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Chapter 1

Basic background

Robotic hands are flexible and powerful tools that can provide industrial and service robots
with a high ability to manipulate objects; however, an appropriate grasp planning is required
in order to grasp and manipulate objects in the real world. A grasp planner calculates the
position of the fingers on the object surface, while fulfilling a basic grasp property. In general,
grasps are computed to ensure the immobility of the object in front of external disturbances,
satisfying one of the following properties: form-closure (or complete kinematical restriction),
when the position of the fingers ensure the object immobility, or force-closure (hereafter FC),
when the forces applied by the fingers ensure the object immobility [1]. The property to be
used largely depends on the field of application: form-closure is used when the task requires
a robust grasp not relying on friction, e.g. the fixture of objects to be manufactured or
inspected, while force-closure is specially used in grasping and manipulation of objects with
a low number of frictional contacts, using for instance mechanical grippers or hands.

1.1 Generalized forces

Consider a coordinate system located at the object center of mass (CM ) to describe the
positions p of the contact points and the forces applied on the grasped object. A force f i

applied on the object at the point pi generates a torque τ i = pi × f i with respect to CM.
The force and the torque are grouped together in a wrench (also known as generalized force
vector) given by

ω̃i =

(
f i

τ i

)
= αi

(
n̂i

pi × n̂i

)
(1.1)

ω ∈ ℜd, where d is the dimension of the wrench space; d = 3 for the two-dimensional physical
space (planar problem with 2D objects) and d = 6 for 3D objects in the three-dimensional
physical space.

1.2 Number of fingers required to grasp objects

The number of fingers required to get a FC grasp depends on the type of contact between
the fingertip and the object. There are three basic contact types: frictionless point contact
(FPC), point contact with friction (PCWF, also known as hard finger contact) and soft finger
contact (SC). Frictionless grasps are also known as positive grips; upper and lower bounds
in the number of fingers required for a FC grasp in two and three-dimensional objects are
computed in [2] using two classic theorems in convex analysis: Caratheodory and Steinitz
theorems. An algorithm to find at least one frictionless FC grasp for polyhedral objects
is presented in [2]; the algorithm is linear in time according to the number of faces of the
polyhedron. An object with rotational symmetry (exceptional object) does not have a FC
grasp with frictionless contacts.
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Table 1.1: Bounds in the number of fingers required to find a FC grasp.
Object Object type FPC PCWF SC

Two-dimensional Exceptional np 3 3
(d=3) Non exceptional 4 3 3

Three-dimensional Exceptional np 4 4
(d=6) Non exceptional 7 4 4

np: not possible

Frictional and frictionless contacts can also be studied from a geometrical point of
view [3]. For frictional contacts (PCWF and SC), 3 and 4 fingers are required to assure
a FC grasp in any 2D or 3D object, respectively, as shown in Table 1.1 (although for some
objects, FC grasps with a smaller number of fingers can be achieved).

1.3 Grasp planning for three-dimensional objects

Grasp planning, also known as grasp synthesis, has been tackled with two different ap-
proaches: empirical or analytical. The empirical (knowledge-based) approach imitates hu-
man grasp using heuristics (constructive algorithms) to choose a grasp shape from a set of
basic hand postures that depend on the task and on the object’s geometry. On the other
hand, analytic approaches choose the finger positions and the hand configuration with kine-
matical and dynamical formulations, in general optimizing an objective function such as the
grasp stability or the resistance to external perturbations.

Different algorithms have been developed in grasp planning for two-dimensional objects
(either polygonal [4, 5], non-polygonal [6] or discrete objects [7]); however, grasp synthesis
in three-dimensional objects is still an active research area, mainly due to the complex
geometry and high dimensionality of the grasp space. For instance, two coordinates are
required to represent a grasp point on the surface of a 3D object; therefore, the computation
of a FC grasp implies searching for a solution in a space of dimension 2n (at least), with n
being the number of contacts.

This technical report reviews the literature for analytical grasp synthesis in polyhedral
(Chapter 2) and general 3D objects (Chapter 3); Chapter 2 complements a previous IOC
technical report [8] on the same subject with new references. Chapter 4 reviews some
works related to three-dimensional grasp synthesis; Section 4.1 presents the main empirical
approaches for grasp synthesis, and Section 4.2 shows the relation between grasp synthesis
and fixture design for manufacturing tasks.
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Chapter 2

Grasp synthesis for polyhedral

objects

Most of the works in grasp synthesis for 3D objects generate grasps for polyhedral objects,
composed of a finite number of flat faces. The normal direction to the surface of the object
is the same for all of the points in the same face of the polyhedron, thus facilitating the
development of analytical algorithms to generate a grasp for the object.

2.1 Two-fingers grasps

Initial works in grasp synthesis for polyhedral objects considered two-fingered grasps with
soft contacts [9, 10], searching for independent contact regions. If each finger is in its inde-
pendent contact region, a FC grasp is always obtained; thus, the use of independent contact
regions makes the grasp more robust in front of possible changes in contact placement.

As polyhedra have faces with constant normal directions, the FC problem can be split
into two subproblems:

• Force-direction closure: verifies that the friction cones from the finger contacts span
all the directions in R3. Figure 2.1 shows two soft finger contacts on two faces of a
polyhedron, with ψ being the angle between the two planes. Positive combination of
the two friction cones spans any direction in R3 iff ψ < 2φ, with µ = tanφ being the
friction coefficient.

• Torque closure: tests that the positive combinations of the contact forces generates all
the possible torques. This is achieved if the segment P1P2 (or P2P1) joining the two
contact points P1 and P2 is completely included inside the friction cones generated in
P1 and P2.

The torque-closure condition is a necessary and sufficient condition for the existence of a
FC grasp with two soft fingers. Note that a FC grasp with two point contacts with friction
(PCWF) can not exist, since it could not resist torques around the line joining the two
contact points.

The force-direction closure condition is verified with a simple test on the angle between
the normal directions to the grasped faces. After a pair of faces satisfying this condition is
found, the two friction cones overlap in a range given by CP2

∩−CP1
; the overlapping sector

is approximated with the maximum cone that lies inside the sector (in the original algorithm,
the polyhedron faces are approximated by circumscribed circular discs to simplify this step).
The vertex I of the double cone with angle ±(CP2

∩ −CP1
) is placed in the bisector plane

of the two faces; the intersection between the two faces and the double cone produces the
independent contact regions, a1 and a2. The vertex I is placed in such a way that maximizes
the region´s area (Figure 2.1).
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Figure 2.1: Grasp with two soft contact fingers (Source: [8]).

Figure 2.2: Optimum three-finger grasp given by the maximum circumscribed prism in the
object (Source: [11]).

A classification of three-finger grasps in four basic groups, depending on the number of
overlapped friction cones, is also presented in [10], as well as the conditions that the wrenches
must fulfill in order to get form-closure grasps with 7 frictionless fingers.

2.2 Three-fingers grasps

The computation of three-finger optimum FC grasps is tackled in [11], using an optimality
criterion based on decoupled wrenches. First of all, grasps that best resist external forces
in the grip plane (the plane determined by the three grasp forces, that must be concurrent)
are chosen, and among these grasps those that best resist the applied torques perpendicular
to the grip plane are considered to be optimum. In this way, the optimum grasp for a
smooth object is the grasp determined by the maximum circumscribing prism, as shown
in Figure 2.2. In the particular case of polyhedra, the grasp points should be placed on
the polyhedron vertices under this criterion; thus, grasp synthesis is reduced to test all the
possible vertices combinations, so the algorithm complexity is O(n3) with n the number of
faces of the polyhedral object. As a particular case, if the resistance to moments in the grip
plane should be optimized, then the optimum solution is given by the maximum equilateral
triangle inscribed in the object.

Several necessary and sufficient conditions for three-finger FC grasps are presented in [12]
(Figure 2.3):

• Necessary condition: there exists a point in the intersection of the plane formed by
the three contact points with the double-sided friction cones at these points.

• Sufficient condition: there exists a point in the intersection of the three open internal
friction cones with the triangle formed by these contact points.

The internal (or negative) friction cones are those pointing inside the object; the external
(or positive) friction cones are those pointing outside the object. The previous sufficient
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Figure 2.3: Grasping a polyhedron with three frictional fingers (Source: [12]).

condition is very restrictive, as there may be several grasps whose intersecting point does
not lie in the internal friction cones. Therefore, the following condition is proposed

• Sufficient condition: three points P1, P2 and P3 form a FC grasp if the pairwise angles
between the internal normals at these points are less than π − 2θ, there exist three
vectors making angles less than θ/3 with these normals and positively spanning some
fixed vector plane Π, and there exists a point P0 such that for i = 1, 2, 3 the vector
P0 − Pi lies in the intersection of the plane Π with the double-sided friction cones of
half-angle θ/3 in Pi.

For a fixed vectorial plane Π, the condition can be decomposed into eight linear sufficient
conditions depending on whether P0 lies in the internal or external friction cone at each
contact point Pi. Moreover, the plane containing the three contact points is not fixed,
but it is parallel to Π. Each contact point may be parametrized with two variables (ui, vi)
defining its position in the plane of the corresponding face; besides, a set of linear restrictions
in (ui, vi) can be used to specify that Pi lies in a convex face. The problem solution must find
9 variables: 6 defining the position of the contact points Pi and 3 defining the position of the
intersection point P0. To simplify the problem, P0 may be eliminated from the formulation,
and the 6 remaining variables placing the contact points on the object can be found with
linear programming.

