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Abstract

The paper addresses the problem of determining the Cramer–Rao lower bounds (CRLBs) for noise and change-point
parameters, for steplike signals corrupted by multiplicative and/or additive white noise. Closed-form expressions for the
signal and noise CRLBs are 5rst derived for an ideal step with a known change point. For an unknown change-point, the
noise-free signal is modeled by a sigmoidal function parametrized by location and step rise parameters. The noise and step
change CRLBs corresponding to this model are shown to be well approximated by the more tractable expressions derived
for a known change-point. The paper also shows that the step location parameter is asymptotically decoupled from the
other parameters, which allows us to derive simple CRLBs for the step location. These bounds are then compared with the
corresponding mean square errors of the maximum likelihood estimators in the pure multiplicative case. The comparison
illustrates convergence and e8ciency of the ML estimator. An extension to colored multiplicative noise is also discussed.
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1. Introduction

Change-point estimation and detection is important in many signal processing applications. These applica-
tions include segmentation, fault detection or monitoring (for an overview see [2] and references therein).
Most studies have been carried out for signals contaminated by additive noise. However, the observed process
may also be corrupted by multiplicative noise. Some examples of multiplicative noise occur in image pro-
cessing (speckle) [13] or communication signals (fading channels) [16]. This paper addresses the problem of
determining a lower bound on the estimation error of change-point parameters, when the changes are corrupted
by multiplicative and/or additive noise.
The covariance matrix of any unbiased estimator �̂= [�̂1; : : : ; �̂p]T (T denotes transposition) of an unknown

parameter vector �=[�1; : : : ; �p]T cannot be lower than the inverse of the Fisher information matrix (FIM) of
� denoted the Cramer–Rao lower bound (CRLB) of � (the study is restricted to unbiased estimators). In other
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words, C�̂− I−1(�) is a positive semide5nite matrix, where C�̂ is the covariance matrix of �̂; I(�)= [I(�)]ij=

[ − E( @
2lnp(y;�)
@�i@�j

)]ij is the FIM of � and p(y; �) is the probability density function (pdf) of the observation

vector y = [y(1); : : : ; y(N )]T given �. The Cramer–Rao inequality requires some regularity conditions which
are detailed in standard textbooks such as [3] or [14] (see also Appendix A). When such regularity conditions
are satis5ed, the variance of �̂i cannot be lower that the ith diagonal element of I−1 (�) denoted [I−1(�)]ii
known as the CRLB of �i. Unfortunately, when the observed signal is subjected to abrupt changes such as
steps, the observation vector pdf cannot be diIerentiated with respect to the change location. Consequently,
the FIM, its inverse and the noise and signal parameter CRLBs cannot be computed.
The problem of determining CRLBs for step-change parameters has recently received much attention in the

literature [1,17,9,20–22,10]. Reza et al. [17] have modeled the sudden changes in steplike signals by sigmoidal
functions. Modi5ed CRLBs (in the sense of [24, p. 72] or [6]) have then be derived by assuming uniform
or triangular prior for the change-point location. Sadler and Swami [21] have simpli5ed the closed-form
expression of the change-point location FIM which was expressed only as a summation in [17]. Their results
have been generalized to step changes corrupted by additive and multiplicative noises in [9,20–22]. The
presence of multiplicative noise has also been taken into account in [9], where the maximum likelihood
estimator (MLE) of amplitude-modulated time series as well as closed-form expressions for the 5nite sample
signal and noise parameter CRLBs were derived. An approximate CRLB for the change-point location in
signals with step-like singularities embedded in additive white Gaussian noise has been derived in [1]. The
bound was obtained by assuming that the step change can be modeled as the output of a linear 5lter with
5nite bandwidth (a cubic spline) driven by a unit step. A similar model (convolution of a unit step with a
Gaussian 5lter) has been used successfully in [10] to model 2-D blurred step edges.
Most previous works on step change CRLBs have focused on the step location parameter, as if it were

decoupled from the step amplitude and the noise means and variances. However, the computation of the FIM
for the signal and noise parameters clearly shows that the estimation of the step location cannot generally be
decoupled from that of the other parameters. This paper derives asymptotic signal and noise parameter CRLBs
for step-like signals corrupted by additive and/or multiplicative Gaussian noises. It is important to note that
these CRLBs take into account the coupling between signal and noise parameters. The asymptotic (when the
number of samples tends to in5nity) decoupling between the step location and the other parameters is also
discussed.
The problem is formulated in Section 2. Section 3 derives closed-form expressions for the CRLB of the

parameters of an ideal step change with known change location. Section 4 studies signal and noise CRLBs
for an unknown change location. The step-like signals are modeled by a sigmoidal function with rise-time
parameter 
. The major contributions of this section are to show that 1) the asymptotic (step rise parameter

 → ∞, and number of samples N → ∞) noise parameter and step amplitude CRLBs obtained for an
unknown change-point location t0 equal the ideal step CRLBs derived for a known change-point location t0,
2) the step location is asymptotically (N → ∞) decoupled from the other parameters, which yields interesting
closed-form expressions for the step location CRLBs. Section 5 compares the noise and step change parameter
CRLBs to the corresponding mean square errors (MSEs) of the MLEs, in the pure multiplicative noise case.
Section 6 discusses generalization to multiplicative colored noise modeled as an autoregressive (AR) process.

