105 research outputs found

    Structure boundary-preserving U-Net for prostate ultrasound image segmentation

    Get PDF
    Prostate cancer diagnosis is performed under ultrasound-guided puncture for pathological cell extraction. However, determining accurate prostate location remains a challenge from two aspects: (1) prostate boundary in ultrasound images is always ambiguous; (2) the delineation of radiologists always occupies multiple pixels, leading to many disturbing points around the actual contour. We proposed a boundary structure-preserving U-Net (BSP U-Net) in this paper to achieve precise prostate contour. BSP U-Net incorporates prostate shape prior to traditional U-Net. The prior shape is built by the key point selection module, which is an active shape model-based method. Then, the module plugs into the traditional U-Net structure network to achieve prostate segmentation. The experiments were conducted on two datasets: PH2 + ISBI 2016 challenge and our private prostate ultrasound dataset. The results on PH2 + ISBI 2016 challenge achieved a Dice similarity coefficient (DSC) of 95.94% and a Jaccard coefficient (JC) of 88.58%. The results of prostate contour based on our method achieved a higher pixel accuracy of 97.05%, a mean intersection over union of 93.65%, a DSC of 92.54%, and a JC of 93.16%. The experimental results show that the proposed BSP U-Net has good performance on PH2 + ISBI 2016 challenge and prostate ultrasound image segmentation and outperforms other state-of-the-art methods

    Statistical modeling and processing of high frequency ultrasound images: application to dermatologic oncology

    Get PDF
    Cette thèse étudie le traitement statistique des images d’ultrasons de haute fréquence, avec application à l’exploration in-vivo de la peau humaine et l’évaluation non invasive de lésions. Des méthodes Bayésiennes sont considérées pour la segmentation d’images échographiques de la peau. On y établit que les ultrasons rétrodiffusés par la peau convergent vers un processus aléatoire complexe de type Levy-Flight, avec des statistiques non Gaussiennes alpha-stables. L’enveloppe du signal suit une distribution Rayleigh généralisée à queue lourde. A partir de ces résultats, il est proposé de modéliser l’image ultrason de multiples tissus comme un mélange spatialement cohérent de lois Rayleigh à queues lourdes. La cohérence spatiale inhérente aux tissus biologiques est modélisée par un champ aléatoire de Potts-Markov pour représenter la dépendance locale entre les composantes du mélange. Un algorithme Bayésien original combiné à une méthode Monte Carlo par chaine de Markov (MCMC) est proposé pour conjointement estimer les paramètres du modèle et classifier chaque voxel dans un tissu. L’approche proposée est appliquée avec succès à la segmentation de tumeurs de la peau in-vivo dans des images d’ultrasons de haute fréquence en 2D et 3D. Cette méthode est ensuite étendue en incluant l’estimation du paramètre B de régularisation du champ de Potts dans la chaine MCMC. Les méthodes MCMC classiques ne sont pas directement applicables à ce problème car la vraisemblance du champ de Potts ne peut pas être évaluée. Ce problème difficile est traité en adoptant un algorithme Metropolis-Hastings “sans vraisemblance” fondé sur la statistique suffisante du Potts. La méthode de segmentation non supervisée, ainsi développée, est appliquée avec succès à des images échographiques 3D. Finalement, le problème du calcul de la borne de Cramer-Rao (CRB) du paramètre B est étudié. Cette borne dépend des dérivées de la constante de normalisation du modèle de Potts, dont le calcul est infaisable. Ce problème est résolu en proposant un algorithme Monte Carlo original, qui est appliqué avec succès au calcul de la borne CRB des modèles d’Ising et de Potts. ABSTRACT : This thesis studies statistical image processing of high frequency ultrasound imaging, with application to in-vivo exploration of human skin and noninvasive lesion assessment. More precisely, Bayesian methods are considered in order to perform tissue segmentation in ultrasound images of skin. It is established that ultrasound signals backscattered from skin tissues converge to a complex Levy Flight random process with non-Gaussian _-stable statistics. The envelope signal follows a generalized (heavy-tailed) Rayleigh distribution. Based on these results, it is proposed to model the distribution of multiple-tissue ultrasound images as a spatially coherent finite mixture of heavy-tailed Rayleigh distributions. Spatial coherence inherent to biological tissues is modeled by a Potts Markov random field. An original Bayesian algorithm combined with a Markov chain Monte Carlo method is then proposed to jointly estimate the mixture parameters and a label-vector associating each voxel to a tissue. The proposed method is successfully applied to the segmentation of in-vivo skin tumors in high frequency 2D and 3D ultrasound images. This method is subsequently extended by including the estimation of the Potts regularization parameter B within the Markov chain Monte Carlo (MCMC) algorithm. Standard MCMC methods cannot be applied to this problem because the likelihood of B is intractable. This difficulty is addressed by using a likelihood-free Metropolis-Hastings algorithm based on the sufficient statistic of the Potts model. The resulting unsupervised segmentation method is successfully applied to tridimensional ultrasound images. Finally, the problem of computing the Cramer-Rao bound (CRB) of B is studied. The CRB depends on the derivatives of the intractable normalizing constant of the Potts model. This is resolved by proposing an original Monte Carlo algorithm, which is successfully applied to compute the CRB of the Ising and Potts models