2.3 Four-fingers grasps

2.3.1 Concurrent grasps

An algorithm to find four-finger grasps is proposed in [13], complementing the previous work
in [12] by the same authors. The necessary and sufficient condition for four non coplanar
points to form an equilibrium grasp with four nonzero contact forces is:

P1: there exist four lines in the corresponding double-sided friction cones that intersect
in a single point, form two flat pencils having a line in common but lying in different planes,
or form a regulus (Figure 2.4), and

P2: the vectors parallel to these lines and lying in the internal friction cones at the
contact points positively span R3.

The previous condition allows the computation of equilibrium grasps; in the presence of
friction, a sufficient condition to get a 3D FC grasp is non-marginal equilibrium, i.e. the ap-
plied forces must be inside the open friction cones at the contact points. For convenience, the
equilibrium conditions should be linear in the unknown grasp parameters (finger positions
and contact forces), so the problem can be solved with linear programming; however, P2 is
a nonlinear condition. To obtain linear conditions, a new sufficient condition for four non
coplanar points to form an equilibrium grasp with four nonzero contact forces is proposed
(Figure 2.5):
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Figure 2.4: Configurations of positively dependent lines: a) Coplanar lines, b) Concurrent
lines, c) Flat pencils, d) Regulus, e) A regulus is the geometric place of the lines that
simultaneously intersect three skew lines (they do not cross or intersect) (Source: [13]).

Figure 2.5: Sufficient condition for a 4-finger equilibrium grasp; proposition P1 demands
four lines that a) be concurrent, b) form two noncoplanar flat pencils or c) form a regulus;
d) illustrates proposition P3 (Source: [13]).

P1: there exist four lines in the corresponding double-sided friction cones that intersect
in a single point, form two flat pencils having a line in common but lying in different planes,
or form a regulus, and

P3: the surface normals at the four contact points θ-positively span R3. Four vectors
θ-positively span R3 when, for any triplet u1,u2,u3 of these vectors, the cones C1, C2, C3

of half-angle θ centered in u1, u2 and u3 lie in the interior of the same half-space, and the
cone C4 of half-angle θ centered on the opposite direction to the fourth vector u4 lies in the
interior of the intersection of the trihedra formed by all the triplets of vectors belonging to
C1, C2 y C3.

The advantage of proposition P3 is that it depends only on the normal direction to the
grasped faces, while P2 depends on the real directions of the applied forces. This allows the
algorithm implementation in two steps: first, faces satisfying P3 are selected, and then the
configurations satisfying P1 are computed. Condition P1 is decomposed in 16 elementary
conditions in the case of concurrent grasps (the intersection point may lie in the internal or
external friction cone at each contact point), so linear programming is used to search the
FC grasps. The algorithm implemented in [13] is restricted to the synthesis of four finger
concurrent grasps, and has the following steps:

1. Search of faces satisfying condition P3

2. Linear restrictions to define stable grasp regions
Each face Fi is defined parametrically by xi = x0i +aiui + bivi, with (ui,vi) a vector
basis for the plane of Fi. If Fi is bounded by ni edges, the parameters ai, bi must also
satisfy ni linear constraints with general form

fij(ai, bi) ≤ 0, j = 1, ..., ni (2.1)
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Figure 2.6: Location of the contact point and approximation of the friction cone
(Source: [13]).

meaning that xi must lie within the face Fi.
The internal friction cone Ci associated with the face Fi is approximated by an m-
sided pyramid, whose faces have internal normals nij , with j = 1, ...,m (Figure 2.6).
A point x0 = (x0, y0, z0) belongs to Ci if the following restrictions are satisfied

(x0 − x0i − aiui − bivi) · nij ≥ 0, j = 1, ...,m (2.2)

There are 4m+
∑n

i=1 ni constraints associated with the four grasping points, defining
a polytope in R11 (there are 2 variables to locate each contact point and 3 variables to
locate the concurrence point). To consider all the possible combinations of internal and
external friction cones providing a solution to P1, a series of equations such as (2.2) are
used, except that the inequality sign is reversed for the external cones. The total set
of solutions is the union of the polytopes corresponding to the different combinations.

3. Elimination of the concurrence point
The optimization of an objective function, subject to constraints (2.1) and (2.2),
is achieved with linear programming. However, the main variables of the problem
are ai, bi; the concurrence point (x0, y0, z0) has a minor importance, i.e. it is more
important to characterize the equilibrium regions in the 8-dimensional configuration
space of the parameters ai, bi, defining the grasp configuration. This implies that the
variables (x0, y0, z0) must be eliminated from the restrictions, or, equivalently, the
polytope defined by (2.1) and (2.2) in an 11-dimensional space must be projected in
an 8-dimensional space. This projection defines a new set of constraints (2.1) and
(2.2’), with (2.2’) representing the constraints (2.2) modified to eliminate the concur-
rence point. To achieve this purpose, two algorithms are proposed: one based on the
gaussian elimination of the undesired variables, and another one based on the contour
tracking of the polytope in the projected space.

4. Computation of the maximal independent contact regions
Independent contact regions are computed to minimize the grasp sensitivity to errors
in finger´s positions. In the grasp configuration space, these regions are parallelepipeds
with sides aligned with the coordinate axes, and contained in the polytope of equi-
librium grasps. The algorithm searches for maximal contact regions, i.e. regions
maximizing the minimum of the lengths of the parallelepiped edges. A parallelepiped
in the configuration space is defined by Ri =

[
a−i , a

+
i

]
×

[
b−i , b

+
i

]
, i = 1, ..., 4. Let u

be the minimum of the lengths of the corresponding intervals (i.e. the variable to be
maximized); to find the maximal contact regions, the following constraints must be
added to the initial ones (2.2’):





u ≥ 0

u ≤ a+
i − a−i , i = 1, ..., 4

u ≤ b+i − b−i , i = 1, ..., 4

(2.3)
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expressing that u is positive and smaller than the length of each interval. In general,
there will be multiple optimal solutions, so a secondary criterion is required to find a
unique solution: the algorithm tries to center the center of mass of the object in the
tetrahedron formed by the contact points. To implement this criterion, a new variable v
must be introduced, measuring the distance L∞ between the center of mass of the
object gp = (xp, yp, zp) and the center gc = (xc, yc, zc) of the contacts corresponding
to the centers of the rectangles Ri. Thus, v = max (|xc − xp| , |yc − yp| , |zc − zp|),
yielding to the following restrictions:





v ≥ xp − xc

v ≥ xc − xp

v ≥ yp − yc

v ≥ yc − yp

v ≥ zp − zc

v ≥ zc − zp

(2.4)

In summary, the search of the maximal independent contact regions is solved with linear
programming: the constraints are (2.1), (2.2’) (written once for each one of the 256 vertices of
the parallelepiped), (2.3) and (2.4), and the objective function to be maximized is a weighted
combination wuu − wvv, with the weights w defined by the user. There are 18 variables:
a−i , a

+
i , b

−
i , b

+
i (i = 1, ..., 4) with the auxiliary variables u and v. For each quadruple of faces,

the representative grasp is selected as the center of the maximal independent contact region.

2.3.2 Flat pencil and regulus grasps

The previous work, [13], is focused on four finger concurrent grasps. However, flat pencil
and regulus grasps may be useful in particular cases; for instance, in the manipulation of
an elongated object for which concurrent grasps do not exist, two cooperating robots with
simple (two-finger) grippers may be used, employing a flat pencil grasp. The sufficient
condition previously presented for four noncoplanar points to form an equilibrium grasp
(given by propositions P1 and P3) was originally exposed in [14] to search for independent
contact regions with linear programming (using the simplex method) for concurrent and
flat-pencil grasps, and to obtain at least one regulus grasp. The algorithms to search for
these grasps are based on geometrical considerations, and they assume that four faces whose
normals θ-positively span R3 have been previously found; the success of the previous method
depends on the initial selection of the grasp focuses, denoted as fi in Figure 2.5.

Another geometrical approach to compute these kind of grasps is proposed in [15]. Ini-
tially, a set of possibly good faces is selected based on purely geometrical considerations,
and then the grasping points on these faces are selected.

2.4 Grasps with any number n of fingers

Few works have tackled the grasp synthesis for any number of fingers. Some of these works
deal with the problem of grasp synthesis for n fingers given the position for k of the fingers;
this kind of problem arises frequently in fixture design (Section 4.2).

2.4.1 Given the location for n − 1 fingers

The FC grasp synthesis problem for n fingers when n−1 fingers have fixed positions (and the
grasp with the n−1 fingers is not FC) is discussed in [16]. The friction cone is approximated
with an m-sided polyhedral cone (or convex pyramid) (Figure 2.7); the grasping force at the
contact point is given by

fi =

m∑

j=1

uijsij , uij ≥ 0 (2.5)
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a) b)

Figure 2.7: Grasp synthesis with n fingers: a) Approximation to the friction cone, b) Para-
metrization of an object face (Source: [16]).

with sij representing the vector of the j-th edge in the polyhedral cone; the vectors are
normalized in a way such that sij · ni = 1, i = 1, . . . , n, j = 1, . . . ,m. ni is the unitary
vector normal to the object surface at the point pi, and pi is the position vector for the
grasping point i with respect to a coordinate system located in the center of mass of the ob-
ject. Therefore,

∑m
j=1 uij = fi ·ni, i.e.

∑m
j=1 uij is the amplitude of the normal component

for the contact force fi. The wrench produced by the force fi is

̟i =

(
fi

pi × fi

)
=

m∑

j=1

uijgij , gij =

(
sij

pi × sij

)
(2.6)

The vectors gij are denoted as the primitive contact wrenches of the i-th finger.
The total wrench applied on the object by the fingers is

ω =

n∑

i=1

̟i =

n∑

i=1

m∑

j=1

uijgij = Gu (2.7)

with
G = (g11, g12, . . . , g1m, . . . , gn1, gn2, . . . , gnm) (2.8)

u = (u11, u12, . . . , u1m, . . . , un1, un2, . . . , unm)T (2.9)

G ∈ ℜ6×nm; G is called the wrench matrix, and its column vectors are the primitive contact
wrenches. For convenience, gi is used instead of gij to denote the i-th column vector of the
wrench matrix G, and ui represents the i-th component of the vector u. The number of
primitive contact wrenches is N = nm.