2. Problem formulation

The noisy steplike signal is modeled by

y(t) = g(t)s
(t) + v(t) = g(t)s(
(t − t0)) + v(t); (1)

where t0 is the actual change location, 
 is a rise-time parameter, s(t) models the change-point shape and
g(t), v(t) are the multiplicative and additive noises, respectively. This paper adopts the sigmoidal function to



model the change-point shape, de5ned by [17,22]

s
(t) =
1 + A+ e−
(t−t0)

1 + e−
(t−t0)
: (2)

Parameter 
 determines how fast or slow the noise-free signal s
(t) changes its amplitude from 1 to 1 + A.
In particular, the sigmoidal function approaches the ideal step when parameter 
 approaches in5nity. The
sampled noisy signal is obtained by setting t= nT , n=1; : : : ; N , where T is the sampling period (without loss
of generality, T = 1 in this paper). The sampled noise-free signal can then be written s
(n) = s(
(nT − t0)),
where t0 =(n0 +�)T is the actual change location, n0 is the sample point after which there is a sudden change
in the signal and � is a deterministic parameter such that �∈ [0; 1] (note that parameter � was alternatively
modeled as a random variable or a deterministic parameter in [17,21,22]). The multiplicative noise sequence
g(n) is assumed to be an iid Gaussian sequence with mean �g and variance �2g. The additive noise sequence
v(n) is assumed to be zero-mean iid Gaussian with variance �2v . The sequences g(n) and v(n) are assumed
statistically independent.
The signal de5ned in (1) can represent a line in an SAR image intensity corrupted by multiplicative speckle

noise (in the case of two diIerent terrain 5elds imaged by the SAR). The speckle noise is usually modeled as
a stationary non-Gaussian process (distributed according to a Gamma distribution). However, in some SAR
image processing systems, the speckle is reduced by incoherently averaging Ni uncorrelated images. When
Ni is su8ciently large, the resulting reduced-speckle image intensities are approximately Gaussian distributed
(using the central limit theorem) [4]. This paper is applicable to SAR imaging systems for which the Gaussian
assumption for gn and vn is valid. However, it is interesting to note that the non-Gaussian case could also be
considered in the purely additive and purely multiplicative noise cases (using appropriate scalar multipliers,
see [20,22]).

3. CRLBs for an ideal change point with known location

Denote by H (t) the Heaviside function (H (t)=1 if t ¿ 0 and H (t)=0 else). In this section, it is assumed
that 
 → ∞, and that the change-point location t = 0 is know; hence the noise free signal is s∞(t) = 1 +
AH (t− t0) with amplitude A¿− 1 (the SAR image intensity is positive) and a known change-point location
t0. The parameter A is referred to as fractional step change or step amplitude. Note that a similar model
s∞(t) = m2 + m1H (t − t0) (with unknown parameters m1 and m2) has been considered in [17]. However,
the proposed model is not restrictive since one is interested in relative changes. The unknown parameter
vector is � = [�g; �2g; �

2
v ; A]

T, where �g �= 0. Note that the condition �g �= 0 (which is not restrictive in SAR
imagery since �g = 1) is necessary to ensure the identi5ability of the unknown parameters. Indeed, under the
Gaussian assumption, the probability density function (pdf) the observations only depends on the means and
variances of the two segments before and after the change, i.e., �b = �g; �a = �g(1 + A); �2b = �2v + �2g and
�2a = �2v + �2g(1 + A)2, respectively. When �g = 0, the means before and after the change are both zero so
that we have three equations and four unknowns, which results in a loss of identi5ability. Even if we know
that �g = 0, we still have loss of identi5ability; this is discussed further after Eq. (6). This section derives
closed-form expressions for the CRLB of the unknown parameter vector �. It is important to note that the
Cramer–Rao inequality is subjected to regularity conditions which are satis5ed when the change location t0
is known (as shown in Appendix A).
Eq. (1) shows that the observation vector y=[y(1); : : : ; y(N )]T is Gaussian with mean My(�) and covariance

matrix Ry(�) de5ned by

My(�) = �gS∞1N ; Ry(�) = �2gS
2
∞ + �2v IN ; (3)

where 1N=[1; : : : ; 1]T, S∞=diag(s∞(1); : : : ; s∞(N )) (diagonal matrix whose elements are s∞(i)) and IN is the
N × N identity matrix. After dropping some constants, the Gaussian log-likelihood function



reduces to

Ly(�) =−1
2

N∑
i=1

[y(i)− �gs∞(i)]2

�2gs2∞(i) + �2v
− 1

2

N∑
i=1

log(�2gs
2
∞(i) + �2v): (4)

By diIerentiating Ly(�) with respect to � = [�g; �2g; �
2
v ; A]

T, the FIM of � for a known change-point location
can be expressed as follows:

I∗(∞) =




Nr
�2b

+ N (1−r)(1+A)2

�2a
0 0

N�g (1−r)(1+A)
�2a

0 Nr
2�4b

+ N (1−r)(1+A)4

2�4a
Nr
2�4b

+ N (1−r)(1+A)2

2�4a

N (1−r)�2g(1+A)
3

�4a

0 Nr
2�4b

+ N (1−r)(1+A)4

2�4a
Nr
2�4b

+ N (1−r)
2�4a

N�2g(1−r)(1+A)
�4a

N�g (1−r)(1+A)
�2a

N (1−r)�2g(1+A)
2

�4a

�2gN (1−r)(1+A)
�4a

N�2g (1−r)

�2a
+ 2

N�4g(1−r)(1+A)2

�4a




(5)

where r = n0=N is the fractional location of the step change. The expression of I∗(∞) shows that the pa-
rameter estimators are not automatically decoupled, even when the change-point location is known. The FIM
determinant can be expressed as

det I∗(∞) =
N 4r2(r − 1)2A2(A+ 2)2�2g

4�6b�
6
a

: (6)

Eq. (6) shows that the FIM is singular for �g = 0 which reMects the loss of identi5ability discussed earlier.
When �g �= 0, the FIM is non-singular and its inverse yields the signal and noise parameter CRLBs. Note
that identi5ability is obviously lost when r = 0 or r = 1, corresponding to a step change just before or after
the observation window. We consider the following cases separately: (A) Pure multiplicative noise: g(t) is iid
Gaussian (�2v =0), (B) Pure additive noise: v(t) is iid Gaussian (�2g =0) and (C) Additive and multiplicative
noises: g(t) and v(t) are iid Gaussian mutually independent sequences.

