61 research outputs found

    Global Inversion of Grounded Electric Source Time-domain Electromagnetic Data Using Particle Swarm Optimization

    Get PDF
    Global optimization inversion of grounded wire time-domain electromagnetic (TDEM) data was implemented through application of the particle swarm optimization (PSO) algorithm. This probabilistic approach is an alternative to the widely used deterministic local-optimization approach. In the PSO algorithm, each particle that constitutes the swarm epitomizes a probable geophysical model comprised by subsurface resistivity values at several layers and layer thicknesses. The forward formulation of the TDEM problem for calculating the vertical component of the induced magnetic field is first expressed in the Laplace domain. Transformation of the magnetic field from the Laplace domain into the time domain is performed by applying the Gaver-Stehfest numerical method. The implementation of PSO inversion to the TDEM problem is straightforward. It only requires adjustment of a few inversion parameters such as inertia, acceleration coefficients and numbers of iteration and particles. The PSO inversion scheme was tested on synthetic noise-free data and noisy synthetic data as well as to field data recorded in a volcanic-geothermal area. The results suggest that the PSO inversion scheme can effectively solve the TDEM 1D stratified earth problem.

    A Novel Methodology for Calculating Large Numbers of Symmetrical Matrices on a Graphics Processing Unit: Towards Efficient, Real-Time Hyperspectral Image Processing

    Get PDF
    Hyperspectral imagery (HSI) is often processed to identify targets of interest. Many of the quantitative analysis techniques developed for this purpose mathematically manipulate the data to derive information about the target of interest based on local spectral covariance matrices. The calculation of a local spectral covariance matrix for every pixel in a given hyperspectral data scene is so computationally intensive that real-time processing with these algorithms is not feasible with today’s general purpose processing solutions. Specialized solutions are cost prohibitive, inflexible, inaccessible, or not feasible for on-board applications. Advances in graphics processing unit (GPU) capabilities and programmability offer an opportunity for general purpose computing with access to hundreds of processing cores in a system that is affordable and accessible. The GPU also offers flexibility, accessibility and feasibility that other specialized solutions do not offer. The architecture for the NVIDIA GPU used in this research is significantly different from the architecture of other parallel computing solutions. With such a substantial change in architecture it follows that the paradigm for programming graphics hardware is significantly different from traditional serial and parallel software development paradigms. In this research a methodology for mapping an HSI target detection algorithm to the NVIDIA GPU hardware and Compute Unified Device Architecture (CUDA) Application Programming Interface (API) is developed. The RX algorithm is chosen as a representative stochastic HSI algorithm that requires the calculation of a spectral covariance matrix. The developed methodology is designed to calculate a local covariance matrix for every pixel in the input HSI data scene. A characterization of the limitations imposed by the chosen GPU is given and a path forward toward optimization of a GPU-based method for real-time HSI data processing is defined

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Geospatial Information Research: State of the Art, Case Studies and Future Perspectives

    Get PDF
    Geospatial information science (GI science) is concerned with the development and application of geodetic and information science methods for modeling, acquiring, sharing, managing, exploring, analyzing, synthesizing, visualizing, and evaluating data on spatio-temporal phenomena related to the Earth. As an interdisciplinary scientific discipline, it focuses on developing and adapting information technologies to understand processes on the Earth and human-place interactions, to detect and predict trends and patterns in the observed data, and to support decision making. The authors – members of DGK, the Geoinformatics division, as part of the Committee on Geodesy of the Bavarian Academy of Sciences and Humanities, representing geodetic research and university teaching in Germany – have prepared this paper as a means to point out future research questions and directions in geospatial information science. For the different facets of geospatial information science, the state of art is presented and underlined with mostly own case studies. The paper thus illustrates which contributions the German GI community makes and which research perspectives arise in geospatial information science. The paper further demonstrates that GI science, with its expertise in data acquisition and interpretation, information modeling and management, integration, decision support, visualization, and dissemination, can help solve many of the grand challenges facing society today and in the future

    Development of registration methods for cardiovascular anatomy and function using advanced 3T MRI, 320-slice CT and PET imaging

    Get PDF
    Different medical imaging modalities provide complementary anatomical and functional information. One increasingly important use of such information is in the clinical management of cardiovascular disease. Multi-modality data is helping improve diagnosis accuracy, and individualize treatment. The Clinical Research Imaging Centre at the University of Edinburgh, has been involved in a number of cardiovascular clinical trials using longitudinal computed tomography (CT) and multi-parametric magnetic resonance (MR) imaging. The critical image processing technique that combines the information from all these different datasets is known as image registration, which is the topic of this thesis. Image registration, especially multi-modality and multi-parametric registration, remains a challenging field in medical image analysis. The new registration methods described in this work were all developed in response to genuine challenges in on-going clinical studies. These methods have been evaluated using data from these studies. In order to gain an insight into the building blocks of image registration methods, the thesis begins with a comprehensive literature review of state-of-the-art algorithms. This is followed by a description of the first registration method I developed to help track inflammation in aortic abdominal aneurysms. It registers multi-modality and multi-parametric images, with new contrast agents. The registration framework uses a semi-automatically generated region of interest around the aorta. The aorta is aligned based on a combination of the centres of the regions of interest and intensity matching. The method achieved sub-voxel accuracy. The second clinical study involved cardiac data. The first framework failed to register many of these datasets, because the cardiac data suffers from a common artefact of magnetic resonance images, namely intensity inhomogeneity. Thus I developed a new preprocessing technique that is able to correct the artefacts in the functional data using data from the anatomical scans. The registration framework, with this preprocessing step and new particle swarm optimizer, achieved significantly improved registration results on the cardiac data, and was validated quantitatively using neuro images from a clinical study of neonates. Although on average the new framework achieved accurate results, when processing data corrupted by severe artefacts and noise, premature convergence of the optimizer is still a common problem. To overcome this, I invented a new optimization method, that achieves more robust convergence by encoding prior knowledge of registration. The registration results from this new registration-oriented optimizer are more accurate than other general-purpose particle swarm optimization methods commonly applied to registration problems. In summary, this thesis describes a series of novel developments to an image registration framework, aimed to improve accuracy, robustness and speed. The resulting registration framework was applied to, and validated by, different types of images taken from several ongoing clinical trials. In the future, this framework could be extended to include more diverse transformation models, aided by new machine learning techniques. It may also be applied to the registration of other types and modalities of imaging data

    Acta Polytechnica Hungarica 2017

    Get PDF

    Research and technology, 1992

    Get PDF
    Selected research and technology activities at Ames Research Center, including the Moffett Field site and the Dryden Flight Research Facility, are summarized. These activities exemplify the Center's varied and productive research efforts for 1992

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium
    • …
    corecore