A n-fingers grasp is FC if for any external wrench ω applied on the object, it is always
possible to find an u with all ui > 0 such that Gu = −ω. This condition is equivalent to
that the convex hull CH(G) of the primitive contact wrenches ωi contains the neighborhood
of the origin in the wrench space ℜ6.

To represent the contact point of the finger i on the polyhedron face, a local coordinate
system

{
λi

1, λ
i
2, λ

i
3

}
is attached to the face; the origin of the system is located at one vertex

and the axis λi
3 is parallel to the normal of the face; the other axis are defined according to

the right-hand rule (Figure 2.7). The contact point is represented in the local coordinates
as (λi

1, λ
i
2). The coordinates of the contact point pi with respect to the object coordinate

system are given by

Pi = oi
λ +Ri

λ



λi

1

λi
2

0


 (2.10)
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with oi
λ and Ri

λ denoting the origin and the rotation matrix of the local frame
{
λi

1, λ
i
2, λ

i
3

}

with respect to the object frame, respectively.
At the grasping point, another coordinate system {x̂i, ŷi, ẑi} is introduced to represent

the grasping force. The friction cone is sliced by the plane ẑi = 1; the grasping force fi in
the local frame is

fi = βi



xi

yi

1


 (2.11)

with βi being a nonnegative constant and (xi, yi, 1) is the intersection point of the force fi

with the plane ẑi = 1. To guarantee that the grasping force is inside the friction cone, the
following must hold

x2
i + y2

i ≤ µ2 (2.12)

but with the linearized friction cone, this condition is converted in inequalities as follows

Bi

(
xi

yi

)
≤ bi (2.13)

where Bi is a m× 2 constant matrix, and bi is a m× 1 vector determined by the linearized
friction cone. The grasping force fi with respect to the object coordinate system is

fi = βiRi



xi

yi

1


 (2.14)

where Ri is the rotation matrix of the local coordinate frame {x̂i, ŷi, ẑi} with respect to the
object frame. The resultant wrench on the object produced by the grasping force fi is

ω̃i = βi




Ri



xi

yi

1




Pi ×


Ri



xi

yi

1










(2.15)

As it is assumed that the n − 1-fingers grasp is not FC, the convex hull CH(G̃), with

G̃ the wrench matrix for the n− 1 fingers, does not contain the origin. To find a FC grasp,
the convex cone CC(G̃, O) of the primitive contact wrenches and the origin O is built. The
convex cone is the intersection of a finite set of half spaces having a common point (the cone
vertex), i.e. the origin in this case. The cone is represented with

CC(G̃, O) =
{
x ∈ ℜ6|cTj x ≥ 0, j = 1, 2, . . . , t

}
(2.16)

where t is the number of facets of the 6-dimensional cone, and cj ∈ ℜ6 is a constant vector.
The equation cTj x = 0 represents a boundary facet of the convex cone. The necessary and
sufficient condition to get a FC grasp is given in the following theorem:

Theorem: assume that the grasp of the n − 1 fingers is not FC. The n-fingers grasp
{P1, P2, . . . , Pn} is FC iff there exist proper βn ≥ 0 and (xn, yn) such that

1. (xn, yn) satisfy the condition (2.13) (i.e. the force fn must be inside the linearized
friction cone).

2. The ray −ω̃n intersects with the interior region of the convex cone CC(G̃, O) (Fig-
ure 2.8)

The second condition indicates that the ray must intersect with the interior region of the
convex cone, i.e. there exist (xn, yn) such that

−cTj ω̃n > 0, j = 1, 2, . . . , t (2.17)
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Figure 2.8: Necessary and sufficient condition to obtain a n-fingers FC grasp, a) −ω̃n

intersects the interior of the convex cone CC(G̃, O); b) −ω̃n does not intersect the interior
of the cone (Source: [17]).

or, in detail,

cTj




Rn



xn

yn

1





on

λ +Rn
λ



λn

1

λn
2

0





 ×


Rn



xn

yn

1










≤ 0, j = 1, 2, . . . , t (2.18)

In this way, the grasping point Pn that guarantees a n-fingers FC grasp is a set of
parameters (λn

1 , λ
n
2 ) that guarantee the existence of (xn, yn) satisfying the inequalities (2.13)

and (2.18) simultaneously. Equation (2.18) is rewritten as

Sn(λn
1 , λ

n
2 )

(
xn

yn

)
≤ sn(λn

1 , λ
n
2 ) (2.19)

where the matrix Sn(λn
1 , λ

n
2 ) and the vector sn(λn

1 , λ
n
2 ) are linear in (λn

1 , λ
n
2 ). In the x̂n − ŷn

plane, (2.19) defines a convex polygon whose vertices and edges depend on the values of
(λn

1 , λ
n
2 ). On the other hand, the restrictions (2.13) define another convex polygon whose

edges and vertices are fixed. Thus, if there is a FC grasp, the two polygons must intersect
each other, and the intersection region sets the parameters defining the region in face Fn

such that when placing the n-th finger in this region, a FC grasp is obtained. An algorithm
to find a discrete approximation to this region is presented in [16], and the complete region
is found in [17], although it is computationally expensive.

An optimal location for the n-th finger can be computed, according to a particular quality
measure [18]. The constraints (2.13) and (2.18) contain four variables, xn, yn, λ

n
1 and λn

2 ,
that can be grouped in a single vector z:

z =




xn

yn

λn
1

λn
2


 (2.20)

The nonlinear constraints (2.18) involve the product of two of the variables. They are
written in a general way as

gni(z) ≤ 0, i = 1, . . . , t (2.21)

Constraints derived from the linearized friction cone are linear in the previous variables;
in a general way, they are written as

gli(z) ≤ 0, i = t, . . . , t+m (2.22)
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Finally, if the n-th finger must be placed on the face Fn, and that face is bounded by l
edges, the parameters (λn

1 , λ
n
2 ) must also satisfy l linear restrictions ajλ

n
1 + bjλ

n
2 + cj ≤ 0

ensuring that the contact point lies on the surface of the object. These constraints are

ajz3 + bjz4 + cj ≤ 0, i = t+m+ 1, . . . , t+m+ l (2.23)

The quality index to find an optimal contact point is the distance L2 between the center
of mass of the object and the centroid of the contact points. This quality index is the
objective function to be minimized, subject to the restrictions (2.21), (2.22) and (2.23).

2.4.2 Given the location of k fingers

The previous ideas are extended in [17] and [18] to compute the locations of n − k fingers
given the locations for k fingers that do not generate a FC grasp. The net wrench applied
by the n− k fingers is given by

ω̃net =

n∑

i=k+1

βi




Ri



xi

yi

1




Pi ×


Ri



xi

yi

1










(2.24)

The necessary and sufficient condition for a FC grasp is based on a theorem analogous to
the one presented in the previous Subsection.

Theorem: assume that the grasp of the k fingers is not FC. The n-fingers grasp
{P1, P2, . . . , Pn} is FC iff there exist proper βi ≥ 0 and (xi, yi) for all i = k + 1, . . . , n such
that

1. (xi, yi) satisfy the condition (2.13).

2. The ray −ω̃net intersects the interior of the convex cone CC(G̃, O).

where G̃ is the convex hull of the primitive contact wrenches for the k initial fingers.
This 6-dimensional convex cone can be obtained with the algorithm Qhull (available in

www.qhull.org) provided that rank(G̃) = 6. However, if the primitive wrenches expand a
5-dimensional space instead of a 6-dimensional space, then the convex cone can not be ob-
tained. This singular case often occurs when only two fingertips positions are given, or when
at least two fingers are in the same face on the polyhedral object, and it is not contemplated
in the algorithm.

The computation of the grasping region for each one of the n−k fingers follows the ideas
given in the previous Subsection. The computation of the optimal grasp uses the following
vectors:

V =
(
λk+1

1 , λk+1
2 , . . . , λn

1 , λ
n
2

)
(2.25)

z = (βk+1xk+1, βk+1yk+1, . . . , βnxn, βnyn, V, βk+1, . . . , βn)
T

(2.26)

The first condition for the existence of the FC grasp, i.e. (2.13), is rewritten as

Bi

(
βixi

βiyi

)
≤ βibi, i = k + 1, . . . , n (2.27)

thus, (n− k) ∗m linear constraints are obtained. Condition 2 of the theorem, i.e.

−cTj ω̃neto > 0, j = 1, 2, . . . , t (2.28)

denotes the FC constraint; the detailed form is similar to (2.18), which is a set of nonlinear
constraints. For polyhedral objects, if the face Fi is bounded by li edges, the parame-
ters (λi

1, λ
i
2) must also satisfy li linear constraints, ensuring the grasping points are inside

the surface:
fij(λ

i
1, λ

i
2) ≤ 0, j = 1, 2, . . . , li (2.29)
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Figure 2.9: Theorem to test the FC property: a) FC grasp, b) Non FC grasp.

Equations (2.27), (2.28) and (2.29) are the restrictions for the optimization problem. The
grasping parameters V that simultaneously satisfy the three conditions indicate the fingertip
positions for a FC grasp. The criterion to find an optimal grasp is the minimization of the L2

distance between the center of mass of the object, P0, and the centroid of the polyhedron
of the contact points, Pc, computed as

Pc =
1

n

n∑

i=1

Pi(V ) (2.30)

The objective function is
min u(z) = ‖P0 − Pc‖

2
= ‖Pc‖

2
(2.31)

as the origin of the object frame is located in its center of mass. Then, the search for a FC
grasp is an nonlinear programming problem with a quadratic objective function subject to
linear and nonlinear restrictions. It should be pointed out that the solution assumes that
the faces used to place the n − k fingers are selected beforehand. The proposed algorithm
may also be used in the FC grasp synthesis for objects with smooth parametrized surfaces.

