
INTEGRATING MACHINE LEARNING WITH LEVEL SET

METHOD FOR MEDICAL IMAGE SEGMENTATION

AGUS PRATONDO

(B. Eng., M. Eng., Bandung Institute of Technology)

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2016



Declaration

I hereby declare that this thesis is my original work and it has

been written by me in its entirety. I have duly acknowledged all

the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any

university previously.

Agus Pratondo

16th November 2016

ii



Acknowledgments

In the name of Allah, the Beneficent, the Merciful

I would like to take this opportunity to express my gratitude

to people who have contribution to my successful study. Many

people, in one way or another, have helped to make this thesis

a reality. I can only mention a few of them here.

I would like to thank my supervisor, Prof. Ong Sim Heng,

for letting me be one of his students, and guiding me during

my Ph.D. candidature. Both this thesis and my research pub-

lications would not have been possible without his guidance,

patience, and understanding.

I would also like to thank my co-supervisor, Prof. Chui Chee

Kong, for his mentorship, advice and encouragement. Without

his support, my achievement would not be so much in the journey

of pursuing my Ph.D.

My appreciation also goes to Nguyen Phu Binh, for providing

his insightful discussions and suggestions on my research work.

I enjoy every inspiring discussion and feel lucky to have the

opportunity to work with him.

Many thanks go to all group members: Wen Rong, Duan Bin,

Cai Lile, Chin Boon, Chen Xuan, and Yvonne for their friendship.

iii



iv

It is nice to have them as team members. Special thanks to the

lab officers, Md. Hamidah, Md. Hoey, and Mr. Sakthi, who have

helped me a lot since I came to the Control and Mechatronics

Lab 1.

I would like to acknowledge the financial, academic and techni-

cal supports from the National University of Singapore (NUS)

through research scholarship program. I am sure, the university

will be the leading university for quality student engagement

and partnerships globally. I also would like to acknowledge the

supports from the ASEAN University Network and the South-

east Asia Engineering Education Development Network Project

(AUN/SEED-Net). I believe it will be successful in promoting

human resource development in engineering in ASEAN.

Last but not the least, I would like to thank my mother who

raised me in all my pursuits, my wife who gives all her best

efforts to take care our children, and all my children who are

very patient during my candidature. I know they always pray

for me. I love them so much.



Summary

Many segmentation methods have been proposed but none is

universally applicable, especially for medical images. The level

set method (LSM) is popular in medical image segmentation

since it can be used to minimize the energy functional and make

the solutions more elegant, e.g., the use of LSM for active contour

models. However, some difficulties often arise for particular

implementations, e.g., sensitive to initialization and parameter

tuning. Another popular approach is the use of machine learning

algorithms to classify each pixel based on training data which

is able to handle complex patterns. However, further post-

processing such as morphological operation is often required to

find the final solution which is no objective function inside. To

overcome the limitation of those approaches, we present some

integration of machine learning algorithms and active contour

models using the level set methods.

Firstly, we utilize machine learning algorithms to obtain rough

segmentation results. Morphological opening is applied to refine

the results where the boundaries are close enough to the true

boundary. Subsequently, edge-based active contours are utilized

to find the desired boundaries through energy minimization

using the level set method. Generally, the better the coarse
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initialization is, the better the final result will be. The edge-

based active contour using the LSM improves the accuracy of

the final segmentation. Since there is no one ML algorithm

that outperforms all the others, it is important to choose an

appropriate ML algorithm. Among the investigated machine

learning algorithms, the integration of the k-nearest neighbors

and support vector machines with the edge-based active contour

generally gives more accurate results.

Secondly, we propose a framework to construct a group of edge-

stop functions (ESFs) for edge-based active contour models to

segment objects with poorly defined boundaries. Traditional

ESFs utilize only gradient information, which fails to stop con-

tour evolution at such boundaries because of the small gradient

magnitudes. In our framework, which incorporates gradient in-

formation as well as probability scores from a standard classifier,

the ESF can be constructed from any classification algorithm

and applied to any edge-based model using a level set method.

Experiments on medical images using the distance regularized

level set for edge-based active contour models as well as the

k-nearest neighbors and the support vector machine confirm the

effectiveness of the proposed approach.

