
−˜̇ym (t) ũ (t)

)T
V

+ ẽ− T ˜̇e︸ ︷︷ ︸
=v(t)

, v (t) 6∼ i.i.d
(
0, σ2

)
(1.18)

directly resulting in a biased estimation result p̂. This is because the originally in-
dependent and identically distributed (i.i.d.) measurement noise becomes a colored
noise due to the PMF approach. By violating the assumptions made for the general-
ized equation error results in biased parameter estimation.

The simulation comparison in Fig. 1.4 clearly shows that the estimation result is
biased with noisy measurements.
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Figure 1.4: Comparison of the results of the OLS estimator for deterministic and
stochastic regressors obtained by ym (t) = y (t) + e (t), where e ∼ N (0, σ2)
with σ = 0.1 .

1.1 Contribution of This Thesis

The estimation of unknown model parameters is essential for many technical applica-
tion areas, including control engineering. For example, an exactly parameterized model
is necessary for the design of highly dynamic controllers. Online parameter estimation
is also often used for specific fault monitoring applications. It is known that besides
the choice of a suitable method for parameter estimation, the choice of the excitation
signal influences the quality of the estimation result. For this reason, the topics of
design of experiments (DoE) and parameter estimation methods for continuous-time
(CT) models are discussed in this thesis.

In this work, the basic ideas of DoE for parameter estimation are reviewed, and a
(graphically) illustrative relationship between the information content of signals and
the quality of parameter estimation is established. For example, Fig. 1.3 shows the
effect of the different measurement times to determine a first-order system’s parame-
ters.

Biased parameter estimates due to measurement noise are a common problem in
system identification. Besides the shown reduction of the bias by suitable excita-
tion signals (OID), various methods exist to reduce or eliminate the estimation bias.
This work’s contribution includes the detailed reappraisal of the bias estimation for
continuous-time systems for Poisson moment functionals (PMF) and ordinary least-
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squares (OLS) from [7] and its extension to (slightly) nonlinear systems, e.g., a 1D-servo
system with Coulomb static friction. Moreover, this approach to obtain asymptotically
unbiased results is applied to the more general modulating function (MF) class.

Furthermore, the algorithms for optimal input design (OID) and asymptotic unbi-
ased parameter estimation are demonstrated in measurement experiments in Chap-
ter 4. Besides, this chapter covers another problem in the practical implementation of
parameter estimation techniques: how to proceed when the system behavior leaves and
re-enters the horizon covered by the identification equation. The focus is on disable
and re-enable the PMF filters with appropriate initial values. Based on the slip-stick
effect of a 1D-positioning system with static friction, we show these effects in a sim-
ulation experiment and offer a surprisingly simple solution for at least one particular
case, validated with test-bench measurement data.
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2 Optimal Input Design for Dynamical
Systems

2.1 Introduction

Statistical design of experiments as a method for efficient planning and evaluation of
test series was already developed in the 1920s. In 1935 Ronald A. Fisher published
the first textbook with the title The Design of Experiments on this topic, see [4].
Nevertheless, it was not until the 1980s that the statistical design of experiments
became widespread and applied worldwide.

Design of experiments is universally applicable in almost all engineering disciplines.
Depending on the field of interest, this results in differences concerning the mathe-
matical requirements. With simple experimental designs, typical questions are, for
example, the necessary sample size or the distinction between real and virtual effects.
Today, powerful computer simulations make it possible to create very complex experi-
mental designs with a many factors. Of course, this also requires detailed experimental
models to consider, e.g., nonlinear relationships [8]. The main goal of design of exper-
iments is to obtain as much information as possible about the relationships between
influencing variables (inputs and outputs) with as little testing effort as possible.

For dynamic systems such as those investigated here in detail, design of experiments
include the choice of input and measurement ports, test signals, input-, output- and
state constraints, sampling instants, etc., see, e.g., [9]. The aim is, therefore, to de-
sign experiments with high information content while adhering to application-specific
constraints.

In this thesis, the focus of design of experiments is on generating optimal input
signals to obtain estimates for unknown model parameters that are as accurate as
possible. For this reason, it is more suitable to call the design of experiments (DoE) task
optimal input design (OID). In this context, OID coincides with persistent excitation,
c.f. Section 2.2.



18 2 Optimal Input Design for Dynamical Systems

2.2 Common Excitation Signals

This Section briefly summarizes signal families commonly used as excitation signals to
identify linear and nonlinear systems. In principle, one can differ between non-periodic
signals (e.g., step, square pulse), periodic signals (e.g., sine wave, square wave), and
stochastic signals (e.g., pseudorandom binary sequence (PRBS)). One can find more
detailed studies on this topic, for example, in [2,3,10–12]. For instance, in [12], one can
find details on the stationary and dynamic input space’s different excitation coverage.
According to [12], one will commonly use the following signals:

(i) pseudorandom binary sequence (PRBS) and pseudorandom multilevel sequence
(PRMS)

(ii) ramps

(iii) multisine

(iv) shifted chirps

u

t
τ 2τ · · · Nτ

−umax

0

umax

(a) PRBS.

u

t
τ 2τ · · · Nτ

umin

0

umax

(b) pseudorandom multilevel sequence
(PRMS).

Figure 2.1: PRBS and PRMS with minimum hold time τ and signal length N .

2.2.1 Pseudo Random Binary Sequence (PRBS) & Pseudo
Random Multilevel Sequence (PRMS)

For the identification of linear systems, it is fundamental to excite the system over
a wide frequency range. The amplitude is of secondary importance. Furthermore,
binary signals provide the highest power compared with other ones with the same
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maximum amplitude, improving estimation accuracy for linear systems. Therefore, the
so-called pseudorandom binary sequence (PRBS) is suitable as an excitation signal for
identifying linear systems, which (for a sufficiently long period) has the same stochastic
properties as discrete white noise. Besides minimum or maximum amplitude and signal
length, the choice of minimum hold time is a design factor to affect the frequency
characteristic, thus ensuring practical identifiability. For identifying, e.g., positioning
systems, this must not be chosen too small to ensure that the system moves at all from
a standstill.

In contrast, for nonlinear systems, a variation of the amplitudes is necessary to excite
the nonlinearities, e.g., [2, 13]. An extension of PRBS allows different amplitudes to
each cycle of the PRBS signal and is called pseudorandom multilevel sequence (PRMS).
As stated in [14–16], PRMSs are suitable excitation signals for identifying nonlinear
systems. The advantages of PRBS or PRMS signals are mainly their simple generation
and applicability. As shown in [12], one disadvantage is that the user cannot precisely
predefine PRBS or PRMS excitation frequencies due to its random characteristic. Of
course one can use OID to distribute PRMS amplitudes better, e.g., [15].

2.2.2 Ramp Signals

Ramps provide similar properties to PRBS or PRMS. As pointed out in [12], against
PRBS or PRMS, ramp signals have advantages concerning selectable frequencies.

2.2.3 Multisine Signals

A multisine signal is a sum of several harmonically related sine waves. Usually, one will
use multisine signals for non-parametric system identification. The main advantage of
using multisine excitation signals is that one can choose frequencies and corresponding
amplitudes arbitrarily. One may find more detailed information in, e.g., [12].

2.2.4 Chirp Signals

Chirp signals are periodic sinusoidal signals whose frequency continuously increases
decreases in a measurement period. As stated in [12], the signal power is distributed
equally over the whole user-defined frequency spectrum compared to PRBS or PRMS.
Advantages are the smoothness of the signal, which provides good applicability, mainly
for automotive systems. The main disadvantage is the very long measurement time to
cover the whole input space [12].
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2.3 Local Design Criteria
Fundamentally, it is necessary to obtain a measure of the “goodness” of an experiment.
Due to the obvious dependency between experiment and parameter estimation, it seems
natural to use the expected accuracy of the parameter estimation as a measure for the
quality of the experiment design. Of course, the quality of the parameter estimates
depends not only on the experiment design but also on the estimator used. Hence, we
assume an unbiased and efficient estimator.1 Cramér and Rao have shown that any
unbiased estimator fulfills the inequality

cov (p̂) ≥ 1
−E[∂2 ln f(x,p)

∂p2

∣∣∣
p0

]
(2.1)

where
cov (p̂) = E[(p̂− p) (p̂− p)>] (2.2)

is the parameter covariance matrix. The nominal parameter vector is p0, the estimated
vector is denoted by p̂, and f is the probability density function (PDF), see, e.g. [9,17].
For finding a proper design criterion, it is reasonable to assume an unbiased and efficient
estimator, whereby inequality (2.1) results in the Cramér-Rao lower bound (CRLB)

CRLB = 1
−E[∂2 ln f(x,p)

∂p∂p> ]
(2.3)

where the denominator
F (p) = −E[∂

2 ln f (x,p)
∂p∂p>

] (2.4)

is denoted as Fisher information.2 Consequently, maximizing the Fisher information
results in a decreasing CRLB (2.3), and therefore more accurate parameter estimates
are possible, provided that a suitable estimator is used.

1The statistical properties of estimators are summarized in Section 3.2.
2Cramér-Rao lower bound (CRLB) provides information about the best estimation values, i.e.,

lowest parameter variance, one can expect.
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2.4 Fisher Information Matrix
We consider multiple-input multiple-output (MIMO) continuous-time (CT) systems

ẋ = f (x,u,p)
y = h (x,u,p)

(2.5)

with state vector x ∈ Rn, output vector y ∈ Rny , constant parameter vector p ∈ Rnp ,
input vector u ∈ Rnu , and vector fields f (·) ,h (·). Usually, these continuous-time
(CT) systems are evaluated at specific discrete points in time tk, 1 ≤ k ≤ N , where
N denotes the total number of measured samples. Deviations of the measurement
data from the model, caused by model- or measurement errors, are considered additive
output noise. The continuous-time model is sampled with a particular sample time T ,
resulting in discrete-time instances tk = kT . Furthermore, we assume noise corrupted
samples

ym;i (tk) = yi (tk) + ei (tk) , 1 ≤ i ≤ ny , 1 ≤ k ≤ N . (2.6)

For the sake of brevity, we introduce ym;i (tk) = ym;i,k and write

ym;i,k = yi,k + ei,k , 1 ≤ i ≤ ny , 1 ≤ k ≤ N (2.7)

where ym;i = (ym;i,1, ym;i,2, . . . , ym;i,N)> ∈ RN is a vector containing N samples of the
i-th measured system output. Note that by inserting the deterministic model in the
stochastic description of the data, the measurement equation must be written precisely
as

ym;i,k = yi,k (p0) + ei,k (2.8)

where the vector p0 describes the nominal parameter values. For better readability, in
this thesis, one uses p instead of p0 as long as there is no risk of confusion. The i-th
deterministic model output is yi (tk) = yi,k with the corresponding noise sequence ei,k.
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The error is assumed to be Gaussian white noise, consisting of ny sequences of
independent random variables, i.e., ei,k , 1 ≤ i ≤ ny, each normally distributed, with
zero mean and finite variance (see Section A.3.7).

E[ei,k] = 0, 1 ≤ i ≤ ny

E[ei,kei+j,k] =

σ
2
i , j = 0

0, j 6= 0

E[ei,kei,k+l] =

σ
2
i , l = 0

0, l 6= 0

ei,k ∼ N (0, σ2
i ), 1 ≤ i ≤ ny .

(2.9)

With
ei = (ei,1, ei,2, . . . , ei,N) ∈ RN (2.10)

and
e =

(
e1, e2, . . . , eny

)>
∈ RnyN (2.11)

the probability density function (PDF) for the multivariate normally distributed error
e ∼ NnyN (0,Σ) reads

f (e) = 1√
(2π)nyN det (Σ)

e−
1
2 e>(Σ)−1e (2.12)

where Σ ∈ RnyN×nyN is the error covariance matrix. Considering stochastically inde-
pendent errors ei, one obtains

f (e) = (2π)−
nyN

2

( ny∏
i=1

σ2
i

)−N2
e
− 1

2
∑N

k=1

∑ny
i=1

e2
i,k

σ2
i . (2.13)

Assuming that the estimated model parameters p̂ are very close to the nominal pa-
rameter values, (2.13) can be approximated by

f (e) ≈ f (p0) = (2π)−
nyN

2

( ny∏
i=1

σ2
i

)−N2
e
− 1

2
∑N

k=1

∑ny
i=1

(yi,k(p0)−ym;i,k)2

σ2
i . (2.14)
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Inserting

∂2 ln (f (p0))
∂p∂p>

= −
N∑
k=1

ny∑
i=1

1
σ2
i

∂yi
∂p

∣∣∣∣∣
>

p0,tk

∂yi
∂p

∣∣∣∣∣
p0,tk

+ ei,k
∂yi
∂p

∣∣∣∣∣
p0,tk

 (2.15)

in (2.4) and taking into account that one uses expectations, using the noise assumption
E[ei,k] = 0 (2.9) and E[p̂] = p0, one obtains

F (u,p0) = −∂
2 ln (f (p0))
∂p∂p>

=
N∑
k=1

ny∑
i=1

1
σ2
i

∂yi
∂p

∣∣∣∣∣
>

p0,tk

∂yi
∂p

∣∣∣∣∣
p0,tk

 . (2.16)

In a more compact vector form

F(u,p0) =
N∑
k=1

∂y
∂p

∣∣∣∣∣
>

p0,tk

(
σ2
)−1 ∂y

∂p

∣∣∣∣∣
p0,tk

, F(u,p0) ∈ Rnp×np (2.17)

where

∂y
∂p

∣∣∣∣∣
p0,tk

=


∂y1
∂p1

∣∣∣
p0,tk

· · · ∂y1
∂pnp

∣∣∣
p0,tk... . . . ...

∂yny
∂p1

∣∣∣
p0,tk

· · · ∂yny
∂pnp

∣∣∣
p0,tk

 ,
∂y
∂p
∈ Rny×np (2.18)

and

σ2 =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
0 . . . 0
0 · · · 0 σ2

ny

 , σ2 ∈ Rny×ny . (2.19)

assuming stochastically independent outputs yi, c.f. [9,17]. If the assumption that the
errors ei are stochastically independent is not valid, the covariance matrix diagonal
entries are unequal to zero, e.g. [18], resulting in

σ2 =


σ2

1 σ2
12 · · · σ2

1ny

σ2
21 σ2

2 · · · σ2
2ny

... ... . . . ...
σ2
ny1 σ2

ny2 · · · σ2
ny

 , σ2 ∈ Rny×ny . (2.20)

For a large number of samples N , it is more convenient to introduce the so-called
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average Fisher matrix as suggested in, e.g., [9, 19,20].

F̄ (u,p0) = 1
N

N∑
k=1

∂y
∂p

∣∣∣∣∣
>

p0,tk

(
σ2
)−1 ∂y

∂p

∣∣∣∣∣
p0,tk

(2.21)

As already mentioned in the previous section, the aim is to generate experiments
with high information content. This intention maximizes the FIM (2.17) or, equally,
minimizes the inverse FIM (Cramér-Rao matrix). The Cramér-Rao matrix provides a
lower bound of the parameter covariance matrix P, i.e.,

P ≥ F−1 (u,p0) . (2.22)

2.4.1 Standard Metrics for the “Size” of the Fisher Information
Matrix

To push down the lower bound of the parameter covariance matrix, the FIM must
be maximized. Therefore, for optimization purposes, it is necessary to derive scalar
functions from the Fisher matrix. In the literature, various real-valued functions have
been suggested as “suitable” metrics for the size of Fisher matrix or the parameter
covariance matrix, e.g., [18,21]. The most commonly used criteria are the D-criterion,
A-criterion, and E-criterion.3,4

• D-criterion: maximize the determinant of the Fisher matrix, which is equivalent
to minimization of the volume of the uncertainty ellipsoid.

DOPT = max
u

det (F (u,p)) = min
u

det (P (u,p)) (2.23)

Advantages of the most used criterion [20] are the easy geometric interpreta-
tion [22] and the (theoretical) invariance to parameter scaling and linear trans-
formations of the output [18,23]. The drawback is that the D-criterion tends to
give disproportionate weight to model parameters to which the model is sensi-
tive. This results in a decreasing variance of this parameter, but the uncertainty
of other parameters remains quite large, see [24].

3For simplicity, the different norms are written down here for the original Fisher matrix according
to (2.17). Of course, they are also valid for the average Fisher matrix (2.21) and the scaled Fisher
matrix (2.27).

4For better readability of this thesis, one uses p instead of p0 from this point on, unless there is
a risk of confusion.
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• A-criterion: maximize the trace of the Fisher matrix, which is equivalent to
minimization of the average variance of the parameters.

AOPT = max
u

Tr (F (u,p)) = min
u

Tr (P (u,p)) (2.24)

A disadvantage of the A-criterion is that it may lead to non-informative experi-
ments in a high correlation of the model parameters [24–26]. This is caused by
omitting the minor diagonal elements of the matrix.

• E-criterion: maximize the smallest eigenvalue of the Fisher-matrix or minimizes
the largest eigenvalue of the parameter covariance matrix.

EOPT = max
u

λmin (F (u,p)) = min
u
λmax (P (u,p)) (2.25)

• Emod-criterion: minimize the ratio between the largest and smallest eigenvalue
of the Fisher matrix.

Emod
OPT = min

u

λmax (F (u,p))
λmin (F (u,p)) (2.26)

A geometric interpretation of the most important criteria for the two-parameter case
is shown in Fig. 2.2. The D-criterion corresponds with the volume of the uncertainty
ellipsoid (confidence region). The A-criterion is a measure of the surrounding box of
the uncertainty ellipsoid, and the E-criterion is equivalent to the length of the major
axis of the ellipsoid.

Other, less common criteria include:

• G-criterion

• L-criterion

• C-criterion

• Ds-criterion

One can find more detailed information about the different criteria, e.g., [20, 23].
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�% parameter confidence ellipse

p2

p1

Figure 2.2: Geometric interpretation of the most important criteria for optimal input
design in case of two parameters. The ellipsoid represents the α% confi-
dence region of the estimated parameters, where usually α = 90− 95%.

2.4.2 Miscellaneous Topics on the Fisher Matrix

2.4.2.1 Initial Guess of Model Parameters

As can be seen in (2.17) or (2.18), the Fisher matrix depends, among other things,
on the unknown nominal model parameters to be estimated later on. To run an OID
iteration, one uses the best available parameter values (initial guess) for building the
Fisher matrix. Such a strategy usually claims an iterative design procedure if the
initial parameter guesses are unreliable.

2.4.2.2 Parameter Analysis and Parameter Estimate Error

One can use the Fisher matrix to perform a parameter analysis. In concrete terms,
this means that one can identify model parameters that can be estimated with given
maximum variance. Conversely, this means that parameters with a more considerable
variance can not be estimated with the desired accuracy using the available measure-
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ment data. It is also possible to detect (local) problems, e.g., loss of structural identifi-
ability. As already mentioned, the diagonal elements of the inverse of the Fisher matrix
represent a lower limit for the following parameter estimation variances. Consequently,
a singular Fisher matrix (at least one eigenvalue is zero) means that there exist pa-
rameters or parameter combinations that cannot be estimated with the measurement
data available, see [27]. For the parameter analysis, one can use the parameter values
known at that time. The following parameter estimation provides preliminary opti-
mal parameters. This process of parameter analysis and estimation is iterated until
convergence is achieved. In [17], it is suggested to use the Fisher matrix with scaled
sensitivities to compute the lower bound of the parameter estimation error covariance
matrix, i.e.,

F̃ =
N∑
k=1

(
∂y
∂p

Λp

)∣∣∣∣∣
>

tk

(
σ2
)−1

(
∂y
∂p

Λp

)∣∣∣∣∣
tk

(2.27)

where

Λp =


p1 0 · · · 0
0 p2 · · · 0
0 . . . 0
0 · · · 0 pnp

 , Λp ∈ Rnp×np . (2.28)

Assuming constant parameters, one can rewrite (2.27) to

F̃ = Λp

N∑
k=1

(
∂y
∂p

)∣∣∣∣∣
>

tk

(
σ2
)−1

(
∂y
∂p

)∣∣∣∣∣
tk

Λp

= ΛpFΛp .

(2.29)

For details, see [17].

2.4.2.3 Informative Experiments / (Local) Identifiability

Provided that the system is structurally identifiable (Section 3.1.3), in [28], a sufficient
condition for local identifiability is given by

det
∂y
∂p

∣∣∣∣∣
>
∂y
∂p

 6= 0 . (2.30)

Consequently, a non-degenerated or informative experiment satisfies

det (F (u,p)) 6= 0 (2.31)
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and ensures local identifiability of the model parameters [19]. For symmetrical matri-
ces, it applies

det (F (u,p)) =
np∏
i=1

λi . (2.32)

Consequently, the statement about the identifiability in this section is identical to the
one made in Section 2.4.2.2 based on the Fisher matrix’s eigenvalues.

2.4.3 Sensitivity Ordinary Differential Equations

Unfortunately, in general, it is not possible to derive an analytical solution for the
sensitivities. This only works for quite simple models. Therefore, the sensitivities for
more general models have to be determined numerically. The local sensitivity of the
solution to parameters can be calculated simultaneously with the model (2.5) using
the sensitivity ordinary differential equation (ODE)

d
dtS = ∂f (x,p,u, t)

∂x
S + ∂f (x,p,u, t)

∂p
= JS + M

S (0) = ∂x0 (p)
∂p

(2.33)

where

S =


∂x1(x,p,u,t)

∂p1
· · · ∂x1(x,p,u,t)

∂pnp... . . . ...
∂xn(x,p,u,t)

∂p1
· · · ∂xn(x,p,u,t)

∂pnp

 , S ∈ Rn×np (2.34)

is the sensitivity matrix,

J =


∂f1(x,p,u,t)

∂x1
· · · ∂f1(x,p,u,t)

∂xn... . . . ...
∂fn(x,p,u,t)

∂x1
· · · ∂fn(x,p,u,t)

∂xn

 , J ∈ Rn×n (2.35)

is the Jacobian, and

M =


∂f1(x,p,u,t)

∂p1
· · · ∂f1(x,p,u,t)

∂pnp... . . . ...
∂fn(x,p,u,t)

∂p1
· · · ∂fn(x,p,u,t)

∂pnp

 , M ∈ Rn×np (2.36)
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is the parameter derivatives matrix. For multiple-input multiple-output (MIMO) linear
time-invariant (LTI) systems

ẋ = Ax + Bu

y = Cx + Du
(2.37)

the sensitivity equation (2.33) simplifies to

d
dtS = AS + M

S (0) = ∂x0 (p)
∂p

(2.38)

where x0 = x (0).
Depending on which state variables are measured outputs, the output sensitivities

Sy ∈ Rny×np are individual rows or combinations from S, used to build the Fisher
matrix, i.e.,

F =
N∑
k=1

Sy
∣∣∣>
tk

(
σ2
)−1

Sy
∣∣∣
tk
, F ∈ Rnp×np . (2.39)

2.4.4 Global Parameter Sensitivities

The use of local sensitivities is quasi-standard for analyzing the effects of parameter
variations [29]. However, it is disadvantageous that these local sensitivities are strictly
speaking only valid in the immediate neighborhood of a reference point, which is usually
not known in practical applications. Moreover, the idea of local sensitivities is based
on linearization principles. Hence, nonlinear models are linearized around, possibly
unknown, reference parameter values, and thus nonlinear effects of models are lost.
One possibility to circumvent this problem is the use of so-called global sensitivities,
shown in, e.g., [29]. This concept is based on the idea that parameters and model
outputs are understood as random variables, and the respective contribution to the
total variance of the output is quantified [29–32]. One may use the first-order Sobol
sensitivity index

SGi (t) =
σ2
i

(
E
−i

[y (t) |pi]
)

σ2 (y (t)) (2.40)

to analyze parameter sensitivities and parameter interactions, where σ2
i

(
E
−i

[y (t) |pi]
)

represents the contribution of the i−th parameter to the total variance σ2 (y (t)). The
local design measures introduced in Section 2.4.1 are generalized to hold global sen-



30 2 Optimal Input Design for Dynamical Systems

sitivities, e.g., [29]. DoE or OID approaches using global sensitivities instead of local
sensitivities are often used in chemistry. The use of global sensitivities is intentionally
omitted in this work. More in-depth literature on this topic can be found, for example,
in [29, 33,34].

2.5 Investigations on the Subject of Optimal Input
Design Using a First Order Transfer Function

This section shows the potential of DoE methods for dynamic systems based on a
straightforward, analytically solvable system. We consider a simple single-input single-
output (SISO) linear time-invariant system

G (s) = ŷ (s)
û (s) = V

1 + sT1
(2.41)

with its parameters V (gain) and T1 (time constant), which should be determined best
possible. For the following simulation experiments, nominal model parameters V = 3
and T1 = 1 are set. The system is excited with a unit step, for which the system
response can be analytically computed. To determine the unknown parameters, at
least two independent equations are necessary, evaluating the output at two different
time instances. Therefore, the DoE task consists of finding two optimal time instances
where the system response is evaluated.

The analytical solution y (t) for the step response u (t) = σ (t) can be written as

y (t) = L−1
(1
s
G (s)

)
= V

(
1− e−

t
T1

)
. (2.42)

The sensitivities are calculated by partial derivation of the output according to the
parameters (2.18) and reveal

s1 (t) = ∂y

∂V

∣∣∣∣∣
p0

= 1− e−
t
T1

s2 (t) = ∂y

∂T1

∣∣∣∣∣
p0

= −tV
T 2

1
e
− t
T1 .

(2.43)
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Inserting in (2.17) and evaluating at N = 2 time instances tk results in

F(u,p0)|u=σ(t) =
2∑

k=1

1
σ2


(
∂y
∂V

)2∣∣∣
p0,tk

(
∂y
∂V

∂y
∂T1

)∣∣∣
p0,tk(

∂y
∂T1

∂y
∂V

)∣∣∣
p0,tk

(
∂y
∂T1

)2∣∣∣
p0,tk



= 1
σ2

2∑
k=1


(
1− e−tk/T1

)2 (
1− e−tk/T1

)(
− tkV

T 2
1
e
− tk
T1

)
(
1− e−tk/T1

)(
− tkV

T 2
1
e
− tk
T1

) (
− tkV

T 2
1
e
− tk
T1

)2

 .

(2.44)
For optimization purposes, the D-criterion, i.e., the determinant of the Fisher matrix,
is used as the objective function, and one ends up with the constrained optimization
problem

max
t1,t2

det (F (u,p0))

t1 ∈ [0, 10]
t2 ∈ [0, 10] .

(2.45)

Figure 2.3 shows the information content, det (F (u,p0)), as a function of the time
instances t1 and t2. It is easy to see that the maximum information, and thus the
optimum measurement times, are {t1, t2} = {1 s, 10 s} or {t1, t2} = {10 s, 1 s}, respec-
tively. This result seems quite plausible since it means that the gain factor V can be
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Figure 2.3: Optimal measurement points t1 and t2 for estimating the model parameters
V and T1 using D-criterion for evaluating the Fisher matrix with σ = 0.1.

determined best in the steady-state range and the time constant T1 within the range
of large slope.
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2.5.1 Parameter Estimation & Monte Carlo Simulation

We assume a noise-affected system output for parameter estimation, where the noise
is supposed to be normally distributed with zero mean and variance σ2 = 0.01. Fig-
ure. 2.4 shows one realization of the model input and output. One can determine
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4

Figure 2.4: Step response with additive output noise. Noisy output ym (t) = y (t)+e (t),
where e ∼ N (0, σ2) with σ = 0.1 .

the first-order system’s parameters with two measurements, y (t1) , y (t2), using the
analytical solution (2.42) with

V̂ = lim
t2→∞

y (t2)

T̂1 = − t1

ln
(
1− y(t1)

V̂

) . (2.46)

To determine whether the estimated parameter values are affected by choice of evalua-
tion times, we perform a thousand simulation runs and evaluate them at three different
pairs of time values. More precisely:

(i) {t1, t2} = {0.25 s, 10 s}

(ii) {t1, t2} = {1 s, 10 s} (optimal)

(iii) {t1, t2} = {3 s, 10 s}
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Figure 2.5 shows the respective estimation errors and corresponding fitted normal
distribution histograms.
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Figure 2.5: Parameter estimation error in dependence of evaluation times {t1, t2}.