3.1. Pure multiplicative noise (�2v = 0)

From the FIM expression, we obtain the CRLBs of �g, �2g and A:

CRLBm(�g) =
�2g
N

2 +
�2g
r�2g

2 +
�2g
�2g

; CRLBm(�2g) =
2�4g
rN

2 +
r�2g
�2g

2 +
�2g
�2g

;

CRLBm(A) =
(1 + A)2

Nr(1− r)(2 +
�2g
�2g
)
; (7)

where we recall r = n0
N . The following observations follow from (7):

• For r=1 (n0=N ), CRLBm(�g) and CRLBm(�2g) are identical to the well-known CRLBs obtained for white

Gaussian noise with mean �g and variance �2g, i.e.,
�2g
N and

2�4g
N [11, p. 61].

• For r=0 or r=1, CRLBm(A) is in5nite: when the change-point occurs before the 5rst sample or after the
last sample of y(n), the change parameters cannot be estimated. For a 5xed vector [�g; �2g; A]

T, CRLBm(A)
is minimum when r(1− r) is maximum, i.e., r=1=2. Consequently, the best estimate is obtained when the



change-point is in the middle of the observation window. Moreover, the CRLB for parameter A is very
similar when r ∈ [1=5; 4=5] as noticed in [21].

3.2. Pure additive noise (�2g = 0)

The CRLBs of �g; �2v and A are:

CRLBa(A) =
[(1 + A)2 − rA(2 + A)]�2v

r(1− r)�2gN
;CRLBa(�g) =

�2v
rN

;CRLBa(�2v) =
2�4v
N

: (8)

The following observations follow from (8):

• For r = 0, CRLBa(�g) is in5nite. The observations y(n) are Gaussian with mean �g(1 + A) and variance
�2v . Consequently, it is impossible to estimate independently parameters �g and A (loss of identi5ability),

• CRLBa(�2v) does not depend on the change-point position in the observation window. This is natural since
there is no variance jump (the variance is the same before and after the change),

• For r = 0 or r = 1, CRLBa(A) is in5nite: when the change point occurs before the 5rst sample or after
the last sample of y(n), the change-point parameters cannot be estimated. Moreover, for a 5xed vector
[�g; �2v ; A]

T, CRLBa(A) is minimum when the integrated means before and after the step change are equal,
i.e., rN = (1− r)(1 + A) or r = rmin = (A+ 1)=(A+ 2). Note that rmin is close 1=2 for small values of A,
i.e., for weak changes.

3.3. Additive and multiplicative noises

This subsection focuses on the CRLBs for the mean of the multiplicative noise and the fractional step
change, since the closed-form expresssions for the noise variance CRLBs are more di8cult to interpret (see
[7] for more details). Straightforward computations yield

CRLBam(A) =
(�2v + �2g)(1 + A)2 − rA(2 + A)�2v

Nr(1− r)�2g
;CRLBam(�g) =

�2g + �2v
Nr

: (9)

The following observations follow from (9):

• For r = 0 or r = 1, CRLBam(A) is in5nite. Moreover, for a 5xed vector �= [�g; �2g; �
2
v ; A]

T, CRLBam(A) is

minimum for r = (A+1)�b�a−(A+1)2�2b
A(A+2)�2v

= 1
2 − A

4 + o(A), where limA→0
o(A)
A = 0. In other words, the minimum

fractional step change CRLB is close to 1=2 for small values of A,
• The pure additive case can be obtained from (9) by setting �2g = 0.

4. CRLBS for an unknown location

The unknown parameter vector is �=[�g; �2g; �
2
v ; A; t0]

T. The Gaussian log-likelihood function corresponding
to an ideal step only depends on the integer part of t0, such that there is loss of identi5ability. Moreover,
Eq. (4) cannot be diIerentiated with respect to t0, which prevents one from computing the FIM. This paper
proposes to model the change-point shape by the sigmoidal function de5ned in (2). The 5rst part of this section
explains how to adjust the rise-time parameter which appears in the de5nition of the sigmoidal function. The
next two parts of this section study the asymptotic step amplitude and step location CRLBs when the change
point is modeled by this sigmoidal function.



4.1. Rise time parameter 


For a 5nite sigmoidal parameter 
, the FIM of � can be computed by diIerentiating the log-likelihood
function de5ned in (4). The FIM inverse yields the noise and signal parameter CRLBs. However, this assumes
that the rise-time parameter is known a priori. Several approaches have been proposed in the literature to
determine an appropriate value of the rise-time parameter 
. In [17], the rise time is de5ned as the time that
it takes the signal to change its amplitude from 10% to 90%. Assuming that the rise time for the noise-free
signal is approximately less than or equal to T , Reza et al. have provided the following upper bound for 
:


6
2 ln 9
T

� 4:4
T
: (10)

However, the authors of [17] also note that the exact value of 
 can be obtained from speci5cations of the
steplike signal and the characteristics of the anti-aliasing 5lter employed before sampling. To take into account
the 5nite processing bandwidth, Bartov et al. [1] proposed to 5lter the received signal by a band-limited 5lter
(whose impulse response is a cubic spline) and to sample the 5ltered signal at the Nyquist rate. In other
words, the steplike signal was modeled by a 5ltered version of the Heaviside function. A similar approach
was suggested in [10] to model edge pro5les in images. In this particular case, a Gaussian 5lter was shown to
model accurately the blurring caused by an imaging system’s optics. This paper uses a similar strategy where
the anti-aliasing 5lter has been chosen such that its output is a sigmoidal function when it is driven by the
ideal step s∞(t). Consequently, the impulse–response of the anti-aliasing 5lter denoted h
(t) is chosen such
that s∞(t) ∗ h
(t) = s
(t). We note that h
(t) and its Fourier transform H
(f) are given by:

h
(t) =

e−
t

(1 + e−
t)2
; H
(f) =

∫ ∞

−∞
h
(t)e−j2&ft dt =

2f&2

sinh(2f&2)
; (11)

where sinh(:) is the hyperbolic sine function. By de5ning the spectral bandwidth of s
(t) as the distance
between the half-power points of |H
(f)|2 (see for instance [15, p. 514]), we propose to optimize the value
of 
 such that the bandwidth of s
(t) is lower than 1