Finally, we propose a framework which integrates machine learn-

ing algorithms with region-based active contour models. Clas-

sification probability scores from machine learning algorithms,

which are regularized using a particular non-linear function, are

used to replace the pixel intensity in the process of minimizing



vii

the energy functional. An experimental implementation by in-

tegrating the k-nearest neighbors as well as the support vector

machine with the Chan-Vese method confirms the improved

results compared to other methods. Furthermore, the solu-

tions can be obtained easily with lower sensitivity to parameter

tuning.
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Chapter 1
Introduction

1.1 Background and Motivation

Image segmentation plays an important role in medical image analysis in

partitioning the region or structure of interest based on similarity of features

or characteristics [1]. Segmentation is used widely to diagnose abnormalities,

identify tumors, construct models for surgical planning, and plan medical

treatment [2]. Depending on the degree of user intervention, medical image

segmentation can be categorized into three types: manual, semi-automatic,

and fully-automatic segmentation [3, 4]. Manual segmentation by an expert

is not only tedious but also very time consuming. However, it may generate

a precise result which can be used as ground truth during experiments in

semi- as well as fully-automatic segmentation [5]. While fully automatic

segmentation does not need any intervention, a semi-automatic segmentation

requires user interaction and more preferable due to better performances.

Many medical image segmentation algorithms have been proposed and

no single algorithm can perform well to handle all cases because each organ

or tissue has its own unique characteristics. The use of energy minimization

1
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in image segmentation has been popular since Kass et al. introduced the

snake model [6]. Among energy-minimization based, the level set method

(LSM) in image analysis has received much attention. It is used to minimize

an energy functional when segmenting an object. The basic idea of the LSM

was first described in [7] and was popularized by [8]. Subsequently, the active

contour model using the LSM was applied to image segmentation.[9, 10].

Generally, existing image segmentation models using level set methods

can be grouped into two categories: edge-based models and region-based

models [11, 12, 13, 14]. Edge-based models utilize edge information while

region-based models utilize a region descriptor to control the motion of the

active contour [15]. Edge-based models are not sensitive to inhomogeneity

of image intensities, i.e., the overlapping of the intensity ranges, but are

sensitive to objects with poorly defined boundaries. In images where

intensities change gradually in the vicinity of a poorly defined boundary,

the edge-stop function (ESF) fails to stop the contour [16]. On the other

hand, region-based models are not sensitive to objects with poorly defined

boundaries but are sensitive to inhomogeneity of image intensities, i.e., the

overlapping of the intensity ranges. Furthermore, they are also sensitive to

parameter tuning [17, 18] which are not desirable in practical use.

Another popular approach is the use of machine learning (ML) al-

gorithms to classify each pixel based on training data. A number of the

algorithms appear in literature such as the k-nearest neighbors (k-NN), sup-

port vector machine (SVM), extreme learning machine, etc [19, 16]. These

algorithms can handle complex patterns; however, further post-processing

such as morphological operations are often required to find the final solution
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which has no objective function inside.

To overcome the limitation of those approaches, we present some

integration of machine learning algorithms and active contour models using

the level set methods.

1.2 Thesis Contributions

Integrated methods have become more popular since they can incorporate

the advantages of each component method. We are interested in integrating

ML based approaches with active contour models using the LSM. Some

questions related to the integrations are described below.

1. Among various ML algorithms, which algorithm tends to generate

good initializations? In edge-based active contour model, contour

initializations contribute an important role for segmenting objects.

The use of ML algorithms to generate good initializations is well

known and found in the literature; however, the studies only focus on

a single algorithm. We intend to conduct a comparison of various ML

algorithms to observe the accuracy of each algorithm and recommend

particular algorithms that generally produce good initializations. The

results are useful for those who utilize ML algorithm as an intermediate

steps to generate rough segmentation results to initialize the contour.

2. How do we create a family of edge-stop functions that is robust and

insensitive to low gradient magnitudes? The use of gradient magni-

tude for the stop-function in edge-based active contour model is not
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adequate when segmenting objects with poorly defined boundaries.

More information to indicate the vicinity of boundaries is required.