As shown in Fig. 2.6(b), the parameter covariance ellipse is reduced by evaluating
the model output at the optimal points in time, calculated by the Fisher matrix. A
smaller covariance matrix means that the parameters estimate results are closer to
the nominal values. Thus, one can show that DoE significantly improves the ensuing
parameter estimation.
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Figure 2.6: 95% confidence ellipse of two-dimensional gausssian distributed parameter
covariance error.

(a) (b) optimal (c)
∆V ∆T1 ∆V ∆T1 ∆V ∆T1

µ̂ −9.55× 10−5 −1.203× 10−3 −9.55× 10−5 −1.11× 10−4 −9.55× 10−5 −1.4× 10−3

σ̂ 1.01× 10−2 1.722× 10−2 1.01× 10−2 1.064× 10−2 1.01× 10−2 3.057× 10−2

Table 2.1: Estimation errors ∆V̂ = V̂ − V and ∆T̂1 = T̂1 − T1 evaluated at different
measurement points.

2.6 Investigations on the Subject of Optimal Input
Design Using a 1D-Servo System

2.6.1 Linear Model (2 Parameters)

Considering the linear 1D-servo systemẋ
v̇

 =
0 1

0 − d
m

x
v

+
 0

1
m

u (2.47)

with state vector x = (x, v)> ∈ R2, output vector y = (x, v)> ∈ R2, parameter vector
p = (m, d)> ∈ R2, and input force u ∈ R. The nominal model parameters are set
to m = 1 kg and d = 20 Nsm−1 for simulation experiments. The servo position is
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measured with an incremental encoder. The sampled measured position reads

xm;k = xk + ek (2.48)

where ek ∼ N (µ, σ2
x) is a Gaussian white noise process with µ = 0 and σx = 0.001 m.

Combining the model equations (2.47), its sensitivity equations, and the chosen metric
of the Fisher matrix (D-criterion) with initial conditions, boundary conditions, and
final time te = 15 s, we end up with the highly nonlinear optimal control problem

max
u

det
(
F̄ (u,p)

)
ẋ
v̇

 =
0 1

0 − d
m

x
v

+
 0

1
m

u
x (0) = 0, u ∈ [−10 N, 10 N] , x ∈ [0, 1 m] , v ∈

[
0.5 m s−1,−0.5 m s−1

]
Ṡ =

0 1
0 − d

m

S +
 0 0

1
m2 (dv − u) − v

m

 , t > 0

S (0) = 0

Sy = S .

(2.49)

Basic Properties of the Normal Distribution

Proposition 2.1.

(i) For X ∼ N (µ, σ2) applies:

E[X] = µ , var (X) = σ2 (2.50)

(ii) Let X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) be two independent and nor-

mally distributed random variables. It applies:

X1 +X2 ∼ N
(
µ1 + µ2, σ

2
1 + σ2

2

)
(2.51)

(iii) For every a, b ∈ R applies

X ∼ N
(
µ, σ2

)
=⇒ Y := aX + b ∼ N

(
aµ+ b, aσ2

)
. (2.52)

We assume both x and v are measured and used for the OID process. However,
only the servo position is measured using an incremental encoder. The velocity is
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calculated from the sampled position through the backward difference quotient. With
the standard noise assumption for the measured position xm = x+ e from (2.9)

ek ∼ N
(
0, σ2

x

)
E[ek, ek+l] =

σ
2
x, l = 0

0, l 6= 0

(2.53)

and the basic properties of the normal distribution from Proposition 2.1, one obtains

ev;k = ek − ek−1

T
∼ N

(
0, 2
T 2σ

2
x

)
(2.54)

for the noise characteristics of the approximated velocity. Taking into account (2.53),
for the covariance applies

cov (ek, ev;k) = E[(ek − ēk) (ev;k − ēv,k)] = E[ekev;k]

= E[ek
(
ek − ek−1

T

)
] = 1

T
E[e2

k]−
1
T

E[ekek−1]

= 1
T
σ2
x .

(2.55)

Consequently, we get

(ek, ev;k) ∼ N2

0
0

 ,
 σ2

x
1
T
σ2
x

1
T
σ2
x

2
T 2σ

2
x

 (2.56)

where

σ2 =
 σ2

x
1
T
σ2
x

1
T
σ2
x

2
T 2σ

2
x

 , σ2 ∈ R2×2 (2.57)

is the covariance matrix, necessary for building the Fisher matrix. For reasons of
comparability with an n = 4-bit PRBS signal, with maximum length sequence 2n−1 =
15 and minimum hold time τ = 1 s, the optimization algorithm also allows fifteen
changes of the manipulated variable with the same minimum hold time. The OID
result is shown in Fig. 2.7.

The optimal excitation signal looks very similar to a PRBS, which seems plausible
because one knows from the literature, e.g., [2, 12, 35], that PRBS provides suitable
excitation for linear systems. The slight deviations of the OID signal from possible
PRBS signal characteristics are due to the compliance with boundary conditions and,
above all, that the solution of the optimization task does not represent a global maxi-
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(b) Optimal input signal with uncertainties
(±25%) in model parameters used for
OID.
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Figure 2.7: Optimal input design for the linear 1D-servo system using D-criterion.

mum. Fig. 2.7(b) shows the consequences of parameter uncertainties during the OID
task. Despite different parameter values, the OID process results in similar signal
characteristics. However, the parameter values’ uncertainties may violate the initial
conditions, final conditions, and state conditions. An iterative process of OID and
parameter estimation may help here.

Due to its easy handling and low complexity, the OLS estimator is a proven tool to
estimate unknown parameters of CT models. To avoid the direct calculation of the time
derivatives of measurement signals, more sophisticated methods are available. One of
them is called Poisson moment functionals (PMF) method, and one can interpret it as
the convolution of a signal with the impulse response of a known stable filter. A known
drawback of all methods for the exact elimination of time derivatives, e.g., PMF, is that
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the properties of measurement noise are changed. Thus, the least-squares estimator
loses its pleasant property of unbiasedness or consistency, which is given under certain
conditions. Chapter 3 provides more detailed information. Without going into details,
the algebraic equation for identification reads

g0
F (t) ∗ u (t) =

(
g2
F (t) ∗ x (t) g1

F (t) ∗ x (t)
)m

d

 (2.58)

where
F 0 (s) = 1

(1 + sTf )2 , g0
F (t) = L−1

{
F 0 (s)

}
F 1 (s) = 1

(1 + sTf )2 , g1
F (t) = L−1

{
F 1 (s)

}
F 2 (s) = 1

(1 + sTf )2 , g2
F (t) = L−1

{
F 2 (s)

}
(2.59)

with filter time constant Tf = 50 ms. Evaluating (2.58) at N > 2 different points in
time, the resulting set of equations is solved using OLS.

A simulation study with 1000 runs and a noisy system output xm (t) = x (t) + e (t),
where e ∼ N (0, 0.0012), shows the effect of different input signals (OID, pulse pattern,
sine excitation, and PRBS) for the parameter estimation result, see Tab. 2.2 or Fig. 2.8.

nominal parameters m = 1 kg d = 20 Nsm−1

input m̂ [kg] d̂ [Nsm−1]
µ̂ σ̂ µ̂ σ̂

OID 0.9416 9.89× 10−5 20 1.374× 10−4

pulse-shaped 0.8242 2.079× 10−4 20 9.11× 10−5

sinusoidal 0.4240 2.914× 10−4 20.0215 5.55× 10−5

PRBS 0.9412 9.89× 10−5 20.0023 1.128× 10−4

Table 2.2: Estimated parameter values p̂ are obtained by 1000 simulation runs with
different input signals and noisy model output xm;k = xk + ek with additive
Gaussian white noise, where ek ∼ N (µ, σ2

x) with µ = 0 and σx = 0.001 m.

Obviously, the higher the information content of the excitation signal, the better
the estimation result, i.e., the lower the bias. Especially for linear systems, the quality
of the estimate thus correlates with the information content of the excitation signal.
Interestingly, the PRBS signal does not provide the highest information content, al-
though according to literature, it is an optimal excitation signal for linear systems,
e.g., [11]. Please note that the PRBS sequence used here is one possible realization
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Figure 2.8: Effects of different excitation signals (OID signal, pulse pattern, sine wave
and PRBS) with its different information content on the parameter estima-
tion for the linear 1D-servo system. For a better readability of the diagram
only every tenth data point is shown.

of a four-bit PRBS sequence. Depending on the actual realization, the information
content varies. Hence, other PRBS realizations may provide a higher information con-
tent than the OID signal. The estimation result shows that the PRBS signal provides
almost the same good results as the OID signal. In other words, the OID signal gives
equally good or even slightly better results than the PRBS signal, which provides opti-
mum excitation for linear systems. Interestingly, the friction coefficient d is estimated
relatively accurately by the usage of all signals. However, there are large differences
in the estimation of the mass m. The reason for this is the different weak or strong
acceleration phases. In general, the higher the car acceleration, the more accurately
the mass is estimated.

The effects of parameter uncertainties during the generation of the excitation signals
on their information content and the parameter estimation are shown in Fig. 2.9.
Tendentially, the higher the information content, the more accurate the estimation
result. The arbitrary scalar quantity, which is used as a norm for the parameter
covariance matrix, inseparably blends the parts of the different parameters. Thus, one
cannot draw any conclusions about the accuracy of estimates of individual parameters
from the absolute value of the information content. However, Fig. 2.9 shows that the
scalar quality functionals derived from the parameter covariance matrix are not always
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completely accurate. Despite the slightly higher information content of the red-dotted
colored signal compared to the red-solid one, it is exactly the way the other round is for
the estimation error. Nevertheless, a tendency can be derived. The significantly lower
information content of the red-dashed colored signal results in the most inaccurate
estimation result. As mentioned above, the model parameters necessary for the OID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-10

-5

0

5

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.5

1

1.5

2

2.5
10

7

OID nom.

OID -30%

OID +30%

(a) Different input signals with corresponding
information content.

-0.09 -0.085 -0.08 -0.075 -0.07 -0.065 -0.06 -0.055

-3

-2

-1

0

1

2

3
10

-5

OID nom.

OID -30%

OID +30%

(b) Parameter covariance matrix of (normal-
ized) estimation error with different input
signals.

Figure 2.9: Effects of parameter uncertainties during OID task on the parameter esti-
mation for the linear 1D-servo system.5

task are subject to uncertainties. Hence, an iterative process of OID and parameter
estimation is recommended. For demonstration purpose, the OID task is initiated
with parameter values that differ by 30% from the nominal parameters. With the
excitation signal obtained from this initial OID task, in a first iteration, the parameters
are estimated, and the OID process is rerun through to obtain a more suitable input
signal. This process is repeated until it converges. Figure 2.10 and Tab. 2.3 show
that the iterative OID process for this application already converges with the second
iteration.

5Because OID-generated signals are shown in red in all other figures, different OID signals are
not distinguished by colors but by line styles.
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iteration m̂ [kg] d̂ [Nsm−1]
µ̂ σ̂ µ̂ σ̂

0 0.75 - 15 -
1 0.9110 1.281× 10−4 20.0001 1.914× 10−4

2 0.9366 1.013× 10−4 20 1.463× 10−4

3 0.9366 1.014× 10−4 20 1.448× 10−4

Table 2.3: Iterative process of OID and parameter estimation. Initial guess for OID
task: m̂ = 0.75 kg and d̂ = 15 N m s−1. Nominal values: m = 1 kg and d =
20 N m s−1. Estimated parameter values p̂ are obtained by 1000 simulation
runs and noisy model output xm;k = xk + ek with additive Gaussian white
noise, where ek ∼ N (µ, σ2

x) with µ = 0 and σx = 0.001 m.
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Figure 2.10: Iterative process of OID and parameter estimation for the linear 1D-servo
system. Initial guess for OID task: m̂ = 0.75 kg and d̂ = 15 N m s−1.
Thousand simulation runs are performed. Output noise is xm;k = xk + ek
with ek ∼ N (µ, σ2

x), where µ = 0 and σx = 0.001 m.

2.6.2 Nonlinear Model (3 Parameters)

The extension of the linear friction model from Section 2.6.1 by a static component,
i.e., Coulomb friction, results in the nonlinear 1D-servo model with its equationsẋ

v̇

 =
 v

− d
m
v − Fc

m
sgn (v) + 1

m
u

 (2.60)
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with state vector x = (x, v)> ∈ R2, output vector y = (x, v)> ∈ R2, parameter vector
p = (m, d, Fc)> ∈ R3, and input u ∈ R. The nominal model parameters are set to
m = 1 kg, d = 20 Nsm−1 and Fc = 2 N for simulation experiments. Again, the servo
position is measured using an incremental encoder. For the sampled measured position
applies

xm;k = xk + ek (2.61)

where ek ∼ N (µ, σ2
x) with µ = 0 and σx = 0.001 m. Combining the model equations

(2.60), its sensitivity equations according to (2.33), and the chosen metric of the Fisher
matrix (D-criterion) with initial conditions and state constraints, we end up with a
highly nonlinear optimal control problem

max
u

det
(
F̄ (u,p)

)
ẋ
v̇

 =
 v

− d
m
v − Fc

m
sgn (v) + 1

m
u


x (0) = 0, u ∈ [−10 N, 10 N] , x ∈ [0, 1 m] , v ∈

[
0.5 m s−1,−0.5 m s−1

]
Ṡ =

0 1
0 − 1

m

(
d+ Fc

d
dt (sgn (v))

)S

+
 0 0 0

1
m2 (dv + Fc sgn (v)− u) − v

m
− sgn(v)

m

 , t > 0

S (0) = 0
Sy = S

(2.62)

with final time te = 15 s. Please note that the approximation sgn (v) ≈ tanh (kv) , k =
1× 103 is introduced to be able to calculate d

dt (sgn (v)) numerically. The error covari-
ance matrix, which is necessary to build the Fisher matrix, is again calculated using
(2.57). Figure 2.11 shows, that in contrast to the linear case, the generated optimal
excitation signal is not a signal similar to PRBS but consists of different amplitudes.
Different amplitudes seem reasonable because the estimation algorithm must distin-
guish between linear friction and static friction. The OID task automatically introduces
this additional system knowledge when generating the excitation signal. For the esti-
mation of the unknown model parameters, the PMF approach combined with OLS is
used again.

Analogous to the linear model (2.58), one obtains the identification equation, linear
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Figure 2.11: Optimal input design for nonlinear 1D-servo system using D-criterion.

in the parameters,

g0
F (t) ∗ u (t) =

(
g2
F (t) ∗ x (t) g1

F (t) ∗ x (t) g0
F (t) ∗ sgn (v (t))

)
m

d

Fc

 (2.63)

where
F 0 (s) = 1

(1 + sTf )2 , g0
F (t) = L−1

{
F 0 (s)

}
F 1 (s) = s

(1 + sTf )2 , g1
F (t) = L−1

{
F 1 (s)

}
F 2 (s) = s2

(1 + sTf )2 , g2
F (t) = L−1

{
F 2 (s)

}
(2.64)
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with filter time constant Tf = 50 ms. Again, evaluating at N > 2 different points in
time, the resulting set of equations is solved using OLS.

A simulation study with 1000 runs and a noisy system output xm (t) = x (t) + e (t),
where e ∼ N (0, σ2

x) with σx = 0.001 m, shows the effect of different input signals
(OID, pulse pattern, sine excitation, and PRBS) for the parameter estimation result,
see Fig. 2.12 and Fig. 2.13, respectively.
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Figure 2.12: Effects of different excitation signals (OID signal, pulse pattern, sine wave
and PRBS) with its different information content on the parameter esti-
mation for the nonlinear 1D-servo system. For a better readability of the
diagram only every tenth data point is shown.

Table 2.4 numerically presents the graphical results from Fig. 2.12 and Fig. 2.13.
The OID signal contains the highest information content and provides the parameter
estimates with the lowest bias, i.e., the most accurate estimates. Although the single

nominal parameters m = 1 kg d = 20 Nsm−1 Fc = 2 N

input m̂ [kg] d̂ [Nsm−1] F̂c [N]
µ̂ σ̂ µ̂ σ̂ µ̂ σ̂

OID 0.7716 0.0023 19.7844 0.0060 2.0531 0.0014
pulse-shaped 0.7707 0.0025 20.3888 0.0431 1.8495 0.0166
sinusoidal 0.3339 0.0026 19.3495 0.0048 2.2164 0.0015
PRBS 0.7828 0.0022 10.6175 0.0989 5.7073 0.0391

Table 2.4: Estimated parameter values p̂ obtained by 1000 simulation runs with dif-
ferent input signals and noisy model output xm;k = xk + ek with additive
gaussian white noise, where ek ∼ N (µ, σ2

x) with µ = 0 and σx = 0.001 m.
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Figure 2.13: Sectional views of the parameter covariance matrix of the (normalized)
estimation error with different excitation signals (OID signal, pulse pat-
tern, sine wave and PRBS) for the nonlinear 1D-servo system. For a
better readability of the diagram only every tenth data point is shown.

sine wave and the PRBS signal also have a high information content, the respective
estimation results are strongly biased. For example, the bang-bang behavior of PRBS
signals prevents distinguishing between linear and static frictional components, which
requires phases with different speeds to distinguish between static and velocity pro-
portional friction. The user provides this additional system knowledge, e.g., for the
pulse-shaped signal, while the OID signal includes such phases automatically due to
the OID process. To sum up, the generation of optimal input signals with high in-
formation content leads to more accurate parameter estimates, i.e., reducing the bias.
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Conversely, not every excitation signal with high information content is suitable for
each system, especially for nonlinear systems.

2.7 Conclusion
Using a simple first-order system, one can show that the optimal selection of the
evaluation time points using DoE, i.e., with the help of the Fisher matrix or quantities
derived from it, significantly improves the parameter estimation result. In practice,
the broad topic of DoE is often reduced to the excitation signal’s appropriate choice
(OID), which is why this work focuses on this particular issue of DoE. Using the
practice-relevant example 1D-servo system, one can show the improvements for the
parameter estimation. The optimal excitation signal for linear systems is similar to
the PRBS signal (see Fig. 2.7(a)). This result supports that the coverage of the “entire”
frequency spectrum is crucial. For nonlinear systems, the amplitude level also plays a
role in the quality of excitation signals. The signals have to be adapted to the task at
hand, i.e., to the model. For example, the distinction between Coulomb static friction
and linear friction requires velocity phases with different amplitudes. For this reason,
the PRBS signal gives poor results of the friction terms for the nonlinear servo model,
see Fig 2.13 or Tab. 2.4. The OID process introduces this additional model knowledge
without user intervention.

An additional benefit of OID is the generation of signals, which, assuming sufficiently
accurate initial values of the model parameters, guarantee compliance with specified
bounds on the state variables, their initial and final values, and requirements on the
input signal. One recommends an iterative OID and parameter estimation process for
significant parameter uncertainties until the OID result converges (see Fig. 2.10).
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3 Parameter Estimation with Focus
on Parametric Continuous-Time
Systems

The topic of system identification is essential for most applications in engineering, es-
pecially for automatic control. As already mentioned in the introduction, [1] divides
system identification into four major issues: experiment data generation, choice of
model structure, estimation of unknown model parameters, and verification of identi-
fication results. In [36], an object referred to as a system is known through modeling
and identification, i.e., that modeling and identification methods help people obtain
knowledge about systems.

The modeling topic is a comprehensive one and includes various and well-established
methods, e.g., physical modeling. Physical (dynamical) systems are usually modeled by
applying physical laws and phenomena, especially in control engineering. Typically,
these systems are native in the continuous-time (CT) domain and are described by
parametric models using differential equations. Thus, the model structure and the key
parameters are a result of the physical modeling process. Numerical values of unknown
model parameters are obtained by parameter estimation. For these reasons, in this
thesis, we focus on the parameter estimation approaches for parametric models.

3.1 State of the Art

Of course, the topic parameter estimation is not a new one. Numerous different meth-
ods for estimating unknown model parameters have been developed and are well-
established. Over the years, two significant directions have evolved in the identifica-
tion of continuous-time (CT) systems, namely the identification of discrete-time (DT)
models and transform back into the CT domain (indirect approach) and the straight-
forward identification of CT models (direct approach). For example, in [36–38], a
detailed survey of identification methods focusing on parametric CT models can be
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found. In the 1970s and 1980s, methods dealing with DT models were dominating,
partly due to the development of digital computers at that time, see [10, 11, 39]. In
parallel, the development of CT approaches was initiated and published in 1981 [40],
followed by [37,38], to name but a few.

Although this thesis focuses only on identifying CT models, we briefly summarize
selected basic methods in this section for DT models. Besides the completeness of
the literature review, this is mainly since most of the investigations and methods are
derived for DT models first and then (if possible) applied or extended to CT models.
Besides, we restrict ourselves from identifying parametric linear single-input single-
output (SISO) models in the time domain or identifying models which are at least
linear in the parameters. Identification methods and approaches for multiple-input
multiple-output (MIMO) models are treated in, e.g., [2, 3], and the identification of
nonlinear models [2,3,11]. Identification in the frequency domain and identification of
non-parametric models are discussed in, e.g., [2, 3, 10,11].

3.1.1 Identification of Linear SISO Parametric DT Systems

Although most technical processes are CT processes, DT mathematical models are of-
ten derived. The main reasons for this are the less complicated mathematical handling
in parameter estimation and the necessary digital implementation [3].

3.1.1.1 Error Models

The deviation between the process (system) and the corresponding model describes
the quality of a model or estimated model parameters. Different interpretations are
possible, e.g., [39]. One can distinguish between

(i) input error,

(ii) output error (OE), and

(iii) (generalized) equation error (EE),

where only output error (OE) and equation error (EE) are suitable for open-loop
system identification. Please note that equation error methods (EEMs) are often in-
dicated as prediction error methods (PEMs). In principle, both output error methods
(OEMs) and EEMs, lead to correct parameter estimates. However, for practical rea-
sons, different error measures are more suitable for certain types of models than others,
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Figure 3.1: Different error measures (error models) between system and model.

e.g., [2, 41, 42]. Hence, the error model used depends on the problem at hand. Ex-
emplarily, it is helpful to obtain linearity in the parameters to be identified from a
mathematical perspective. Therefore, one chooses the output error for non-parametric
models, e.g., impulse responses, while selecting the (generalized) equation error for
parametric models, i.e., differential equations, difference equations, and transfer func-
tions.

In contrast to the output error, it is evident that the noise properties changes using
the generalized equation error, see Fig. 3.1. This yields to the issue of the bias of
estimators tackled later.

3.1.1.2 Least-Squares Method

Consider the DT transfer function

G
(
z−1

)
= y (z)
u (z) = b0 + b1z

−1 + · · ·+ bmdz
−md

1 + a1z−1 + · · ·+ anz−n
(3.1)

with time-domain representation

yk + a1yk−1 + · · ·+ anyk−n = b0uk + b1uk−1 + · · ·+ bnuk−n (3.2)

where, e.g., y (tk) = yk. Replacing the model output y by measured (disturbed) values

ym;k = yk + ek (3.3)
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where ek is a stochastic noise, one obtains

ym;k︸ ︷︷ ︸
yLSQ;k

=
(
−ym;k−1 . . . −ym;k−n uk . . . uk−n

)
︸ ︷︷ ︸

=w>
k



a1
...
an

b0
...
bn


︸ ︷︷ ︸

=p

+vk . (3.4)

where vk is called generalized equation error (EE). Evaluating (3.4) at N > np , np =
2n+ 1 discrete samples gives

yLSQ = Wp + v (3.5)

where yLSQ ∈ RN , W ∈ RN×np , p ∈ Rnp , and v ∈ RN . The optimal solution in the
sense of least-squares reads

p̂ =
(
W>W

)−1
W>yLSQ . (3.6)

For convergence studies, (3.5) is inserted in (3.6). The expected value reads

E[p̂] = p + E[
(
W>W

)−1
W>v] = p + ∆p (3.7)

where ∆p = E[
(
W>W

)−1
W>v] is a bias.

A very well-known but artificially generated configuration exists for which the least-
squares estimator delivers unbiased results, c.f. Fig. 3.2. Literature, e.g., [2], shows
that if ek is generated by filtering white noise nk with the plant’s denominator, i.e.,

e (z) = 1
A (z−1)n (z) (3.8)

the bias becomes zero, even in finite time. Apart from the artificially created setting,
i.e., for practical applications, the estimator is biased for discrete-time models but at
least consistent or asymptotically unbiased, e.g., [3, 43].

For the least-squares algorithm, some extensions and adaptations exist. For example,
the recursive least-squares (RLS) method, introduced by [39, 44, 45], estimates the
unknown system parameters in real time. Weighted least-squares (WLS) is another
extension, where the different entries of the equation error are weighted differently. If
the covariance matrix of the equation error is known, and one chooses the weighting
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Figure 3.2: Block diagram of a required structure for an unbiased estimation of DT
transfer functions, where n ∼ i.i.d (0, σ2), e.g., Gaussian white noise.

matrix Q as
Q =

(
E[vv>]

)−1
(3.9)

one obtains parameter estimates

p̂ =
(
W>QW

)−1
W>QyLSQ . (3.10)

with minimum variance [46,47]. For the weighted least-squares (WLS) algorithm, there
is also a recursive form for online parameter estimation. Weighting newer measurement
data more heavily than older ones enables the algorithm to estimate slowly time-
varying parameters. This unique choice of weighting is also known as exponential
forgetting.

In literature, there exist several least-squares-based methods to avoid biased esti-
mation results. The basic idea is to introduce special noise form filters to transform
the initially correlated equation error into an uncorrelated one [2]. This approach in-
cludes the generalized least-squares (GLS) algorithm, e.g., [48–50] with its recursive
implementation [51], as well as the extended least-squares (ELS) algorithm [52, 53].
The method of total least-squares (TLS), also known as errors-in-variables, assumes
disturbances or error in the observation vector yLSQ and the data matrix W. This ap-
proach is related to the principal component analysis (PCA) find correlations in data
sets and reduce dimensionality. For a detailed survey, the kindly reader is referred to,
e.g., [54–56]. For example, an iterative TLS algorithm is presented in [57].

Another possibility to obtain at least asymptotically unbiased least-squares results is
to estimate and correct the bias itself. These approaches are summarized under the col-
lective term bias compensation methods. Such methods estimate the error variance(s)
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and deal with discrete-time noisy output and noisy input-output models, e.g., [58–61].

3.1.1.3 Instrumental Variables Method

The instrumental variables (IV) method, e.g., [2, 3, 43, 62–65], is another modification
of the least-squares algorithm to obtain asymptotically unbiased parameter estima-
tion results. As stated in [64], the least-squares estimation’s asymptotic bias can be
eliminated by introducing special instrumental variables (IV) and correlation analy-
sis. These IVs are chosen to be highly correlated with input and output signals but
stochastically independent of the measurement noise. As instrumental variables, one
can choose the input signal [66] or even stronger correlated, an estimate of the undis-
turbed model output obtained by the known input signal and the current parameter
estimates, e.g., [67]. Selecting suitable instrumental variables is crucial for the param-
eter estimation quality and thus the crucial aspect of this method. If the correlation
between IVs and undisturbed signals is insufficient, the parameter estimates are con-
sistent but show a considerable variance [64].

3.1.1.4 Bayes and Maximum Likelihood Methods

If one considers the parameters from a statistical perspective, they are random variables
(RVs), e.g., [2, 43]. In Bayes estimation, the parameters are (statistically) described
by its probability density function (PDF) fp (p) and the model outputs by the condi-
tional probability density function (PDF) fy (y|p). Since the parameters’ distribution
function is usually unknown in practice, the Bayesian approach is of theoretical in-
terest. However, the Bayes method forms the basis of other estimators, such as the
Maximum Likelihood (ML) estimation or the ordinary least-squares (OLS) estima-
tor [2, 3]. If no information about the distribution density function is available and
assumed to be equally distributed, the Bayes estimator simplifies to the Maximum
Likelihood (ML) estimator, described in, e.g., [10, 11, 68]. Assuming independent and
identically distributed (i.i.d.) and Gaussian distributed noise, it can be shown that the
ML approach leads to asymptotically efficient parameter estimates, i.e., reaches the
Cramér-Rao lower bound (CRLB), [3]. If the noise assumptions are further restricted,
i.e., i.i.d. normally distributed noise, the ML estimator coincides with the OLS es-
timator. In [69], a recursive algorithm of the ML approach for linear DT models is
introduced.
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3.1.2 Identification of Linear SISO Parametric CT Systems

Although methods for direct identification of CT systems, i.e., CT models, have been
relegated to the background for some time due to the continuing trend towards digiti-
zation, they have some advantages over DT methods that should not be disregarded.
An overview of existing methods and approaches for identifying CT models is given
in [70]. The essential advantages are worked out in [36] and briefly summarized here:

(i) CT models or their parameters provide a good insight into the system properties.