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    Neutro-Connectedness Theory, Algorithms and Applications

    Get PDF
    Connectedness is an important topological property and has been widely studied in digital topology. However, three main challenges exist in applying connectedness to solve real world problems: (1) the definitions of connectedness based on the classic and fuzzy logic cannot model the “hidden factors” that could influence our decision-making; (2) these definitions are too general to be applied to solve complex problem; and (4) many measurements of connectedness are heavily dependent on the shape (spatial distribution of vertices) of the graph and violate the intuitive idea of connectedness. This research focused on solving these challenges by redesigning the connectedness theory, developing fast algorithms for connectedness computation, and applying the newly proposed theory and algorithms to solve challenges in real problems. The newly proposed Neutro-Connectedness (NC) generalizes the conventional definitions of connectedness and can model uncertainty and describe the part and the whole relationship. By applying the dynamic programming strategy, a fast algorithm was proposed to calculate NC for general dataset. It is not just calculating NC map, and the output NC forest can discover a dataset’s topological structure regarding connectedness. In the first application, interactive image segmentation, two approaches were proposed to solve the two most difficult challenges: user interaction-dependence and intense interaction. The first approach, named NC-Cut, models global topologic property among image regions and reduces the dependence of segmentation performance on the appearance models generated by user interactions. It is less sensitive to the initial region of interest (ROI) than four state-of-the-art ROI-based methods. The second approach, named EISeg, provides user with visual clues to guide the interacting process based on NC. It reduces user interaction greatly by guiding user to where interacting can produce the best segmentation results. In the second application, NC was utilized to solve the challenge of weak boundary problem in breast ultrasound image segmentation. The approach can model the indeterminacy resulted from weak boundaries better than fuzzy connectedness, and achieved more accurate and robust result on our dataset with 131 breast tumor cases

    First-order statistical speckle models improve robustness and reproducibility of contrast-enhanced ultrasound perfusion estimates

    Get PDF
    Contrast-enhanced ultrasound (CEUS) permits the quantification and monitoring of adaptive tumor responses in the face of anti-angiogenic treatment, with the goal of informing targeted therapy. However, conventional CEUS image analysis relies on mean signal intensity as an estimate of tracer concentration in indicator-dilution modeling. This discounts additional information that may be available from the first-order speckle statistics in a CEUS image. Heterogeneous vascular networks, typical of tumor-induced angiogenesis, lead to heterogeneous contrast enhancement of the imaged tumor cross-section. To address this, a linear (B-mode) processing approach was developed to quantify the change in the first-order speckle statistics of B-mode cine loops due to the incursion of microbubbles. The technique, named the EDoF (effective degrees of freedom) method, was developed on tumor bearing mice (MDA-MB-231LN mammary fat pad inoculation) and evaluated using nonlinear (two-pulse amplitude modulated) contrast microbubble-specific images. To improve the potential clinical applicability of the technique, a second-generation compound probability density function for the statistics of two-pulse amplitude modulated contrast-enhanced ultrasound images was developed. The compound technique was tested in an antiangiogenic drug trial (bevacizumab) on tumor bearing mice (MDA-MB-231LN), and evaluated with gold-standard histology and contrast-enhanced X-ray computed tomography. The compound statistical model could more accurately discriminate anti-VEGF treated tumors from untreated tumors than conventional CEUS image. The technique was then applied to a rapid patient-derived xenograft (PDX) model of renal cell carcinoma (RCC) in the chorioallantoic membrane (CAM) of chicken embryos. The ultimate goal of the PDX model is to screen RCC patients for de novo sunitinib resistance. The analysis of the first-order speckle statistics of contrast-enhanced ultrasound cine loops provides more robust and reproducible estimates of tumor blood perfusion than conventional image analysis. Theoretically this form of analysis could quantify perfusion heterogeneity and provide estimates of vascular fractal dimension, but further work is required to determine what physiological features influence these measures. Treatment sensitivity matrices, which combine vascular measures from CEUS and power Doppler, may be suitable for screening of de novo sunitinib resistance in patients diagnosed with renal cell carcinoma. Further studies are required to assess whether this protocol can be predictive of patient outcome