T , according to the Nyquist criterion. This strategy
provides the following relation:


6
6:62
T

: (12)

Note that many diIerent de5nitions of 5lter bandwidth may be found in the literature (see for instance [15,
p. 520]), and each would provide a diIerent value of the rise-time parameter 
.

4.2. Asymptotic step amplitude CRLBs (
 → ∞; N → ∞)

For a 5nite rise-time parameter 
, the FIM of the unknown parameter vector � can be computed (see
Appendix A.2 for details). The diagonal elements of the FIM inverse yield the signal and noise CRLBs.
Unfortunately, the closed-form expressions are given as sums which are di8cult to study. Instead, this section
studies the asymptotic step amplitude CRLBs de5ned by setting 
=∞. Similar results would be obtained for
the asymptotic noise parameter CRLBs.
Fig. 1 displays the step amplitude CRLBs as a function of 
, in the presence of additive or/and multiplicative

noise (the true parameters are N = 100, T = 1, t0 = N=2, i.e., r = 1=2, �g = 1, �2g = 1 and �2v = 1). As can be
seen, the step amplitude CRLBs converge quickly to 5nite values (the asymptotic step change CRLBs), as
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 increases. To explain this result, we have studied the behaviour of the FIM elements (given in Appendix
A.2) when 
 → ∞. Eq. (A.14) shows that the asymptotic equivalent FIM can be partitioned as follows:

I(
) =




I�g t0(
)
I∗(
) I�2gt0 (
)

I�2v t0 (
)
IAt0 (
)

I�gt0 (
) I�2gt0 (
) I�2v t0 (
) IAt0 (
) It0t0 (
)


 : (13)

The limit of the upper left 4× 4 FIM submatrix I∗(
) (corresponding to known t0) is the non-singular matrix
I∗(∞) computed in (5) with det(I∗(∞)) �= 0. In Appendix A.3 we have derived closed-form expressions for
the asymptotic equivalent terms for I�gt0 (
), I�2gt0 (
); I�2v t0 ; IAt0 (
) and It0t0 (
) when 
 → ∞. These asymptotic
equivalent terms lead to the following results:

• for � �= 0,

lim

→∞ I�gt0 (
) = lim


→∞ I�2gt0 = lim

→∞ I�2v t0 (
) = lim


→∞ IAt0 (
) = lim

→∞ It0t0 (
) = 0; (14)

• for �= 0,

lim

→∞ I�gt0 (
) = lim


→∞ I�2gt0 = lim

→∞ I�2v t0 (
) = lim


→∞ IAt0 (
) = lim

→∞ It0t0 (
) =∞: (15)

These equations show that, for any value of �, the ratio between the minor associated with the step amplitude
and the determinant of I(
) is indeterminate ( 00 or ∞

∞) for 
=∞. A possibility for removing the indetermination
consists of inverting the asymptotic equivalent FIM (derived in Eq. (A.14) of Appendix A.2) and setting 
=∞.
Straightforward computations lead to the closed-form expressions for asymptotic step amplitude CRLBs derived
in Appendix A.4. These expressions are diIerent, depending on the value of the unknown parameter �.
However, by assuming that r and 1−r are bounded (i.e., the changepoint is not too close from the edges of

the observation window), the asymptotic step change CRLBs for pure multiplicative noise, pure additive noise
and both noises (denoted CRLB∞

m (A), CRLB∞
a (A) and CRLB∞

am(A)), respectively satisfy the same relations



(Mathematica 5les are available in [7]):

CRLB∞
m (A) = CRLBm(A)

(
1 + O

(
1
N

))
; (16)

CRLB∞
a (A) = CRLBa(A)

(
1 + O

(
1
N

))
; (17)

CRLB∞
am(A) = CRLBam(A)

(
1 + O

(
1
N

))
; (18)

where NO(1=N ) remains bounded when N → ∞. These equations show that the step-amplitude CRLBs
for an unknown change-point location can be approximated by the step-amplitude CRLBs obtained for a
known change-point location (derived in Section 3), for large values of 
 and N . Consequently, the simple
step amplitude closed-form expressions derived in Section 3 (see (7)–(9)) can be used to approximate step
amplitude CRLBs for steplike signals with unknown change-point locations. This property is illustrated in
Fig. 1, which displays the exact and asymptotic step amplitude CRLBs as a function of 
 (the true parameters
are N = 100, T = 1, t0 = N=2, A= 0:5, �g = 1, �2g = 1 and �2v = 1). Fig 1 also provides the convergence rate
of step amplitude CRLBs to their asymptotic values when 
 increases. It is important to note that, for large
values of 
, the step-amplitude CRLBs do not depend on �, contrary to the change-point location CRLBs.

