10 research outputs found

    Determination of seven frictionless fixturing points searching the object surface with a homogeneous deterministic distribution

    Get PDF
    The paper deals whit the problem of finding a form-closure fixturing of objects modeled whit triangular meshes and considering as quality measure the maximum wrench that the object can resist in any direction. Although a triangular mesh is a polyhedral representation of the object, the number of faces is too large to allow a practical application of existing approaches for polyhedral objects, and therefore some search procedure have to be applied. In the proposed approach the search of contact points is done looking for points directly on the object boundary instead of on the wrench space. In this way, all the object surface is homogeneously considered, while the quality is evaluated in the wrench space. The procedure iteratively looks, using heuristic criteria, for sets of points that improve the quality. The procedure was implemented and some application examples are included in the paper to illustrate the performanc

    Frictionless grasp with 7 fingers on discretized 3D objects

    Get PDF
    This paper presents an algorithm to plain locally frictionless grasp on 3D objects. The objects can be of any arbitrary shape, since the surface is discretized in a cloud of points. The planning algorithm finds an initial force-closure grasp that is iteratively improved through an oriented search procedure. The grasp quality is measured with the “largest ball” criterion, and a force-closure test based on geometric considerations is used. The efficiency of the algorithm is illustrated through numerical example

    Independent contact regions for discretized 3D objects with frictionless contacts

    Get PDF
    This paper deals with the problem of determining independent contact regions on a 3D object boundary such that a seven finger frictionless grasp with a contact point in each region assures a force-closure grasp on the object, independently of the exact position of the contact points. These regions provide robustness in front of finger positioning errors in grasp and fixturing applications. The object’s structure is discretized in a cloud of points, so the procedure is applicable to objects of any arbitrary shape. The procedure finds an initial form-closure grasp that is iteratively improved through an oriented search procedure: once a locally optimum grasp has been reached, the independent contact regions are computed. The procedure has been implemented, and application examples are included in the paper

    Fast grasp planning for hand/arm systems based on convex model

    Full text link
    Abstract—This paper discusses the grasp planning of a multifingered hand attached at the tip of a robotic arm. By using the convex models and the new approximation method of the friction cone, our proposed algorithm can calculate the grasping motion within the reasonable time. For each grasping style used in this research, we define the grasping rectangular convex (GRC). We also define the object convex polygon (OCP) for the grasped object. By considering the geometrical relashionship among these convex models, we determine several parameters needed to define the final grasping configuration. To determine the contact point position satisfying the force closure, we use two approximation models of the friction cone. To save the calculation time, the rough approximation by using the ellipsoid is mainly used to check the force closure. Additionally, approximation by using the convex polyhedral cone is used at the final stage of the planning. The effectiveness of the proposed method is confirmed by some numerical examples. I

    Computation of independent contact regions for grasping 3-D objects

    Get PDF
    Precision grasp synthesis has received a lot of attention in past few last years. However, real mechanical hands can hardly assure that the fingers will precisely touch the object at the computed contact points. The concept of independent contact regions (ICRs) was introduced to provide robustness to finger positioning errors during an object grasping: A finger contact anywhere inside each of these regions assures a force-closure grasp, despite the exact contact position. This paper presents an efficient algorithm to compute ICRs with any number of frictionless or frictional contacts on the surface of any 3-D object. The proposed approach generates the independent regions by growing them around the contact points of a given starting grasp. A two-phase approach is provided to find a locally optimal force-closure grasp that serves as the starting grasp, considering as grasp quality measure the largest perturbation wrench that the grasp can resist, independently of the perturbation direction. The proposed method can also be applied to compute ICRs when several contacts are fixed beforehand. The approach has been implemented, and application examples are included to illustrate its performance.Peer Reviewe

    Fast Computation of 4-Fingered Force-Closure Grasps from Surface Points

    No full text
    Abstract — This paper addresses the problem of computing frictional 4-fingered force-closure grasps of three dimensional objects. The proposed approach searches for force-closure grasps from a collection of sampled points on the object’s surface. Unlike most other works, the approach is not limited to the objects with a certain class of shapes. It can be applied to an object in any shape since only the object’s surface points and corresponding surface normals at the points are needed. The efficiency of the approach arises from a heuristic for search space pruning which is based on ability to efficiently locate regions in three dimensional space where friction cones intersect and a randomized test for checking forceclosure condition. The proposed approach is implemented and preliminary results are presented. I