One possible solution is the use of the classifier probability score

from ML algorithms where the the values change gradually from the

foreground to the background. Pixels with score 0 or 1 are clearly

classified as background and foreground, respectively. A value of 1 is

given. In contrast, pixels with score 0.5 are ambiguous and a value

of 0 is given due to the ambiguity. A function ρ(s) for mapping the

probability scores to values [0, 1] is defined. The function ρ is used to

improve the performance of traditional ESFs.

3. How to enhance the accuracy as well as the computational time of

the well-known region-based active contour model, i.e., the Chan-Vese

method by utilizing classifier probability score from ML algorithms?

The use of the classifier probability score is applicable not only to the

edge-based but also to the region-based active contour model, e.g.,

the Chan-Vese method. The scores replace the role of pixel intensity

values in the process of minimizing the energy functional. Results

indicate the enhancement of the performance as follows:

(a) improving the accuracy,

(b) reducing the computational time,

(c) reducing the sensitivity to parameter tuning.
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1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 provides the literature review

of the related works. The theories as well as the equations related to our

works are briefly described here. Firstly, we review image segmentation

in general including categorization based on some aspects. Secondly, the

review of ML algorithms used in our work is presented, i.e., k-nearest neigh-

bors, support vector machine, extreme learning machine, naive Bayesian,

artificial neural networks, and random forest. Thirdly, a brief description of

the edge-based and region-based active contour models using the LSM is

introduced. Popular methods namely active contours are shortly reviewed

namely the active contour model without edge proposed by Chan and Vese

[15], and the edge-based active contour proposed by Li et al [20]. Lastly,

some measurements for segmentation quality assessment are reviewed, e.g.,

Jaccard index and the Dice overlap (similarity index).

Chapter 3 describes a big framework for combinatorial methods in

medical image segmentation. The combination covers different imaging

modalities and organs. Possible combinations of methods are represented

as function compositions where the number of functions may vary. The-

oretically, there are many possible combinations of methods for solution

candidates; however, we are interested in the combination of machine learn-

ing algorithms and the level set methods. Furthermore the combination is

investigated deeply. Various ways to combine the machine learning approach

and level set methods are discussed in the next three chapters.

Chapter 4 elaborates on the comparison for some ML algorithms
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integrated with the LSM which is utilized by edge-based active contour

model. Six selected algorithms are integrated and evaluated using various

imaging modalities. The integration is implemented sequentially where the

boundaries from ML algorithm results are utilized for the initial contours.

Chapter 5 introduces a robust ESF for edge-based active contour models

by utilizing the classifier probability score from ML algorithms. Two ML

algorithms namely the k-nearest neighbors and support vector machines are

chosen to generate the class probability map. Some regularization functions

for the map are introduced to enhance the traditional ESF. We also show

the implementation of the enhanced ESF for the distance regularized level

set evolution which is employed by the edge-based active contour model.

Furthermore, quantitative results and selected segmented images from the

implementation are also presented.

Chapter 6 extends the use of the classifier probability score from ML

algorithms to the region-based active contour model. We use the active

contour model without edge from Chan and Vese [15]. Some regularization

functions for the scores are introduced. We also show how the region-based

active contour subsequently use the regularized score, instead of using pixel

intensity, to find the optimal solutions. A general parameter tuning is also

described here for all imaging modalities.

Finally, chapter 7 concludes the previous chapters. The highlight

finding from over all works are presented here. To end the conclusion, some

future directions are listed which may be useful for researchers to continue

our works.



Chapter 2
Literature Review

In this chapter, we present the literature review related to our proposed

methods. The areas of medical image segmentation, machine learning

algorithms, and level set methods for medical images are covered.

2.1 Medical Image Segmentation Methods

A number of medical imaging modalities are available in practical use and

most of them generate images in gray values. We let I denote a medical

image and I(x, y) denotes the intensity at (x, y) where x ∈ [1, Nx] and

y ∈ [1, Ny]. The main objective of the segmentation process is to partition

an image into regions Sk that are homogeneous with respect to one or more

characteristics or features, where

⋃
Sk = I; (2.1)

Sk ∩ Sj = ∅, k 6= j. (2.2)

7
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The indices k and j lie in the interval [1, K] and K is the number of sub-

classes. Equation (2.1) ensures that image segmentation should be complete,

while Equation (2.2) indicates that there is no overlapping segmentation

results.