4.3. Asymptotic step location CRLBs (N → ∞)

For a 5nite value of 
, the step location CRLB is de5ned by

CRLB(t0) =
det I∗(
)
det I(
)

: (19)

When 
 → ∞, there is loss of identi5ability regarding the change-point parameter t0 (for 
 =∞, the same
signal is obtained for any value of t0 in [n0; n0 +1[), which results in a singular FIM. By using (6), (14) and
(15), the following results can be obtained:

• � �= 0

lim

→∞CRLB


a(t0) = lim

→∞CRLB


m(t0) = lim

→∞CRLB


am(t0) =∞; (20)

• �= 0

lim

→∞CRLB


a(t0) = lim

→∞CRLB


m(t0) = lim

→∞CRLB


am(t0) = 0: (21)

As can be seen, the step location CRLBs (obtained in the presence of additive and/or multiplicative noise)
converge to ∞ or 0, depending on the value of � (note that the results obtained for �=0 have been emphasized
in [1], in the case of a pure additive noise). Consequently, the behaviour of the step-location CRLBs when

 → ∞ diIers from that of the step-amplitude CRLBs which converge to positive constants when 
 → ∞
(see (16)–(18)).
Of course, for a 5nite rise-time parameter 
, the step-location CRLBs can be computed from the FIM of the

unknown parameter vector � derived in Appendix A.2. However, these expressions are not simple to study.
Instead this section shows that the step-location CRLBs in the presence of additive and/or multiplicative noise
are approximately decoupled from the other CRLBs, for large values of N . This result leads to interesting
approximations of the step location CRLBs, which are valid for large values of N .
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For this, it is important to note that s
(i), f
(i) and @s
(i)
@A are bounded as follows

16 s
(i)6 1 + A; �2v + �2g6f
(i)6 �2v + �2g(1 + A)2; 06
@s
(i)
@A

6 1: (22)

From these inequalities, it follows that all terms of I∗(
) are of the form NO(1). Similarly, it can be shown
that I�gt0 (
), I�2gt0 (
), I�2v t0 (
), IAt0 (
) and It0t0 (
) are of the form O(1). By expanding det I(
) with respect
to its last column, the asymptotic step location CRLBs computed for a 5nite rise-time parameter 
 denoted
CRLB
(t0) can be shown to satisfy the following relation

lim
N→∞

CRLB
(t0)
1=It0t0 (
)

= 1: (23)

In other words, the step location is decoupled from the other parameters, when N → ∞. Consequently,
the step-location CRLBs, in the presence of additive and/or multiplicative noise can be approximated by
the decoupled CRLBs for large values of N . This result is illustrated in Fig. 2, which shows a comparison
between the step-location CRLBs obtained by assuming coupling and decoupling (in the decoupling case
CRLB
(t0) = 1=It0t0 (
)) with the following parameters N =200, T =1, t0 =N=2, i.e., r=1=2, A=0:5, �g =1,
�2g = 1 and �2v = 1. Both bounds are clearly similar when the changepoint is not too close to the edges of
observation window. When decoupling is a reasonable assumption, the change-point location CRLBs can be
expressed by the following closed-form expressions [20–22]:
Additive noise

CRLB

a(t0) �

16

2A2

(
�2g
�2v

N∑
k=1

cosh−4(
(kT − t0)=2)

)−1

: (24)

Multiplicative noise

CRLB

m(t0) �

16

2A2

(
2�2g + �2g

�2g

N∑
k=1

1
s2
(k)

cosh−4(
(kT − t0)=2)

)−1

: (25)



Additive and multiplicative noise

CRLB

am(t0) �

16

2A2


2�2g + �2g

�2v

N∑
k=1

(
1 +

�2g
�2v
s2
(k)

)−1

cosh−4(
(kT − t0)=2)

−2
�2g
�2v

N∑
k=1

(
1 +

�2g
�2v
s2
(k)

)−2

cosh−4(
(kT − t0)=2)




−1

: (26)

5. Model parameter estimation

This section addresses the problem of comparing the CRLBs computed in the previous sections to the MSEs
of the maximum likelihood estimates (MLEs) for the pure multiplicative noise case (g(t) is iid Gaussian and
�2v =0). The other cases (pure additive noise or additive and multiplicative noises) could be studied similarly.
The vector of unknown parameters is � = [�g; �2g; A; t0]

T. The MLE of � has been derived in [9] and [23].
The maximization of the Gaussian likelihood function of y = [y(1); : : : ; y(N )]T with respect to � reduces to
the maximization of the following criterion with respect to the signal parameters (A; t0):

U (A; t0;y) =−
N∑
i=1

ln s
(i)− N
2
ln


 N∑

i=1

(
y(i)
s
(i)

− 1
N

N∑
i=1

y(i)
s
(i)

)2 : (27)

Moreover, the MLEs of the multiplicative noise parameters are the conventional mean and variance estimators
for the vector [ y(1)s
(1)

; : : : ; y(N )
s
(N ) ]

T:

�̂g =
1
N

N∑
i=1

y(i)
s
(i)

; �̂2g =
1
N

N∑
i=1

(
y(i)
s
(i)

− �̂g

)2
: (28)

We propose to optimize the cost function U (A; t0;y) with respect to A and t0=N (as in [9]) by using the
BFGS quasi-Newton algorithm with the following constraints 0¡t0=N ¡ 1 and 0¡A¡Am, where Am is an
upper bound on the step-change parameter A (Am = 10 in our simulations). Once the contrast function has
been optimized, the ML estimates of the noise parameters are computed as in (28). Figs. 3–6 display the
MSEs of the ML estimates for the signal and noise parameters and the corresponding exact and asymptotic
CRLBs (see (7) and (26)) as a function of the number of samples. The MSEs have been computed from
1000 Monte Carlo runs with the following signal and noise parameters: �g = 1, �2g = 1, A= 1 and t0=N = 1

2 .
The shape parameter for the sigmoidal function is 
 = 1. These simulations illustrate the convergence of the
ML estimator in the context of abrupt changes corrupted by multiplicative noise (which has been studied for
instance in [12] and [5]) and its asymptotic e8ciency.