(ii) CT models preserve knowledge about (parts of) the system: The discretization
process is associated with some unwanted effects. For example, the discretization
of a strictly proper CT rational transfer function with n poles results in a rational
DT transfer function with n−1 zeros. The zeros can not be represented in closed
form as functions of the CT system parameters and the sampling time, with the
direct consequence that the discretized model’s parameters have no direct relation
to the physical model parameters, e.g., [71]. For example, G (s) = d

s3+as2+bs+c

becomes G (z) = b1+b2z+b3z2

z3+a1z2+a2z+a3
, i.e., three numerator parameters have to be

estimated instead of one. Hence, existing prior knowledge of CT models is wholly
lost through discretization.

(iii) Discretization can lead to unwanted problems at high sampling rates, see [36].
The results of conventional DT methods (z = esT ) do not converge to CT-
based methods when the sampling time tends to zero, i.e., T → 0. There exist
unconventional DT methods for discretizing CT models, avoiding problems at
high sampling rates, see, e.g., [72, 73].

(iv) Discretization may transform a causal and stable CT transfer function into a
non-minimum phase DT transfer function. For more detailed information, the
kindly reader is referred to [36,74].

3.1.2.1 Determination of the Time Derivatives

In contrast to DT methods, CT methods provide an extra challenge, namely handling
time derivatives. In any case, the aim is the transformation of a differential equation
into an algebraic equation. If the time derivatives are not measurable, they must be
determined from the sampled input signals u (tk) and output signals y (tk). There
are two different approaches, the approximation by numerical differentiation and the
exact transformation of the time derivatives, i.e., avoid explicitly computing the time
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derivatives of sampled signals. As mentioned in [3,36], especially the following methods
are suitable for this purpose:

(i) Modulating function method (MFM)

(ii) Poisson moment functionals (PMF)

(iii) Integral equation approach

In any case, it should be noted that any method for avoiding the explicit calculation
of the derivatives are derived assuming non-random (deterministic) input and output
signals. In practice, at least the output signals are noise affected, which changes the
noise properties, e.g., [11]. From this, it follows directly that the parameter estimation
results are generally biased. This thesis focuses on determining the estimation bias
caused by such transformations for the class of PMFs in detail and MFs in principle.

3.1.2.1.1 Numerical Differentiation
Numerical differentiation is perhaps the most obvious way to determine the unknown
time derivatives. Possible variants are the backward difference quotient

ˆ̇y (tk) = y (tk)− y (tk−1)
T

(3.11)

the forward difference quotient

ˆ̇y (tk) = y (tk+1)− y (tk)
T

(3.12)

and the central differential quotient

ˆ̇y (tk) = y (tk+1)− y (tk−1)
2T (3.13)

where T denotes the sample time, and the accent hat indicates the approximative
character. Usually, measurement signals are noise-affected, so numerical differentia-
tion leads to unsatisfactory results in practical application, especially for higher time
derivatives. For better results, e.g., [75], uses interpolating functions.

3.1.2.1.2 Modulating Functions (MF) Approach
As stated in [36,76], the modulating function method (MFM) was introduced by [77] in
1957. The MFM’s central idea is to shift the time derivation from a measured variable
to an adequately defined modulating function (MF), achieved by partial integration.
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Modulating Function

Definition 3.1. A function ϕk (t) : [0, T ′]→ R is called modulating function
(MF) of adequate order k if

ϕ
(i)
k (0) = ϕ(i) (T ′) = 0 (3.14)

for i = 0, 1, 2, . . . , k − 1.

Considering integration by parts and (3.14), multiplying a signal y by ϕk and inte-
gration leads to the fundamental equation of the MFM

∫ T ′

0
ϕk (t) y(i) (t) dt =

∫ T ′

0
(−1)i ϕ(i)

k (t) y (t) dt . (3.15)

This approach’s smart property is that the initial and final values of the signals vanish
due to Definition 3.1.

Let us consider a simple first-order model with its differential equation

y (t) = −T1ẏ (t) + V u (t) (3.16)

with output y (t) ∈ R, input u (t) ∈ R, and parameter vector p = (T1, V )> ∈ Rnp .
Furthermore, let us assume that the input-output data is available within the time
interval [0, T ′]. Multiply the differential equation by ϕk (t) and integrate over [0, T ′],
and taking into account (3.15), gives

∫ T ′

0
ϕk (t) y (t) dt = −T1

∫ T ′

0
ϕk (t) ẏ (t) dt+ V

∫ T ′

0
ϕk (t)u (t) dt . (3.17)

Using (3.15), one obtains

∫ T ′

0
ϕk (t) y (t) dt = T1

∫ T ′

0
ϕ̇k (t) y (t) dt+ V

∫ T ′

0
ϕk (t)u (t) dt (3.18)

equivalent to (3.16), suitable for identification. Using N > np different modulating
functions, one obtains an overdetermined set of algebraic equations, which can be
solved by, e.g., least-squares. Alternatively, one can use a single MF by considering
a receding-horizon version of (3.18), as shown in, e.g., [78]. In addition to the prime
reason for avoiding the explicit calculation of time derivatives of measurement signals,
the integration has a smoothing effect in measurement noise. As stated in [79], only a
few MF have been introduced over time. For example, [77] uses trigonometric functions
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ϕk (t) =
(

sin
(
kπt

T ′

))k
(3.19)

while [80] introduces polynomial functions

ϕk (t) = (T ′ − t)k tk . (3.20)

In the literature, further MFs are proposed, whereby [3] gives a good overview. Fourier
modulating functions are introduced in [81], while [82] investigates Hermite modulating
functions. In [83], trigonometric modulating functions are used, and [84, 85] describes
modulating functions based on the Hartley transformation. In [79], one estimates
model parameters and system states in finite time using modulating functions. More-
over, the MFM was also extended to fractional-order models by [86]. Other works,
e.g. [87], try to build optimal modulation functions adapted to the measurement data
to improve the subsequent parameter estimation.

3.1.2.1.3 Poisson Moment Functional (PMF) Approach
In parallel to the development of the MFM, or instead based on its basic idea, different
approaches have been developed that avoid the explicit calculation of time derivatives
using partial integration [36,79]. One of them is called PMF method, where the explicit
computation of the signal derivatives is avoided by partial integration or signal filtering
with an exponential kernel function, e.g., [88, 89]. The integral transform

Mk {y (t)} =
∫ t

0

(t− τ)k

k! e−λ(t−τ)y (τ) dτ (3.21)

defines the k-th order Poisson moment of the signal y (t). Assuming that the support of
y (t) is restricted to [0,∞[, this can be interpreted as a modulating function approach
using convolution, i.e.,

(gFk ∗ y) (t) =
∞∫
−∞

gFk (τ) y (t− τ) dt (3.22)

with the k-th Poisson impulse response gFk (t) of a stable linear filter with transfer
function1

Fk (s) = 1
(s+ λ)k+1 , λ > 0 (3.23)

1Additionally, the filter can be normalized to unity gain by λk+1.
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and
gFk (t) = L−1 {Fk (s)} = tk

k!e
−λt . (3.24)

To clarify the notation: the k − 1-th Poisson impulse function reads

gFk−1 (t) = L−1 {Fk−1 (s)} = L−1
{

1
(s+ λ)k

}
. (3.25)

Continuous-time filters are described by transfer functions in the Laplace domain using
the complex variable s.
For the i-th derivative applies

Mk

{
di
dtiy (t)

}
= Mk

{
y(i) (t)

}
=
∫ t

0

(t− τ)k

k! e−λ(t−τ)y(i) (τ) dτ . (3.26)

Integration by parts yields

Mk

{
y(i) (t)

}
= (t− τ)k

k! e−λ(t−τ)y(i−1) (τ)
∣∣∣t
0
−

∫ t

0

−(t− τ)(k−1)

(k − 1)! e−λ(t−τ) + λ
(t− τ)k

k! e−λ(t−τ)

 y(i−1) (τ) dτ (3.27)

or

Mk

{
y(i) (t)

}
= Mk−1

{
y(i−1) (t)

}
− λMk

{
y(i−1) (t)

}
− gFk (t) y(i−1) (0) . (3.28)

This property is used repetitively to eliminate all derivatives to obtain a purely alge-
braic system of equations for parameter identification.

Exemplarily, for the first derivative, one obtains

Mk

{
y(1) (t)

}
= Mk

{
d
dty (t)

}
= Mk−1 {y (t)} − λMk {y (t)} − gFk (t) y (0) . (3.29)

Iteratively, the second derivative reads

Mk

{
y(2) (t)

}
= −gFk (t) y(1) (0) +Mk−1

{
y(1) (t)

}
− λMk

{
y(1) (t)

}
= λ2Mk {y (t)} − 2λMk−1 {y (t)}+Mk−2 {y (t)}+
λgFk (t) y (0)− gFk (t) y(1) (0)− gFk−1 (t) y (0) .

(3.30)

Contrary to the MF approach, the signal’s initial values and its time derivatives do
not vanish. Hence, the initial values are assumed to be known, are estimated [90], or
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one waits until the impact of the initial values vanishes due to exponential decay.
To sum up, despite these differences, the PMF method and the MF method are based

on the same principles, namely multiplication of the signals with a known differentiable
function or kernel and integration.

Again, using the first-order system (3.16) for demonstration purposes, one obtains

Mk {y (t)} = T1 (Mk−1 {y (t)} − λMk {y (t)} − gFk (t) y (0)) + VMk {u (t)} (3.31)

for identification, evaluated at N > np discrete points in time, and least-squares solve
the resulting algebraic system of equations.

Instead of using (3.28) with filter Fk (s) iteratively, i.e., Poisson filter chain, one
can use filters with different numerator terms. Neglecting initial conditions, applying
Laplace transform, and multiplication with Fk (s), (3.16) yields

ŷ (s) 1
(s+ λ)k+1 = −T1sŷ (s) 1

(s+ λ)k+1 + V û (s) 1
(s+ λ)k+1

= −T1ŷ (s) s

(s+ λ)k+1 + V û (s) 1
(s+ λ)k+1 .

(3.32)

Inverse transform results in

(
g0
Fk
∗ y
)

(t) = −T1
(
g1
Fk
∗ y
)

(t) + V
(
g0
Fk
∗ u
)

(t) (3.33)

with corresponding filters and impulse responses

F 0
k (s) = 1

(s+ λ)k+1 , g0
Fk

(t) = L−1
{
F 0
k (s)

}
F 1
k (s) = s

(s+ λ)k+1 , g1
Fk

(t) = L−1
{
F 1
k (s)

}
.

(3.34)

Extending (3.22), one obtains

(
giFk ∗ y

)
(t) =

∞∫
−∞

giFk (τ) y (t− τ) dt (3.35)

where

F i
k (s) = si

(s+ λ)k+1 and giFk (t) = L−1
{
F i
k (s)

}
, k + 1 ≥ i . (3.36)

A significant advantage of the PMF method is that it is particularly suitable for online
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parameter estimation due to filters to avoid the direct calculation of time derivatives.
For this reason, the focus of this thesis is on parameter estimation using PMF, c.f.
Section 3.3.

3.1.2.1.4 Integral Equation Approach
The particular case of the above discussed PMF approach with λ = 0 is called the
integral equation approach. Performing repeated integration removes all derivative
terms in the differential equation, resulting in an equation suitable for identification.
This approach was introduced for linear, nonlinear, and time-varying systems by [91–
93]. Studies on the topic of bias and its compensation can be found in, e.g., [94–96].

3.1.2.2 Least-Squares Method and Modifications

The continuous-time (CT) domain methods are the same as those of discrete-time
(DT) models, presented in Section 3.1.1.2, Section 3.1.1.3, and Section 3.1.1.4. For this
reason, this section is kept short and simple. Only the main differences are pointed
out.

In contrast to the DT domain, the least-squares estimation for CT models is asymp-
totically biased even if the equation error is assumed to be white noise and Gaussian
distributed. The main reason for this is the treatment of the time derivatives that
changes the noise spectrum, e.g., equation error is no longer uncorrelated [11]. Hence,
bias-compensated ordinary least-squares (BC-OLS) approaches, instrumental variables
(IV), or statistic approaches are mandatory in case of a significant noise-signal ratio.
BC-OLS method for linear CT systems with output noise, and digital filters for elimi-
nating time derivatives, is presented in, e.g., [7]. In [97,98], the system is extended by
introducing a known input pre-filter to get knowledge about the estimation bias caused
by the integral equation approach or PMF due to colored noise. This approach man-
ages without estimating the noise characteristics. For example, in [99], this method is
applied to reduce the estimation bias caused by low-resolution encoders. An optimal
IV approach for CT transfer function models is presented in [100].

3.1.3 Parameter Identifiability

The term identifiability describes whether the real system can be described with a
model identified by a specific identification method. As stated in [2], this property
depends on the factors: system, experimental setup, model structure, and identification
method. In other words, identifiability is a joint property of an experiment and a model
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and means that the model parameters are obtained adequately from the experimental
data sets [43].

3.1.3.1 Structural Identifiability

As stated in [11], the concept of identifiability includes two different aspects, namely,
whether the data sets used for identification contain enough information to distinguish
between different model structures and the properties of the model structure itself, i.e.,
there exists a unique set of parameters or whether different parameter sets lead to equal
models. The latter aspect is also known as structural identifiability or deterministic
identifiability [43]. The issue of structural identifiability is treated in, e.g., [101], which
derives a probabilistic semi-numerical method for testing local structural identifiability
for large dynamic systems. An extended observability matrix for local identifiability
analysis based on Lie-derivatives is introduced in [102–104] for linear and nonlinear
dynamic systems. A sufficient and necessary condition for weakly local observability
based on distribution by claiming piecewise-constant input, suited for testing identifia-
bility, is presented in [105,106] and applied to electrical circuits for arc fault detection
in PV-systems [107]. In [2], the parameter identifiability is analyzed and tested for the
least-squares method, with the result that structural identifiability leads to require-
ments for both system and input signal. In [108], one can look up a comprehensive
review of identifiability for nonlinear systems.

3.1.3.2 Persistent Excitation

Assuming structural or deterministic identifiability, one must not prevent finding the
model parameters by inadequate input signals. To not lose the property of identifia-
bility, suitable input signals must excite all the plant dynamics [43].

Literature, e.g., [11,43], states that for the estimation of linear transfer functions of
order n with 2n parameters, the input signal must contain at least n different frequency
components. Therefore, a signal suitable for estimating 2n parameters is also called
persistently excited with order n. Exemplarily, one can use n sinusoidal curves. As
stated in [10], a signal is persistently exciting of order n if its covariance matrix of
order n is positive definite. For example, a pseudorandom binary sequence (PRBS) of
length n is persistently exciting or order n, while a step function is persistently exciting
of order one only.

The asymptotic properties of parameter estimation in linear systems depend only on
the input signal’s frequency spectrum and not on its time course, e.g., [11]. It follows
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directly that white noise is an ideal excitation signal for linear systems. PRBS approx-
imates the spectral properties of white noise and is, therefore, a suitable excitation for
linear systems, c.f. Section 2.2 or Section 2.2.1.

For nonlinear models, it is advantageous to use input signals containing different
amplitudes to excite the system’s nonlinearities. In [3], for example, pseudorandom
multilevel sequence (PRMS) signals are suggested. A PRMS signal is a time-discrete
periodic signal whose time curve shows different amplitudes and whose spectrum is
similar to white noise.2

3.2 Statistical Properties of Parameter Estimation

The quality of a parameter estimate in a statistical sense is mainly determined by the
accuracy and quality of the estimated parameter vector. As written down in [3], for
example, the accuracy and quality can be characterized by the following properties:

(i) unbiased

(ii) consistent

(iii) efficient

(iv) sufficient

The following definitions are derived from these properties.

Bias

Definition 3.2. Let p̂ be the estimated value of a nominal parameter vector p
based on an arbitrary number of samples N . If the estimation shows a systematic
error

E[p̂− p] = E[p̂]− p = ∆p 6= 0 (3.37)

this error is called bias. Therefore, an unbiased estimation fulfills

E[p̂] = p . (3.38)

2PRBS is thus a particular case of the more general term PRMS with two different signal ampli-
tudes, namely ±1.
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Asymptotic Bias

Definition 3.3. An estimation is called asymptotically unbiased if the higher
the number of samples N , the more accurate the estimation result, i.e., it applies

lim
N→∞

E[p̂] = p . (3.39)

Consistency

Definition 3.4. An estimation result p̂ is called consistent if it converges to
its nominal value p in probability for N →∞. According to the definition, the
estimate p̂ is consistent if the probability of P {‖p̂− p‖ > ε}meets the condition

lim
N→∞

P {‖p̂− p‖ ≥ ε} = 0 , ε > 0 (3.40)

for all admissable p and all real ε > 0. The notation

plim
N→∞

p̂ = p (3.41)

is often used for the different varieties of stochastic convergence, in this particular
case for convergence in probability.

Consistency vs. Asymptotic Unbiasedness

Remark 3.1. Consistency implies asymptotic unbiasedness, but the re-
verse is not always true. However, consistency and asymptotic unbiased-
ness are equivalent if the estimator is consistent and asymptotically nor-
mally distributed [109]. Assuming this mild regularity conditions asymp-
totic unbiasedness and the so called consistency are identical [108,109]. In
this thesis, we will not distinguish between the two terms.

Efficiency

Definition 3.5. Let p̂1 and p̂2 be two unbiased estimates of the parameter
vectors p. The efficiency of the estimate p̂1 compared to the estimate p̂2 is
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described by the ratio of its variances var (p̂1) and var (p̂2), respectively.

var (p̂1) = E[(p̂1 − p) (p̂1 − p)>]
var (p̂2) = E[(p̂2 − p) (p̂2 − p)>]

(3.42)

An estimated parameter vector p̂1 is efficient if there exists no other arbitrary
estimation p̂2, which has a smaller variance, i.e., it applies

∀p̂2 (var (p̂1) < var (p̂2)) . (3.43)

Sufficiency

Definition 3.6. The estimated vector p̂ is sufficient if there exists no other
estimate from the same input and output data (measured data), that provide ad-
ditional information about the nominal parameter vector p. Although sufficient
estimates are highly desirable, they can only be realized in particular cases.

The terms presented herein, brevity, characterize the quality of parameter estima-
tion. For a more detailed description of the terms, reference is made to the numerous
available literature, for example [110–112].

3.3 Online Parameter Estimation Approach Based on
Poisson Moment Functional Method and Recursive
Least-Squares

For parameter estimation with Poisson moment functionals (PMF) and ordinary least-
squares (OLS), we consider strictly proper observable and controllable single-input
single-output (SISO) linear time-invariant (LTI) systems of the form

ẋ = A (p) x + b (p)u
y = c> (p) x

(3.44)

with state vector x(t) ∈ Rn, input u(t) ∈ R, output y(t) ∈ R, and constant (unknown)
parameter vector p ∈ Rnp . Moreover, as shown in [113], (3.44) may be represented
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equivalently in nonlinear observer canonical form

y(n) (t) +
n−1∑
i=0

aiy
(i) (t) =

md∑
j=0

bju
(j) (t) (3.45)

with coefficients {ai, bj}, system order n > md, and parameter vector

p = (a0, · · · , an−1, b0, · · · , bmd)
T . (3.46)

As described in Section 3.1, different measures for the error between model and process
are introduced. Dealing with differential or difference equations, (generalized) equation
error methods (EEMs) are usually the methods of choice for parameter estimation to
obtain estimation problems linear in the model parameters. Thus, one of the main
problems for the identification of CT systems is the elimination of the time derivatives
in the occurring signals.3 One possibility is to transform the differential equations
into algebraic equations by multiplicating so-called modulating functions and applying
partial integration.

3.3.1 Poisson Moment Functional Approach

Let us begin with the most important repeated in brief. As described before, the PMF
method is particularly suitable for online parameter estimation. Hence, the integral
transform

Mk {y (t)} =
t∫

0

(t− τ)k

k! e−λ(t−τ)y (τ) dτ (3.47)

defines the k-th order Poisson moment of the signal y (t) (k = 0, 1, 2, . . .). Assuming
that the support of y (t) is restricted to [0,∞[, this can be interpreted as a modulating
function approach using convolution

(gFk ∗ y) (t) =
∞∫
−∞

gFk (τ) y (t− τ) dt (3.48)

with the impulse response gFk (t) of a stable linear filter with transfer function4

Fk (s) = 1
(s+ λ)k+1 , λ > 0 (3.49)

3When using so-called OEMs, the problem of eliminating or computing the time-derivatives of
signals, is dropped.

4Additionally, the filter can be normalized to unity gain by λk+1.
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and
gFk (t) = L−1 {Fk (s)} . (3.50)

Of course, continuous-time filters are described by transfer functions in the Laplace
domain using the complex variable s. Integration by parts or Laplace transform shows
the effect on the first derivatives5

Mk {ẏ (t)} = Mk

{
d
dty (t)

}
= Mk−1 {y (t)} − λMk {y (t)} − gFk (t) y (0) (3.51)

where initially

M0 {ẏ (t)} = M0

{
d
dty (t)

}
= y (t)− λM0 {y (t)} − gFk (t) y (0) . (3.52)

This property is used repetitively to eliminate all derivatives in (3.45) to obtain a
purely algebraic system of equations for parameter identification. Alternatively, one
can use (3.35) and (3.36) to avoid filter chains. The initial conditions are assumed to
be zero or at least known or are neglected since their impact fades with time depending
on the filter time constants. Whenever necessary, the initial conditions may also be
estimated as additional parameters.

For each derivative of y (t), one obtains

ỹ(i) (t) = di
dti {ỹ (t)} =

(
giF ∗ y

)
(t) (3.53)

where (giF ∗ y) (t) denotes the convolution of the signal y (t) with the impulse response
giF of a stable linear filter F i (s)6, where

F i (s) = si

(s+ λ)k+1 and giF (t) = L−1
{
F i (s)

}
, k + 1 ≥ i . (3.54)

The input signal u (t) and its time derivatives in (3.45) are transformed analogously,
resulting in an algebraic system equation for identification

ỹ(n) (t) +
n−1∑
i=0

aiỹ
(i) (t) =

md∑
j=0

bjũ
(j) (t) (3.55)

where the accent tilde indicates filtered signals.

5For a definition of Poisson moment functionals for distributions see [5].
6In (3.49), we use the subscript to highlight the order of the PMF moment. This index is replaced

to indicate other essential properties, e.g., the filters’ discretization type.
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3.3.2 Implementation Aspects

For implementation on sampled measurement data tk = kT, 1 ≤ k ≤ N with sample
time T , the filters (3.54) have to be discretized or approximated. Please note that to
improve the readability of mathematical expressions, the sampling of signals at discrete
time instances tk, e.g., y (tk), is abbreviated by a subscript k, so yk.
One may exactly discretize the plant input filters under the assumption that a zero-

order hold generates the inputs. Any other filters operating on continuous-time signals
are discretized using bilinear approximation or Tustin’s method (trapezoidal rule).
More accurate approximations are possible, of course.

Discretization of the filters using zero-order-hold (ZOH) is done with

F i
zoh (z) = z − 1

z
Z
{(
L−1

{
F i (s) 1

s

})∣∣∣∣∣
t=kT

}
(3.56)

where z indicates the z-transform variable. The corresponding impulse response se-
quence read

giF,zoh (k) = Z−1
{
F i
zoh (z)

}
(3.57)

allowing the remark that giF,zoh (k) = giF,zoh;k. Bilinear approximation leads to

F i
tust (z) = F i (s′) where s′ = 2

T

z − 1
z + 1 (3.58)

with the appropriate impulse response sequence

giF,tust (k) = Z−1
{
F i
tust (z)

}
. (3.59)

Analogously to (3.53), the discrete-time domain applies

ũ
(j)
k =

{(
dj
dtj {ũ (t)}

)∣∣∣∣∣
t=kT

}
=
(
gjF,zoh ∗ u

)
(k) (3.60)

and
ỹ

(i)
k =

{(
di
dti {ỹ (t)}

)∣∣∣∣∣
t=kT

}
≈
(
giF,tust ∗ y

)
(k) =: ˆ̃y(i)

k (3.61)

with the time-discrete convolution

(
gjF,zoh ∗ u

)
(k) =

∞∑
m=−∞

gjF,zoh;muk−m

(
giF,tust ∗ y

)
(k) =

∞∑
m=−∞

giF,tust;myk−m .

(3.62)
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At this point, it should be noted that the accent hat in ˆ̃y(i)
k indicates the approximative

character. Of course, the quality of the approximation can be improved by increasing
the sampling frequency. Indeed, if the signal shape of the continuous-time signals
is known, these filters can also be discretized exactly. Therefore, the equation for
identification (3.55) applied to sampled measurement data read as

ˆ̃y(n)
k +

n−1∑
i=0

ai ˆ̃y(i)
k =

md∑
j=0

bjũ
(j)
k (3.63)

with

ˆ̃y(i)
k =

(
giF,tust ∗ y

)
(k) , i = 0, 1, . . . , n

ũ
(j)
k =

(
gjF,zoh ∗ u

)
(k) , j = 0, 1, . . . ,md .

(3.64)

3.3.3 Least-Squares Parameter Estimation for Dynamic CT
Processes

Resorting (3.63) results in

ˆ̃y(n)
k = −

n−1∑
i=0

ai ˆ̃y(i)
k +

md∑
j=0

bjũ
(j)
k (3.65)

or vector form
yLSQ;k = w>k p (3.66)

with
yLSQ;k = ˆ̃y(n)

k

w>k =
(
−ˆ̃y(0)

k , · · · ,−ˆ̃y(n−1)
k , ũ

(0)
k , · · · , ũ(md)

k

)
p = (a0, · · · , an−1, b0, · · · , bmd)

>

(3.67)

where w>k ∈ Rnp denotes the regressor vector, yLSQ;k ∈ R is the ordinary least-squares
(OLS) output, and p ∈ Rnp is the parameter vector. For N > np measurements, (3.65)
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or (3.66) results in an overdetermined system of equations


yLSQ;1

yLSQ;2
...

yLSQ;k
...

yLSQ;N


︸ ︷︷ ︸

=yLSQ

=



w>1
w>2
...

w>k
...

w>N


︸ ︷︷ ︸

=W


p1

p2
...
pnp


︸ ︷︷ ︸

=p

(3.68)

where W ∈ RN×np , p ∈ Rnp and yLSQ ∈ RN .

For estimating the unknown parameter vector, the OLS algorithm is used. Extend-
ing (3.68) by a generalized equation error v results in an underdetermined system of
equations

yLSQ = Wp + v (3.69)

for p and v ∈ RN . The basic idea of OLS is to find a solution p̂ in such a way that
the square norm of the error becomes minimal. Instead of solving the system of linear
equations (3.68) directly, it is transformed into an equivalent optimization problem

p̂ = arg min
p
||v||22

= arg min
p
||yLSQ −Wp||22 .

(3.70)

Calculating the gradient concerning the parameters and equate it to zero

∂

∂p
v>v = ∂

∂p
(yLSQ −Wp)> (yLSQ −Wp)

= −2yLSQW + 2p>W>W = 0>
(3.71)

results directly in
W>Wp = W>yLSQ . (3.72)

The invertibility of the matrix
(
W>W

)
depends on the input and output signals

and is often called persistent excitation. Assuming regularity of
(
W>W

)
means

rank
(
W>W

)
= np, the optimal solution p̂ in the sense of (3.70) for the unknown

parameter vector is
p̂ =

(
W>W

)−1
W>yLSQ (3.73)
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where
(
W>W

)−1
W> is called Moore-Penrose pseudoinverse of W.7

3.3.3.1 Statistical Properties of Ordinary Least-Squares Estimators

Different assumptions are necessary to prove the statistical properties of OLS esti-
mators. The so-called Gauss-Markov assumptions (i)-(iv) play an essential role. The
Gauss-Markov assumptions can be divided into assumptions concerning the specifica-
tion of the model (i), assumptions concerning the data matrix (ii), (iii), and assump-
tions concerning the error terms (iv). If all Gauss-Markov assumptions are fulfilled,
the OLS estimator is the best linear unbiased estimator (BLUE) estimator. A short
and elegant proof can be found in [114]. In other words, the estimator is efficient, c.f.
Definition 3.5.