2.4.3 Force closure grasps for n fingers

An algorithm to compute the positions for n fingers to form a FC grasp from an initial
random grasp is presented in [19]. The algorithm uses a FC test based on a ray-shooting
problem [20]; the main theorem for the test is the following (Figure 2.9):

Theorem: suppose that an n-fingers frictional grasp is given, and m segments are em-
ployed to linearize each friction cone. Denote the convex hull of the primitive contact
wrenches gi by CH(G). Assume that P is an interior point of CH(G). The ray from the
point P to the origin O of the wrench space ℜ6 intersects CH(G) in a point Q only. A FC
grasp is equivalent to that the distance d1 between points P and Q is strictly larger than
the distance d2 between the points P and O.

To use the theorem, an interior point P of CH(G) must be chosen, and then the intersec-
tion point Q of the ray PO with CH(G) must be detected. A strictly positive combination
of the primitive contact wrenches gi is an interior point of the convex hull CH(G), according
to the following form:

P =
N∑

i=1

uigi,
N∑

i=1

ui = 1, ui > 0, i = 1, 2, . . . , N (2.32)

For convenience, P is chosen as the centroid of the convex hull:

P =
1

N

N∑

i=1

gi (2.33)
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After choosing an interior point P , the next step finds the intersection of CH(G) with
the ray PO. This problem is closely related to the ray-shooting problem, defined for a set
M of points in ℜd; it is assumed that the convex hull CH(M) contains the origin, and the
ray-shooting problem searches for the facet of CH(M) intersected by a ray emanating from
the origin. This problem can be transformed to a linear programming problem based on
the duality between the convex hull and the convex polytope. However, the ray-shooting
problem assumes that the convex hull contains the origin, which can not be assured in all
the grasp cases. To solve this inconvenient, a coordinate translation of −P on points in ℜ6

is applied, changing the origin to point P , which always lies inside the convex hull. After
the coordinate translation, the convex hull CH(G) is dual to the convex polytope

(gi − P )Tx ≤ 1, i = 1, 2, . . . , N (2.34)

Let t be the direction vector of the ray PO. Based in the duality between the convex hull and
the convex polytope, the ray-shooting problem is equivalent to the problem of maximizing
the objective function

z = tTx (2.35)

subject to the constraints (2.34). Suppose that the optimal solution to the previous linear
programming problem is e = (e1, e2, . . . , e6). Because of the duality, the facet E of CH(G)
intersected by the ray PO is

e1x1 + e2x2 + e3x3 + e4x4 + e5x5 + e6x6 = 1 (2.36)

Then, the intersection point Q of CH(G) with the ray PO is the intersection of the hyper-
plane (2.36) with the ray PO.

From the qualitative test, if the distance ‖PO‖ is larger than ‖PQ‖, the origin is not
contained in the convex hull CH(G), thus the grasp is not FC. In this case, moving the
primitive contact wrenches at a fixed step along directions parallel to the ray PO make the
convex hull to gradually approach the origin until the origin is completely included in the
hull (i.e. the fingertips on the object are gradually moved until the FC grasp is achieved).
However, the primitive contact wrenches can not exactly follow the direction given by the
ray PO because their force components are constant. To solve this inconvenient, a quadratic
programming problem is formulated to select the fingertip positions at every iteration:

min
p∈ℜ3n

N∑

i=1

(
gi

k+1(p) − gi
d
)2

(2.37)

subject to (
gi

k+1(p) − gi
k
)
• ~PO ≥ 0, i = 1, 2, . . . , N (2.38)

Fj(pj) = 0, j = 1, 2, . . . , n (2.39)

Normjl • pj ≥ 0, l = 1, 2, . . . , tj , j = 1, 2, . . . , n (2.40)

where gi
k and gi

k+1 denote the primitive contact wrench in the k and k + 1-th iteration;
gi

d is the primitive contact wrench at the k + 1-th iteration, given by

gi
d = gi

k + α
~PO

‖PO‖
(2.41)

with α the step size (positive). gi
d is obtained by moving gi

k exactly along the direction
parallel to the ray PO at a step size α; as this is unreachable, the objective function is chosen
to minimize the distance between the actual and the desired primitive contact wrenches. The
constraint (2.38) denotes that each primitive contact wrench should move along a direction
differing less than 90o with respect to PO. p = [p1, . . . , pn] is the position vector and
pj ∈ ℜ3 is associated with face j. Constraints (2.39) and (2.40) ensure that the computed
position vectors p satisfy the equations of the corresponding faces and remain inside them,
respectively; tj is the edge number of the face j and Normjl denotes the internal norm of
the l-th boundary face of the cone formed by the origin of the object frame and the edges
of face j.

The heuristic proposed to compute a FC grasp has the following steps:
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1. Given the initial contact positions (randomly chosen), compute the primitive contact
wrenches gi.

2. Use the test algorithm to check whether the grasp is FC. If so, the program ends with
a proper solution.

3. Use equation (2.41) to compute the desired primitive contact wrenches, gi
d.

4. Use the quadratic programming problem defined by (2.37)-(2.40) to obtain the new
position vectors and compute the new primitive contact points gi

k+1.

5. Check the distance OP k+1. If it remains the same as OP k, the program ends with no
solution found; if it descends, return to step 2.

The algorithm makes that the convex hull gradually moves toward the origin until the
origin is inside the hull (i.e. a FC grasp is found), or it finishes with the origin out from the
convex hull while the hull remains stable when doing the iterations (a proper solution is not
found), i.e. the algorithm may be trapped in local minima, which is the main inconvenient
for the algorithm.

This algorithm is complemented in [21] with a procedure to calculate a good set of
initial grasp points, computed with the solution of a quadratic programming problem whose
objective function is the distance between the centroid of the primitive contact wrenches
and the origin of the wrench space. The minimization of the objective function chooses a
set of initial contacts on the object, avoiding the random selection of the previous algorithm
and improving the processing time. However, the algorithm is still incomplete, i.e. the
algorithm can not judge whether the problem has feasible solutions; if the algorithm fails to
find a feasible solution there is no guarantee that there is none for the problem.

2.5 Equilibrium grasps with virtual fingers

Computation of equilibrium grasps for polyhedral objects using PCWF or SC fingers is
presented in [22]; the computation of equilibrium grasps is closely related to FC grasp syn-
thesis, since non-marginal equilibrium is a sufficient condition for FC grasps in the presence
of friction [13]. Each finger pushes one face of the object within a convex polygonal area;
each one of the fingers is replaced with virtual fingers fixed at the vertices of the region,
and the equilibrium equations form a nonlinear programming problem, similar to an integer
programming problem. A branch and bound algorithm is proposed to compute the solution,
decomposing each finger region to search for a subregion where the moment equilibrium
conditions are satisfied (the nonlinearity in the problem arises from this condition).
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Table 2.1: Main references in grasp synthesis for polyhedral objects.
Reference No. fingers Generated grasp
[10], 1988 2 SC Maximal independent contact regions
[11], 1994 3 PCWF Optimal grasp with the

criterion of decoupled forces
[12], 1993 3 and 4 PCWF

Concurrent grasps Maximal independent contact regions
[13], 1997 4 PCWF

Concurrent grasp Maximal independent contact regions
[14], 1995 4 PCWF

Concurrent and flat pencil grasps Maximal independent contact regions
Regulus grasp Generation of one grasp

[16], 1999 n PCWF Feasible grasp region for the n-th finger
given the position of n− 1 fingers

[17], 2001 n FPC or PCWF Feasible grasp region for the n− k fingers, and
given the position of k fingers, optimal grasp minimizing the distance between

k ≥ 3 the centroid of the grasp polyhedron and CM
[18], 2000 n FPC or PCWF, given Optimal grasp minimizing the distance between

the position of k fingers, k ≥ 3 the centroid of the grasp polyhedron and CM
[19], 2000 n FPC or PCWF One FC grasp
[21], 2001 n FPC or PCWF One FC grasp
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Chapter 3

Grasp synthesis for complex

objects

Grasp synthesis in 3D objects initially considered only polyhedral objects; the proposed al-
gorithms are efficient when the number of faces of the object is low. However, new techniques
are required when dealing with 3D complex objects (i.e. non-polyhedral objects and even
polyhedral objects with a large number of faces), because of the large amount of information
required to model the object, usually obtained from a CAD system or through sensors such
as laser scanners or video cameras. The surface of the object is usually modeled with a cloud
of discrete points, a triangular mesh or smooth curved surfaces.

3.1 Grasp synthesis for objects described with continu-

ous surfaces

3.1.1 Two-finger grasps

In 3D smooth convex objects there always exists a FC grasp with two SC fingers in antipodal
points, or with three fingers if no two of the contact points are antipodal [23]. An object
is considered to be smooth if the boundary ∂A is diffeomorphic to the sphere S2 (it does
not have holes). Two points are antipodal if the ray trough each point in the direction of
the inward normal contains the other point, i.e. their normals are collinear and in opposite
direction. No algorithm to compute two or three finger grasps is proposed in [23].