6. Extension to correlated multiplicative noise

An interesting question is the following: “Are the previous results regarding asymptotic step amplitude
and location CRLBs still valid when the multiplicative noise is correlated?” To answer this question, assume
that the multiplicative noise can be modeled as g(n) = �g + g̃(n), where g̃(n) is a zero-mean Gaussian
stationary AR(p) process with parameters �2g and a = [a1; : : : ; ap]T (a0 = 1). Since the observation vector
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Fig. 4. CRLBs and MSE for parameter �2g (pure multiplicative
noise).
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Fig. 6. CRLB and MSE for parameter t0=N (pure multiplicative
noise).

y = [y(1); : : : ; y(N )]T is Gaussian, many equivalent expressions for the FIM of � have been proposed in the
literature. We use the following expression [18, p. 289]:

[I(
)]kl =
1
2
tr
(
R−1
y (�)

@Ry(�)
@�k

R−1
y (�)

@Ry(�)
@�l

)
+
(
@My(�)
@�k

)T
R−1
y (�)

@My(�)
@�l

; (29)

where tr (:) denotes the trace operator and My(�), Ry(�) are the mean and the N ×N covariance matrix of the
observation vector y. As can be seen in (29), the FIM of � can be determined, provided the partial derivatives
of My(�) and Ry(�) with respect to the unknown parameters can be computed. We can readily express My(�)



and Ry(�) as a function of the unknown signal and noise parameters. The mean of the observation vector is

My(�) = �gS
 = �g[s
(1); : : : ; s
(N )]T: (30)

The inverse covariance matrix of the multiplicative noise can be expressed as a function of the model param-
eters �2g and a with the Gohberg–Semencul formula [18, p. 125]:

R−1
g (�) =

1
�2g

(FFT − GGT); (31)

where F = (fij) and G = (gij) are the N × N lower triangular matrices de5ned by

fij =




1 if i = j

ai−j if i¿ j

0 if i¡ j

and gij =

{
ap−i+j if i¿ j;

0 if i¡ j;
(32)

a0 = 1 and ai = 0 for i¿p and i¡ 0. Consequently, Ry(�) is expressed as follows:

Ry(�) = �2gD
(FFT − GGT)−1D
 + �2v IN ; (33)

where IN is the N ×N identity matrix and D
 =diag(s
(1); : : : ; s
(N )) is the diagonal matrix whose elements
are s
(i), i=1; : : : ; N . The derivatives of My(�) and Ry(�) with respect to the unknown parameters (computed
from (30) and (33)) are summarized in Appendix A.5. From these derivatives and (29), one can compute the
unknown parameter FIMs and CRLBs.
We again focus on the pure multiplicative colored noise case (g̃(n) is a zero-mean AR(p) Gaussian process

and �2v = 0). The unknown parameter vector is � = [a; �g; �2g; A; t0]
T. The estimation of deterministic signals

corrupted by pure multiplicative autoregressive noise (referred to as amplitude-modulated signals) has been
intensively studied in [9]. In particular, by expressing the quadratic form in the observations, appearing in
the likelihood function, as a quadratic form in the AR parameters, Ghogho and Garel derived an interesting
expression for the FIM (see proposition 1 of [9]). In this expression, many FIM entries involve matrices of
size (p + 1) × (p + 1) instead of matrices of size N × N (as those given in [8]), which results in better
conditioned FIMs. Unfortunately, closed-form expressions of the FIM inverses are di8cult to obtain, which
prevents any theoretical analysis. This section shows via a typical example that the asymptotic step amplitude
(
 → ∞; N → ∞) and asymptotic decoupled step location CRLBs (N → ∞) provide good approximations
for the exact-step amplitude and location CRLBs.

6.1. Asymptotic step amplitude CRLBs (
 → ∞; N → ∞)

Fig. 7 displays the step amplitude CRLB as a function of 
, in the presence of pure multiplicative colored
noise (the parameters are N = 200, T = 1, t0 = N=2, A= 0:5, �g = 1, �2g = 1, a= [− 0:2; 0:153]T and �2v = 1).
As can be seen, the step amplitude CRLB converges quickly to its asymptotic values, when 
 increases.

6.2. Asymptotic step location CRLBs (N → ∞)

Looking carefully at proposition 1 of [9], we can see that some terms related to AR parameters such as
Iai�2v are independent of N . Consequently, the step location parameter is not asymptotically decoupled from
the other parameters, as in the case of white multiplicative noise. Fig. 8 displays the step location CRLBs in
the presence of pure colored multiplicative noise, by assuming coupling and decoupling (the parameters are
N = 200, T = 1, t0 = N=2, A = 0:5, �g = 1, �2g = 1, a = [ − 0:2; 0:153]T and �2v = 1). This 5gure shows that
(despite coupling between the step location and the other parameters) the asymptotic decoupled step-location
CRLBs provide a good approximation for the exact step-location CRLBs.
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7. Conclusions

This paper has derived and studied interesting CRLB closed-form expressions for the parameters of change
points corrupted by additive and multiplicative white Gaussian noises:

• The step change and noise parameter CRLBs for an unknown change location can be approximated
accurately with the asymptotic (
 → ∞; N → ∞) bounds computed for a known-step location,

• The step location parameter is asymptotically (N → ∞) decoupled from the step change and noise pa-
rameters. Consequently, the CRLBs for this parameter can be computed as if the other parameters were
known, yielding simpler closed-form expressions.
The CRLBs for the change-point and noise parameters have been compared with the MSEs of the corre-

sponding maximum likelihood estimators. This comparison has illustrated the well-known convergence and



asymptotic e8ciency of this estimator. Most results have been obtained by assuming that the multiplicative
noise is white and Gaussian. However, extensions to colored multiplicative noise were also discussed.

Appendix A.