(i) Linearity The observations yLSQ;k are an affine function of the explanatory
variables (regressor or data vector) w>k and equation error vk, i.e.,

yLSQ;k = w>k p + vk , k = 1, . . . , N . (3.74)

It is essential to note that the linearity assumption refers to the model parameters
but not the variables. In addition, it is assumed that the model is correctly
specified, i.e., that no relevant explanatory variables are missing or no irrelevant
explanatory variables occur.

(ii) Full column rank The matrix W ∈ RN×np has full column rank, i.e.,

rank [W] = np . (3.75)

Firstly, full rank means that the number of observations has to be higher (or
at least equal) to the number of parameters N ≥ np, and secondly, the column
vectors of the data matrix W must not have perfect multicollinearity. The rank
condition is necessary for identifying the parameters p of interest and can be
understood more broadly as a kind of identification condition.

(iii) Exogeneity The explanatory variables and the error variables are stochastically
independent, i.e.,

E[vk|W] = 0 . (3.76)

7The second-order condition for a minimum requires that the matrix W>W is positive definite.
This condition is valid under very general conditions, provided that W has full column rank.
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This also implies the less strict assumption E[vk] = 0. In this case, the regressor
variables are called exogenous variables. For time series, the equation error vk
at a particular time instance tk must be (stochastically) independent from the
values of W for any time instances. In contrast, regressors that violate this
assumption are called endogenous regressors.

(iv) Error terms The error terms are independent and identically distributed (i.i.d.)
with an expected value equal to zero and finite constant variance σ2, i.e.,

vk|W ∼ i.i.d.
(
0, σ2

)
. (3.77)

This statement can be broken down into three individual assumptions:

• The expected value is equal to zero.

E[vk] = 0 (3.78)

• The error terms have the same finite variance. This property is known as
homoscedasticity.

var (vk|W) = σ2 , 1 ≤ k ≤ N (3.79)

• The error terms vk are stochastically independent of each other, i.e.,

E[vkvr|W] = 0 , for k 6= r . (3.80)

(v) Random sampling The value pairs
{
w>k , yLSQ;k

}
are obtained by random sam-

pling from a common distribution. If the drawings are independent, the obtained
data is independent and identically distributed (i.i.d.).8

As mentioned at the beginning of this section, the estimator is called BLUE if all
Gauss-Markov assumptions are fulfilled. However, usually, only a few assumptions
are fulfilled, and it must be verified which of the statistical properties mentioned in
Section 3.2 are fulfilled by the OLS estimators and which are not.

3.3.3.1.1 Finite Sample Properties
In estimating model parameters, the property of the expected value of the estimation

8Please note that this assumption is not one of the Gauss-Markov assumptions. However, since
it is necessary assumption to show consistency, it is also mentioned here.
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results is of great importance. Inserting (3.69) in (3.73) gives

p̂ =
(
W>W

)−1
W>yLSQ =

(
W>W

)−1
W> (Wp + v)

= p +
(
W>W

)−1
W>v

(3.81)

with the nominal parameter vector p. Taking expectation results in

E[p̂] = E[p +
(
W>W

)−1
W>yLSQ] = p + E[

(
W>W

)−1
W>v] = p + ∆p (3.82)

where the second summand ∆p = E[
(
W>W

)−1
W>v] terms the deviation between

the expected value of the estimated and nominal parameter vector ∆p = E[p̂] − p,
commonly known as bias. Let us assume for the moment that we are looking at a
static process. For deterministic regressor vectors w>k or regressor matrices W, and if
Gauss-Markov assumptions (i)-(iii) are fulfilled, it applies

E[p̂] = p +
(
W>W

)−1
W> E[v] = p . (3.83)

In this case, the estimation result is unbiased, even for a finite number of samples. For
stochastic regressors, the concept of the expected value must be extended. Assuming
a fixed realization of the random data matrix, one calls the expected value the condi-
tional expected value. Hence, the conditional expectation of the bias-term, assuming
a present data matrix W, is given by

E[∆p|W] = E[
(
W>W

)−1
W>v|W] . (3.84)

Let us assume that the data matrix W and the equation error v are stochastically
independent. This assumption implies that the elements of the data matrix wi,j ∈W
are uncorrelated with the error terms vi. Then, the conditional expectation value
applies

E[∆p|W] =
(
W>W

)−1
W> E[v] . (3.85)

With E[vk] = 0 the conditional expectation value for the bias-term is

E[∆p|W] = 0 . (3.86)
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Thus, the conditional expected value does not depend on the data matrix, which means
that the (unconditional) expectation value also becomes zero, i.e.,

E[∆p] = 0 (3.87)

resulting again in an unbiased estimation. Once more, this applies to a finite number of
samples. Alternatively, by assuming that the data matrix W and the equation error v
are stochastically independent, the expected value in (3.82) can be split, and it applies

E[p̂] = p + E[
(
W>W

)−1
W>] E[v] = p (3.88)

assuming E[vk] = 0.
Apart from the two exceptional cases just mentioned, for dependent regressor and

equation error, the expectation value is generally non-zero. Hence, the estimation
result becomes biased, at least for a finite number of samples.

3.3.3.1.2 Asymptotic Properties
In control engineering tasks, usually dynamic processes with noise corrupted outputs
are treated. Consequently, the data matrix contains, among other things, the noisy
output signals and their time-derivatives. Intuitively, the regressor and equation error
are dependent, and the estimation bias will no longer be zero for a finite number
of samples, e.g., [2, 3, 9, 43]. However, if the Gauss-Markov assumptions (i)-(iv) are
fulfilled, and additionally the assumption (v) applies, then in favorable cases, at least
the asymptotic unbiasedness (consistency) of the estimator can be proved, using the
law of large numbers and convergence in probability (plim). A short introduction to
stochastic convergence concepts is given in Section A.3.6. Applying plim to (3.81), one
obtains

plim
N→∞

p̂ = plim
N→∞

(
p +

(
W>W

)
W>v

)
= p + plim

N→∞

(
W>W

)
W>v . (3.89)

The impact of correlated data and error terms on the consistency of the estimation
result is investigated in detail in Section 3.3.4.

3.3.4 Bias Problematic with Noisy Sampled System Outputs

The output of a continuous-time system is measured at various discrete instances of
time tk = kT, 1 ≤ k ≤ N , where N is the total number of samples. The measured
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samples
ym (tk) = ym;k = yk + ek, 1 ≤ k ≤ N (3.90)

are assumed to be disturbed by an additive random noise sequence ek. If not specified
more precisely, relatively broad assumptions apply to the noise term, ek. One assumes
that the random variable ek is a realization of an ergodic, i.e., stationary, white noise
process with its expected value E[ek] = 0 and constant variance σ2. To work out
the bias problem, one can retain the measured samples or the filtered signals in the
equation for identification. For example, inserting (3.90) in (3.63) and using (3.60) or
(3.61) results in

ˆ̃y(n)
m;k +

n−1∑
i=0

ai ˆ̃y(i)
m;k =

md∑
j=0

bjũ
(j)
k + ˆ̃e(n)

k +
n−1∑
i=0

ai ˆ̃e(i)
k︸ ︷︷ ︸

vk

(3.91)

with
ũ

(j)
k =

{(
dj
dtj {ũ (t)}

)∣∣∣∣∣
t=kT

}
=
(
gjF,zoh ∗ u

)
(k)

ỹ
(i)
m;k =

{(
di
dti {ỹm (t)}

)∣∣∣∣∣
t=kT

}
≈
(
giF,tust ∗ ym

)
(k) =: ˆ̃y(i)

m;k

(3.92)

and
ẽ

(i)
k =

{(
di
dti {ẽ (t)}

)∣∣∣∣∣
t=kT

}
≈
(
giF,tust ∗ e

)
(k) =: ˆ̃e(i)

k (3.93)

where vk is a composite noise term, called filtered white noise.9 The term filtered in
this context refers to the filtering effect by the plant dynamics and not the PMF to
eliminate the time derivatives. A similar challenge arises in the parameter estimation
of discrete-time transfer functions G (z). Due to the plant dynamics filtering effect,
the estimation result is biased, even if ek is stationary with E[ek] = 0. A common
requirement for a bias-free estimation of DT transfer function parameters is that the
noise term must be generated from white noise by a filter with transfer function 1

A(z) ,
e.g., [2, 3]. Unfortunately, this does not apply in the case of CT, and the estimation
result remains biased. For more detailed information, please refer to Section 3.3.5.1.

9Again, plant input filters are discretized by zero order hold in an exact manner, while other
filters are discretized by bilinear approximation, see Section 3.3.2
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For N samples, one obtains

yLSQ;1

yLSQ;2
...

yLSQ;k
...

yLSQ;N


︸ ︷︷ ︸

=yLSQ

=



w>1
w>2
...

w>k
...

w>N


︸ ︷︷ ︸

=W


p1

p2
...
pnp


︸ ︷︷ ︸

=p

+



v1

v2
...
vk
...
vN


︸ ︷︷ ︸

=v

(3.94)

or in more compact form
yLSQ = Wp + v (3.95)

where yLSQ ∈ RN , W ∈ RN×np , v ∈ RN , with the abbreviations for one single
measurement

yLSQ;k = ˆ̃y(n)
m;k

w>k =
(
−ˆ̃y(0)

m;k · · · −ˆ̃y(n−1)
m;k ũ

(0)
k · · · ũ

(md)
k

)
vk = ˆ̃e(n)

k +
n−1∑
i=0

ai ˆ̃e(i)
k

(3.96)

and
v =

(
v1 · · · vk · · · vN

)>
, v ∈ RN . (3.97)

Inserting (3.95) in (3.73) to obtain the optimal solution in the least-squares sense ends
up with

p̂ =
(
W>W

)−1
W>Wp +

(
W>W

)−1
W>v

= p +
(
W>W

)−1
W>v

(3.98)

where p is the nominal parameter vector, and

P =
(
W>W

)−1
(3.99)

is the parameter covariance matrix.

As described in the previous section, the estimation result’s expectation value is an
essential property of an estimator. However, we expect that the estimation results
are no longer unbiased due to measurement noise and dynamical models. A glance
at relevant technical literature, e.g., [2, 3, 43], shows how or why regressor and error
terms are correlated with each other in the parameter estimation of continuous-time



3.3 Online Parameter Estimation using PMF and Least-Squares 75

dynamic systems using OLS. For example, [43] notes that the bias analysis quickly be-
comes impracticable due to the necessary evaluation of the expected value of relatively
complex functions. Nevertheless, in [2], the necessary and sufficient condition

E[W>v] = 0 (3.100)

for unbiased estimation of the unknown parameters of a CT system is introduced. The
other way around, if this condition is not fulfilled, the estimation result is biased for a
finite number of samples. Unfortunately, no further analysis of the bias, e.g., its size,
can be made if W>v 6= 0. One can circumvent the arising challenge by considering
the asymptotic bias. For this purpose, we analyze the term E[W>v] in more detail.
Inserting

W> =

 W>
y v

W>
u v

 =



−ˆ̃y(0)
m;1 −ˆ̃y(0)

m;2 · · · −ˆ̃y(0)
m;N

−ˆ̃y(1)
m;1 −ˆ̃y(1)

m;2 · · · −ˆ̃y(1)
m;N

... ... . . . ...
−ˆ̃y(n−1)

m;1 −ˆ̃y(n−1)
m;2 · · · −ˆ̃y(n−1)

m;N

u
(0)
1 u

(0)
2 · · · u

(0)
N

u
(1)
1 u

(1)
2 · · · u

(1)
N

... ... . . . ...
u

(md)
1 u

(md)
2 · · · u

(md)
N



(3.101)

results in

E[W>v] = E[



−ˆ̃y(0)
m;1v1 − ˆ̃y(0)

m;2v2 − · · · − ˆ̃y(0)
m;NvN

−ˆ̃y(1)
m;1v1 − ˆ̃y(1)

m;2v2 − · · · − ˆ̃y(1)
m;NvN

...
−ˆ̃y(n−1)

m;1 v1 − ˆ̃y(n−1)
m;2 v2 − · · · − ˆ̃y(n−1)

m;N vN

u
(0)
1 v1 + u

(0)
2 v2 + · · ·+ u

(0)
N vN

u
(1)
1 v1 + u

(1)
2 v2 + · · ·+ u

(1)
N vN

...
u

(md)
1 v1 + u

(md)
2 v2 + · · ·+ u

(md)
N vN



] =



−E[∑N
k=1 ˆ̃y(0)

m;kvk]
−E[∑N

k=1 ˆ̃y(1)
m;kvk]

...
−E[∑N

k=1 ˆ̃y(n−1)
m;k vk]

E[∑N
k=1 ũ

(0)
k vk]

E[∑N
k=1 ũ

(1)
k vk]

...
E[∑N

k=1 ũ
(md)
k vk]



.

(3.102)
Taking into account, the response of DT LTI systems with random data (A.81), e.g.,
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[115–118], and the common assumption E[ek] = 0 one obtains

E[ˆ̃e(i)
k ] = E[ek]

∞∑
k=1

giF,tust;k = 0 . (3.103)

Supplementary, assuming noise-free inputs (open-loop control), i.e., deterministic in-
puts, (3.102) simplifies to

E[W>v] = E[
W>

y v
W>

u v

] =



−E[∑N
k=1 ˆ̃y(0)

m;kvk]
−E[∑N

k=1 ˆ̃y(1)
m;kvk]

...
−E[∑N

k=1 ˆ̃y(n−1)
m;k vk]

0
0
...
0



=
E[W>

y v]
0

 . (3.104)

Picking out the j-th row of W>
y , inserting (3.90) and the composite noise term vk from

(3.96) results in

−E[
N∑
k=1

ˆ̃y(j)
m;kvk] = −E[

N∑
k=1

(
ˆ̃y(j)
k + ˆ̃e(j)

k

)(
ˆ̃e(n)
k +

n−1∑
i=0

ai ˆ̃e(i)
k

)
]

= −
N∑
k=1

ˆ̃y(j)
k E[ˆ̃e(n)

k +
n−1∑
i=0

ai ˆ̃e(i)
k ]−

N∑
k=1

(
E[ˆ̃e(j)

k
ˆ̃e(n)
k ] +

n−1∑
i=0

ai E[ˆ̃e(j)
k

ˆ̃e(i)
k ]
)
.

(3.105)
Using (3.103) once more, the first term in (3.105) vanishes, and it applies

−E[
N∑
k=1

ˆ̃y(j)
m;kvk] = −

N∑
k=1

(
E[ˆ̃e(j)

k
ˆ̃e(n)
k ] +

n−1∑
i=0

ai E[ˆ̃e(j)
k

ˆ̃e(i)
k ]
)

= −
N∑
k=1

(
rˆ̃e(j) ˆ̃e(n) (0) +

n−1∑
i=0

airˆ̃e(j) ˆ̃e(i) (0)
) (3.106)

with (i, j) = {0, 1, . . . , n−1}. Derivative (stationary) stochastic processes are treated in
[2,119,120]. One can show that for the autocorrelation function (ACF) of a stationary
random process x (t) and associative time derivatives x(i) (t) or x(j) (t) applies

rx(j)x(i) (τ) = E[x(j) (t)x(i) (t+ τ)] = (−1)jr(j+i)
xx (τ) = (−1)j dj+i

dτ j+i rxx (τ) . (3.107)
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Using (A.57)

rx(j)x(i) (0) =


(−1)

j+i
2 E[

(
ˆ̃e(

j+i
2 )

k

)2
] , j + i = {0, 2, 4, . . . }

0 , j + i = {1, 3, 5, . . . }
(3.108)

whereby

E[
(

ˆ̃e(
j+i

2 )
k

)2
] > 0 , j + i = {0, 2, 4, . . . } (3.109)

can be interpreted as the average signal power of the respective signals, one obtains

E[W>v] 6= 0 (3.110)

resulting in a biased estimation result for a small (finite) number of samples.

For more in-depth investigations, e.g., estimating the size of the bias for compen-
sation purposes, asymptotic properties are necessary. As stated in Definition 3.4, an
estimator is consistent, means asymptotically unbiased, if the bias of the estimation
result p̂ converges in probability towards zero for N →∞. To check (3.98) for consis-
tency or asymptotic unbiasedness, respectively, one applies

plim
N→∞

p̂ = plim
N→∞

(
p + PW>v

)
(3.111)

where plim denotes the convergence in probability as introduced in Section A.3.6.

From Definition A.1, one can derive the calculation rules follow needed to calculate
the asymptotic bias, see Corollary A.1. For better readability, one recalls it here:

Convergence in Probability: Calculation Rules

Corollary 3.1. Let Xn, Yn be univariate random variables with observations
{X1, X2, . . . } and {Y1, Y2, . . . }. Assuming plimn→∞Xn = a and plimn→∞ Yn = b,
then applies:

plim
n→∞

(Xn ± Yn) = plim
n→∞

(Xn)± plim
n→∞

(Yn) = a± b ,

plim
n→∞

(XnYn) = plim
n→∞

(Xn) plim
n→∞

(Yn) = ab ,

plim
n→∞

(
Xn

Yn

)
= plimn→∞ (Xn)

plimn→∞ (Yn) = a

b
, if b 6= 0 .

(3.112)
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If A is an adequate and nonsingular matrix of random variables, then:

plim
n→∞

(
A−1
n

)
=
(

plim
n→∞

(An)
)−1

(3.113)

Applying the calculation rule for convergence in probability (A.64) or (3.112) to
(3.111), using (3.99) and taking into account that p is deterministic, one obtains

plim
N→∞

p̂ = p +
(

plim
N→∞

PW>v
)

= p + plim
N→∞

(
NP

1
N

W>v
)

= p + plim
N→∞

(( 1
N

W>W
)−1)

plim
N→∞

( 1
N

W>v
)
.

(3.114)

Using the calculation rule for stochastic matrices and vectors from (A.65) or (3.113),
(3.114) can be rewritten to

plim
N→∞

p̂ = p +
(

plim
N→∞

( 1
N

W>W
))−1

plim
N→∞

( 1
N

W>v
)
. (3.115)

Let us first deal with the matrix W>W ∈ Rnp×np . The square matrix W>W reads in
detail

W>W =



∑N
i=1w

2
i,1

∑N
i=1wi,1wi,2 · · · ∑N

i=1wi,1wi,np∑N
i=1wi,2wi,1

∑N
i=1w

2
i,1 · · · ∑N

i=1wi,2wi,np
... ... . . . ...∑N

i=1wi,npwi,1
∑N
i=1wi,npwi,2 · · ·

∑N
i=1w

2
i,np

 (3.116)

with

W =


w1,1 w1,2 · · · w1,np

w2,1 w2,2 · · · w2,np
... ... . . . ...

wN,1 · · · · · · wN,np

 . (3.117)

Each element of the square matrix W>W is a sum of N random variables∑N
i=1 wi,hwi,g, 1 ≤ (g, h) ≤ np, and thus again, a random variable. However, its average
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value for an infinite number of samples

lim
N→∞

1
N

N∑
i=1

wi,hwi,g = qh,g, 1 ≤ (g, h) ≤ np (3.118)

converges against a fixed number qh,g. Therefore it applies

plim
N→∞

1
N

W>W = QW (3.119)

where QW ∈ Rnp×np is a non-stochastic matrix with full rank. Using this property,
(3.115) simplifies to

plim
N→∞

p̂ = p + Q−1
W plim

N→∞

( 1
N

W>v
)

= p + ∆p (3.120)

and it is evident that the estimation result in (3.98) or (3.120) is consistent or asymp-
totically unbiased only if applies

plim
N→∞

1
N

W>v = 0 . (3.121)

To derive a term for the asymptotic bias, the (weak) law of large numbers is necessary.

Weak Law of Large Numbers (Bernoulli’s Theorem)

Theorem 3.1. Briefly, the weak law of large numbers or Bernoulli’s theorem
states that for a sequence of independent and identically distributed random
variables Xn, the sample mean X̄n tends to the population mean E[X] as the
sample size N increases.
Let Xn = {X1, X2, . . . } be a sequence of i.i.d. random variables with finite
sample mean X̄n = E[Xn]. Then it applies:

P
(
|X̄n − E[X]| < ε

)
≥ 1− δ (3.122)

where ε > 0 and 0 < δ < 1 are small numbers. Consequently it applies:

plim
N→∞

1
N

N∑
i=1

Xi = E[X] . (3.123)

However, for time series, often, the requirement of uncorrelated samples is not given.
Thus, in [121], a more applicable definition for weak stationary random processes is
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stated.

Weak Law of Large Numbers for Weak Stationary Processes

Lemma 3.1. Let {X1, X2, . . . } be a wide (weak) sense stationary (WSS)
process with absolutely summable auto-covariances. Then:

plim
N→∞

1
N

N∑
i=1

Xi = E[X] (3.124)

Assuming an ergodic, i.e., stationary, stochastic process, and taking into account the
fact that a filtered WSS process is also a WSS process, see [115, 116], one can apply
Lemma 3.1 to (3.121), resulting in

plim
N→∞

1
N

W>v = plim
N→∞

1
N

N∑
k=1

wkvk = E[wkvk] = 0 (3.125)

for asymptotically unbiased or consistent estimates, where wk ∈ Rnp is the k-th column
of W> ∈ Rnp×N .

Asymptotic Bias

Result 3.1. In general, the term E[wkvk] 6= 0, whereby the estimation result
is asymptotically biased and the asymptotic bias ∆p is

∆p = Q−1
W E[wkvk] = N plim

N→∞
(P) E[wkvk] . (3.126)

Asymptotically Unbiased Estimation

Result 3.2. Finally, for the asymptotically unbiased parameter vector one
obtains

p = plim
N→∞

p̂−N plim
N→∞

(P) E[wkvk] = plim
N→∞

p̂−∆p . (3.127)

where p̂ and P are obtained by ordinary least-squares (OLS) estimation

p̂ =
(
W>W

)−1
W>yLSQ . (3.128)
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3.3.5 Analytical Solution for the Estimation Bias Caused by PMF
Approach

As previously discussed, the CT differential equation in nonlinear observer canonical
form is sampled at a discrete time instance

y
(n)
m;k +

n−1∑
i=0

aiy
(i)
m;k =

md∑
j=0

bju
(j)
k + e

(n)
k +

n−1∑
i=0

aie
(i)
k (3.129)

where ek denotes the additive random output noise. We use the PMF method to avoid
direct computation of time derivatives of measured input- and output signals. By
proceeding as described in Section 3.3.1, one obtains

ũ
(j)
k =

{(
dj
dtj {ũ (t)}

)∣∣∣∣∣
t=kT

}
=
(
gjF,zoh ∗ u

)
(k)

ỹ
(i)
m;k =

{(
di
dti {ỹm (t)}

)∣∣∣∣∣
t=kT

}
≈
(
giF,tust ∗ ym

)
(k) =: ˆ̃y(i)

m;k

(3.130)

and
ẽ

(i)
k =

{(
di
dti {ẽ (t)}

)∣∣∣∣∣
t=kT

}
≈
(
giF,tust ∗ e

)
(k) =: ˆ̃e(i)

k (3.131)

with CT filters

F i (s) = si

(1 + sTf )n
and giF (t) = L−1

{
F i (s)

}
, 0 ≤ i ≤ n (3.132)

and appropriately discretized filters F i
zoh (z) , F i

tust (z) with the corresponding impulse
responses giF,zoh (k) , giF,tust (k). Note that the system order determines the filter order,
and i labels the respecting time derivative. Thus, finally, one obtains a purely algebraic
equation, suitable for identification, i.e.,

yLSQ;k = ˆ̃y(n)
m;k

w>k =
(
−ˆ̃y(0)

m;k · · · −ˆ̃y(n−1)
m;k ũ

(0)
k · · · ũ

(md)
k

)
vk = ˆ̃e(n)

k +
n−1∑
i=0

ai ˆ̃e(i)
k .

(3.133)

For implementation purposes, the filters must be discretized. It should be noted
that the type of discretization is not discussed here. More detailed considerations on
this topic are given in Section 3.3.2 and Section 3.4. One obtains the appropriate
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discretized filter
F i (z) =

∑n
j=0 h

i
jz
j

1 +∑n
j=1 djz

j
=
∑n
j=0 h

i
jz
j

d (z) (3.134)

with numerator coefficients hij and common denominator d (z). Equivalent to (3.134),
dividing by zn results in a causal infinite impulse response (IIR) filter

F i
(
z−1

)
=

∑n
j=0 h

i
jz
−j

1 +∑n
j=1 djz

−j =
∑n
j=0 h

i
jz
−j

d (z−1) (3.135)

where z−1 is just the inverse of z.

In order to calculate the estimation bias ∆p, a calculation rule for the term E[wkvk]
has to be derived. As already shown in (3.104), the data vector wk can be split up
into a stochastic part wy;k containing (random) noisy outputs, and a deterministic
part wu;k including the undisturbed inputs. Assuming an ergodic noise process ek
with E[ek] = 0, and taking into account the response of LTI systems to random input
data, e.g., (A.81), one obtains

E[ˆ̃e(i)
k ] = E[ek]

∞∑
k=1

giF,tust;k = 0 . (3.136)

Considering

vk = ˆ̃e(n)
k +

n−1∑
i=0

ai ˆ̃e(i)
k (3.137)

we finally get
E[wu;kvk] = wu;k E[vk] = 0 . (3.138)

Hence, the term E[wkvk] simplifies to

E[wkvk] = E[
wy;kvk

wu;kvk

] = E[
wy;kvk

0

] =
E[wy;kvk]

0

 (3.139)

where

wy;k =


−ˆ̃y(0)

m;k
...

−ˆ̃y(n−1)
m;k

 , wy;k ∈ Rn . (3.140)
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By using vk from (3.96) and transformation in compact vector form, one obtains

E[wy;kvk]
0

 = −E[


ˆ̃y(0)
m;k
...

ˆ̃y(n−1)
m;k

0


(
ˆ̃e(0)
k · · · ˆ̃e(n−1)

k
ˆ̃e(n)
k

)

a0
...

an−1

1

]

= −E[


ˆ̃y(0)
m;k ˆ̃e(0)

k · · · ˆ̃y(0)
m;k ˆ̃e(n)

k
... . . . ...

ˆ̃y(n−1)
m;k ˆ̃e(0)

k · · · ˆ̃y(n−1)
m;k ˆ̃e(n)

k

0 · · · 0

]


a0
...

an−1

1



(3.141)

where it is worth noting that the artificial extension by the (n+ 1)-th row is done for
calculation reasons and is removed again. Replacing the noisy system output by its
nominal value and additive random noise, i.e.,

ym;k = yk + ek (3.142)

results in

E[wy;kvk]
0

 = −E[


ˆ̃y(0)
k

ˆ̃e(0)
k + ˆ̃e(0)

k
ˆ̃e(0)
k · · · ˆ̃y(0)

k
ˆ̃e(n)
k + ˆ̃e(0)

k
ˆ̃e(n)
k

... . . . ...
ˆ̃y(n−1)
k

ˆ̃e(0)
k + ˆ̃e(n−1)

k
ˆ̃e(0)
k · · · ˆ̃y(n−1)

k
ˆ̃e(n)
k + ˆ̃e(n−1)

k
ˆ̃e(n)
k

0 · · · 0

]


a0
...

an−1

1

 .

(3.143)
The ij-th element of the matrix in the above equation reads

E[wy;kvk]i,j = −
(

ˆ̃y(i)
k E[ˆ̃e(j)

k ] + E[ˆ̃e(i)
k

ˆ̃e(j)
k ]
)
, 0 ≤ i ≤ n− 1 , 0 ≤ j ≤ n . (3.144)

Again, with E[ek] = 0, and the property of linear time-invariant (LTI) systems with
random input, i.e.,

E[ˆ̃e(j)
k ] = E[ek]

∞∑
k=1

gjF,k (3.145)
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the first summand in (3.144) becomes zero. Hence, (3.143) simplifies to

E[wy;kvk]
0

 = −E[


ˆ̃e(0)
k

ˆ̃e(0)
k · · · ˆ̃e(0)

k
ˆ̃e(n−1)
k

ˆ̃e(0)
k

ˆ̃e(n)
k

... . . . ... ...
ˆ̃e(n−1)
k

ˆ̃e(0)
k · · · ˆ̃e(n−1)

k
ˆ̃e(n−1)
k

ˆ̃e(n−1)
k

ˆ̃e(n)
k

0 · · · 0 0

]


a0
...

an−1

1

 . (3.146)

Introducing the vectors

ω> =


ˆ̃e(0)
k

ˆ̃e(1)
k
...