The grasp synthesis for arbitrary smooth (convex and not convex) objects with two SC
fingers is considered in [24]. Convex objects can be grasped by squeezing grasps only; non
convex objects can be grasped by squeezing and possibly expanding grasps. The surface for
a smooth object can be described by a 1 to 1 parametric function:

s(u) = [x(u), y(u), z(u)]
T
, u ∈ S2 (3.1)

where u ∈ S2 is called a contact variable. Since the function is 1 to 1, u0 can be
used instead of s(u0) to represent a contact point on the object. A contact configura-
tion of a 2-fingers grasp is defined as q = (u1,u2), with u1 6= u2 and u1,u2 ∈ S2. If
Γ =

{
(u1,u2)|u1 = u2 ∈ S2

}
denotes the set of physically unrealizable contact configura-

tions (as it implies that the two fingers would be on the same point), the contact configuration
space D is

D = S2 × S2 \ Γ (3.2)

According to [10], a 2-fingers grasp q = (u1,u2) is FC iff the line connecting the points
s(u1) and s(u2) lies strictly inside both internal or external friction cones for squeezing or
expanding grasps, respectively. This condition is verified by antipodal points, i.e. points
that fulfill the following conditions:

[s(u1) − s(u2)] · t(u1) = 0 (3.3)
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[s(u2) − s(u1)] · t(u2) = 0 (3.4)

n(u1) + n(u2) = 0 (3.5)

where n(u1) and n(u2) are the unit outward pointing normal vectors, and t(u1) and t(u2)
are unitary tangent vectors in the tangent spaces at u1 and u2.

A FC squeezing grasp satisfies:

n(u1) ·
s(u1) − s(u2)

‖s(u1) − s(u2)‖
> cos θ (3.6)

n(u2) ·
s(u2) − s(u1)

‖s(u2) − s(u1)‖
> cos θ (3.7)

where tan θ = µ, with µ the friction coefficient. The conditions for an expanding grasp are

n(u1) ·
s(u1) − s(u2)

‖s(u1) − s(u2)‖
< − cos θ (3.8)

n(u2) ·
s(u2) − s(u1)

‖s(u2) − s(u1)‖
< − cos θ (3.9)

Inequalities (3.6)-(3.9) define the feasible grasping regions in D; in these regions the grasps
are FC. A “grasping energy function” E : D → ℜ, depending on the distance between the
points, is defined as

E(u1,u2) =
1

2
κ ‖s(u1) − s(u2)‖

2
(3.10)

A pair of antipodal points u1 and u2 for a 3D object correspond to critical points of E
in the feasible grasp region. However, the optimization of E is difficult since D does not
admit a global parametrization. To overcome this inconvenient, 3D objects are modeled
with spherical product surfaces, a technique used to represent 3D object surfaces taking as a
base 2D curves, that may be parametrized trigonometric curves or B-splines. For instance,
the generic superellipsoids (a particular superquadric surface) are defined with the following
spherical product:

s(u, v) =

(
cosǫ1 u
a3 sinǫ1 u

)
⊗

(
a1 cosǫ2 v
a2 sinǫ2 v

)
=



a1 cosǫ1 u cosǫ2 v
a2 cosǫ1 u sinǫ2 v

a3 sinǫ1 u


 (3.11)

with −π/2 ≤ u ≤ π/2, −π ≤ v ≤ π; equation (3.11) considers five parameters, defining the
shape and size of the superellipsoid; ǫ1 and ǫ2 are the deformation parameters that control
the shape of the primitive, and a1, a2 and a3 define the primitive shape in directions x, y,
and z respectively [25]. The 3D spherical product surface is defined as

s(u, v) = f(u) ⊗ g(v) − [f1(u)g2(v), f1(u)g2(v), f2(u)] (3.12)

where f(u) and g(v) are 2D curves:

f(u) = [f1(u), f2(u)] , u ∈ Iu = [uo, u1] (3.13)

g(v) = [g1(v), g2(v)] , v ∈ Iv = [vo, v1] (3.14)

with f(u) and g(v) parametric trigonometric curves. This definition can be extended to
represent a richer set of objects using B-splines; let f : Iu = Im → ℜ2 be an open cubic B-
spline curve of m segments and g : Iv = In → ℜ2 a closed cubic B-spline curve of n segments.
To guarantee object surface smoothness, f(u) and g(v) must satisfy the following conditions:

• f(u) and g(v) must be regular curves

• The curve f(u) intersects the y-axis at f(0) and f(m) only; the tangents f ′(0) and
f ′(m) must have zero slope.
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Figure 3.1: Heuristic generation of three-fingers grasps (Source: [26]).

• The tangent vector and the position vector of a point on g(v) are not parallel, i.e.
g(v) 6= αg′(v) for some α 6= 0, or g1g

′
2 − g′1g2 6= 0.

These surfaces can be be deformed to approximate the real shape of an object with trans-
formations such as linear stretching, tapering or bending. The spherical product mapping
Im × In onto a surface diffeomorphic to S2 is not a 1 to 1 mapping because the two po-
lar points, pn = s(0, v) and ps = s(m, v) with v ∈ In are degenerated curves; however,
the normal vectors at the polar points are well defined and they are continuous in their
neighborhoods.

The domain of the spherical product surface is Iu × Iv, so the contact configuration
space is D∗ = Iu × Iv × Iu × Iv, which is topologically different from D. However, this
parametrization allows the optimization of the energy function (3.10) on the feasible grasp
region D∗, thus allowing the computation of the antipodal points defining the FC grasp on
the object.

3.1.2 Three, four and five-fingers grasps

Heuristic grasp generation has been proposed to synthesize grasps with more than two
contact fingers. For instance, a simple heuristic search to synthesize FC grasps with three
fingers is presented in [26]. A coordinate system with arbitrary origin and orientation is
generated inside the bounding box of the object (Figure 3.1). Three rays are generated in
predefined directions from the origin of this frame; the first one is emitted along the x axis,
the second and third along the x axis rotated about the z axis by 120o and 240o, respectively.
If all the three rays yield one penetration point, the set of intersection points with the
object surface is a grasp candidate. For non-convex objects, more than one penetration
point penetrating the object surface from the inside can be obtained; in this case, one of
the penetration points is chosen randomly. This heuristic search does not take into account
the friction coefficient, but the generated grasp is FC according to conditions presented in
Section 2.2.

Grasp candidates are filtered to exclude candidates which can not lead to feasible grasps.
The first filter discards candidates with grasp points too close to supporting surfaces; the
second filter verifies that the grasping points are not further apart than the hand can spread
its fingers. The third filter avoids collisions between the hand and the environment; the
implementation generates two points at a fixed distanceD measured from the contact points,
the hand frame is placed in these two origins, and a collision check between the hand and
the environment is performed. Candidate grasps passing the previous filters are ordered
according to a quality measure, and the algorithm finally chooses the best quality grasp
within the initial candidate grasps.

The previous work is extended in [27] to four-fingers grasps. The synthesis procedure
follows the same ideas: a set of candidate grasps is generated and filtered using the same
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Figure 3.2: Heuristic generation of four-fingers grasps (Source: [27]).

criteria, and the candidates overcoming the filters are ordered according to a quality measure
to finally choose the best candidate grasp among the set of initial candidates. The generation
of candidate grasps is illustrated in Figure 3.2. A point on the object surface is arbitrarily
chosen as the first contact point (1). A ray direction (2) deviated from the surface normal by
an arbitrary angle (smaller than the angle of the friction cone) is computed; a penetration
point of this ray is chosen as the second contact point (3). Next, the center point (4) of
the two already existing grasp points is calculated, and two rays (5a, 5b) are emitted in
two directions which are arbitrary chosen with a distribution between the following two
distributions:

• The rays (2), (5a) and (5b) lie on a plane, separated by an angle of 120o. This criterion
is optimal for gripper kinematics.

• (5a) and (5b) are perpendicular to (2), and the separation angle between (5a) and (5b)
is 120o. This criterion emulates the optimal grasp points location for a tetrahedron.

The penetration points (6a) and (6b) are the two missing contact points. In this way,
concurrent four-fingers grasps fulfilling the conditions presented in Section 2.3 are obtained.

3.1.3 Grasps with any number of fingers

Several generic algorithms have been presented, i.e. algorithms to synthesize grasps for any
3D object with smooth curved surfaces and with any number of contacts. An algorithm to
synthesize grasps based on the concept of the Q distance (or Q norm) is presented in [28].
The Q norm (‖·‖Q), or gauge function, is a grasp quality measure defined for a convex
compact set Q ⊂ ℜm which contains the origin of the reference system in ℜm:

gQ (a ∈ ℜm) = inf
a∈γQ,γ>0

γ (3.15)

The Q distance is the minimum scale factor required for the set Q to contain a given point a,
i.e. it quantifies the maximum wrench that can be resisted in a predefined set of directions,
given by the set Q. A sphere in terms of ‖·‖Q (a ‖·‖Q sphere) centered in the origin is defined

as SQ(ρ) =
{

a| ‖a‖q ≤ ρ
}

. To implement the grasp planning algorithms, Q is taken as a

polyhedral set. Let p ∈ ℜm and A ⊂ ℜm be a point and a convex polyhedron, respectively;
the Q+ distance is defined as

d+
Q (p, A) = min

a∈A
‖a − p‖Q (3.16)

This distance can be interpreted as the radius of the smallest ‖·‖Q sphere in contact with
A− {p}.
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A grasp with primitive contact wrench matrix G is FC if d+
Q (0, CH(G)) = 0. However,

this is a necessary but not sufficient FC condition. This makes necessary the definition of
the distance d−Q, as

d−Q (p, A) = − min
a∈∂A

‖a − p‖Q (3.17)

where ∂A denotes the boundary set of A. By definition, d−Q (p, A) ≤ 0 for any p ∈ A.