A.1. Regularity conditions for Cram+er–Rao inequality

Suppose that �̂(y) is an unbiased estimate of the parameter vector �∈/, where / is an open interval
referred to as the parameter space. Denote as py(�) the probability density function of the observation vector
y = [y(1); : : : ; y(N )]T ∈0, where 0 is the observation space. The regularity conditions for the CramUer–Rao
inequality can be de5ned as follows [14, p. 169]:

1. @py(�)
@� exists and is 5nite for all �∈/ and all y in the support of py(�).

2.
∫
0

@py(�)
@� dy = @

@�

∫
0 py(�) dy = 0, for all �∈/.

3. @2py(�)
@� 2 exists and is 5nite for all �∈/ and all y in the support of py(�).

4.
∫
0

@2py(�)
@� 2 dy = @2

@� 2

∫
0 py(�) dy = 0, for all �∈/.

When these conditions are satis5ed, the variance of any unbiased estimate �̂(y) such that
∫
0 �̂(y)

@py(�)
@� dy =

@
@�

∫
0 �̂(y)py(�) dy satis5es the CramUer–Rao inequality:

Var[�̂(y)]¿ I−1
� ; (A.1)

where I� is the Fisher information matrix of �. This appendix explains how the previous regularity conditions
can be veri5ed for model (1) in the case of a known change location t0. In this case, the unknown parameter
vector is � = [�g; �2g; �

2
v ; A]

T. Conditions (1) and (3) are obviously satis5ed since py(�) is the pdf of the
Gaussian distribution with mean My(�) and covariance matrix Ry(�). To verify Conditions (2) and (4) for
�i = �j = �g, we have to diIerentiate py(�) = exp(Ly(�)) with respect to �g:

@py(�)
@�g

= py(�)
N∑
i=1

s∞(i)[y(i)− �gs∞(i)]
�2gs2∞(i) + �2v

; (A.2)

@2py(�)
@�2g

= py(�)

(
N∑
i=1

s∞(i)[y(i)− �gs∞(i)]
�2gs2∞(i) + �2v

)2
− py(�)

N∑
i=1

s2∞(i)
�2gs2∞(i) + �2v

: (A.3)

Since E[y(i)]=�gs∞(i) and cov(y(i); y(j))=E[(y(i)−�gs∞(i))(y(j)−�gs∞(j))]=0 for i �= j, the following
results are obtained:∫

0

@py(�)
@�g

dy = 0; (A.4)

∫
0

@2py(�)
@�2g

dy = 0: (A.5)

Similar results can be easily obtained for any (�i; �j)∈{�g; �2g; �2v ; A}2 which allow to show that all the
regularity conditions are veri5ed for model (1) in the case of a known change location t0.



A.2. FIM for � = [�g; �2g; �
2
v ; A; t0]

T in the presence of additive and multiplicative iid Gaussian noises
(unknown change-point location)

I(
) =




I�g�g 0 0 I�gA I�gt0

0 I�2g�2g I�2g�2v I�2gA I�2gt0

0 I�2v �2g I�2v �2v I�2vA I�2v t0

IA�g IA�2g IA�2v IAA IAt0

It0�g It0�2g It0�2v It0A It0t0



; (A.6)

where f
(i) = �2v + �2gs
2

(i) and

I�g�g =
N∑
i=1

s2
(i)
f
(i)

; I�gA = IA�g = �g
N∑
i=1

s
(i)
f
(i)

@s
(i)
@A

; I�2g�2g =
1
2

N∑
i=1

s4
(i)
f2

 (i)

; (A.7)

I�2g�2v = I�2v �2g =
1
2

N∑
i=1

s2
(i)
f2

 (i)

; I�2gA = IA�2g = �2g

N∑
i=1

s3
(i)
@s
(i)
@A

f2

 (i)

; (A.8)

I�2vA = IA�2v = �2g

N∑
i=1

s
(i)
@s
(i)
@A

f2

 (i)

; I�2v t0 = It0�2v = �2g

N∑
i=1

s
(i)
@s
(i)
@t0

f2

 (i)

; (A.9)

I�2v �2v =
1
2

N∑
i=1

1
f2

 (i)

; IAA = 2�4g

N∑
i=1

s2
(i)(
@s
(i)
@A )2

f2

 (i)

+ �2g

N∑
i=1

( @s
(i)@A )2

f
(i)
; (A.10)

It0�g = I�gt0 = �g
N∑
i=1

s
(i)
f
(i)

@s
(i)
@t0

; It0�2g = I�2gt0 = �2g

N∑
i=1

s3
(i)
@s
(i)
@t0

f2

 (i)

; (A.11)

It0A = IAt0 = 2�4g

N∑
i=1

s2
(i)
@s
(i)
@A

@s
(i)
@t0

f2

 (i)

+ �2g

N∑
i=1

@s
(i)
@A

@s
(i)
@t0

f
(i)
; (A.12)

It0t0 = 2�4g

N∑
i=1

s2
(i)(
@s
(i)
@t0

)2

f2

 (i)

+ �2g

N∑
i=1

( @s
(i)@t0
)2

f
(i)
: (A.13)

As explained in [19], IAA, IAt0 and It0t0 consist of two terms: the 5rst term disappears if the multiplicative
noise is zero mean, and the second term disappears if the multiplicative noise has zero variance.