ˆ̃e(n−1)
k

 ∈ Rn , ω>e =
ω>

ˆ̃e(n)
k

 =



ˆ̃e(0)
k

ˆ̃e(1)
k
...

ˆ̃e(n−1)
k

ˆ̃e(n)
k


∈ Rn+1 (3.147)

with the abbreviation for parameters related to the system output (and its time deriva-
tives) pa = (a0, a1, · · · , an−1) ∈ Rn, and removing the last line, artificially added for
calculation reasons, (3.146) gives

E[wy;kvk] = −E[ω>ωe]
pa

1

 = −σ2Φ

pa
1

 (3.148)

where
Φ = 1

σ2 E[ω>ωe] , Φ ∈ Rn×(n+1) . (3.149)

Using (3.135), the vectors ω> and ω>e may be rewritten to

ω> =


ˆ̃e(0)
k

ˆ̃e(1)
k
...

ˆ̃e(n−1)
k

 =


h0

0 h0
1 · · · h0

n

h1
0 h1

1 · · · h1
n

... ... . . . ...
hn−1

0 hn−1
1 · · · hn−1

n




eF ;k

eF ;k−1
...

eF ;k−n

 = κ>eF

ω>e =



ˆ̃e(0)
k

ˆ̃e(1)
k
...

ˆ̃e(n−1)
k

ˆ̃e(n)
k


=



h0
0 h0

1 · · · h0
n

h1
0 h1

1 · · · h1
n

... ... . . . ...
hn−1

0 hn−1
1 · · · hn−1

n

hn0 hn1 · · · hnn




eF ;k

eF ;k−1
...

eF ;k−n

 =

 κ>

hn>

 eF = κ>e eF

(3.150)
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with filter coefficient matrices

κ> =


h0

0 h0
1 · · · h0

n

h1
0 h1

1 · · · h1
n

... ... . . . ...
hn−1

0 hn−1
1 · · · hn−1

n

 ∈ Rn×(n+1) , κ>e =

 κ>

hn>

 ∈ R(n+1)×(n+1)

(3.151)
and coefficient vector

hn> =
(
hn0 hn1 · · · hnn

)
∈ Rn+1 . (3.152)

The random noise ek is filtered with the common denominator

eF ;k = 1
d (z−1)ek (3.153)

where eF contains the k-th element and n causal shifts, i.e.,

eF =


eF ;k

eF ;k−1
...

eF ;k−n

 ∈ Rn+1 . (3.154)

Considering that the transpose of a product of matrices is the product of the transposes
in the reverse order and taking into account the introduced abbreviations, one can
rewrite (3.149) to

Φ = 1
σ2 E[κ>eFe>F

(
κ hn

)
] = 1

σ2κ
> E[eFe>F ]

(
κ | hn

)
= 1
σ2κ

>Γκe
(3.155)

where
κe =

(
κ | hn

)
∈ R(n+1)×(n+1) . (3.156)

Matrix Γ ∈ R(n+1)×(n+1) denotes the autocorrelation function matrix of the filtered
random noise eF ;k and shows a unique structure called the Toeplitz matrix. The
calculation rule reads

Γi,j = E[eFe>F ]i,j = reF eF (|i− j|) = reF eF ;|i−j| , 0 ≤ (i, j) ≤ n . (3.157)
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Again, let us assume ek to be a DT ergodic white noise process with independent
samples. This implies

ree;|i−j| =

σ
2 , |i− j| = 0

0 , |i− j| 6= 0
(3.158)

with constant finite noise variance σ2. As shown in Section A.4.1, the autocorrelation
function (ACF) of filtered white noise reF eF is equivalent to the ACF of the impulse
response gz of the corresponding filter, i.e.,

gz (k) = Z−1
{

1
d (z−1)

}
(3.159)

multiplied by the noise variance σ2. Consequently, (3.157) can be written to

Γi,j = reF eF ;|i−j| = σ2 (gz ∗ gz) (|i− j|) = σ2
∞∑

k=−∞
gz;kgz;k−|i−j| . (3.160)

Finally, the asymptotic bias term from (3.126) can be expressed by

∆p = N plim
N→∞

(P) E[wkvk] = −Nσ2 plim
N→∞

(P) Φ

pa
1

 (3.161)

with
P =

(
W>W

)−1
. (3.162)

Asymptotically Unbiased Least-Squares Estimation using PMF Method

Result 3.3. The asymptotically unbiased estimation result reads

p = plim
N→∞

p̂−∆p = plim
N→∞

p̂ +Nσ2 plim
N→∞

(P) Φ

pa
1

 (3.163)

where p̂ and P are obtained by ordinary least-squares (OLS) estimation

p̂ =
(
W>W

)−1
W>yLSQ (3.164)

and pa = (a0, a1, · · · , an−1)> contains the nominal model parameters related to
the system output, with noise variance σ2.
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3.3.5.1 White Noise Filtered by Plant Dynamics

Literature research, e.g., [2, 3], reveals a well-known, artificially created framework
for unbiased parameter estimation of time-discrete transfer functions. Namely, the
filtering of white Gaussian noise with the denominator of the process to be identified,
c.f., Fig. 3.3(a). Briefly summarized, the condition for consistency (3.125)

1
A(z−1)

B(z−1)
A(z−1)

B̂ (z−1) Â (z−1)

n e

u y ym

−

v

(a) Block diagram of a required structure for
an unbiased estimation of DT transfer
functions, where n ∼ i.i.d

(
0, σ2), e.g.,

Gaussian white noise.

1
A(s)

B(s)
A(s)

B̂ (s) Â (s)

n e

u y ym

−

v

(b) Block diagram of a required structure for
an unbiased estimation of DT transfer
functions applied to CT transfer func-
tions, where n ∼ i.i.d

(
0, σ2).

Figure 3.3: Block diagram of a required structure for an unbiased estimation of DT
transfer functions applied to CT transfer functions.

plim
N→∞

1
N

W>v = plim
N→∞

1
N

N∑
k=1

wkvk = E[wkvk] = 0 (3.165)

is satisfied if the data vector wk is uncorrelated with vk. For DT models, the data
vector

wk =



−ym;k−1
...

−ym;k−n

uk−1
...

uk−md


(3.166)

contains only past values of ym and u, i.e., causal shifts. Therefore, wk is correlated
with {vk−1, vk−2, . . . }, but uncorrelated with vk. Consequently, condition (3.165) is
fulfilled, and the parameter estimation is consistent, i.e., p̂ = p. Hence, Â (s) = A (s)
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and B̂ (s) = B (s), and consequently the composite noise term vk is also i.i.d., i.e.,

v (z) = n (z) . (3.167)

For this reason, one may consider it important to apply this approach to CT systems.
Assertion (3.167) is also valid in the CT case, i.e., v (s) = n (s), but it is not helpful
for the analysis since it requires unbiased estimation results.

The procedure for calculating the bias is entirely analogous to the calculation in
Section 3.3.5, except that the additive output error is already obtained by convolution

ek = (gn ∗ n) (k) (3.168)

with impulse response gn = Z−1
{

1
A(z−1)

}
. Hence, the PMF filtered error applies

ˆ̃e(i)
k =

(
giF ∗ e

)
(k) =

((
gn ∗ giF

)
∗ n
)

(k) =
(
giA,F ∗ n

)
(k) (3.169)

with a modified filter
F i
A

(
z−1

)
= 1
A (z−1)F

i
(
z−1

)
(3.170)

and the corresponding impulse response

giA,F (k) = Z−1
{
F i
A

(
z−1

)}
. (3.171)

As shown in detail in Section 3.3.4, one obtains dependencies between regressor and
noise vector with such a configuration, resulting in biased estimation results.

To summarize, contrary to DT models, the estimation result of CT systems is biased.
Again, one can at least try to calculate the asymptotic bias to obtain asymptotically
unbiased results. The calculation is analogous to Section 3.3.5, with the only difference
that the measurement noise is convoluted with a modified filter.

3.4 Application to a Motivating Example

The task of parameter estimation and arising challenges, particularly the bias problem,
are discussed in more detail during this section based on a 1D-servo positioning system
with its nonlinear model equationsẋ

v̇

 =
 v

− d
m
v − Fc

m
sgn (v) + 1

m
u

 (3.172)
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with state vector x = (x, v)> ∈ R2, parameter vector p = (m, d, Fc)> ∈ R3, and input
u ∈ R. The system output y is the servo position, i.e., y = x ∈ R. Furthermore,
it is assumed that the continuous-time output is measured at various discrete time
instances tk = kT, 1 ≤ k ≤ N with sample time T . Taking this into account, (3.172)
may be rewritten to

mÿk + dẏk + Fc sgn (ẏk) = uk (3.173)

with nominal parameters
p = (m, d, Fc)> . (3.174)

Nonlinearities are not included in the introduced PMF-system class (c.f. (3.44)), es-
pecially concerning bias estimation. Nevertheless, it is possible to deal with particular
nonlinearities, e.g., sign functions. The backward difference quotient approximates
the velocity v = ẏ in the sign function, and the sign function is approximated by a
sum of positive and negative discretized unit steps, which only causes a small error
as long as there is no chattering around zero velocity, e.g., [99]. For eliminating the
time-derivatives in (3.173), the second-order stable linear filters

F 0 (s) = 1
(1 + sTf )2

F 1 (s) = sF 0 (s)

F 2 (s) = s2F 0 (s) = 1
T 2
f

(
1− F 0 (s)− 2TfF 1 (s)

) (3.175)

are introduced, where Tf denotes the filter time constant.10 In order to obtain only
strictly proper transfer functions, partial fractional decomposition is applied to F 2 (s),
whereby F 2 (s) can be replaced by a function of F 0 (s) and F 1 (s).

For application on sampled data, the filters have to be discretized. As described in
Section 3.3.2, plant input filters and step function filters are discretized in an exact
manner by zero-order-hold (ZOH), filters applied to the continuous, but sampled, plant
output yk are discretized by bilinear approximation. Discretization of F 0 (s) by ZOH
results in

F 0
zoh (z) =

e
T
Tf T + Tf − e

T
Tf Tf + z

(
−e

T
Tf T − e

T
Tf Tf + e

2T
Tf Tf

)
Tf − z2e

T
Tf Tf + z2e

2T
Tf Tf

(3.176)

10The filter time constant Tf must be selected sensibly according to the application.
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with the corresponding impulse response

g0
m,zoh (k) = Z−1{F 0

zoh (z)} = 1
Tf

(
e
− kT
Tf

(
−kT − Tf + e

T
Tf ((k − 1)T + Tf )

))
.

(3.177)
Applying bilinear approximation (3.58) to F 0 (s) and F 1 (s), respectively, and calculat-
ing the respective impulse response sequences by application of the inverse z-transform,
cf. (3.59), results in

F 0
tust (z) = T 2 + z2T 2 + z2T 2

T 2 − 4TTf + 4T 2
f + z

(
2T 2 − 8T 2

f

)
+ z2

(
T 2 + 4TTf + 4T 2

f

)
F 1
tust (z) = −2T + z22T

T 2 − 4TTf + 4T 2
f + z

(
2T 2 − 8T 2

f

)
+ z2

(
T 2 + 4TTf + 4T 2

f

) (3.178)

and

g0
m,tust (k) = Z−1{F 0

tust (z)} = −
8T 2Tf (T − 2kTf )

(
1− 2T

T+2Tf

)k
(
T 2 − 4T 2

f

)2

g1
m,tust (k) = Z−1{F 1

tust (z)} =
4T

(
T 2 − 4kTTf + 4T 2

f

) (
1− 2T

T+2Tf

)k
(
T 2 − 4T 2

f

)2 .

(3.179)

Applying PMF filtering to (3.173) results in the equation for identification for one
single measurement

ũ
(0)
k︸︷︷︸

=yLSQ;k

=
(

1
T 2
f

(
yk − ˆ̃y(0)

k − 2Tf ˆ̃y(1)
k

)
ˆ̃y(1)
k s̃gn (ẏ)

(0)

k

)
︸ ︷︷ ︸

=w>
k


m

d

Fc


︸ ︷︷ ︸

=p

(3.180)

or in compact vector form
yLSQ;k = w>k p (3.181)

with the filtered signals

s̃gn (ẏ)
(0)

k =
(
g0
m,zoh ∗ sgn (ẏ)

)
(k) ˆ̃y(0)

k =
(
g0
m,tust ∗ y

)
(k)

ũ
(0)
k =

(
g0
m,zoh ∗ u

)
(k) ˆ̃y(1)

k =
(
g1
m,tust ∗ y

)
(k) .

(3.182)

Using N, N > np samples, (3.181) results in a system of algebraic equations which
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has the same structure as (3.68), i.e.,

yLSQ = Wp (3.183)

with yLSQ ∈ RN , W ∈ RN×3 and p ∈ R3, whose unknown parameters can be estimated
by solving

p̂ =
(
W>W

)−1
W>yLSQ . (3.184)

3.4.1 Analytical Solution for the Estimation Bias Caused by PMF
Approach

The measured samples are affected by an additive random noise ek, i.e.,

ym;k = ym (tk) = yk + ek, 1 ≤ k ≤ N . (3.185)

One assumes that the random variable ek is a realization of an ergodic, i.e., stationary,
white noise process with its expected value E[ek] = 0 and constant variance σ2. Again,
retaining the measured samples, i.e., y = ym−e, the equation for identification reads11

ũ
(0)
k︸︷︷︸

=yLSQ;k

=
(

1
T 2
f

(
ym;k − ˆ̃y(0)

m;k − 2Tf ˆ̃y(1)
m;k

)
ˆ̃y(1)
m;k

˜sgn (ẏm − ė)
(0)

k

)
︸ ︷︷ ︸

=w>
k


m

d

Fc


︸ ︷︷ ︸

=p

+ (−1)
(

1
T 2
f

(
ek − ˆ̃e(0)

k − 2Tf ˆ̃e(1)
k

)
ˆ̃e(1)
k

)m
d


︸ ︷︷ ︸

=vk

(3.186)

where
ˆ̃e(0)
k =

(
g0
m,tust ∗ e

)
(k)

ˆ̃e(1)
k =

(
g1
m,tust ∗ e

)
(k) .

(3.187)

As shown in Section 3.3.4, the main task in calculating the bias is to derive an analytical
expression of E[wkvk], which is only determined by the chosen signal filters F 0 (s),
F 1 (s), or the discretized filters F 0

zoh (z), F 0
tust (z) and F 1

tust (z), respectively. One can

11Please note that in contrast to the chosen normalization in (3.96), yLSQ is not the highest
derivative of the output. The reason for this is that the system parameters thus appear linear and
separated in the equation. In principle, the standardization can be chosen freely. However, it is
important to note that the result from (3.163) cannot be adopted one-to-one.
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separate the transposed data vector wk into two parts

wk =
wy;k

wc;k

 , wk ∈ R3 (3.188)

where
wy;k =

(
1
T 2
f

(
ym;k − ˆ̃y(0)

m;k − 2Tf ˆ̃y(1)
m;k

)
ˆ̃y(1)
m;k

)>
, wy;k ∈ R2 (3.189)

is directly affected by the random output noise and

wc;k = s̃gn (ẏ)
(0)

k = ˜sgn (ẏm − ė)
(0)

k , wc;k ∈ R (3.190)

is a unknown but deterministic term due to

sgn (ẏm − ė)k =


−1 , ẏm;k − ėk < 0

0 , ẏm;k − ėk = 0
+1 , ẏm;k − ėk > 0

. (3.191)

Inserting (3.188) in E[wkvk] results in

E[wkvk] = E[
wy;k

wc;k

 vk] = E[
wy;kvk

wc;kvk

] =
E[wy;kvk]

E[wc;kvk]

 . (3.192)

Consider stable DT LTI systems, whose impulse responses are g(0)
m,tust and g

(1)
m,tust

and whose input is a WSS random process ek. In [115,116], the authors show that the
output processes ˆ̃e(0)

k and ˆ̃e(1)
k are also WSS, and it applies

E[ˆ̃e(0)
k ] = E[ek]

∞∑
m=−∞

g0
F,tust;m

E[ˆ̃e(1)
k ] = E[ek]

∞∑
m=−∞

g1
F,tust;m .

(3.193)

With the noise assumption
E[ek] = 0 (3.194)

one gets
E[ˆ̃e(0)

k ] = 0
E[ˆ̃e(1)

k ] = 0 .
(3.195)
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Consequently, for the second term, one obtains

E[wc;kvk] = −E[ ˜sgn (ẏm − ė)
(0)

k

(
1
T 2
f

(
ek − ˆ̃e(0)

k − 2Tf ˆ̃e(1)
k

)
ˆ̃e(1)
k

)m
d

]

= − ˜sgn (ẏm − ė)
(0)

k E[
(

1
T 2
f

(
ek − ˆ̃e(0)

k − 2Tf ˆ̃e(1)
k

)
ˆ̃e(1)
k

)
]
m
d


= − ˜sgn (ẏm − ė)

(0)

k

(
1
T 2
f

(
E[ek]− E[ˆ̃e(0)

k ]− 2Tf E[ˆ̃e(1)
k ]
)

E[ˆ̃e(1)
k ]
)m

d

 = 0 .

(3.196)
For better readability, the exact expressions

ˆ̃y(2)
m;k = 1

T 2
f

(
ym;k − ˆ̃y(0)

m;k − 2Tf ˆ̃y(1)
m;k

)
ˆ̃e(2)
k = 1

T 2
f

(
ek − ˆ̃e(0)

k − 2Tf ˆ̃e(1)
k

) (3.197)

are introduced as abbreviations. Analogous to (3.193), we can write

E[ˆ̃e(2)
k ] = 1

T 2
f

(
E[ek]− E[ˆ̃e(0)

k ]− 2Tf E[ˆ̃e(1)
k ]
)

= 0 . (3.198)

Replacing the noise-affected system output ym;k by its nominal value and additive
random noise, c.f. (3.185), moreover, considering (3.195) and (3.198), respectively, one
obtains

E[wy;kvk] = −E[
ˆ̃y(2)

k + ˆ̃e(2)
k

ˆ̃y(1)
k + ˆ̃e(1)

k

(ˆ̃e(2)
k

ˆ̃e(1)
k

)m
d

]

= −E[
ˆ̃y(2)

k
ˆ̃e(2)
k + ˆ̃e(2)

k
ˆ̃e(2)
k

ˆ̃y(2)
k

ˆ̃e(1)
k + ˆ̃e(2)

k
ˆ̃e(1)
k

ˆ̃y(1)
k

ˆ̃e(2)
k + ˆ̃e(1)

k
ˆ̃e(2)
k

ˆ̃y(1)
k

ˆ̃e(1)
k + ˆ̃e(1)

k
ˆ̃e(1)
k

]
m
d


= −

ˆ̃y(2)
k E[ˆ̃e(2)

k ] + E[ˆ̃e(2)
k

ˆ̃e(2)
k ] ˆ̃y(2)

k E[ˆ̃e(1)
k ] + E[ˆ̃e(2)

k
ˆ̃e(1)
k ]

ˆ̃y(1)
k E[ˆ̃e(2)

k ] + E[ˆ̃e(1)
k

ˆ̃e(2)
k ] ˆ̃y(1)

k E[ˆ̃e(1)
k ] + E[ˆ̃e(1)

k
ˆ̃e(1)
k ]

m
d


= −

E[ˆ̃e(2)
k

ˆ̃e(2)
k ] E[ˆ̃e(2)

k
ˆ̃e(1)
k ]

E[ˆ̃e(1)
k

ˆ̃e(2)
k ] E[ˆ̃e(1)

k
ˆ̃e(1)
k ]

m
d


= −E[

ˆ̃e(2)
k

ˆ̃e(2)
k

ˆ̃e(2)
k

ˆ̃e(1)
k

ˆ̃e(1)
k

ˆ̃e(2)
k

ˆ̃e(1)
k

ˆ̃e(1)
k

]
m
d


= −σ2Φ

m
d



(3.199)
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with

Φ = 1
σ2 E[

ˆ̃e(2)
k

ˆ̃e(2)
k

ˆ̃e(2)
k

ˆ̃e(1)
k

ˆ̃e(1)
k

ˆ̃e(2)
k

ˆ̃e(1)
k

ˆ̃e(1)
k

]

= 1
σ2 E[ω̃>ω̃]

(3.200)

where Φ ∈ R2×2 and

ω> =
ˆ̃e(2)

k

ˆ̃e(1)
k

 =
 1
T 2
f

(
ek − ˆ̃e(0)

k − 2Tf ˆ̃e(1)
k

)
ˆ̃e(1)
k

 , ω> ∈ R2 . (3.201)

Dividing the discrete filters F 0
tust (z) and F 1

tust (z) (3.178) by z2 results in causal IIR
filters12

F 0
tust

(
z−1

)
=
∑2
i=0 h

(0)
i z−i

d (z−1) and F i
tust

(
z−1

)
=
∑2
i=0 h

(1)
i z−i

d (z−1)
(3.202)

with the common denominator

d
(
z−1

)
= 1 +

2T 2 − 8T 2
f

T 2 + 4TTf + 4T 2
f︸ ︷︷ ︸

=d1

z−1 +
T 2 − 4TTf + 4T 2

f

T 2 + 4TTf + 4T 2
f︸ ︷︷ ︸

=d2

z−2 (3.203)

with denominator coefficients d1, d2 and the respective numerator coefficients

h
(0)
0 = T 2

(T + 2Tf )2 h
(0)
1 = 2T 2

(T + 2Tf )2 h
(0)
2 = T 2

(T + 2Tf )2

h
(1)
0 = 2T

(T + 2Tf )2 h
(1)
1 = 0 h

(1)
2 = − 2T

(T + 2Tf )2 .

(3.204)

Please note that z−1 is just the inverted from z. The reason for this transformation
is that the inverse z transform of the occurring signals only contains causal shifts (lag
operator), resulting in, e.g., z−1ek = ek−1. Again, to improve readability, one may
introduce the exact expressions

h
(2)
0 =

(
1
T 2
f

(
1− h(0)

0 − 2Tfh(1)
0

))

h
(2)
1 =

(
1
T 2
f

(
d1 − h(0)

1 − 2Tfh(1)
1

))

h
(2)
2 =

(
1
T 2
f

(
d2 − h(0)

2 − 2Tfh(1)
2

))
.

(3.205)

12Please note that the notation is changed from F i
tust (z) to F i

tust

(
z−1) for computing ω̃.
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Then, (3.201) may be rewritten using (3.202) and (3.205) in vector form to

ω̃> =
h(2)

0 eF ;k + h
(2)
1 eF ;k−1 + h

(2)
2 eF ;k−2

h
(1)
0 eF ;k + h

(1)
2 eF ;k−2

 =
h(2)

0 h
(2)
1 h

(2)
2

h
(1)
0 h

(1)
1 h

(1)
2


︸ ︷︷ ︸

=κ>


eF ;k

eF ;k−1

eF ;k−2


︸ ︷︷ ︸

=eF

= κ>eF

(3.206)

with

eF =


eF ;k

eF ;k−1

eF ;k−2

 ∈ R3 (3.207)

where
eF ;k = 1

d (z−1)ek = (T + 2Tf )2 z2

(2Tf (z − 1) + T (z + 1))2 ek (3.208)

and the filter coefficient matrix

κ =


h

(2)
0 h

(1)
0

h
(2)
1 h

(1)
1

h2
2 h

(1)
2

 ∈ R3×2 . (3.209)

Equation (3.200) can be expressed as more compact

Φ = 1
σ2 E[ω̃>ω̃] = 1

σ2 E[κ>eFe>Fκ] = 1
σ2κ

> E[eFe>F ]κ

= 1
σ2κ

>Γκ
(3.210)

where Γ ∈ R3×3 has a special structure called the Toeplitz matrix. Matrix Γ denotes
the expectation of the sample covariance matrix of the filtered random noise sequence
eF ;k with a single matrix entry (i-th row, j-th column)

Γi,j = E[eF ;k−ieF ;k−j] , 0 ≤ (i, j) ≤ 2 . (3.211)

Per definition, the autocorrelation function of a WSS process is equal to the expected
value of the random variable or signal realization with a time-shifted version of itself,
e.g., [117]. Using (A.61), the expectation value in (3.211) can be replaced by

Γi,j = reF eF (|i− j|) = reF eF ;|i−j| , 0 ≤ (i, j) ≤ 2 (3.212)
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where reF eF is the autocorrelation function of the filtered random noise process eF .
Assuming that the random variables of the random process e are uncorrelated in time
(serially uncorrelated)

ree;|i−j| =

σ
2 |i− j| = 0

0 |i− j| 6= 0
(3.213)

with finite constant variance σ2, we call the random process a white noise process,
see (A.83). The autocorrelation of filtered white noise is equal to the filter’s impulse
response times the noise variance (see Section A.4.1). By this property (3.212) can be
rewritten to

Γi,j = reF eF ;|i−j| = σ2 (gz ∗ gz) (|i− j|) = σ2
∞∑

k=−∞
gz;kgz;k−|i−j| (3.214)

with impulse response

gz (k) = Z−1
{

1
d (z−1)

}
= (1 + k)

(
−T − 2Tf
T + 2Tf

)k
. (3.215)

Building Γ and inserting it in (3.210) results in

Φ =


T+4Tf

T 3
f (T+2Tf)2 0

0 T

Tf(T+2Tf)2

 , Φ ∈ R2×2 . (3.216)

Joining (3.188), (3.196), (3.199), and (3.216) gives

E[wkvk] = −σ2




T+4Tf

T 3
f (T+2Tf)2 0

0 T

Tf(T+2Tf)2


m
d


0

 = −σ2


T+4Tf

T 3
f (T+2Tf)2m

T

Tf(T+2Tf)2d

0

 (3.217)

or more compact
E[wkvk] = −σ2Φep (3.218)

where Φe ∈ R3×3 denotes

Φe =
 Φ 0(2×1)

0(1×2) 0

 . (3.219)
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The asymptotic bias term ∆p13 is

∆p = −σ2N plim
N→∞

(P) Φep = −σ2N plim
N→∞

(P)


T+4Tf

T 3
f (T+2Tf)2m

T

Tf(T+2Tf)2d

0

 (3.220)

with
P =

(
W>W

)−1
, P ∈ R3×3 . (3.221)

Asymptotically Unbiased OLS Estimation for 1D-Positioning System

Result 3.4. The asymptotically unbiased least-squares estimation for offline
evaluation is finally obtained by

p = plim
N→∞

p̂−∆p = plim
N→∞

p̂ + σ2N plim
N→∞

(P) Φep

= plim
N→∞

p̂ + σ2N plim
N→∞

(P)


T+4Tf

T 3
f (T+2Tf)2m

T

Tf(T+2Tf)2d

0


(3.222)

whereby the nominal model parameters (m,d) and the noise variance σ2 must
be known.

3.4.2 Implementation Aspects

For implementation purposes, it is worth mentioning that the nominal model parame-
ters and the variance are unknown and need to be replaced by estimates, so ∆p→ ∆p̂,
p→ p̂BC , and σ → σ̂.

13Please note that the calculation of the asymptotic bias term is based on approximately discretized
signal filters. For these signal filters, the calculated bias term is exact, not an estimate.



98 3 Parameter Estimation for Continuous-Time Models

Implementation: Unbiased OLS Estimation for 1D-Positioning System

Result 3.5. Equation (3.222) changes slightly to

p̂BC = p̂−∆p̂ = p̂ + σ̂2N plim
N→∞

(P) Φep̂ = p̂ + σ̂2N plim
N→∞

(P)


T+4Tf

T 3
f (T+2Tf)2 m̂

T

Tf(T+2Tf)2 d̂

0

 .

(3.223)

System
ẋ = Ax + bu
y = c>x + du

S/H

PMF
(exact)
F0,zoh (z)

...
Fmd,zoh (z)

PMF
(approx.)
F0,tust (z)

...
Fn,tust (z)

RLS
p̂ = p +

(
W>W

)−1
W>v

BC-RLS
∆p̂ = σ̂2NPΦep̂
p̂BC = p̂ + ∆p̂

ym;k = ym (t)|t=tk ⇔ ym;k = yk + ek

(ek)

uk y (t)

e (t)

ym (t) ym;k

ũ
(0)
k
...