The distance d−Q (p, A) has a geometric interpretation: it is the radius of the largest ‖·‖Q

sphere contained in A−{p}. This geometric interpretation is similar to the classical quality
measure described in [29, 30], where the grasp quality is measured with the L2 norm of
the largest wrench that the robotic hand can produce on the grasped object in the worst
possible direction; in this case, the L2 norm is replaced with the ‖·‖Q norm, and a similar
measure is obtained.

Assuming that the grasped object is piecewise smooth, and each finger is placed at one
of the smooth surfaces, it can be stated that the primitive contact wrenches depend on the
grasp configuration u, i.e. G = (g11(u), . . . , gnm(u)). Therefore, if the definition of d−Q
is used with p = 0, A = CH(G(u)), the following sufficient and necessary condition is
obtained:

Theorem: a grasp is FC iff d−Q(u) < 0.

Therefore, d−Q provides a qualitative test of the FC property and quantifies the capability
of the grasp to resist external loads and/or disturbances, and becomes useful to obtain and
optimize the configuration of a FC grasp. Distances d+

Q and d−Q are computed efficiently
solving linear programming problems (with the simplex method), and their derivatives are
easily computed in most of the cases; these properties make easier the implementation of a
grasp planning algorithm. The Q distance can be defined in general as

dQ(u) =

{
d+

Q(u), 0 /∈ CH(G(u))

d−Q(u), 0 ∈ CH(G(u))
(3.18)

The grasp planning algorithm must minimize dQ(u) in the grasp configuration space. The
constraints for the minimization problem are obtained by restricting the contacts to lie on
some smooth pieces of the surface. These constraints are denoted in general as Ci(u) ≥ 0,
i = 1, . . . , κ, and it is assumed that the Ci(u)’s are smooth functions. To handle the
constraints, a potential field is introduced; let ǫ > 0 be a threshold which specifies the active
region of the potential field, and ℑǫ(u) = {i|Ci(u) < ǫ}. The potential field, for γ > 0, is
defined by

P (u) =
∑

i∈ℑǫ(u)

(
1

Ci(u)
−

1

ǫ

)γ

(3.19)

Using this potential function, the grasp planning problem reduces to minimize the following
unconstrained objective function:

f(u) = dQ(u) + νP (u) (3.20)

with ν a weighting coefficient, usually selected as a small positive number. The minimization
of the objective function (3.20) is achieved with a descent search algorithm, taking advantage
of the differentiability properties of dQ(u). The initial value for the problem is a grasp u0

fulfilling the restrictions Ci(u0) ≥ 0, i = 1, . . . , κ. The proposed algorithm can be used for
grasp planning with any number of contacts on 3D objects with smooth curved surfaces. It
is also used to synthesize grasps when k of the n contact points are fixed and the others are
to be determined to get a FC grasp.

The gauge function is generalized in [31, 32] to create a new numerical FC test; the
detailed development of the test is found in [33]. A grasp with matrix of primitive contact
wrenches G is FC iff 0 ∈ int(CH(G)), or equivalently

1. 0 ∈ ri(CH(G))

2. rank(G) = 6
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where ri(CH(G)) denotes the relative interior of CH(G). The second condition is easily
verified with a singular value decomposition of G. For the first condition, a necessary
and sufficient condition is that there exists a point w0 ∈ ri(CH(G)) and a nonnegative
number α < 1 such that w ∈ {w0} + α (CH(G) − w0).

To implement the numerical test, the average wrench w0 is used (w0 = 1
N

∑N
i=1 gi, with

N = nm), as w0 ∈ ri(CH(G)). The numerical test is

ψ(G) = min
0∈{w0}+α(CH(G)−w0), α≥0

α (3.21)

ψ(G) provides a measure of how much CH(G) must be grown outward from w0 to contain
the origin of the wrench space. In particular, if rank(G) = 6 then ψ(G) is the gauge
function of CH(G). As a property of the gauge function, 0 ∈ int(CH(G)) if and only if
α < 1. Therefore, α provides a numerical test for the first FC condition, so α < 1 indicates
that 0 ∈ ri(CH(G)). The measure is computed with the following linear programming
problem:

ψ(G) = min

N∑

i=1

αi (3.22)

subject to





w0 +

N∑

i=1

αi (gi − w0) = 0

αi ≥ 0

(3.23)

The grasp configuration is given by a vector u with parameters specifying the position of the
contact points. It is assumed that the object has a piecewise smooth surface, and each con-
tact point is positioned at one of the smooth pieces. Thus, the primitive wrenches can be rep-
resented as smooth functions of the grasp configuration, i.e. G(u) = (g11(u), . . . , gnm(u));
the corresponding numerical test is ψ(u). Since ψ(u) < 1 is the necessary condition for
the FC property, and the value of ψ(u) provides a measure on how far the grasp is from
losing the closure property, a natural way to compute a FC grasp is to minimize ψ(u). This
optimization problem can be solved with a descent search algorithm.

A necessary but not sufficient condition for the FC is ψ(u) < 1; however, the solution
must also verify that rank(G) = 6. This condition is equivalent to det (Φ(u)) > 0, with
Φ(u) = G(u)GT (u). A larger value of det Φ(u) suggest a better ability to resist external
perturbation wrenches. Thus, in order to plan FC grasps with a desirable performance, the
following objective function must be minimized

f(u) = ψα(u) − ηg (φ(u)) (3.24)

where φ(u) = det Φ(u), and g(·) is a monotonous function; for instance, g (φ(u)) = φβ(u),
or g (φ(u)) = lnφ(u). The proposed algorithm has a general application, and is computa-
tionally more efficient that the algorithm proposed in [28].

3.1.4 Randomized grasps

Most of the algorithms to synthesize grasps on polyhedral or continuous surface objects
generate grasps assuming that the faces to be grasped are previously chosen; however, few
works have included the problem of appropriate face selection. Moreover, a widely used
technique to represent an arbitrary object is approximate its surface with a large triangular
mesh (specially when the object information comes from cameras or laser scanners; a com-
mon number of faces is 103−105); since the computational cost of the algorithms depends on
the number of faces describing the object, the previously presented algorithms are expected
to take long time to generate a good grasp. However, a random generation of grasps may
be quickly and appropriate for on-line grasp synthesis (in real applications), computing very
fast and good, although not optimal, grasps [34].

The algorithm in [34] generates grasp candidates randomly choosing contacts on the
object surface. The candidates are pre-filtered to discard those candidates for which a
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computed external force fext breaks the grasp; this happens if the angles αi between the
force vector fext and the normals of all the contacts i is bigger than 90o+arctan(µ), where µ
is the friction coefficient. Two external forces are tested, computed as follows: (1) Choosing
the two contact normals with the largest angle between them, fext is in the opposite direction
to the bisector between them, (2) fext is in the opposite direction to the average of all
the contact normals. Among the candidates passing the pre-filtering stage, the FC grasp
candidates are selected. The quality of the FC grasp candidates is measured according to
the classical quality index presented in [30], which quantifies the maximum wrench that the
grasp can resist with independence of the wrench direction; the algorithm finally chooses
the best quality grasp. The algorithm is tested for 3, 4 and 5 fingers, and it is stated that
the generated grasps have a quality similar to the expected quality from a human grasp on
the same objects. The calculation complexity of the random grasp planner depends only on
the object form, not on the number of faces composing the object surface.

3.2 Grasp synthesis for discretized objects

The previous Section has described several algorithms to synthesize grasps in objects with
piecewise smooth surfaces; however, to apply these algorithms to real objects, the surface
of the object must be parametrized, which usually is not an easy task. Another common
way to represent complex objects is by using triangular meshes; the application of the grasp
synthesis algorithms for polyhedral objects to objects described with triangular meshes has
a high computational cost, as it was previously described. To overcome this problem, the
surface of the 3D object is sampled, generating a set of surface points, whose position and
corresponding normal direction is stored. This approach allows the application of grasp
synthesis algorithms to arbitrary objects, assuming the number of points in the cloud of
points is enough to accurately describe the object surface. A first approach to synthesize
FC grasps on a set of discrete surface points is to exhaustively search for a set of points
fulfilling the FC condition using all the possible combinations of points. Evidently, the
complexity of such algorithm is very high: O(Nn), with N the number of points on the
object surface and n the number of contacts. To reduce this complexity, several algorithms
with oriented searches have been proposed.

3.2.1 A complete algorithm

An algorithm to synthesize FC grasps with 7 frictionless contacts is proposed in [35]. The
grasped object has been discretized previously, so a large cloud Ω of points pi as well as their
normals ni is available. Then, a large collection of contact wrenches gi can be obtained:

gi =

(
ni

pi × ni

)
(3.25)

The algorithm starts with an initial set of seven contacts randomly chosen among the set of
points; if the selected grasp is FC, the algorithm finishes; otherwise, the initial contacts are
iteratively exchanged with other candidate locations until a FC grasp is obtained. The FC
verification uses the ray-shooting test [20], presented in Subsection 2.4.3.

The exchange procedure has two phases. First, the set of points Ω is divided into
two sets according to the relative locations of their wrenches with respect to a separating
hyperplane (Figure 3.3). The hyperplane E that contains the facet of CH(G) intersected
by the ray PO between the centroid P of CH(G) and the origin O of the wrench space has
as generic equation

6∑

i=1

eixi = 1 (3.26)

The separating hyperplane Y is a hyperplane parallel to E and passing through the origin;
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Figure 3.3: Sets of wrenches for a FC grasp with frictionless fingers (in a hypothetical 2D
wrench space).

its equation is
6∑

i=1

eixi = 0 (3.27)

and it divides the wrench space in two subspaces Y + and Y −, where Y + is the half space
e1x1+e2x2+e3x3+e4x4+e5x5+e6x6 ≥ 0 and Y − is the half space e1x1+e2x2+e3x3+e4x4+
e5x5 +e6x6 < 0. The wrenches are classified in two sets: S, containing the wrenches located
on the same side of the hyperplane as the 7 initial wrenches, and D, with the wrenches lying
on the other side.