A.3. Asymptotic equivalent FIM for �= [�g; �2g; �
2
v ; A]

T when 
 → ∞ (unknown change-point location)

Ĩ(
) =




Ĩ �g�g 0 0 Ĩ �gA Ĩ �gt0

0 Ĩ �2g�2g Ĩ �2g�2v Ĩ �2gA Ĩ �2gt0

0 Ĩ �2v �2g Ĩ �2v �2v Ĩ �2vA Ĩ �2v t0

Ĩ A�g Ĩ A�2g Ĩ A�2v Ĩ AA Ĩ At0

Ĩ t0�g Ĩ t0�2g Ĩ t0�2v Ĩ t0A It0t0



; (A.14)



where

Ĩ �g�g =
Nr
�2b

+
N (1− r)(1 + A)2

�2a
; Ĩ �gA =

N�g(1− r)(1 + A)
�2a

; (A.15)

Ĩ �2g�2g =
Nr
2�4b

+
N (1− r)(1 + A)4

2�4a
; Ĩ �2g�2v =

Nr
2�4b

+
N (1− r)(1 + A)2

2�4a
; (A.16)

Ĩ �2gA =
N (1− r)�2g(1 + A)3

�4a
; Ĩ �2v �2v =

Nr
2�4b

+
N (1− r)

2�4a
; (A.17)

Ĩ �2gA =
N (1− r)�2g(1 + A)

�4a
; Ĩ AA =

N�2g(1− r)

�4a
+ 2

N�4g(1− r)(1 + A)2

�4a
; (A.18)

Ĩ �gt0 =−�g
(
A

�2b

e−
� +

A(1 + A)

�2a
e
(�−1)

)
; (A.19)

Ĩ �2gt0 =−�2g
(
A

�4b

e−
� +

A(1 + A)3

�4a
e
(�−1)

)
; (A.20)

Ĩ �2v t0 =−�2g
(
A

�4b

e−
� +

A(1 + A)

�4a
e
(�−1)

)
; (A.21)

Ĩ At0 =−2�4g

(
A

�4b

e−2
� +

A(1 + A)2

�4a
e
(�−1)

)
− �2g

(
A

�2b

e−2
� +

A
�2a

e
(�−1)
)
; (A.22)

Ĩ t0t0 = 2�4g

(
A2
2

�4b
e−2
� +


2A2(1 + A)4

�4a
e2
(�−1)

)
+ �2g

(
A2
2

�2b
e−2
� +


2A2

�2a
e2
(�−1)

)
: (A.23)

A.4. Asymptotic step-amplitude CRLBs (unknown change-point location)

Straightforward computations yield the following asymptotic step-amplitude CRLBs:
Additive noise
�¿ 0:5

CRLB∞
a (A) = CRLBa(A)

1− 1
N

1
(1+A)2−rA(2+A)

1− 1
Nr

; (A.24)

�¡ 0:5

CRLB∞
a (A) = CRLBa(A)

1− 1
N

(A+1)2

(1+A)2−rA(2+A)

1 + 1
N (r−1)

: (A.25)

Multiplicative noise
�¿ 0:5

CRLB∞
m (A) = CRLBm(A)

N − 1
N

1− r
1− r − 1=N

; (A.26)

�¡ 0:5

CRLB∞
m (A) = CRLBm(A)

N − 1
N

r
r − 1=N

: (A.27)



Additive and multiplicative noise
�¿ 0:5

CRLB∞
am(A) = CRLB∞

am(A)

(
1 +

1
1 + N (r − 1)

r�2g�
4
a

(2(1 + A)2�4g + �2g�2a)((1 + A)2�2b(r − 1)− �2ar)

)
;

(A.28)

�¡ 0:5

CRLB∞
am(A) = CRLB∞

am(A)

(
1 +

1
Nr − 1

(r − 1)�2g�
4
b(1 + A)2

((1 + A)2�2b(r − 1)− r�2a)(2�4g + �2b�
2
g)

)
: (A.29)

A.5. FIM of �= [a; �g; �2g; �
2
v ; A; t0]

T (additive iid Gaussian noise, multiplicative correlated Gaussian noise
and unknown change-point location)

Recall that S
=[s
(1); : : : ; s
(N )]T, D
=diag(s
(1); : : : ; s
(N )) and that My(�), Ry(�) denote the mean and
the covariance matrix of the observation vector y= [y(1); : : : ; y(N )]T. The FIM of �= [a; �g; �2g; �

2
v ; A; t0]

T, in
the presence of additive white Gaussian noise and multiplicative correlated Gaussian noise is

I(
)

=




Iaa 0 Ia�2g Ia�2v IaA Iat0

0 I�g�g 0 0 I�gA I�gt0

I�2ga 0 I�2g�2g I�2g�2v I�2gA I�2gt0

I�2v a 0 I�2v �2g I�2v �2v I�2vA I�2v t0

IAa IA�g IA�2g IA�2v IAA IAt0

It0a It0�g It0�2g It0�2v It0A It0t0



; (A.30)

where

[I(
)]k; l =
1
2
tr
(
R−1
y (�)

@Ry(�)
@�k

R−1
y (�)

@Ry(�)
@�l

)
+
(
@My(�)
@�k

)T
R−1
y (�)

@My(�)
@�l

: (A.31)

The non-zero partial derivatives of My(�) and Ry(�) with respect to the unknown signal and noise parameters
are:

@M (�)
@�g

= S
;
@M (�)
@A

= �g
@S

@A

;
@M (�)
@t0

= �g
@S

@t0

; (A.32)

@Ry(�)
@�g

= ST
 R
−1
y (�)S
;

@Ry(�)
@�2g

= D
(FFT − GGT)−1D
;
@Ry(�)
@�2v

= I; (A.33)

@Ry(�)
@A

= 2�2gD
(FFT − GGT)−1 @D


@A
;

@Ry(�)
@t0

= 2�2gD
(FFT − GGT)−1 @D


@t0
; (A.34)

@Ry(�)
@a

= �2gD

@(FFT − GGT)−1

@a
D
;

=−�2gD
(FFT − GGT)−1 @(FF
T − GGT)
@a

(FFT − GGT)−1D
: (A.35)

The partial derivatives of FFT − GGT with respect to ak have been derived in [8]:
@(FFT − GGT)

@ak
= ZkFT + FZT

k − ZN−kGT − GZT
N−k ; (A.36)



where Zk is the down-shift matrix

Zk(i; j) =

{
1 if i − j = k;

0 otherwise:
(A.37)
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