ũ
(md)
k

ˆ̃y(0)
m;k
...

ˆ̃y(n)
m;k

p̂, σ̂

p̂BC

Figure 3.4: Block diagram of the proposed bias-compensating recursive least-squares
algorithm.
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3.4.2.1 Recursive Algorithm and Noise Variance Estimation

In [7], a recursive implementation of the derived bias-compensating algorithm is pre-
sented, suitable for online parameter estimation. Figure 3.4 shows the block diagram of
the proposed online capable algorithm. Additionally, the proposed algorithm includes
the estimation of the unknown noise variance. It reads

eLSQ,k = yLSQ;k −w>k p̂k−1

Lk = Pk−1wk

λ+ w>k Pk−1wk

p̂k = p̂k−1 + LkeLSQ,k

Pk = 1
λ

(
Pk−1 − Lkw>k Pk−1

)
Rk = Rk−1 +

e2
LSQ,k

1 + w>k Pk−1wk

ĉk = p̂>k Φep̂BC,k−1

p̂BC,k = p̂k + Pk
Rk

ĉk
Φep̂BC,k−1

(3.224)

where λ, 0 < λ ≤ 1 describes the well-known exponential forgetting factor.

3.4.3 Simulation Results

Assuming significant changes from sample to sample, it is common practice to approx-
imate quantized system outputs by its pure sampled output and an additive sequence
of uncorrelated white noise with constant and known variance, e.g., [99, 122–124]. It

plant S/H
uk y (t) yk ym;k

(a) Block diagram of quantization error.

plant S/H

ek

uk y (t) yk ym;k

(b) Approximation.

Figure 3.5: Modeling quantization error caused by, e.g., incremental encoders, as ad-
ditive white noise.

follows directly that the additive white noise approach commonly used in system iden-
tification is highly relevant in practice. For example, it can be used to model sensor
noise, e.g., quantization effects of incremental encoders, c.f. Fig. 3.5.

A comparison between standard recursive least-squares (RLS) and the proposed bias-
compensated recursive least-squares (BC-RLS) algorithm is carried out in simulation.
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The sample time is set to T = 10 µs, whereas the time constant of the PMF filters is
set to Tf = 50 ms. The “measured” output xm is noise corrupted, where the noise e is
white, and Gaussian distributed, with zero mean and standard deviation σx = 0.001 m.
The nominal model parameters read: m = 1 kg, d = 20 N s m−1, and Fc = 2 N.
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(a) Cart input force u, noise affected system
output xm and nominal and (estimated)
noise std. deviation σ̂x
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(b) Measured output xm, biased OLS esti-
mate m̂, bias-compensated estimated val-
ues m̂BC and mBC (nom. par. known),
and nominal value m = 1 kg.
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(c) Measured output xm, biased OLS esti-
mate d̂, bias-compensated estimated val-
ues d̂BC and dBC (nom. par. known), and
nominal value d = 20 N s m−1.
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(d) Measured output xm, biased OLS esti-
mate F̂c, bias-compensated estimated val-
ues F̂c,BC and Fc,BC (nom. par. known),
and nominal value Fc = 2 N.

Figure 3.6: Simulation result of bias compensating parameter estimation with noisy
model output, where ek ∼ N (0, σ2

x) with σx = 0.001 m.

The simulation results in Fig. 3.6 show the compelling results of the proposed bias
compensation approach. It has to be emphasized that the quality of the bias compen-
sation is independent of its size. The BC-OLS or BC-RLS algorithm delivers consistent
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or asymptotically unbiased estimation results, even for parameters with a huge least-
squares bias, e.g., for the vehicle mass with more than 10% deviation from the nominal
value.

As described in Section 3.4.2, the nominal model parameters, which are necessary
for the calculation of the bias, are not known in practice. For this reason, the best
available estimates at the respective time are used. In order to find out whether this
has a negative influence on the stability of the algorithm, Fig. 3.6 shows, in addition to
the estimates obtained by (3.223), e.g., m̂BC, the estimation results one would obtain
if the nominal parameter values are known, e.g., mBC. These two signals converge,
from which one can conclude that the use of the estimated values does not result in
instability issues.

Small filter time constants are necessary for dynamic estimation of model parame-
ters, for example, for real-time monitoring of specific parameters for fault detection.
For this reason, the effects of the filter time constant on the estimation results are
investigated. Figure 3.7 shows the estimated model parameters using three different
filter time constants. The larger the filter time constants, the smaller the cut-off fre-
quency of the low-pass filters. Therefore, the larger the time constant, the more the
signal is smoothed, and thus the noise term is suppressed, resulting in more accurate
estimation results using OLS. As expected, independent of the chosen filter time con-
stant, the BC-RLS algorithm provides consistent (asymptotically unbiased) results.
However, if the time constant is chosen too large, relevant parts of some signals might
be lost, or the convergence rate is too slow, e.g., to detect fast parameter changes,
making parameter identification imprecise or inapplicable.

3.4.3.1 Comparison with Total Least-Squares Method

With the ordinary least-squares (OLS) estimator, one obtains unbiased parameter
estimates if only the observation vector is noise affected, but the data vector is deter-
ministic. However, in most engineering applications, this assumption is violated, which
is why the OLS method generally provides biased results. A well-known linear estima-
tor that consideres random effects in the data vector is the total least-squares (TLS)
method. For this reason, a comparison of the proposed bias-compensated (recursive)
least-squares algorithm with an iterative total least-squares algorithm, as suggested
in [57], is performed.14 The iterative TLS algorithm is initialized with the OLS solu-

14It should be noted that a arbitrary selected TLS algorithm was used here for comparison purposes.
Specific TLS algorithms may give more accurate estimation results than the algorithm from [57].
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Figure 3.7: Comparing RLS and BC-RLS in simulation using different filter time
constants Tf . The output is noise affected, where ek ∼ N (0, σ2

x) with
σx = 0.001 m.

tion and is iterated until convergence is reached and reads:

• init: p̂0
TLS =

(
W>W

)−1
W>yLSQ

• i-th iter: p̂iTLS =

(
W>W

)−1

W>yLSQ +

(
yLSQ −Wp̂i−1

TLS

)> (
yLSQ −Wp̂i−1

TLS

)
1 +

(
p̂i−1
TLS

)>
p̂i−1
TLS


• end: ||p̂iTLS − p̂i−1

TLS|| < ε

(3.225)
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For comparison, the simulation experiment from Fig. 3.6 is used. The TLS signifi-
cantly improves the estimation result compared to OLS for the parameter m, but the
estimation result for the friction parameters d and Fc deteriorates (see Tab. 3.1). In
summary, the TLS algorithm achieves a less good result than the BC-OLS or BC-RLS.

nominal parameters m = 1 kg d = 20 Nsm−1 Fc = 2 N
estimation method m̂ [kg] d̂ [Nsm−1] F̂c [N]
OLS 0.8537 20.0055 2.0022
BC-OLS 1.0000 19.9995 2.0000
TLS (4 iterations) 0.9588 21.7386 1.6242

Table 3.1: Comparing TLS, OLS and BC-OLS methods assuming noisy model output
xm;k = xk + ek with additive gaussian white noise, where ek ∼ N (µ, σ2

x)
with µ = 0 and σx = 0.001 m. The sample time is T = 10µs, and PMF
filter time constant is 50 ms.

3.4.3.2 Comparison with Other Bias Compensation Methods

For comparisons of the performance of the bias compensation algorithm, discussed
in this thesis with other methods, we use the BC-OLS algorithm proposed in [97, 98].
This approach is based on an augmented model by introducing a pre-filter to the model
input. To draw conclusions about the estimation bias, one can estimate the parameters
of the extended model, where the additional nominal parameter values are known. As
the simulation result shows, the results of the two algorithms are quite equivalent.
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(b) Measured output xm, BC-RLS estimation
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mation m̂BC,2 according to [98], and nom-
inal value m = 1 kg.
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(c) Measured output xm, BC-RLS estimation
d̂BC according to (3.223), BC-RLS estima-
tion d̂BC,2 according to [98], and nominal
value d = 20 N s m−1.
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(d) Measured output xm, BC-RLS estimation
F̂c,BC according to (3.223), BC-RLS es-
timation F̂c,BC,2 according to [98], and
nominal value Fc = 2 N.

Figure 3.8: Comparison of the BC-RLS algorithm proposed in this thesis and the algo-
rithm introduced in [97, 98] in simulation with noisy model output, where
ek ∼ N (0, σ2

x) with σx = 0.001 m.

3.5 Basic Studies on Bias Compensation using
Modulating Function Method

As introduced in Section 3.1.2.1.2, to avoid the direct calculation of time derivatives,
the derivative operators are shifted from the input signal u (t) and output signal y (t)



3.5 Basic Studies on Bias Compensation using Modulating Function Method 105

to a known modulating function ϕ (t). Considering the fundamental equation

∫ T ′

0
ϕ (t) y(i) (t) dt =

∫ T ′

0
(−1)i ϕ(i) (t) y (t) dt (3.226)

one obtains an equation suitable for identification in the well-known form

yLSQ (t) = w> (t) p (3.227)

with

yLSQ (t) =
∫ t

t−T ′
(−1)n ϕ(n) (τ − t+ T ′) y (τ) dτ

wy;i (t) =
∫ t

t−T ′
(−1)i+1 ϕ(i) (τ − t+ T ′) y (τ) dτ , 0 ≤ i ≤ n− 1

wu;j (t) =
∫ t

t−T ′
(−1)j ϕ(j) (τ − t+ T ′)u (τ) dτ , 0 ≤ j ≤ md

(3.228)

where

w> (t) =
(
wy;0 (t) · · · wy;n−1 (t) wu;0 (t) · · · wu;md (t)

)
∈ Rnp . (3.229)

The more or less arbitrary parameter T ′ denotes the horizon length of the backward
parameter estimation. According to Definition 3.1, ϕ (t) is called modulating function
(MF) with

ϕ(i) (0) = ϕ(i) (T ′) = 0 , 0 ≤ i ≤ n . (3.230)

Evaluating (3.227) at a discrete-time instance tk = kT , 1 ≤ k ≤ N , where T denotes
the sample time and N the number of samples, one obtains

yLSQ;k = w>k p (3.231)

with

yLSQ (tk) = yLSQ;k =
∫ tk

tk−T ′
(−1)n ϕ(n) (τ − tk + T ′) y (τ) dτ

wy;i (tk) = wy;i,k =
∫ tk

tk−T ′
(−1)i+1 ϕ(i) (τ − tk + T ′) y (τ) dτ , 0 ≤ i ≤ n− 1

wu;j (tk) = wu;j,k =
∫ tk

tk−T ′
(−1)j ϕ(j) (τ − tk + T ′)u (τ) dτ , 0 ≤ j ≤ md

(3.232)



106 3 Parameter Estimation for Continuous-Time Models

and constant parameter vector

p = (a0, · · · , an−1, b0, · · · , bmd)
> ∈ Rnp . (3.233)

Evaluating for N different tk, the resulting overdetermined system of equations

yLSQ;1

yLSQ;2
...

yLSQ;k
...

yLSQ;N


︸ ︷︷ ︸

=yLSQ

=



w>1
w>2
...

w>k
...

w>N


︸ ︷︷ ︸

=W



a0
...

an−1

b0
...
bmd


︸ ︷︷ ︸

=p

(3.234)

where yLSQ ∈ RN , W ∈ RN×np , and p ∈ Rnp . The optimal parameter estimation in
the sense of least-squares reads

p̂ =
(
W>W

)−1
W>yLSQ . (3.235)

Applied to the (academic) first-order system with its differential equation

y (t) = −T1ẏ (t) + V u (t)

=
(
−ẏ (t) u (t)

)T1

V

 (3.236)

with output y (t) ∈ R, input u (t) ∈ R, regressor vector w> (t) = (−ẏ (t) , u (t)) ∈ R2,
and parameter vector p = (T1, V )> ∈ R2, one obtains

∫ t

t−T ′
ϕ (τ − t+ T ′) y (τ) dτ =

(∫ t
t−T ′ ϕ̇ (τ − t+ T ′) y (τ) dτ

∫ t
t−T ′ ϕ (τ − t+ T ′)u (τ) dτ

)T1

V

 . (3.237)

By considering noisy measurements

ym (t) = y (t) + e (t) , e (t) ∼ i.i.d
(
0, σ2

)
(3.238)
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and evaluating the continuous functions at discrete time instances tk, one obtains

yLSQ;k = w>k p + vk (3.239)

with

yLSQ;k =
∫ tk

tk−T ′
ϕ (τ − tk + T ′) ym (τ) dτ

w>k =
(

tk∫
tk−T ′

ϕ̇ (τ − tk + T ′) ym (τ) dτ
tk∫

tk−T ′
ϕ (τ − tk + T ′)u (τ) dτ

) (3.240)

and a composite noise term

vk =
∫ tk

tk−T ′
ϕ (τ − tk + T ′) e (τ) dτ − T1

∫ tk

tk−T ′
ϕ̇ (τ − tk + T ′) e (τ) dτ

=
(

tk∫
tk−T ′

ϕ (τ − tk + T ′) e (τ) dτ -
tk∫

tk−T ′
ϕ̇ (τ − tk + T ′) e (τ) dτ

) 1
T1

 .
(3.241)

Crucial for the calculation of the asymptotic bias according to (3.126) is to determine
E[wkvk]. Please note, for better readability, one substitutes t? = τ − tk + T ′. Hence,
using (3.240) and (3.241), one obtains

E[wkvk] =

E[


tk∫

tk−T ′
ϕ̇ (t?) ym (τ) dτ

tk∫
tk−T ′

ϕ (t?)u (τ) dτ


(

tk∫
tk−T ′

ϕ (t?) e (τ) dτ -
tk∫

tk−T ′
ϕ̇ (t?) e (τ) dτ

)
]
 1
T1



= E[wkek]
 1
T1

 (3.242)

or

E[wkvk] =

E[


tk∫

tk−T ′
ϕ̇ (t?) ym (τ) dτ

tk∫
tk−T ′

ϕ (t?) e (τ) dτ -
tk∫

tk−T ′
ϕ̇ (t?) ym (τ) dτ

tk∫
tk−T ′

ϕ̇ (t?) e (τ) dτ
tk∫

tk−T ′
ϕ (t?)u (τ) dτ

tk∫
tk−T ′

ϕ (t?) e (τ) dτ -
tk∫

tk−T ′
ϕ (t?)u (τ) dτ

tk∫
tk−T ′

ϕ̇ (t?) e (τ) dτ

]

 1
T1



= E[wkek]

 1
T1

 . (3.243)
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Introducing ym (t) = y (t) + e (t), the first element in the square matrix reads

E[wkek]1,1 = E[
(∫ tk

tk−T ′
ϕ̇ (t?) y (τ) dτ +

∫ tk

tk−T ′
ϕ̇ (t?) e (τ) dτ

)(∫ tk

tk−T ′
ϕ (t?) e (τ) dτ

)
]

= E[
(∫ tk

tk−T ′
ϕ̇ (t?) y (τ) dτ

)(∫ tk

tk−T ′
ϕ (t?) e (τ) dτ

)
]

+ E[
(∫ tk

tk−T ′
ϕ̇ (t?) e (τ) dτ

)(∫ tk

tk−T ′
ϕ (t?) e (τ) dτ

)
] .

(3.244)
The time integrals in (3.244) are just ordinary Riemann integrals of a continuous but
random function of time t. Hence, stochastic calculus rules with a focus on integrals
involving random functions are introduced.

Integral of Stochastic Processes w.r.t Time

Proposition 3.1. The time integral of a continuous random function
X (t) ∼ i.i.d (0, σ2) with respect to t is called Riemann integral and is written
as

Y =
∫ T ′

0
X (t) dt . (3.245)

The integral approximation

YN = T
N−1∑
k=0

X (tk) (3.246)

with N > 0 finite summands and sample time T = T ′

N
, tk = kT is called (left)

Riemann sum. Using two summation variables, for the variance applies

E[Y 2
N ] = E[

(
T
N−1∑
k=0

X (tk)
)T N−1∑

j=0
X (tj)

]

= T 2
N−1∑
k=0

N−1∑
j=0

E[X (tk)X (tj)] .
(3.247)

Similarly, the covariance of Y =
∫ T ′

0 X (t) dt and V =
∫ T ′

0 Z (t) dt is

E[YNVN ] = T 2
N−1∑
k=0

N−1∑
j=0

E[X (tk)Z (tj)] . (3.248)

Let N → ∞ or T → 0, the sums converge to a an iterated integral and one



3.5 Basic Studies on Bias Compensation using Modulating Function Method 109

obtains the variance

E[Y 2] =
∫∫ T ′

s,t=0
E[X (t)X (s)]dtds (3.249)

and covariance
E[Y V ] =

∫∫ T ′

s,t=0
E[X (t)Z (s)]dtds . (3.250)

Using (3.250), (3.244) results in

E[wkek]1,1 =
∫∫ tk

s,τ=tk−T ′
ϕ̇ (τ − tk + T ′)ϕ (s− tk + T ′) y (τ) E[e (s)]dτds

+
∫∫ tk

s,τ=tk−T ′
ϕ̇ (τ − tk + T ′)ϕ (s− tk + T ′) E[e (τ) e (s)]dτds

(3.251)

and simplifies with E[e (t)] = 0 to

E[wkek]1,1 =
∫∫ tk

s,τ=tk−T ′
ϕ̇ (τ − tk + T ′)ϕ (s− tk + T ′) E[e (τ) e (s)]dτds . (3.252)

Approximation of the integral by a finite Riemann sum gives

E[wkek]1,1 ≈ T 2
k∑

i=k−T ′
T

k∑
j=k−T ′

T

ϕ̇
i−k+T ′

T
ϕ
j−k+T ′

T
E[ejei] . (3.253)

Considering ek ∼ i.i.d (0, σ2), which implies uncorrelated samples

E[eiej] =

σ
2 , i = j

0 , i 6= j
(3.254)

one obtains

E[wkek]1,1 ≈ T 2
k∑

i=k−T ′
T

ϕ̇
i−k+T ′

T
ϕ
i−k+T ′

T
E[e2

i ] = σ2T 2
k∑

i=k−T ′
T

ϕ̇
i−k+T ′

T
ϕ
i−k+T ′

T
(3.255)

suitable for implementation purpose. Once again, withN →∞ or T → 0, the Riemann
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sum converges to an integral, and one obtains

E[wkek]1,1 = σ2T lim
T→0

k∑
i=k−T ′

T

T ϕ̇
i−k+T ′

T
ϕ
i−k+T ′

T

= σ2T
∫ tk

tk−T ′
ϕ̇ (s− tk + T ′)ϕ (s− tk + T ′) ds .

(3.256)

The other elements of E[wkek] can be calculated similarly. Finally, one obtains

E[wkvk] ≈ σ2T 2

∑k
i=k−T ′

T

ϕ̇
i−k+T ′

T
ϕ
i−k+T ′

T
−∑k

i=k−T ′
T

ϕ̇
i−k+T ′

T
ϕ̇
i−k+T ′

T

0 0

 1
T1


(3.257)

or

E[wkvk] = σ2T


tk∫

tk−T ′
ϕ̇ (t?)ϕ (t?) ds −

tk∫
tk−T ′

ϕ̇ (t?) ϕ̇ (t?) ds

0 0


 1
T1

 (3.258)

where t? = s− tk + T ′. Again, the asymptotic bias is

∆p = Q−1
W E[wkvk] = N plim

N→∞
(P) E[wkvk] (3.259)

where P =
(
W>W

)−1
.

Asymptotically Unbiased OLS Estimation for PT1 System using MFM

Result 3.6. The asymptotically unbiased parameter vector reads

p = plim
N→∞

p̂−∆p = plim
N→∞

p̂−N plim
N→∞

(P) E[wkvk]

= plim
N→∞

p̂−N plim
N→∞

(P)σ2T


tk∫

tk−T ′
ϕ̇ (t?)ϕ (t?) ds −

tk∫
tk−T ′

ϕ̇ (t?) ϕ̇ (t?) ds

0 0


 1
T1


(3.260)

where p̂ and P are obtained by ordinary least-squares (OLS) estimation

p̂ =
(
W>W

)−1
W>yLSQ . (3.261)

In practice, the nominal values of the model parameter T1 and the noise variance σ2

in (3.260) are unknown and must be replaced by estimates, c.f., Section 3.4.2. However,
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in this demonstration example, these values are assumed to be known.

3.5.1 Simulation Study

We assume a first-order model (3.236) with nominal parameters V = 3 and T1 = 1
and an additive i.i.d. random output noise with distribution e (t) ∼ N (0, σ2), where
σ = 0.001 . The output is sampled with sample time T = 1 ms. As suggested in,
e.g., [79], we use a trigonometric modulating function of order k > 2

ϕ (t) =
(

sin
(
kπt

T ′

))k
(3.262)

introduced by [77] with the arbitrary parameters k = 5 and T ′ = 500T = 0.5 s. Please
note that the use of system-specific modulation functions (type, order, etc.) may
mitigate the bias problem, i.e., reduces the estimation bias. However, this is explicitly
not the subject of this thesis. For example, in [87], an off-line algorithm is proposed
to build modulating functions based on the measurements to improve the parameter
estimation.

Thousand simulation runs are performed to obtain statistically relevant results,
which are summarized in Fig. 3.9. Subfigure 3.9(b) shows the normalized estima-
tion errors using standard least-squares estimation without bias-compensation. The
bias caused by the modulating functions is huge, being over 15% for the DC-gain V
and even more than 80% for the time constant T1. As expected, the bias compensated
estimation according to (3.260) leads to asymptotically unbiased results. Although
the simulation runs show that the estimator is asymptotically unbiased, it is not a
minimum-variance estimator, i.e., is not efficient according to Definition 3.5.
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(c) Normalized estimation errors obtained by
MF and BC-OLS.
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Figure 3.9: The estimation bias, generated by MF, and its calculation and compensa-
tion is shown on the simple PT1 model in simulation. Thousand simulation
runs are performed to to achieve statistically significant results.

3.6 Conclusion

The proposed algorithm to obtain asymptotically unbiased parameter estimates for CT
models and the PMF method for noisy outputs was first introduced by [7] for strictly
linear models. This thesis works through this approach in detail and is extended to
at least slightly nonlinear models, e.g., a 1-D servo positioning system with Coulomb
friction. In contrast to other bias-compensating least-squares methods, e.g., [6,97,98],
the approach presented here does not need any model extensions to get knowledge
about the bias, and hence there is no need to estimate additional parameters. The
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main features of the proposed BC-OLS or BC-RLS algorithm are:

(i) One can obtain an analytical solution of the asymptotic estimation bias, whereby
only the PMF filters, their coefficients, and the model parameters, respectively,
influence it.

(ii) The algorithm is irrespective of the number of unknown parameters. Only the
noise variance must be estimated.

(iii) There are no system extensions necessary. Hence, there is no need to estimate
additional parameters, e.g., from the augmented model, getting along with low
computational effort, similar to OLS.

(iv) The parameter estimation is robust against noise, i.e., the consistency is mainly
independent of the noise model.

(v) An online capable (recursive) algorithm is available.

Furthermore, the same approach is examined to use the more general modulating
function method (MFM). Using a simple first-order system as an example shows that
the asymptotic bias can be calculated and compensated analogously to that for the
PMF approach.
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4 Applications

4.1 Optimal Input Design Applications

4.1.1 Engine Model of a Four-Stroke Engine with Port Injection

For the development of control algorithms, highly complex and degree crank angle
resolved engine models are unsuitable. For these purposes, so-called mean value models
are suitable, which approximate the behavior averaged over an engine cycle and are
also suitable for applications in electronic control units (ECUs) due to their lower
complexity. One can obtain more detailed explanations about mean value engine
models in the literature, e.g., in [125].

A second-order mean value model, consisting of the throttle valve, intake manifold,
gas mixing, and the mechanical torque generation, was developed as part of the RC-
LowCAP1 project (see Fig. 4.1 for an abstracted overview). Input variables are the

Throttle Valve
Air Mass Flow
Throttle Valve

∫
ṗ (t) dt

Air Mass Flow
Cylinder Engine Torque

∫
ω̇ (t) dt

uα
Aα

ṁα
−
∆ṁ p
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ṁβ

ṁβ

Tq
−
∆Tq ω

ωω

∆uζ Tq,L

Figure 4.1: Schematic diagram of mean value engine model.

throttle position uα ∈ R and the ignition angle delay ∆uζ ∈ R. In contrast to the
1FFG-funded COMET project RC-LowCAP.
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throttle position, the ignition angle retardation allows a direct intervention on the
generated torque and engine speed. State vector x = (p, ω)> ∈ R2 consists of the intake
manifold pressure p and the engine speed ω, where the engine speed also represents
the model output, i.e., y = ω. The nonlinear model equations read

 ṗ
ω̇

 =

− Vd
Vm

ω
4π

1
1+ 1

λσ0

(
Vc+Vd
Vd
− Vc

Vd

(
pexh
p

) 1
κ (γ0 + γ1ω + γ2ω

2) p+ RTpa
Vm
√

2RTa
α0

)
1
Θ

(
− (β0 + β1ω)− (pexh − p) Vd

4π

+ RTpa
Vm
√

2RTa
α1uα

+
(
1− kζ∆u2

ζ

)
(η0 + η1ω)Hlṁβ

ωσ0λ
− Tq,L

)
(4.1)

where the parameters are explained in Tab. 4.1.2

To identify unknown model parameters accurately, the generation of optimal input
signals using OID is essential. For example, one can generate optimal input signals for
the model inputs throttle position and ignition angle delay to estimate the unknown en-
gine friction coefficients and the thermodynamic efficiency parameters to consider input
and state constraints. Hence, the parameter vector for OID is pOID = (η0, η1, β0, β1)>.
With the vector p0, containing all nominal parameter values, the Fisher matrix for a
large number of samples N according to (2.21) reads

F̄ (u,p0) = 1
N

N∑
k=1

∂y

∂pOID

∣∣∣∣∣
>

p0,tk

(
σ2
)−1 ∂y

∂pOID

∣∣∣∣∣
p0,tk

, F̄ (u,p0) ∈ R4×4 (4.2)

where u = (uα,∆uζ)>, y = ω and σ = 0.001 rad s−1. The optimal input signals are

2The manifold pressure p is always greater than zero, i.e., the expression
(

pexh
p

) 1
κ is not singular.
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name unit nominal value description

pl
an

t

ω rad/s - engine speed
p Pa - intake manifold pressure
ṁβ kg/s - air mass flow into cylinder
uα % - throttle valve opening angle

∆uζ ◦ -30 ignition angle delay,
in degree crankshaft angle before TDC

pexh Pa - exhaust pressure
pa Pa - ambient pressure
Tq,L Nm - load torque
Vd m3 - (effective) engine displacement
Vc m3 - residual cylinder volume TDC
Vm m3 - volume intake manifold
R J/ (kgK) 287 spefific gas constant (fresh air)
T K 317 air temperature (manifold)
Ta K 296 ambient temperature

γ0, γ1, γ2 - - speed dependent volumetric efficiency

κ - 1.35 pressure dependent
volumetric efficiency

α0, α1 - - throttle valve coefficients
β0, β1 - - engine friction coefficients

η0, η1 - - mechanical torque approximation,
efficiency coefficients

λ - - air-fuel equivalence ratio
σ0 - 14.7 stoichiometric air-fuel ratio (gasoline)
θ Nm - engine moment of inertia
kζ - - ignition angle delay coefficient

Hl MJ/kg 45 lower calorific value,
(gasoline)

Table 4.1: Model parameters for mean value engine model.



118 4 Applications

obtained by solving

max
uα,∆uζ

det
(
F̄ (u,p0)

)
 ṗ
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(η0 + η1ω)Hlṁβ
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)
x (0) =

(
109, 2.6× 104

)>
, p ∈ [0, 50 000 Pa] ω ∈

[
0, 200 rad s−1

]
uα ∈ [0, 100 %] , ∆uζ ∈ [−30 ◦ca, 0]
Ṡ = JS + M, t > 0, S (0) = 0

Sy = S1,·
(4.3)

where J ∈ R2×2 and M ∈ R2×4 are obtained with (2.35) and (2.36), respectively.3

Figure 4.2 shows the generated input signals and the corresponding Fisher informa-
tion.
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Figure 4.2: Optimal input signals uα and ∆uζ for estimating η0, η1, β0, β1.