The second phase iteratively replaces one of the initial wrenches with a wrench randomly
selected from the set D. Let gj be the initial wrenches; the centroid P of these wrenches is

P =
1

7

7∑

j=1

gj (3.28)

When an initial wrench gj is replaced with gk, the new centroid will be

Pjk = P − gj/7 + gk/7, j = 1, 2, . . . , 7 (3.29)

The algorithm chooses the wrench j to be replaced when the maximum approach from P
to O is achieved:

j = i |min
i

‖PikO‖ , i = 1, 2, . . . , 7 (3.30)

It usually happens that the minimum distance ‖PO‖ with the new wrench gk is larger than in
the previous iteration (the convex hull moves farther from the origin, instead of approaching
it); in this case another wrench in the set D is chosen until ‖PO‖ diminishes with respect to
the previous iteration. If all the wrenches in D are tried and the minimum distance ‖PO‖
can not be diminished, the algorithm is in a deadlock. To escape, the algorithm picks up 7
new initial wrenches and restarts the process until the convex hull contains the origin, i.e.
until a FC grasp is obtained.

The previous heuristic algorithm is extended in [36] for any number of contacts with
or without friction. The algorithm starts with a random grasp selected from the set of
points Ω. If the grasp is not FC, the algorithm iteratively moves the grasp points to shorten
the distance between the convex hull and the origin of the wrench space. This algorithm,
unlike the previous one in [35], considers that each point is connected with 4 neighboring
points, and all the possible moves for each finger are studied in each iteration, looking for
the grasp position that achieves the minimum distance ‖PO‖. The algorithm iterates until
it finds a local minimum; when this happens, the separating hyperplane divides the total
set of points Ω in three subsets to ease the search of the FC grasp, by discarding points that
do not contribute to the solution. The subsets are:

Ω(Y −) =
{
pi ∈ Ω|gij ∈ Y −, for all j = 1, 2, . . . ,m

}
(3.31)
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Figure 3.4: Grasp of discretized objects with n fingers: a) Local heuristic search b) Search
tree to decompose the problem with 3 PCWF fingers (Source: [36]).

Ω(Y +) =
{
pi ∈ Ω|gij ∈ Y +, for all j = 1, 2, . . . ,m

}
(3.32)

Ω(Y 0) =
{
pi ∈ Ω|pi /∈ Ω(Y −), pi /∈ Ω(Y +)

}
(3.33)

where gij denotes the primitive contact wrenches (m for each finger); Ω(Y −) and Ω(Y +) are
the subsets of Ω with contact points whose m wrenches are all located on the half spaces Y −

and Y +, respectively, and Ω(Y 0) is the subset of contact points whose m wrenches are
distributed to both sides of the separating hyperplane. Note that in a grasp with FPC
fingers the subset Ω(Y 0) does not exist, since each contact point has only one corresponding
primitive contact wrench; this simplifies the grasp search.

In a FC grasp, the n grasp points should not all be in subset Ω(Y +) or subset Ω(Y −).
This suggests the division of the problem in the original set into problems in the subsets,
based on the existence conditions for a FC grasp. The grasp points should be selected from
the subsets according to the following combinations:

• Ω(Y −), Ω(Y +) and Ω(Y 0)

• Ω(Y −) and Ω(Y +) only

• Ω(Y −) and Ω(Y 0) only

• Ω(Y +) and Ω(Y 0) only

• Ω(Y 0) only

For instance, for a 3-fingers PCWF grasp, eight problems in the subsets must be consid-
ered, which are grasps consisting of

• one grasp point from Ω(Y −), one from Ω(Y +) and one from Ω(Y 0).

• two grasp points from Ω(Y −) and one from Ω(Y +).

• one grasp point from Ω(Y −) and two from Ω(Y +).

• two grasp points from Ω(Y −) and one from Ω(Y 0).

• one grasp point from Ω(Y −) and two from Ω(Y 0).

• two grasp points from Ω(Y +) and one from Ω(Y 0).

• one grasp point from Ω(Y +) and two from Ω(Y 0).

• all three grasp points from Ω(Y 0).

The subproblems obtained are represented as child nodes in a search tree whose root is
the original problem (Figure 3.4). The convention 〈i, j, k〉 in the node denotes that i, j and k
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Figure 3.5: Concurrent grasps for discretized objects: a) Cube discretized in voxels, b) SetM
of 4 points whose friction cones contain the point p.

grasp points are selected from subsets Ω(Y −), Ω(Y +) and Ω(Y 0), respectively. To determine
which child node should be traversed first, the following heuristic function is defined:

f(〈a1, a2, . . . , at〉) =

t∑

i=1

(
7

t
− ai

)2

(3.34)

where t is the number of subsets corresponding to the node and ai denotes the number of
contact points in subset i. For instance, for the right-most node in Figure 3.4, t = 3, a1 = 0,
a2 = 0 and a3 = 3. The heuristic favors the nodes with eligible contact points more evenly
distributed over the point subsets, considering they have a higher chance to contain a FC
grasp; therefore, a node with a smaller value of f will be traversed before other node with
a higher value. When one node is selected, a local search is performed in the corresponding
subset. If the distance between the convex hull and the origin has a new local minimum,
the corresponding separating hyperplane subdivides the problem using again the existence
conditions of the FC grasp. The search is performed recursively or until all the nodes have
been explored.

The complexity of the search tree does not depend on the total number of points repre-
senting the object, but on the number n of fingers and on the number of local minima in the
grasp configuration space (i.e. by the discrete geometry of the object surface). The number
of nodes in the search tree goes down with the increasing number of fingers, because the
chance of finding a solution with the initial grasp increases as n increases. The proposed
algorithm is complete: it finds a solution if one exists, otherwise it reports that there is no
solution. However, the failure to find a solution in the discrete domain does not imply that
no FC grasp exists on the continuous surface of the object. The grasp obtained with this
algorithm does not assure any optimality.

3.2.2 Concurrent grasps

A heuristic algorithm to search for 4-fingers concurrent FC grasps is presented in [37]. The
objective is to generate a number of 4-fingers concurrent FC grasps to provide the user
with a large set of grasps, so the user can choose an optimum one according to a quality
measure appropriate for the particular task, for instance, in regrasp planning. The FC test
is based on the conditions presented in Subsection 2.3.1, i.e. P1) there exist four lines in
the corresponding double-sided friction cones that intersect in a single point, and P2) the
vectors parallel to these lines and lying in the internal friction cones at the contact points
positively span R3.

To avoid considering all the possible combinations of 4 points on the object, an oriented
search is performed looking for sets of points fulfilling condition P1, and condition P2 is
tested on these sets of points to find the FC grasps. The algorithm has the following steps:

• The object’s surface is discretized in a regular grid of voxels (cubic pixels) Cj (Fig-
ure 3.5). For each voxel there is a set of points Tj whose normal intersects the voxel.
This intersection is found with the Bresenham‘s algorithm, commonly employed for
drawing lines in computer graphics.
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Figure 3.6: Concurrent grasps for discretized objects: a) Parametrization of the normal
vectors, b) Mapping the unitary sphere to the cartesian plane (Source: [37]).

• The grasp search continues for the Tj ’s with at least four members, i.e. for voxels
intersected by at least four friction axis cones (normal vectors), since there is a bigger
chance to find an intersection point lying in the four friction cones. For each Tj

considered, the inward normals of all the set are tested whether they positively span ℜ3;
this condition is verified if the convex hull of the corresponding points contains the
origin. This is a conservative approach, since there may be points whose normals
do not positively span ℜ3 but whose friction cones allow a FC grasp; however, these
grasps have a poor performance in front of external perturbations in some particular
directions. The sets Tj failing this test are not considered for further processing.

• A predefined number of random points p are picked up inside the voxel Cj , and it
is assumed that each point is the intersection point of four contact forces. With
this assumption, the set M ⊂ Tj of points whose friction cones contain the point p
is generated (Figure 3.5); the test is performed by comparing the semi-angle of the
friction cone with the angle between the cone’s axis and the line between the point
and the cone’s vertex.

• All the possible combinations of 4 points in M fulfilling the condition P2 are listed, i.e.
the possible combinations positively spanning ℜ3. For any three vectors, the fourth
must lie strictly inside the thihedron formed by the inverses of the three given vectors
(otherwise, they would lie in the same half space). It is important that every combina-
tion is listed without any repetition; to facilitate this ordering, each normal vector is
parametrized using an ordered pair of angles (α, β), with α ∈ [0, 2π] the angle between
the x-axis and the projection of the vector on the xy plane, and β ∈ [0, π] the angle
between the z axis and the vector (Figure 3.6). With this parametrization, a sorted
order can be imposed by defining that a vector va = (αa, βa) precedes vb = (αb, βb)
when βa < βb, or when αa < αb if βa = βb.

An unitary vector can be represented as a point on the unitary sphere; a trihedron
formed by three unitary vectors intersects the unitary sphere in a triangular spherical
region. To simplify the search of point quadruples, the unitary sphere is mapped
to a cartesian plane with the parameters (α, β), and the triangular spherical region
is approximated by a rectangular region that encloses it (taking into account the
singularities arising in α = 0 and in the north and south poles). Thus, the algorithm
searches for the points enclosed in the box; for each contained point, the candidate
quadruple is tested for positive spanning of ℜ3.

• The algorithm is performed again with a finer discretization of Cj ; the variation in
resolution leads to find a wider set of FC grasps.