    Multimodal Image Fusion and Its Applications.

    Full text link
    Image fusion integrates different modality images to provide comprehensive information of the image content, increasing interpretation capabilities and producing more reliable results. There are several advantages of combining multi-modal images, including improving geometric corrections, complementing data for improved classification, and enhancing features for analysis...etc. This thesis develops the image fusion idea in the context of two domains: material microscopy and biomedical imaging. The proposed methods include image modeling, image indexing, image segmentation, and image registration. The common theme behind all proposed methods is the use of complementary information from multi-modal images to achieve better registration, feature extraction, and detection performances. In material microscopy, we propose an anomaly-driven image fusion framework to perform the task of material microscopy image analysis and anomaly detection. This framework is based on a probabilistic model that enables us to index, process and characterize the data with systematic and well-developed statistical tools. In biomedical imaging, we focus on the multi-modal registration problem for functional MRI (fMRI) brain images which improves the performance of brain activation detection.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120701/1/yuhuic_1.pd

    Imaging Sensors and Applications

    Get PDF
    In past decades, various sensor technologies have been used in all areas of our lives, thus improving our quality of life. In particular, imaging sensors have been widely applied in the development of various imaging approaches such as optical imaging, ultrasound imaging, X-ray imaging, and nuclear imaging, and contributed to achieve high sensitivity, miniaturization, and real-time imaging. These advanced image sensing technologies play an important role not only in the medical field but also in the industrial field. This Special Issue covers broad topics on imaging sensors and applications. The scope range of imaging sensors can be extended to novel imaging sensors and diverse imaging systems, including hardware and software advancements. Additionally, biomedical and nondestructive sensing applications are welcome

    INTEGRATING MACHINE LEARNING WITH LEVEL SET METHOD FOR MEDICAL IMAGE SEGMENTATION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    An automatic system for classification of breast cancer lesions in ultrasound images

    Get PDF
    Breast cancer is the most common of all cancers and second most deadly cancer in women in the developed countries. Mammography and ultrasound imaging are the standard techniques used in cancer screening. Mammography is widely used as the primary tool for cancer screening, however it is invasive technique due to radiation used. Ultrasound seems to be good at picking up many cancers missed by mammography. In addition, ultrasound is non-invasive as no radiation is used, portable and versatile. However, ultrasound images have usually poor quality because of multiplicative speckle noise that results in artifacts. Because of noise segmentation of suspected areas in ultrasound images is a challenging task that remains an open problem despite many years of research. In this research, a new method for automatic detection of suspected breast cancer lesions using ultrasound is proposed. In this fully automated method, new de-noising and segmentation techniques are introduced and high accuracy classifier using combination of morphological and textural features is used. We use a combination of fuzzy logic and compounding to denoise ultrasound images and reduce shadows. We introduced a new method to identify the seed points and then use region growing method to perform segmentation. For preliminary classification we use three classifiers (ANN, AdaBoost, FSVM) and then we use a majority voting to get the final result. We demonstrate that our automated system performs better than the other state-of-the-art systems. On our database containing ultrasound images for 80 patients we reached accuracy of 98.75% versus ABUS method with 88.75% accuracy and Hybrid Filtering method with 92.50% accuracy. Future work would involve a larger dataset of ultrasound images and we will extend our system to handle colour ultrasound images. We will also study the impact of larger number of texture and morphological features as well as weighting scheme on performance of our classifier. We will also develop an automated method to identify the "wall thickness" of a mass in breast ultrasound images. Presently the wall thickness is extracted manually with the help of a physician
    corecore