If the engine speed’s derivative is determined numerically, one can obtain estimates

3Please note: Si,· denotes the i-th row of matrix S.
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for the unknown parameters, evaluate

Θω̇k + Vd
4π (pexh − pk) =

(
Hl
λσ0

(
1− kζ∆u2

ζ

)
ṁβ
ω

Hl
λσ0

(
1− kζ∆u2

ζ

)
ṁβ −1 −ω

)

η0

η1

β0

β1


(4.4)

at N discrete-time instances, and use least-squares.

4.2 Online Parameter Estimation Applications

4.2.1 1-D Rotational Drive with Flywheel

One of the application examples is a 1-D rotational drive, as used in many industrial
applications. The system configuration is shown in Fig. 4.3. Performing model re-

JL

RA LA iA

uA ui
Mel ϕ, ω MR

Figure 4.3: Block diagram of 1-D rotational drive with flywheel.

duction to eliminate the dynamics of the electrical subsystem, the respective model
equations read ϕ̇

ω̇

 =
 ω
β
J
uA − d̃1

J
ω − Mc

J
sgn (ω)

 (4.5)

with the angular position ϕ ∈ R, corresponding rotational velocity ω ∈ R, input voltage
uA ∈ R, and friction term MR = Mc sgn (ω) + d1ω. The known model parameters
are the machine constant km and the armature resistance RA. Furthermore, for better
readability, one can introduce β = km

RA
, d̃1 = d1 + km2

RA
, and J = JA+JL. The equivalent

coefficient of friction consists of two parts: the electrical part and mechanical friction
d1. The moment of inertia J consists of the inertia of the electric circuit JA and the
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name unit nominal value description
pl
an

t

uA V - input voltage
ϕ rad - angular position
ω rad

s - angular velocity
JA kgm2 41× 10−7 moment of inertia of electric motor (rotor)
JL kgm2 - moment of inertia of load (flywheel)
J kgm2 - total moment of inertia, J = JA + JL
d1

Nms
rad - linear mechanical friction coefficient

d̃1
Nms
rad - equivalent linear rotational friction coefficient

Mc Nm - rotational Coulomb friction
km

Nm
A 38.7× 10−3 machine constant

RA Ω 2.079 armature resistance
β Nm

V 18.6× 10−3 gain factor voltage to moment, β = km
RA

PM
F T s 1× 10−3 sample time

Tf s 5× 10−3 PMF filter time constant
λ - 1 exp. forgetting factor (BC)-RLS

Table 4.2: Model parameters and identification algorithm parameters for 1D rotational
electric drive.

flywheel JL. The plant parameters

p =
(
J, d̃1,Mc

)>
(4.6)

are constant but unknown. All parameters and variables are listed in Tab. 4.2.
Applying the PMF approach to eliminate the time derivatives results in

ũA (tk) = ũA;k =
(
g0
F,zoh ∗ uA

)
k

ˆ̃ϕ(1) (tk) = ˆ̃ϕ(1)
k ≈

(
g1
F,tust ∗ ϕ

)
k

ˆ̃ϕ(2) (tk) = ˆ̃ϕ(2)
k ≈

(
g2
F,tust ∗ ϕ

)
k

˜sgn (ω)
(0)

(tk) = ˜sgn (ω)
(0)

k =
(
g0
F,zoh ∗ sgn (ω)

)
k

(4.7)

where
F i (s) = si

(1 + sTf )2 and giF (t) = L−1
{
F i (s)

}
, 0 ≤ i ≤ 2 (4.8)

and

F i
zoh (z) = z − 1

z
Z
{(
L−1

{
F i (s) 1

s

})∣∣∣∣∣
t=kT

}
, giF,zoh (k) = Z−1

{
F i
zoh (z)

}
F i
tust (z) = F i (s′) where s′ = 2

T

z − 1
z + 1 , giF,tust (k) = Z−1

{
F i
tust (z)

}
.

(4.9)
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The equation for identification at a single time instance tk reads

βũA;k =
(

ˆ̃ϕ(2)
k

ˆ̃ϕ(1)
k

˜sgn (ω)
(0)

k

)
J

d̃1

Mc

 (4.10)

where sgn (ω) is approximated by computing ω using discrete quotient and taking sign
function.4

4.2.1.1 Test Bench Measurements

Figure 4.4 shows the parameter estimation results. Smaller filter time constants worsen
the standard RLS results, which is understandable because the shorter the time con-
stant of the low-pass filters, the lower the filtering effect on the high-frequency mea-
surement noise. The bias compensated algorithm (BC-RLS) estimates the nominal
value of the inertia independent of the filter time constant used.5 Minimal deviations
at larger filter time constants are also visible with the BC-RLS. This phenomenon
is because fast signal changes in the input voltage signal caused by non-ideal power
electronics are filtered or lost by the larger filter time constants. In summary, one can
state that the BC-RLS delivers excellent results for all filter variants and tends to be
better even with small filter time constants. In contrast, the standard RLS estimation
results are strongly dependent on the selected time constant of the filters. The slight
variations in the estimated friction parameters may be caused, among other things,
by the violation of the assumptions on the noise conditions. The assumption to ap-
proximate encoder quantization noise as additive white noise assumes, among others,
random motion. Due to the restriction to one direction of rotation in this measure-
ment, most quantization peaks are positive, which violates the assumptions. Strictly
speaking, the approximation of quantization noise as additive white noise is no longer
valid.

4.2.2 1-D Servo Positioning System

Another practice-oriented example is the 1-D servo positioning system, again used
in many industrial applications for any kind of high precision positioning movement,
e.g., high-bay storage applications. The system configuration is shown in Fig. 4.5.

4If only positive or negative angular velocities are expected, the term sgn (ω) may be replaced by
±1.

5Please note that for the other model parameters, no exact nominal parameters are known.
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(a) System input uA, noisy system outputs
angular position ϕ, and angular velocity
ω.
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(b) Estimated plant parameters with
Tf = 5 ms. Nominal values are dashed
green, RLS estimates are blue, and
BC-RLS estimates are red.
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(c) Estimated plant parameters with
Tf = 10 ms. Nominal values are dashed
green, RLS estimates are blue, and
BC-RLS estimates are red.
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(d) Estimated plant parameters with
Tf = 15 ms. Nominal values are dashed
green, RLS estimates are blue, and
BC-RLS estimates are red.

Figure 4.4: Estimated plant parameters, comparing RLS and BC-RLS using different
filter time constants Tf .

Performing model reduction to eliminate the dynamics of the electrical subsystem, the
respective model equations readẋ

v̇

 =
 v

β
m̃
uA − d̃1

m̃
v − Fc

m̃
sgn (v)

 (4.11)

with the translational position x ∈ R, its corresponding velocity v ∈ R, input voltage
uA ∈ R, and friction term FR = Fc sgn (v)+d1v. The known model parameters are the
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Figure 4.5: Block diagram of 1-D servo positioning system.

machine constant km, gear ratio n, pinion radius r, and the armature resistanceRA. For
better readability, the abbreviations β = nkm

rRA
, d̃1 = d1 + n2km2

r2RA
, and m̃ = m+ JA

(
n
r

)2

are introduced. The equivalent coefficient of friction consists of two parts: the electrical
part and mechanical friction d1. The same thing applies to the equivalent cart mass.
Moreover, one assumes that the plant parameters

p =
(
m̃, d̃1, Fc

)>
(4.12)

are constant but unknown. All parameters and variables are listed in Tab. 4.3.

Applying the PMF approach to eliminate the time derivatives results in

ũA (tk) = ũA;k =
(
g0
F,zoh ∗ uA

)
k

ˆ̃x(1) (tk) = ˆ̃x(1)
k ≈

(
g1
F,tust ∗ x

)
k

ˆ̃x(2) (tk) = ˆ̃x(2)
k ≈

(
g2
F,tust ∗ x

)
k

s̃gn (v)
(0)

(tk) = s̃gn (v)
(0)

k =
(
g0
F,zoh ∗ sgn (v)

)
k

(4.13)

where

F i (s) = si

(1 + sTf )2 and giF (t) = L−1
{
F i (s)

}
, 0 ≤ i ≤ 2 (4.14)
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name unit nominal value description

pl
an

t

uA V - input voltage
x m - translational position
v m

s - translational velocity
JA kgm2 41× 10−7 moment of inertia of electric motor (rotor)
m kg 0.95 (mechanical) mass of cart
m̃ kg 1.064 equivalent mass of cart including moment of inertia
d1

Ns
m 1.94 linear mechanical friction coefficient

d̃1
Ns
m 22 equivalent linear rotational friction coefficient

Fc Nm 0.5 Coulomb friction
n - 1 gear ratio
r m 6× 10−3 pinion radius
km

Nm
A 38.7× 10−3 machine constant

RA Ω 2.079 armature resistance
β N

V 3.1025 gain factor voltage to force, β = nkm
rRA

PM
F T s 1× 10−3 sample time

Tf s - PMF filter time constant
λ - 1 exp. forgetting factor (BC)-RLS

Table 4.3: Model parameters and identification algorithm parameters for 1-D servo
positioning system.

and
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z
Z
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{
F i (s) 1

s

})∣∣∣∣∣
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}
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zoh (z)

}
F i
tust (z) = F i (s′) where s′ = 2

T

z − 1
z + 1 , giF,tust (k) = Z−1

{
F i
tust (z)

}
.

(4.15)

The sample time is T = 1 ms, and the filter time constant is set to Tf = 5 ms. The
equation for identification at a single time instance tk reads

βũA;k =
(

ˆ̃x(2)
k

ˆ̃x(1)
k s̃gn (v)

(0)

k

)
m̃

d̃1

Fc

 (4.16)

where sgn (v) is approximated by computing v using discrete quotient and taking sign
function.6

6If only positive or negative angular velocities are expected, the term sgn (v) may be replaced by
±1.
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4.2.2.1 PMF Filter Cutoff and Reset

In the practical use of parameter estimation methods, additional tasks arise that have
to be solved to improve the parameter estimation result depending on the system
or model. These include systems whose behavior is described by switching between
different sub-models. A well-known example from the mechanical application area is
the servo positioning system with static friction, which has already been used several
times in this thesis. Based on this system, both the occurring tasks and a possible
solution are described and discussed briefly. Please note that not all model parameters,
system states, inputs, and outputs are explained in detail in this section for reasons of
clarity. One takes the liberty to refer to Tab. 4.3 in this context. The model equations

ẋ
v̇

 =
 v

− d̃1
m̃
v − Fc

m̃
sgn (v) + β

m̃
uA

 (4.17)

which are transformed into an algebraic equation for identification using suitable meth-
ods, are only valid for v 6= 0.7 If the system sticks, it appliesẋ

v̇

 =
0

0

 . (4.18)

Accordingly, from an identification point of view, such invalid standstill phases must
not be used for the parameter estimation algorithm. When using the Poisson moment
functionals (PMF) approach for eliminating time derivatives, i.e., signal filters, com-
bined with recursive least-squares (RLS) to solve the resulting set of equations, we run
into the additional problem of appropriate initialization of the filters restart.

The recursive least squares’ inputs must be set to zero when the velocity decays at
v = 0 or falls below a defined threshold, e.g., |v| < 0.1 m s−1, to cope with measurement
uncertainties. Thus, the recursive least-squares algorithm experiences no additional
information. Consequently, the estimation result is not falsified. When breaking loose
from sticking, one must make sure to reinitialize the PMF filters correctly. Figure 4.6
shows the problem description and an intuitive solution approach.

7Please note that in Section 3.4, this practical issue is circumvented by avoiding zero speed phases
or minimizing the arising error using PRBS or PRMS input signals with fast zero crossing.
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(a) Problem description. Input and velocity
signal with the matching PMF filtered sig-
nals. During the color-coded standstill
phase, i.e. v = 0, the equation for identi-
fication is not valid.

(b) Solution approach. Disable filter, i.e., set
values to zero, when velocity undercuts
a threshold value and initialize the filters
properly at restart.

(c) Problem description. Input and velocity
signal with the matching PMF filtered sig-
nals. During the color-coded standstill
phase, i.e. v = 0, the equation for identi-
fication is not valid.

(d) Solution approach. Disable filter, i.e., set
values to zero, when velocity undercuts
a threshold value and initialize the filters
properly at restart.

Figure 4.6: Problem description and solution approach using PMF filters for parameter
estimation for switching models, e.g., slip-stick friction model.

As already discussed in detail in Section 3.4, one can use the signal filters (3.175)

F 0 (s) = 1
(1 + sTf )2

F 1 (s) = sF 0 (s)

F 2 (s) = s2F 0 (s) = 1
T 2
f

(
1− F 0 (s)− 2TfF 1 (s)

) (4.19)
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to eliminate the time derivatives of the measured system signals and finally obtain the
algebraic equation for identification8

βũ
(0)
A =

(
x̃(2) (t) x̃(1) (t) s̃gn (v)

(0)
(t)
)

m̃

d̃1

Fc

 (4.20)

where
ũ

(0)
A (t) =

(
g0
F ∗ uA

)
(t) , g0

F (t) = L−1
{
F 0 (s)

}
x̃(1) (t) =

(
g1
F ∗ x

)
(t) , g1

F (t) = L−1
{
F 1 (s)

}
x̃(2) (t) =

(
g2
F ∗ x

)
(t) , g2

F (t) = L−1
{
F 2 (s)

}
.

(4.21)

Exemplarily, transforming F 0 (s) from (4.19) into controllable canonical form obtains
the dynamical system

ẋ1

ẋ2

 =
 0 1
− 1
T 2
f
− 2
Tf

x1

x2

+
0

1

u
y =

(
1
T 2
f

0
)x1

x2


(4.22)

with filter state variables x1 and x2. The other filters are transformed analogously and
differ only in the system output. The relation

ũ(0) (t) =
(
g0
F ∗ u

)
(t) , g0

F (t) = L−1
{
F 0 (s)

}
(4.23)

allows the interpretation of the system states

x1 (t) = T 2
f ũ

(0) (t)

x2 (t) = T 2
f

d
dt
{
ũ(0) (t)

}
.

(4.24)

Assuming a sufficiently long standstill before the filter restart9, for steady-state applies

8For application to discrete-time measurement data or for implementation purposes, the filters
must be discretized appropriately. For elaborating on the filter reset problem, discretization is not
necessary, which is why one remains here in the continuous-time domain. For details on discretization,
the kindly reader is referred to Section 3.4.

9For slow creep or jumping through zero speed or restart filters at a predefined speed (deadzone
around zero velocity), the filters’ start values must be calculated differently.
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x1 (t) = T 2
f ũ

(0) (t) = T 2
f u (t)

x2 (t) = T 2
f

d
dt
{
ũ(0) (t)

}
= T 2

f

d
dt {u (t)} .

(4.25)

Therefore, the filter dynamic system’s state variables are directly proportional to the
filter’s input variable and its first derivative. By filtering servo position x, the filter
state variables are directly proportional to the position and directly proportional to
the velocity, i.e.,

x1 (0) = T 2
f x

x2 (0) = 0 .
(4.26)

Looking at the equation for identification evaluated at t = 0 (filter restart)

βũ
(0)
A (0) = m̃x̃(2) (0) + d̃1x̃

(1) (0) + Fcs̃gn (v)
(0)

(0) (4.27)

and taking into account x̃(1) (0) = x̃(2) (0) = 0, one obtains

βũ
(0)
A (0) = Fcs̃gn (v)

(0)
(0) . (4.28)

Hence, to fulfill (4.28) and to be independent of the unknown parameter Fc, one may
set the initial conditions x1 (0) and x2 (0) of both, the dynamical systems filtering the
input voltage and sign function at the restart to

x1 (0) = 0
x2 (0) = 0 .

(4.29)

One can show the differences in parameter estimation results with a first simulation
experiment neglecting measurement noise or encoder quantization effects. Of course,
for implementation purposes, the derived dynamical systems or filters are discretized
appropriately, and the corresponding initial states must be converted. Again, the
kindly reader is referred to Section 3.4. We compare the standard approach, i.e.,
the filters are active throughout, with the solution presented here, i.e., the filters are
disabled when the speed falls below a minimum value |v| < 0.1 m s−1 and are restarted
and reinitialized when the velocity changes starting from zero, i.e., v 6= 0. Standard
pulse or ramp signals serve as input signals (compare Section 2.2), the sampling time
is T = 1 ms, the filter time constant is Tf = 50 ms, and the nominal model parameters
for basic simulation experiments are m̃ = 1 kg, d̃1 = 20 N s m−1, Fc = 2 N.
Figure 4.7(a) shows a pulse-shaped input voltage signal with the respective position
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and velocity. In the third subplot, one can see where the signal filters or the recursive
least squares algorithm should be disabled. In Fig. 4.7(b), one can see the correspond-
ing parameter estimation values. For pulse-shaped input signals, the differences are
small. Slight deviations from the nominal values can be explained by the approxi-
mative character of the discretized filters or dynamic systems. It is striking that the
estimated parameter values do not converge to a final value without eliminating these
weak areas. Similar applies when using ramped voltage waveforms, c.f. Fig. 4.7(c)
and Fig. 4.7(d). The standard approach deviations without filter reset are even sig-
nificantly more extensive than for pulse-shaped voltage waveforms. The reason is that
the invalid signal components have a more substantial effect in the colored areas due
to the less steep edges. Additionally, compared to pulse-shaped signals, ramp-shaped
excite fewer frequencies or a smaller frequency spectrum due to the lower slope.

The next step is to add an output noise to the simulation, which means xm (t) =
x (t) + e (t) with e ∼ N (0, σx), where σx = 0.001 m. Figure 4.8 and Fig. 4.9 show the
effects of measurement noise on both the standard PMF approach and the filter reset
approach, each with standard RLS and BC-RLS for pulse-shaped and ramp-shaped
input signals. As expected, the measurement noise significantly worsens the parameter
estimation results using standard RLS. Differences between the two PMF approaches
and standard RLS are not evident (c.f., Fig. 4.8(b) or Fig. 4.9(b)). The situation is
different when using the BC-RLS. Figure 4.9(c) shows that the BC-RLS performs even
worse due to the invalid areas than the corresponding RLS for ramp-shaped signals,
while the estimation results are quite good for pulsed signals with and without filter
reset, see Fig. 4.8(c). The combination of filter reset and bias compensation leads
to promising results for puls-shaped and ramp-shaped inputs. The estimated values
converge asymptotically towards the nominal values, c.f. Fig. 4.8(c) or Fig. 4.9(c).

Open issues which could be addressed based on these results are:

(i) appropriate filter initialization if there occur no standstill phases, i.e., zero-
crossing

(ii) appropriate filter initialization if the restart should be at a certain velocity un-
equal to zero, e.g. |v| > 0.1 m s−1 instead of |v| > 0 used here

4.2.2.2 Test Bench Measurements

The combination of PMF filter reset and BC-RLS, which was successfully tested in
the simulation, is now being evaluated on test bench measurement data from a labo-
ratory test bench, see Fig. 4.10. Besides, measurement data using an OID input signal
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(a) Arbitrarily pulse-shaped system input uA,
system outputs x, v, and filter flag. The
filter flag is set when the velocity falls
below 0.1 m s−1 during deceleration, i.e.,
|v| < 0.1 m s−1.

(b) Estimated parameter values using pulse-
shaped input. Nominal values are dashed
green, RLS estimates with standard PMF
filters are blue, and RLS estimates with
enhanced, i.e., reset, PMF filters are red.

(c) Arbitrarily ramp-shaped system input uA,
system outputs x, v, and filter flag. The
filter flag is set when the velocity falls
below 0.1 m s−1 during deceleration, i.e.,
|v| < 0.1 m s−1.

(d) Estimated parameter values using ramp-
shaped input. Nominal values are dashed
green, RLS estimates with standard PMF
filters are blue, and RLS estimates with
enhanced, i.e., reset, PMF filters are red.

Figure 4.7: Pulse-shaped or ramp-shaped input signals and corresponding estimated
plant parameters with filter time constant Tf = 50 ms and sample time
T = 1 ms. In the areas colored light blue, the identification equation is
invalid and the PMF filters are turned off.

similar to Section 2.6.2 is generated and evaluated. To obtain the nominal electrical
parameters, i.e., armature resistance and machine constant, one operates the dc-drive
in generator mode. To identify the servo’s mechanical friction, one can pull the drive,
measuring the tractive force. The nominal parameters determined in this way can be
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(a) Pulse-shaped system input uA, noisy sys-
tem output x ∼ N

(
0, σ2) with σ =

0.001 m, and filter flag. The filter flag is
set when |v| < 0.1 m s−1 during decelera-
tion.

(b) Estimated parameter values. Nominal
values are dashed green, RLS estimates
with standard PMF are blue, and RLS
with PMF reset are red.

(c) Estimated parameter values. Nominal
values are dashed green, BC-RLS esti-
mates with standard PMF are blue, and
BC-RLS with PMF reset are red.

Figure 4.8: Pulse-shaped input signals and estimated plant parameters (RLS vs. BC-
RLS) with filter time constant Tf = 50 ms and sample time T = 1 ms.
In the areas colored light blue, the identification equation is invalid.

found in Tab. 4.3, e.g., m̃ = 1.064 kg, d̃1 = 22 N s m−1, Fc = 0.5 N.
Again, one sets the PMF filter time constant to Tf = 50 ms and the sample time

T = 1 ms. Figure 4.11 shows the measurement results using pulse-shaped input signals.
The algorithm estimates the unknown parameters quite well. The variations from each
other and the nominal parameter values are mainly due to model uncertainties, e.g.,
the mechanical design of the test bench. For example, mechanical friction is not
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(a) Ramp-shaped input uA, noisy system out-
put x ∼ N

(
0, σ2) with σ = 0.001 m,

and filter flag. The filter flag is set when
|v| < 0.1 m s−1 during deceleration.

(b) Estimated parameter values. Nominal
values are dashed green, RLS estimates
with standard PMF are blue, and RLS
with PMF reset are red.

(c) Estimated parameter values. Nominal
values are dashed green, BC-RLS esti-
mates with standard PMF are blue, and
BC-RLS with PMF reset are red.

Figure 4.9: Ramp shaped input signals and estimated plant parameters (RLS vs. BC-
RLS) with filter time constant Tf = 50 ms and sample time T = 1 ms.
In the areas colored light blue, the identification equation is invalid.

constant over the entire range of motion and seems direction-dependent. Additionally,
the non-ideal gearbox distorts the results.

Similarly, when using the generated optimal excitation signal. Figure 4.12 shows
that the parameter d1 converges better, while the mass is quite similar to Figure 4.11.
One may expect that the estimation result would even become a bit more precise
by extending the filter reset approach to signals without zero velocity phases. An
extension of this concept to signals without standstill phases, e.g., suitable for PRMS-



4.2 Online Parameter Estimation Applications 133

(a) Servo with rack and rail system. (b) Drive, encoder, ball bearings, gearbox
and pinion.

Figure 4.10: Test bench of 1-D servo positioning system.
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(a) System input uA, measured outputs po-
sition x, and velocity v. For illustration
purpose, one measurement is shown as an
example.
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(b) BC-RLS estimated plant parameters with
Tf = 50 ms for five measurement runs.
Nominal values are dashed green.

Figure 4.11: Five test bench measurements. Estimated parameter values are obtained
using BC-RLS algorithm for pulse-shaped input voltage with PMF filter
reset.

like OID signals, is the task of further work.

Analogous to Fig. 4.9, we also use ramp-shaped voltage signals on the test bench
experiments. Figure 4.13 shows the results of five ramps of different steepness with
decreasing rising times from 200 ms to 0 ms (pulse-shaped). Due to inadequacies in
the mechanics of the test bench, in contrast to the simulation, the estimation results
sometimes deviate strongly from the nominal parameters. One can conclude that the
less steep the slopes, the more significant the deviations of the estimated parameters
from the nominal values, which is especially true for the servo mass. The combination
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(a) System input uA, measured outputs posi-
tion x, and velocity v.
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(b) Estimated plant parameters with
Tf = 50 ms. Nominal values are dashed
green, BC-RLS estimates are blue.

Figure 4.12: Five test bench measurements. Estimated plant parameters using BC-
RLS algorithm for OID-generated input voltage.

of lower acceleration force and model inaccuracies or model errors leads to these esti-
mation errors. Figure 4.13(c) shows the correlation between the quality of parameter
estimation or quality of the excitation signal and the Fisher information. Again, the
higher the information content of the input signal, the better the estimation result.
This insight again closes the circle and confirms the meaningfulness of the optimal
input design (OID) in Chapter 2.
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(a) System input uA, measured outputs po-
sition x, and velocity v for input signals
with different rise times.
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(b) Estimated plant parameters with dif-
ferent input signal rise times and
Tf = 50 ms. Nominal values are dashed
green, BC-RLS estimates are blue.
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(c) System input uA, Fisher information det (F), and estimated cart mass m̂BC for different
rise times.

Figure 4.13: Five test bench measurements. Estimated plant parameters using BC-
RLS algorithm for ramp-shaped input voltage with different rise times.
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5 Conclusion & Outlook

This chapter summarizes the most challenging tasks, solution approaches, and results
of this work and some possible extensions based on them. Short summaries can also
be found at the end of each chapter. For reasons of better clarity, these are joined
here.

In Chapter 2, it is shown that DoE methods can improve the result of subsequent
parameter estimation approaches, independent of the method used. The approach
investigated is based on the FIM and thus on local parameter sensitivities. A simple
first-order system is used as an introductory striking example, whose model parame-
ters can be calculated from two measuring points of a noisy step response analytically.
The task is to choose the measurement points optimally in parameter estimation, i.e.,
to choose the measurement points so that the model parameters can be determined
as accurately as possible. For this simple example, the approach for determining the
optimal measurement time points based on the Fisher Information matrix and the
subsequent estimation’s improvement is graphically illustrated. Often DoE is used to
generate informative input signals tailored to the particular experiment. In these cases,
one may speak of OID. Using the practical example of a high-speed positioning system,
the generation of optimal input signals for accurate parameter estimation is carried out
while complying with existing restrictions on the input, output, and state variables for
both the linear and nonlinear model with static friction. Simulation results show that
such optimal excitation signals significantly improve parameter estimation quality, and
specific knowledge about the experiment can be automatically incorporated into the
generation of excitation signals. In case of substantial parameter uncertainties, one
recommend an iterative process of OID and parameter estimation. In a nutshell: by
choosing optimal excitation signals, the accuracy of the subsequent parameter estima-
tion can be increased without taking appropriate methods on the estimation side, e.g.,
algorithms for bias compensation. The studied method is based on local sensitivities.
Mainly when applied to nonlinear systems, this may not be suitable. The possibility
of extending the methodology to global sensitivities is briefly indicated in this thesis
but not further explored. Hence, it is a possible useful extension of this work.
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The second central part of this thesis deals with parameter estimation of continuous-
time dynamical systems. The focus is on online algorithms, which is why the combina-
tion of PMF and Recursive Least Squares is treated in this work. The application of
methods to avoid the direct computation of time derivatives of measurement signals,
e.g., PMF, cause a so-called bias in parameter estimation with least-squares in case of
noisy signals. The main focus is the theoretical investigation of existing approaches
to estimate this bias for strictly linear systems and the extension to slightly nonlinear
systems. The advantages of the algorithm studied are:

(i) One can obtain an analytical solution of the asymptotic estimation bias, whereby
only the PMF filters and their coefficients, respectively, influence it.

(ii) The Algorithm is irrespective of the number of unknown parameters. Only the
noise variance must be estimated.

(iii) Low computing effort, similar to standard OLS, because no system extensions
are necessary. Hence, there is no need to estimate additional parameters, e.g.,
from the augmented model.

(iv) The parameter estimation is robust against noise, i.e., the consistency is inde-
pendent of the noise model.

(v) An online capable (recursive) algorithm is available.

The same approach is also extended from PMFs to the more general class of MFs (to
eliminate derivatives). First simulation tests show that one can obtain asymptotically
unbiased parameter estimates.