The implementation of the algorithm uses a random discretization of the object’s surface,
but the study of sampling techniques that may improve the algorithm’s efficiency is not
considered.
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Table 3.1: Main references in grasp synthesis for arbitrary objects.
Reference Object No. fingers Generated grasp
[24], 1993 Smooth surfaces 2 SC Optimal grasp according

to an energy function
[26], 1997 Bounding box 3 PCWF Best grasp among a group of

of the object heuristically generated grasps
[27], 1999 Arbitrary 4 PCWF Best grasp among a group of

Concurrent grasp heuristically generated grasps
[28], 2003 Piecewise smooth n PCWF Optimal grasp minimizing

the Q distance, dQ

[31], 2004 Piecewise smooth n PCWF Optimal grasp minimizing
the function f(u)

[34], 2003 Arbitrary 3,4 and 5 PCWF Best grasp among a group of
heuristically generated grasps

[35], 2001 Discretized 7 FPC One FC grasp
[36], 2004 Discretized n FPC or PCWF One FC grasp
[37], 2004 Discretized 4 PCWF Set of grasps

Concurrent grasp
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Chapter 4

Empirical grasp synthesis and

fixture design

4.1 Empirical approaches for grasp synthesis

In general, algorithms for analytic grasp synthesis are used in the planning of precision
grasps, i.e. grasps where the fingertips are in contact and apply forces on the object. This
kind of grasps is very useful in manipulation of objects; however, power grasps provide a
better restriction on the object; in these grasps the palm and the proximal part of the
fingers are also in contact with the object. The synthesis of power grasps relies mainly on
empirical approaches, based on the study of the geometry that the human hand adopts to
perform different tasks. The identification of the basic hand shapes in grasping is generically
known as the taxonomy of grasping. Initially, grasps were classified in two large groups,
power (volar) grasps and precision (non volar) grasps [38]. A more detailed classification
uses six groups: cylindrical, spherical, lateral, pinch, hook and palm grasps [39]. Grasps
used in manufacturing tasks are classified in [40]; an expert system is also developed to
choose grasps based on the object shape and the task requirements. The taxonomies of
grasping are summarized in [41], and a general classification is presented, based on the idea
of virtual fingers (surfaces of the hand in contact with the object). Empirical grasp synthesis
uses a variety of tools, such as fuzzy logic [42], neural networks [43] or knowledge-based
systems [44, 45]. Some works in empirical grasp synthesis are summarized below.

A grasp planner for 3D objects with a Barrett hand is presented in [46]. The planner tries
to imitate the human behavior: before grasping an object, humans unconsciously simplify
the task to select one posture among a few options, depending on the object geometry and
task to be performed. The grasp planning process has two stages. First, it generates a
set of grasp starting positions, i.e. position and orientation of the hand and a grasp pre-
shape selected for either a cylindrical or spherical grasp. The starting position is computed
for a simplified model of the object’s geometry, built from primitive shapes such as boxes,
spheres and cones; each primitive shape is associated with different grasp strategies that
generate candidate locations with greater probability to provide a high quality grasp. In the
second stage, the grasping simulator GraspIt! [47] closes the fingers on the real model of the
object, starting from the initial hand location, and subsequently evaluates the grasp quality.
After all the generated possibilities have been tested, the system presents the best generated
grasps. A similar two-stages procedure is used in [48]; first, it generates a preliminary grasp,
optimum according to the hand restrictions; later, this preliminary grasp is used as the
initial value in a search procedure of an optimal quality grasp.

Another approach uses a database with different FC grasp positions for a predefined
object [49]. The database is generated off-line using a geometric simulation of the grasping
hand and the object; different postures are generated by changing the object position and the
angle of approach to the object, and the convex hull of the primitive contact wrenches and
corresponding grasp quality are stored for each FC grasp tested. At runtime, the estimated

29



mass distribution of the object (that may have variations with respect to the geometric
model used to generate the database) and the information regarding force/moment that the
object must resist, yield a single perturbation wrench, which is a point in the 6D wrench
space. The appropriate grasp is selected from the database, looking for the grasp whose
convex hull has a facet nearest the disturbance wrench, as this grasp will require minimum
contact forces to resist the perturbation.

One successful grasp example can be the basis to generate a family of grasps with a
quality at least as good as the quality from the example; such approach is presented in [50].
The example provides the approximated location of the independent contact regions; sub-
sequently, the independent contact regions for each finger are computed. The algorithm is
polynomial in the number of contacts, which makes it suitable for a large number of con-
tacts; however, for objects with a small number of contacts there are better algorithms.
The method is implemented for 5 to 12 frictional contacts (although it is also useful for
frictionless contacts) and in a variety of tasks. The algorithm computes FC grasps, grasps
with partial FC or simply grasps with a higher quality than the example’s quality (this is
specially suitable for non FC grasps computed to resist specific perturbations, for instance,
the object’s weight). Maximal independent contact regions and grasps with minimum con-
tact forces are not generated, and the outcomes for the algorithm greatly depend upon the
initial example. A previous version of this approach is found in [51]. A similar method
which uses images from human grasps to extract the approximated location of the contact
points as an example for a robotic hand is presented in [52].

4.2 Fixture design

Fixtures play an important role in manufacturing tasks such as assembly, inspection and
machining of workpieces. The problem of fixture design is related to the grasp planning
problem, as both of them generate contact locations to immobilize the object, i.e. a number
of location elements (fixels or fingers) must be placed on the object to immobilize it (to fixture
or grasp it). The fixture elements include passive elements (plates, V-blocks, locators) and
active elements (clamps). A complete kinematic restriction (form-closure, total fixturing) is
always desired in fixturing, with additional objectives such as the minimization of workpiece
positional errors; force-closure is usually desired in grasp planning, as the object must resist
external perturbation wrenches. Fixture design usually considers frictionless contacts, since
the forces involved in manufacturing tasks are dynamical and have high magnitudes; on the
other hand, frictional effects are usually considered in grasp synthesis.

The initial approach for 3D fixture design in [53] extends the fixture design algorithms
for polygonal objects [54, 55] to prismatic objects with polygonal base (polyhedral prismatic
workpieces), and proposes a modular fixture system with four contact points. A complete
algorithm to enumerate the possible locations for the 4 contact points providing force-closure
is also presented. The results for polyhedral prismatic workpieces are further generalized
in [56] for 3D fixture design taking into account the task constraints. Later works are focused
on polyhedral objects; for instance, in [57, 58] a modular fixture device is presented, and an
algorithm to generate concurrent fixtures immobilizing the object with 4 frictional contacts
is proposed.

Seven modular struts are used in [59] to compute form-closure fixtures on 3D objects.
The algorithm enumerates all the 7 points subsets which provide form-closure, and sorts
them according to a quality criterion, for instance the minimization of reaction forces under
an external force specified by the user. Several basic criteria based on accessibility analysis to
test the eligibility of a given surface that may be considered as a fixture surface are presented
in [60]. A two-stages algorithm to generate a fixture configuration is presented in [61]. The
first stage searches for a set of surfaces which may provide a form-closure fixture using the
algorithm presented in [20] and already described in Subsection 2.4.3. The second stage
determinates an optimal fixture with the solution of a quadratic programming problem;
the objective function maximizes the euclidean distance between the fixture points and the
center of mass of the object, and the linear restrictions are the form-closure conditions.
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Several algorithms for fixture design in 3D generic objects have been presented. The
synthesis of fixtures with 6 contact points and a clamp in a discrete domain (a cloud of
points describing the surface of the object) is presented in [62], [63] and [64]; the algorithm
minimizes the workpiece positional errors, an objective called D-optimality, by maximizing
the determinant of a matrix M containing information on the contacts locations. Other
optimality criteria include the A-optimality (maximization of the condition number of M) or
the E-optimality (maximization of the minimum eigenvalue of M). The proposed algorithm
iteratively changes the contact points, replacing in each iteration the contact giving the minor
contribution to the desired objective, until it finds a fixture that maximizes the optimality
criterion. The location and orientation for the clamp is predetermined in [62] and [63], but
the clamp is selected after locating the 6 passive contacts in [64]. The algorithm finally
returns a good but not optimal fixture, since an exhaustive search is not performed because
of the large collection of points in the domain.

Fixtures provided by the previous algorithm are studied in [65], evaluating their perfor-
mance with three criteria: D-optimality, norm of the locator contact forces and dispersion
in the contact forces (in a minimum dispersion fixture all the contact forces in the fixture
elements have similar magnitudes). The fixture performance characteristics are also studied,
concluding that the most important criteria are the D-optimality and the dispersion of the
locator contact forces.

A synthesis procedure similar to the algorithm presented in Subsection 3.2.1 is used
in [66] for 3D fixture synthesis; the D-optimality is used to produce more robust grasps in
front of workpiece positional errors.
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Chapter 5

Conclusions

Grasp synthesis for 3D objects has been tackled with two different approaches: empirical or
analytical. The empirical approach (knowledge-based) imitates human grasp using heuris-
tics to choose a grasp shape from a set of basic hand postures. On the other hand, analytic
approaches choose the finger positions and the hand configuration with kinematical and dy-
namical formulations, in general optimizing an objective function such as the grasp stability
or the resistance to external perturbations. This technical report has reviewed the main an-
alytical algorithms for grasp synthesis in polyhedral or arbitrarily shaped 3D objects. The
relation between the fixture design for manufacturing tasks and the grasp synthesis has also
been discussed.

The grasp synthesis for 3D complex objects, described with piecewise smooth surfaces
or with a cloud of discrete surface points, is an active area of research. In this field, the
following points can be tackled in future research:

• There are few algorithms to synthesize grasps in 3D discretized objects; new algorithms
can be explored.

• The computation of independent contact regions for 3D arbitrary objects has not been
tackled.

• Very few algorithms include the kinematical restrictions arising from the robotic hand
in the grasp synthesis process.
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