    Multifingered grasping for robotic manipulation

    Get PDF
    Robotic hand increases the adaptability of grasping and manipulating objects with its system.But this added adaptability of grasping convolute the process of grasping the object. The analysis of the grasp is very much complicated and large number of configuration for grasping is to be investigated. Handling of objects with irregular shapes and that of flexible/soft objects by ordinary robot grippers is difficult. It is required that various objects with different shapes or sizes could be grasped and manipulated by one robot hand mechanism for the sake of factory automation and labour saving. Dexterous grippers will be the appropriate solution to such problems. Corresponding to such needs, the present work is towards the design and development of an articulated mechanical hand with five fingers and twenty five degrees-of-freedom having an improved grasp capability. In the work, the distance between the Thumb and Finger and the workspace generated by the hand is calculated so as to know about the size and shape of the object that could be grasped.Further the Force applied by the Fingers and there point of application is also being calculated so as to have a stable force closure grasp. The method introduced in present study reduces the complexity and computational burden of grasp synthesis by examining grasps at the finger level. A detailed study on the force closure grasping capability and quality has been carried out. The workspace of the five fingered hand has been used as the maximum spatial envelope. The problem has been considered with positive grips constructed as non-negative linear combinations of primitive and pure wrenches. The attention has been restricted to systems of wrenches generated by the hand fingers assuming Coulomb friction. In order to validate the algorithm vis-a-vis the designed five fingered dexterous hand, example problems have been solved with multiple sets of contact points on various shaped objects.Since the designed hand is capable of enveloping and grasping an object mechanically, it can be used conveniently and widely in manufacturing automation and for medical rehabilitation purpose. This work presents the kinematic design and the grasping analysis of such a hand

    Modélisations et stratégie de prise pour la manipulation d'objets déformables

    Get PDF
    Dexterous manipulation is an important issue in robotics research in which few works have tackled deformable object manipulation. New applications in surgery, food industry or in service robotics require mastering the grasping and manipulation of deformable objects. This thesis focuses on deformable object manipulation by anthropomorphic mechanical graspers such as multi-fingered articulated hands. This task requires a great expertise in mechanical modeling and control: interaction modeling, tactile and vision perception, force / position control of finger movements to ensure stable grasping. The work presented in this thesis focuses on modeling the grasping of deformable objects. To this end, we used a discretization by non-linear mass-spring systems to model deformable bodies in large displacements and deformations while having a low computational cost. To predict the interaction forces between robot hand and deformable object, we proposed an original approach based on a visco-elasto-plastic rheological model to evaluate tangential contact forces and describe the transition between the sticking and slipping modes. The contact forces are evaluated at nodes as function of the relative movements between the fingertips and the surface mesh facets of the manipulated object. Another contribution of this thesis is the use of this model in the planning of 3D deformable object manipulation tasks. This planning consists in determining the optimal configuration of the hand for grasping the objects as well as the paths to track and the efforts to be applied by the fingers to control the deformation of the object while ensuring the stability of the operation. The experimental validation of this work has been carried out on two robotic platforms: a Barrett hand embedded on a Adept S1700D ® manipulator and a Shadow hand embedded on a Kuka LWR4+® manipulator.La manipulation dextre est un sujet important dans la recherche en robotique et dans lequel peu de travaux ont abordé la manipulation d'objets déformables. De nouvelles applications en chirurgie, en industrie agroalimentaire ou encore dans les services à la personne nécessitent la maîtrise de la saisie et la manipulation d'objets déformables. Cette thèse s’intéresse à la manipulation d’objets déformables par des préhenseurs mécaniques anthropomorphiques tels que des mains articulées à plusieurs doigts. Cette tâche requière une grande expertise en modélisation mécanique et en commande : modélisation des interactions, perception tactile et par vision, contrôle des mouvements des doigts en position et en force pour assurer la stabilité de la saisie. Les travaux présentés dans cette thèse se focalisent sur la modélisation de la saisie d'objets déformables. Pour cela, nous avons utilisé une discrétisation par des systèmes masses-ressorts non-linéaires pour modéliser des corps déformables en grands déplacements et déformations tout en ayant un coût calculatoire faible. Afin de prédire les forces d’interactions entre main robotique et objet déformable, nous avons proposé une approche originale basée sur un modèle rhéologique visco-élasto-plastique pour évaluer les forces tangentielles de contact et décrire la transition entre les modes d’adhérence et de glissement. Les forces de contact sont évaluées aux points nodaux en fonction des mouvements relatifs entre les bouts des doigts et les facettes du maillage de la surface de l’objet manipulé. Une autre contribution de cette thèse consiste à utiliser de cette modélisation dans la planification des tâches de manipulation d’objets déformables 3D. Cette planification consiste à déterminer la configuration optimale de la main pour la saisie de l’objet ainsi que les trajectoires à suivre et les efforts à appliquer par les doigts pour contrôler la déformation de l’objet tout en assurant la stabilité de l’opération. La validation expérimentale de ces travaux a été réalisée sur deux plateformes robotiques : une main Barrett embarquée sur un bras manipulateur Adept S1700D et une main Shadow embarquée sur un bras manipulateur Kuka LWR4+