In Chapter 4, the investigated methods are applied to practical applications. For
example, an optimal throttle position and ignition angle delay signal are calculated
to identify a mean value engine model’s parameters. Investigations on unbiased pa-
rameter estimation are carried out on two mechatronic systems, namely the DC-drive
with a rotational flywheel and the multiply used 1D-positioning servo using test-bench
measurements. A practical problem of parameter estimation is investigated in Sec-
tion 4.2.2.1 using the nonlinear positioning system as an example. If the system leaves
the horizon covered by the identification equation, the estimation algorithm must dis-
card this data. When the system re-enters the valid area, one must ensure that the
PMF filters are appropriately initialized. For the 1D-servo with static friction, the
identification equation is only valid for velocity not equal to zero. In sticking, the
equation is invalid, and the PMF filters must be disabled and re-initialized properly
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when breaking loose from sticking. Simulation studies show that the estimated values
deviate significantly from the nominal parameters without appropriate action, espe-
cially when using the bias compensation algorithm. In this work, a particular case of
filter re-initialization, which requires a sufficiently long standstill phase before break-
ing free from sticking, is investigated and validated in simulation. A more general
approach, which also considers slow creep or jumping through zero velocity, would be
an essential and useful extension to this work.
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A Appendix

Section 3.3 discusses, among other things, the statistical properties of least-squares
estimators when using stochastic signals. The expected bias of the estimate caused
by noisy measurement signals and Poisson moment functions is analyzed in detail. It
requires knowledge from the disciplines of control engineering, stochastics, and sig-
nal processing. Consequently, a particular form of stochastics is necessary, which is
summarized here.

A.1 Random Variables

A.1.1 Introduction

The concept of random variables as a numerical result of a random experiment was
proved in the years around 1930 and made it possible to represent general random
events in sets of real-valued numbers. The random variable is named by the capital
letter, e.g., X. Realizations of the RV X are abbreviated with the corresponding lower
case letter, e.g., x.
According to [117], consider a random experiment with sample space or domain Ω

and a single sample point ω ∈ Ω. A random variable (RV) is a real function that
assigns a real number to each individual element ω ∈ Ω. The collection of all possible
values of the RV is called range.

A.1.2 Distribution Functions

The cumulative distribution function (CDF) is defined by

FX (x) = P (X ≤ x) (A.1)

where FX denotes the probability that the RVX takes a value less or equal x ∈ [−∞,∞].
Some of the most important properties include:
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(i) cumulative distribution function (CDF) FX (x) is a non-decreasing function, i.e.,
it can increase or stay constant

(ii) the minimum value of CDF is zero, i.e., FX (−∞) = 0

(iii) the maximum value of CDF is one, i.e., FX (∞) = 1

(iv) 0 ≤ FX (x) ≤ 1

(v) probability interval P (a < X ≤ b) = FX (b)− FX (a)

(vi) counter probability P (X > a) = 1− P (X ≤ a) = 1− FX (a)

A.1.3 Continuous Random Variables

A RV X is defined to be a continuous random variable (CRV) if there exists a non-
negative PDF fX (x) , x ∈ [−∞,∞]

fX (x) = d
dxFX (x) . (A.2)

Its properties read:

(i) fX (x) is non-negative, i.e., fX (x) ≥ 0

(ii)
∫∞
−∞ fX (x) dx = 1

(iii) P (a ≤ X ≤ b) =
∫ b
a fX (x) dx, i.e. P (x = a) =

∫ a
a fX (x) dx = 0

(iv) P (X < a) = P (X ≤ a) =
∫ a
−∞ fX (x) dx

A.1.4 Discrete Random Variables

The probability mass function (PMF) pX (x) of a discrete random variable (DRV) X
is defined by

pX (x) = P (X = x) (A.3)

with ∞∑
x=−∞

pX (x) = 1 . (A.4)

The CDF is a sequence of step functions and is defined by

FX (x) =
∑
k≤x

pX (k) . (A.5)
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A.2 Moments of Random Variables

When dealing with random variables, it is common to consider the central tendency
of the available data. The (weighted) arithmetic average or mean value is such a
representative value. Assuming the data sorted by magnitude, the mean value is in
the middle of this data set. Another parameter that characterizes the central tendency
of data is called variance. It describes the spread of the data relative to its arithmetic
average. The n-th moment of the random variable is defined by

E[Xn] = Xn , n = 1, 2, 3, . . . . (A.6)

A.2.1 Expectation

The first moment E[X], is the expected value (mean value) of a random variable X
and is defined by

E[X] = X̄ =
∫ ∞
−∞

xfX (x) dx (A.7)

for CRVs and
E[X] = X̄ =

∑
k

xkpX (xk) (A.8)

for discrete random variables (DRVs).

A.2.2 Conditional Expectation

The conditional expectation of the random variable X, assuming that an event A has
occurred, is given by

E[X|A] =
∫ ∞
−∞

xfX|A (x|A) dx (A.9)

and
E[X|A] =

∑
k

xkpX|A (xk|A) . (A.10)

The corresponding conditional probability density function (cond. PDF) fX|A (x|A)
and conditional probability mass function (cond. PMF) pX|A (x|A) are defined by

fX|A (x|A) = fX (x)
P (A) , P (A) > 0

pX|A (x|A) = pX (x)
P (A) , P (A) > 0

(A.11)

where P (A) denotes the probability that an event A occurs and x ∈ A.
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A.2.3 Variance and Higher Central Moments

In contrast to (A.6), the central moments are defined as moments of the difference
between a random variable and its expected value, e.g., [117]. The n-th central moment
reads

E[
(
X − X̄

)n
] =

∫ ∞
−∞

(
x− X̄

)n
fX (x) dx (A.12)

for CRVs and
E[
(
X − X̄

)n
] =

∑
k

(
xk − X̄

)n
pX (xk) (A.13)

for DRVs.
The second-order central moment, i.e., n = 2, is called variance σ2

X and obtained by

σ2
X = E[

(
X − X̄

)2
] =

∫ ∞
−∞

(
x− X̄

)2
fX (x) dx (A.14)

or
σ2
X = E[

(
X − X̄

)2
] =

∑
k

(
xk − X̄

)2
pX (xk) (A.15)

respectively. Assuming X̄ to be constant, the term σ2
X simplifies to

σ2
X = E[

(
X − X̄

)2
] = E[X2 − 2XX̄ + X̄2]

= E[X2]− 2X̄ E[X] + X̄2

= E[X2]− X̄2 .

(A.16)

A.3 Stochastic Processes

A.3.1 Continous-Time Stochastic Processes

A scalar function x (t) is called a stochastic function or random function if the re-
sulting value of x at the time instance t is only determined in a statistical sense. In
other words, x (t) is a sequence of random variables to consider the evolution of a
random phenomenon concerning time, e.g., [126]. If a random experiment is repeat-
edly performed on the same conditions, these measurements {x1 (t) , x2 (t) , . . . xn (t)}
set a form of stochastic (random) time functions. The population of all possible time
functions is termed ensemble of the random experiment or stochastic process x (t).
Therefore, a stochastic process is the source of a random function.1 An individual

1Actually, the notation of the stochastic process (random variable) must be different from that
of the realization (possible result), e.g., fx vs. fx. For the sake of simplicity, often this distinction is
not made when considering signals.
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random time function x (t) is denoted as a realization of the stochastic process x (t).
To describe a stochastic process x (t), the CDF

Fx (x, t) = Px (x (t) ≤ x) (A.17)

or PDF
fx (x, t) = dFx (x, t)

dx (A.18)

are necessary. The corresponding joint distributions explain internal coherence. Exem-
plarily, for n points in time {t1, t2, . . . , tn}, the n-dimensional joint probability density
function (joint PDF) read

fx (x1, . . . , xn; t1, . . . , tn) (A.19)

and joint cumulative distribution function (joint CDF) is

Fx (x1, . . . , xn; t1, . . . , tn) . (A.20)

As stated in, e.g., [2,3,115], a stochastic process is fully characterized if the CDF and
all joint CDFs

Fx (x, t) = Px (x (t) ≤ x) ,
Fx (x1, . . . , xn; t1, . . . , tn) = Px (x (t1) ≤ x1, . . . , x (tn) ≤ xn)

(A.21)

or density functions

fx (x, t) = dFx (x, t)
dx ,

fx (x1, . . . , xn; t1, . . . , tn) = dnFx (x1, . . . , xn; t1, . . . , tn)
dx1 . . . dxn

(A.22)

are known for N → ∞. However, for the characterization of stochastic processes, it
is usually sufficient to present all observations by using statistical averages, e.g., mean
values or ACFs.

(i) Expected value (mean or ensemble average)

x̄ (t) = E[x (t)] =
∫ ∞
−∞

xfx (x, t) dx (A.23)
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(ii) Quadratic mean (variance)

σ2
x = cxx (t, t) = E[(x (t)− x̄ (t))2] (A.24)

(iii) Autocovariance function

cxx (t1, t2) = E[(x (t1)− x̄ (t1)) (x (t2)− x̄ (t2))] (A.25)

(iv) Autocorrelation function

rxx (t1, t2) = E[x (t1) x (t2)] = cxx (t1, t2) + x̄ (t1) x̄ (t2) (A.26)

(v) Crosscovariance function

cxy (t1, t2) = E[(x (t1)− x̄ (t1)) (y (t2)− ȳ (t2))] (A.27)

(vi) Crosscorrelation function

rxy (t1, t2) = E[x (t1) y (t2)] = cxy (t1, t2) + x̄ (t1) ȳ (t2) (A.28)

So far, it has been assumed that all distributions are functions of time. Hence, the
stochastic process is termed non-stationary. However, it has not proven necessary to
use such a broad, all-encompassing definition for many areas of application. Therefore,
only certain classes of stochastic processes are treated in the following.

A.3.2 Stationary Stochastic Processes

In the analysis of sequences or time series, however, the general theory of stochastic
processes is not applicable. For this reason, it is usually assumed that stochastic
processes are stationary and ergodic.

(i) Stationarity A random process is defined to be strict sense stationary (SSS) if
the CDF and all joint CDFs are unaffected by a shift in time τ

Fx (x, t) = Fx (x, t+ τ) ,
Fx (x1, . . . , xn; t1, . . . , tn) = Fx (x1, . . . , xn; t1 + τ, . . . , tn + τ)

(A.29)
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for any τ , e.g., [127]. For the first-order distribution applies

Fx (x; t) = Fx (x; t+ τ) = Fx (x) ,
fx (x; t) = fx (x; t+ τ) = fx (x) .

(A.30)

The second-order distribution only depends on the time difference τ = t2 − t1,
i.e.,

Fx (x1, x2; t1, t2) = Fx (x1, x2; τ) ,
fx (x1, x2; t1, t2) = fx (x1, x2; τ) .

(A.31)

As stated in [117], a random process is SSS if the ACF and autocovariance
function do not depend on the time t, i.e.,

x̄ (t) = E[x (t)] =
∫ ∞
−∞

x (t) fx (x) dx = const

rxx (t, t+ τ) = E[x (t) x (t+ τ)] = rxx (τ)
cxx (t, t+ τ) = E[(x (t)− x̄ (t)) (x (t+ τ)− x̄ (t+ τ))] = cxx (τ) .

(A.32)

For τ = 0, it applies

rxx (0) = E[(x (t)− x̄ (t))] = σ2
x = const . (A.33)

In many practical tasks, only the mean value and the autocorrelation function
of a random process are relevant. Hence, a weaker definition is introduced. If
the stationarity condition (A.29) does not hold for all n but holds for n ≤ 2, a
random process is called wide (weak) sense stationary (WSS). It applies

x̄ (t) = E[x (t)] = x̄ = const
rxx (t, t+ τ) = E[x (t) x (t+ τ)] = rxx (τ) .

(A.34)

It is worth mentioning that a linear combination of stationary processes is also
stationary [127].

(ii) Ergodicity A stationary process is called ergodic if the ensemble average value
x̄ (t) is equal to the temporal (time) average value

x̄ = x (t) = E[x (t)] = lim
T→∞

1
2T

∫ T

−T
x (t) dt (A.35)
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of each realization. For the quadratic mean or variance, it applies

σ2
x = E[(x (t)− x̄)2] = lim

T→∞

1
2T

∫ T

−T
(x (t)− x̄)2 dt . (A.36)

Ergodicity is (almost) always assumed in physical applications, e.g., for the anal-
ysis of time series. An ergodic process is always stationary. The opposite may
not be valid.2

A.3.3 Autocorrelation and Crosscorrelation

One can use the autocorrelation function (ACF) to describe internal coherences of the
random function x (t) with a time-shifted version x (t+ τ) of itself. Thus, the ACF
provides information about the underlying stochastic process x (t).

Let us assume an ergodic, i.e., stochastic process x (t) with a single realization x (t).
Then, the ACF reads

rxx (τ) = E[(x (t)x (t+ τ))] = lim
T→∞

1
2T

∫ T

−T
x (t)x (t+ τ) dt

= lim
T→∞

1
2T

∫ T

−T
x (t− τ)x (t) dt .

(A.37)

For τ = 0, the coherence

rxx (0) = E[x2 (t)] = lim
T→∞

1
2T

∫ T

−T
x2 (t) dt <∞ (A.38)

is a maximum and corresponds to the average signal power of x (t). Consequently, it
applies

rxx (τ) ≤ rxx (0) . (A.39)

The larger the time shift τ of the stochastic signals, the smaller the mutual depen-
dence. For τ → ∞ the signals x (t) and x (t+ τ) are statistically independent, i.e.
uncorrelated, resulting in

lim
τ→∞

rxx (τ) = rxx (∞) = lim
τ→∞

 lim
T→∞

1
2T

∫ T

−T
x (t) dt︸ ︷︷ ︸

=E[x(t)]=x̄

lim
T→∞

1
2T

∫ T

−T
x (t+ τ) dt︸ ︷︷ ︸

=E[x(t)]=x̄

 = x̄2 .

(A.40)
2A stochastic process is called weak ergodic if the compliance is only fulfilled for E[x (t)] and

rxx (τ).
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Assuming a zero-mean stochastic process, it applies

lim
τ→∞

rxx (τ) = 0 . (A.41)

The main properties of the autocorrelation function of ergodic, i.e., stationary, pro-
cesses read:

(i) the ACF is an even function, i.e rxx (τ) = rxx (−τ),

(ii) for τ = 0, the ACF rxx (0) = x̄2 denotes the average signal power,

(iii) for τ →∞, rxx (∞) = x̄2, means that the signals are uncorrelated,

(iv) rxx (τ) ≤ rxx (0).

To describe the statistical coherence between different ergodic signals x (t) and y (t)
the crosscorrelation function (CCF)

rxy (τ) = E[(x (t) y (t+ τ))] = lim
T→∞

1
2T

∫ T

−T
x (t) y (t+ τ) dt

= lim
T→∞

1
2T

∫ T

−T
x (t− τ) y (t) dt

(A.42)

is used with its statistical properties:

(i) the CCF is not an even function, i.e rxy (τ) = ryx (−τ),

(ii) for τ = 0, the CCF, rxy (0) = x (t) y (t) denotes mean of the product,

(iii) for τ →∞, rxy (∞) = x̄ȳ, means the product of the mean values,

(iv) rxy (τ) ≤ 1
2 (rxx (0) + ryy (0)).

A.3.4 Derivative Stochastic Processes

In [119,120] a stochastic process x (t) or its realization (sample function) x (t) and its
related derivative ẋ (t) is defined in mean square sense by

lim
ε→0

E[
∣∣∣∣∣x (t+ ε)− x (t)

Nε
− ẋ (t)

∣∣∣∣∣
2

] . (A.43)
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Let us assume a stationary stochastic function x (t) and its first derivative ẋ (t) with
the corresponding ACFs and CCF

rxx (τ) = rx(0)x(0) (τ) = E[x (t)x (t+ τ)] = E[x (t− τ)x (t)] = r(0)
xx (τ)

rxẋ (τ) = rx(0)x(1) (τ) = E[x (t) ẋ (t+ τ)] = E[x (t− τ) ẋ (t)] = r(1)
xx (τ)

rẋẋ (τ) = rx(1)x(1) (τ) = E[ẋ (t) ẋ (t+ τ)] = E[ẋ (t− τ) ẋ (t)] = r(2)
xx (τ)

(A.44)

and the definition for the i-th derivative function

r(i)
xx (τ) = di

dτ i rxx (τ) . (A.45)

For the first derivative applies

r(1)
xx (τ) = d

dτ E[x (t)x (t+ τ)] = E[x (t) ẋ (t+ τ)] = rxẋ (τ) , (A.46)

equivalent to

r(1)
xx (τ) = d

dτ E[x (t− τ)x (t)] = −E[ẋ (t− τ)x (t)] = −rẋx (τ) . (A.47)

From rxẋ (τ) = −rẋx (τ) follows for zero lag (τ = 0)

r(1)
xx (0) = rxẋ (0) = −rẋx (0) = 0 . (A.48)

The second order derivative read

r(2)
xx (τ) = d

dτ E[x (t) ẋ (t+ τ)] = E[x (t) ẍ (t+ τ)] = rxẍ (τ) (A.49)

and

r(2)
xx (τ) = d

dτ E[x (t− τ) ẋ (t)] = −E[ẋ (t− τ) ẋ (t)] = −rẋẋ (τ) (A.50)

Hence, at τ = 0, we get
r(2)
xx (0) = −E[ẋ2 (t)] . (A.51)

Higher order derivatives can be determined iteratively. For example, the third deriva-
tion

r(3)
xx (τ) = rx(2)x(1) (τ) = −rx(3)x(0) (τ) = −rx(1)x(2) (τ) (A.52)
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with
r(3)
xx (0) = rx(2)x(1) (0) = −rx(3)x(0) (0) = −rx(1)x(2) (0) = 0 (A.53)

or the fourth derivative

r(4)
xx (τ) = rx(2)x(2) (τ) = −rx(3)x(1) (τ) = −rx(1)x(3) (τ) = rx(4)x(0) (τ) (A.54)

with
r(4)
xx (0) = E[

(
x(2) (t)

)2
] . (A.55)

More general, for the ACF of a stationary random process x (t) and associative time
derivatives x(i) (t) or x(j) (t) applies

rx(j)x(i) (τ) = E[x(j) (t)x(i) (t+ τ)] = (−1)jr(j+i)
xx (τ) = (−1)j dj+i

dτ j+i rxx (τ) . (A.56)

For τ = 0:

rx(j)x(i) (0) =


(−1)

j+i
2 E[

(
x( j+i

2 ) (t)
)2

] , j + i = {0, 2, 4, . . . }

0 , j + i = {1, 3, 5, . . . }
(A.57)

A.3.5 Discrete-Time Ergodic (Stationary) Stochastic Processes

In the field of control engineering, discrete-time (DT) stochastic signals usually result
from the sampling of continuous-time (CT) stochastic signals at specific discrete time
instances t (k) = tk = kT, 1 ≤ k ≤ N with sample time T .
Since the statistical properties are very similar to those of the CT stochastic processes,
and ergodic processes are assumed for practical applications, we settle for the most
relevant results for stationary processes. A more detailed treatment of DT stochastic
processes is given in, e.g., [128].

(i) Expected value (mean value)

x̄ = E[x (k)] = lim
N→∞

1
N

N∑
k=1

x (k) (A.58)

(ii) Quadratic mean (variance)

σ2
x = E[(x (k)− x̄)2] = lim

N→∞

1
N

N∑
k=1

(x (k)− x̄)2 (A.59)
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(iii) Autocovariance function

cxx (τ) = cxx;τ = cov (x, τ) = E[(x (k)− x̄) (x (k + τ)− x̄)]
= E[x (k)x (k + τ)]− x̄2

(A.60)

(iv) Autocorrelation function

rxx (τ) = rxx;τ = E[x (k)x (k + τ)] = lim
N→∞

1
N

N∑
k=1

x (k)x (k + τ) (A.61)

(v) Crosscovariance function

cxy (τ) = cxy;τ = cov (x, y, τ) = E[(x (k)− x̄) (y (k + τ)− ȳ)]
= E[x (k) y (k + τ)]− x̄y

(A.62)

(vi) Crosscorrelation function

rxy (τ) = rxy;τ = E[x (k) y (k + τ)] = lim
N→∞

1
N

N∑
k=1

x (k) y (k + τ)

= lim
N→∞

1
N

N∑
k=1

x (k − τ) y (k)
(A.63)

A.3.6 Stochastic Convergence Concepts

In contrast to the deterministic concept of convergence, several different notions of con-
vergence of random variables exist in probability theory. The convergence of random
variables to a limiting random variable is an essential concept in probability theory
and its applications in statistics and stochastic processes. Hence, we introduce the
most common concepts here: convergence in distribution, convergence in probability,
convergence almost surely, and convergence in r-mean. The interested reader can find
more information about stochastic convergence in, e.g., [109, 129]. In this thesis, the
term convergence in probability is necessary to compute the estimation bias. Hence,
we will look at this convergence concept a bit more closely.

The basic idea behind this notion of convergence is that the probability of an “un-
usual” result becomes smaller and smaller as the sequence progresses.
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Convergence in Probability

Definition A.1. Given a sequence of random variables Xn = {X1, X2, . . . }.
Xn converges in probability to the random variable X if

lim
N→∞

P {‖Xn −X‖ ≥ ε} = 0 , ε > 0

for all ε > 0. One may write

plim
n→∞

Xn = X

for convergence in probability, e.g., [109,129].

One can derive applicable calculation rules from the definition above, see [109].

Convergence in Probability: Calculation Rules

Corollary A.1. Let Xn, Yn be univariate random variables with observations
{X1, X2, . . . } and {Y1, Y2, . . . }. Assuming plimn→∞Xn = a and plimn→∞ Yn = b,
then applies:

plim
n→∞

(Xn ± Yn) = plim
n→∞

(Xn)± plim
n→∞

(Yn) = a± b ,

plim
n→∞

(XnYn) = plim
n→∞

(Xn) plim
n→∞

(Yn) = ab ,

plim
n→∞

(
Xn

Yn

)
= plimn→∞ (Xn)

plimn→∞ (Yn) = a

b
, if b 6= 0 .

(A.64)

If A is an adequate and nonsingular matrix of random variables, then:

plim
n→∞

(
A−1
n

)
=
(

plim
n→∞

(An)
)−1

. (A.65)

A.3.7 Gaussian White Noise Process

One denotes a DT random stationary and ergodic process xk with a realization xk as
white if it applies:

(i) the expectation of each element is zero, i.e., E[xk] = 0

(ii) the variance of each element is constant and finite, i.e., var (xk) <∞

(iii) the elements are serially uncorrelated, i.e., rxx;k = 0 for all k 6= 0



154 A Appendix

Additionally, suppose the random variables are independent, i.e.,

cov (xm, xm+k) = 0 (A.66)

for any k 6= 0. In that case, the random noise sequence is independent and identically
distributed (i.i.d.), and one can call it white Gaussian noise. For white Gaussian noise
applies

xk ∼ i.i.d
(
0, σ2

)
. (A.67)

Every white Gaussian noise sequence is (serially) uncorrelated, but the converse is
not generally true. Please note that the continuous-time (CT) Gaussian white noise
process variance is mathematically defined to be infinite, e.g. [130]. However, we obtain
a DT process with a finite variance if the samples are obtained by sampling from a CT
Gaussian white noise process with finite sample time T .

A.4 Linear Time-Invariant Systems with Stochastic
Input

In this section, we consider the effects of stochastic (random) input signals on the
output of linear time-invariant (LTI) systems, treated in, e.g., [115–118]. For reasons
of practical applications, we restrict ourselves to ergodic, i.e., stationary, input sig-
nals. All considerations are carried out on continuous-time (CT) signals or systems,
respectively. However, one can apply the results to DT models.

The random input signal x (t) is a realization of the underlying (ergodic) stochastic
process x (t) and is characterized by its correlation function rxx (τ). The LTI system
is characterized by its transfer function G (s) or impulse response g (t). The model
output y (t) is also a realization of a random process, and it applies

y (t) = (x ∗ g) (t) =
∫ ∞
−∞

x (τ) g (t− τ) dτ =
∫ ∞
−∞

g (τ)x (t− τ) dτ = (g ∗ x) (t)
(A.68)

where ‘*’ denotes the convolution operator.

Inserting (A.68) in (A.35) gives

ȳ = E[y (t)] = lim
T→∞

1
2T

∫ T

−T
y (t) dt = lim

T→∞

1
2T

∫ T

−T

∫ ∞
−∞

g (τ)x (t− τ) dτ dt . (A.69)
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By interchanging the order of integration and shifting the limit, we obtain

ȳ = E[y (t)] =
∫ ∞
−∞

g (τ)
(

lim
T→∞

1
2T

∫ T

−T
x (t− τ) dt

)
dτ

= E[x (t)]
∫ ∞
−∞

g (τ) dτ .
(A.70)

For causal systems, the impulse response vanishes for t < 0, and we finally get

E[y (t)] = E[x (t)]
∫ ∞

0
g (τ) dτ . (A.71)

Consequently, a zero-mean stochastic input signal results in a zero-mean stochastic
output signal.

The ACF for the model output read

ryy (τ) = lim
T→∞

1
2T

∫ T

−T
y (t) y (t+ τ) dt = lim

T→∞

1
2T

∫ T

−T
y (t− τ) y (t) dt . (A.72)

As shown in [115], inserting (A.68), and introducing

y (t) =
∫ ∞
−∞

g (u)x (t− u) du

y (t+ τ) =
∫ ∞
−∞

g (v)x (t+ τ − v) dv
(A.73)

results in

ryy (τ) = lim
T→∞

1
2T

∫ T

−T

∫ ∞
−∞

∫ ∞
−∞

x (t− u)x (t+ τ − v) g (u) g (v) du dv dt . (A.74)

Again, interchanging the order of integration and shifting the limit gives

ryy (τ) =
∫ ∞
−∞

∫ ∞
−∞

g (u) g (v)
(

lim
T→∞

1
2T

∫ T

−T
x (t− u)x (t+ τ − v) dt

)
du dv (A.75)

Substituting t− u = w, and hence t+ τ − v = w + τ + u− v gives

lim
T→∞

1
2T

∫ T

−T
x (w)x (w + τ + u− v) dw = rxx (τ + u− v) (A.76)

and (A.75) simplifies to

ryy (τ) =
∫ ∞
−∞

∫ ∞
−∞

g (u) g (v) rxx (τ + u− v) du dv . (A.77)
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Substituting v − u = λ results in

ryy (τ) =
∫ ∞
−∞

∫ ∞
−∞

g (u) g (u+ λ) rxx (τ − λ) du dλ

=
∫ ∞
−∞

rxx (τ − λ)
(∫ ∞
−∞

g (u) g (u+ λ) du
)

dλ .
(A.78)

In contrast to stochastic signals, the ACF for a deterministic aperiodic function g (t)
is defined by

rgg (τ) =
∫ ∞
−∞

g (t) g (t+ τ) dt . (A.79)

Inserting (A.79) in (A.78) finally results in

ryy (τ) =
∫ ∞
−∞

rxx (τ − λ) rgg (λ) dλ = (rxx ∗ rgg) (τ) . (A.80)

To summarize, the ACF of the output is calculated by the convolution of the ACFs of
the stochastic input signal x (t) and the impulse response g (t).
For DT signals or models, the expected value is

E[y (tk)] = E[yk] = E[xk]
∞∑
k=1

gk (A.81)

and for the ACF applies

ryy (k) = ryy,k = (rxx ∗ rgg)k = (rgg ∗ rxx)k =
∞∑

i=−∞
rgg,irxx;i−k . (A.82)

A.4.1 Filtered White Noise

Due to the present application case in Section 3.4, we limit ourselves to discrete-time
(DT) signals. Consequently, we assume a DT ergodic, i.e., stationary, white noise
process ek with a realization ek. A noise sequence ek is called white if successive
samples are uncorrelated in time. It applies

ree,k = E[emem+k] = σ2
eδk =

σ
2
e , k = 0

0 , k 6= 0
(A.83)

for any m and constant noise variance σ2
e .

By filtering white noise, the individual samples are no longer uncorrelated. Generally
speaking, we obtain colored noise. Assuming a strictly stable LTI system (filter) with
impulse response gk, the resulting colored noise is stationary. Thus, the filtered white
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noise sequence vk reads

vk = (e ∗ g)k = (g ∗ e)k =
∞∑

i=−∞
eigi−k . (A.84)

Convolving any signal xk with the delta function δk results in precisely the same signal

(δ ∗ x)k = (x ∗ δ)k = xk (A.85)

and makes the delta function the convolution identity. Finally, inserting (A.85) in
(A.82) gives

rvv,k = (ree ∗ rgg)k =
(
σ2
eδ ∗ rgg

)
k

= σ2
ergg,k . (A.86)

In other words, the ACF of filtered white noise equals the ACF of the filter’s impulse
response gk times the white-noise variance σ2

e .
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