    Kinematic Analysis of Multi-Fingered, Anthropomorphic Robotic Hands

    Get PDF
    The ability of stable grasping and fine manipulation with the multi-fingered robot hand with required precision and dexterity is playing an increasingly important role in the applications like service robots, rehabilitation, humanoid robots, entertainment robots, industries etc.. A number of multi-fingered robotic hands have been developed by various researchers in the past. The distinct advantages of a multi-fingered robot hand having structural similarity with human hand motivate the need for an anthropomorphic robot hand. Such a hand provides a promising base for supplanting human hand in execution of tedious, complicated and dangerous tasks, especially in situations such as manufacturing, space, undersea etc. These can also be used in orthopaedic rehabilitation of humans for improving the quality of the life of people having orthopedically and neurological disabilities. The developments so far are mostly driven by the application requirements. There are a number of bottlenecks with industrial grippers as regards to the stability of grasping objects of irregular geometries or complex manipulation operations. A multi-fingered robot hand can be made to mimic the movements of a human hand. The present piece of research work attempts to conceptualize and design a multi-fingered, anthropomorphic robot hand by structurally imitating the human hand. In the beginning, a brief idea about the history, types of robotic hands and application of multi-fingered hands in various fields are presented. A review of literature based on different aspects of the multi-fingered hand like structure, control, optimization, gasping etc. is made. Some of the important and more relevant literatures are elaborately discussed and a brief analysis is made on the outcomes and shortfalls with respect to multi-fingered hands. Based on the analysis of the review of literature, the research work aims at developing an improved anthropomorphic robot hand model in which apart from the four fingers and a thumb, the palm arch effect of human hand is also considered to increase its dexterity. A robotic hand with five anthropomorphic fingers including the thumb and palm arch effect having 25 degrees-of-freedom in all is investigated in the present work. Each individual finger is considered as an open loop kinematic chain and each finger segment is considered as a link of the manipulator. The wrist of the hand is considered as a fixed point. The kinematic analyses of the model for both forward kinematics and inverse kinematic are carried out. The trajectories of the tip positions of the thumb and the fingers with respect to local coordinate system are determined and plotted. This gives the extreme position of the fingertips which is obtained from the forward kinematic solution with the help of MATLAB. Similarly, varying all the joint iv angles of the thumb and fingers in their respective ranges, the reachable workspace of the hand model is obtained. Adaptive Neuro-Fuzzy Inference System (ANFIS) is used for solving the inverse kinematic problem of the fingers. Since the multi-fingered hand grasps the object mainly through its fingertips and the manipulation of the object is facilitated by the fingers due to their dexterity, the grasp is considered to be force-closure grasp. The grasping theory and different types of contacts between the fingertip and object are presented and the conditions for stable and equilibrium grasp are elaborately discussed. The proposed hand model is simulated to grasp five different shaped objects with equal base dimension and height. The forces applied on the fingertip during grasping are calculated. The hand model is also analysed using ANSYS to evaluate the stresses being developed at various points in the thumb and fingers. This analysis was made for the hand considering two different hand materials i.e. aluminium alloy and structural steel. The solution obtained from the forward kinematic analysis of the hand determines the maximum size for differently shaped objects while the solution to the inverse kinematic problem indicates the configurations of the thumb and the fingers inside the workspace of the hand. The solutions are predicted in which all joint angles are within their respective ranges. The results of the stress analysis of the hand model show that the structure of the fingers and the hand as a whole is capable of handling the selected objects. The robot hand under investigation can be realized and can be a very useful tool for many critical areas such as fine manipulation of objects, combating orthopaedic or neurological impediments, service robotics, entertainment robotics etc. The dissertation concludes with a summary of the contribution and the scope of further work
    corecore