Depending on the degree of user intervention, medical image segmentation

can be categorized into manual, semi-automatic, and fully-automatic [21].

Manual segmentation by an expert is not only tedious but also very time-

consuming. However, it typically generates an accurate result which can be

used as ground truth during experiments in semi- as well as fully-automatic

segmentation [22]. While fully automatic segmentation does not require

any intervention, a semi-automatic segmentation requires user interaction

and is preferred due to better performances.

Semi- and fully-automatic segmentation in medical image analysis

have attracted many researchers [23]. A classic classification of image

segmentation divides segmentation into three approaches [24].

1. Pixel based: each pixel is segmented based on gray-level values without

any contextual information, e.g., thresholding [25].

2. Region-based segmentation: it considers gray-levels from neighbor-

ing pixels, for example, region growing [26], split-and-merge [27],

watershed segmentation[28], clustering methods [29].

3. Edge-based segmentation: all pixels are initially labelled as either

being on an edge or not, with the edge pixels then linked to form

contours [25].

Withey and Koles [30] introduce another view of medical image segmentation.
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They use the term generation and divide the classification into three gener-

ations.

1. First generation: it includes low-level techniques where little, if any,

prior information is included, for example, thresholding [25], region

growing [26], and edge tracing [31].

2. Second generation: it introduces uncertainty models and optimization

methods, e.g., statistical pattern recognition (supervised methods

such as Bayesian classifiers [32], discriminant analysis [33], and k-

nearest neighbor classification [34], and unsupervised methods using

expectation-maximization [35]), C-means clustering [36], deformable

models [37], graph search [38], and neural networks [39].

3. Third generation: it incorporates higher-level knowledge such as a pri-

ori information, expert defined rules, and object models (e.g., shape).

Examples are the active shape model [40], active appearance model

[41], atlas-based segmentation [42], and rule-based segmentation.

Some second generation segmentation methods which utilize ML algo-

rithms or LSM are employed in our work. The selected ML algorithms are

reviewed in Section 2.2 while while the fundamental theory of the LSM is

presented in Section 2.3.

2.2 Machine Learning

Machine learning is a field of study that aims to give computers the ability to

learn without explicitly being programmed [43]. Depending on the learning
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methodology, machine learning algorithms can be grouped into three broad

categories [44]:

1. Supervised learning: Given example inputs and their desired outputs,

the goal is to learn a general rule that maps the inputs to the outputs

[45]. Formally, letting N = {(x1, y1), (x2, y2), ..., (xn, yn)} where xi ∈

X is a feature vector and yi ∈ Y is its label, an ML algorithm generates

a function

f : X → Y. (2.3)

Training samples are always labeled; however, labeling by experts is

not practical in use.

2. Unsupervised learning: Training samples are unlabeled during the

learning algorithms [46]. The system forms clusters or natural group-

ings of the input patterns.

3. Reinforcement learning: An interaction between a computer program

with a dynamic environment in which the former must perform a

certain goal (for example driving a vehicle), with no information as

to whether it has moved close to its goal [47].

Both labeled and un-labeled training samples may be used to reduce the

labeling cost and it can be considered as a semi-supervised learning.

Based on the desired output of a machine-learned system, machine

learning algorithms can be categorized [48] as follows.

1. In classification, inputs are assigned into two or more classes. The

predictor generates a model that assigns unseen inputs to one or more
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of these classes. The task is handled in a supervised way.

2. In regression, outputs are continuous rather than discrete. This is

also a form of supervised learning.

3. In clustering, inputs are to be divided into groups where the groups

are not known a priori. This is an unsupervised task.

4. Density estimation, where the task is to find the distribution of inputs

in some space.

5. Dimensionality reduction, which simplifies inputs by mapping them

into a lower-dimensional space.

2.2.1 Machine Learning Algorithms

In our work, we use supervised learning specifically for pixel classification.

Six supervised machine learning algorithms are selected and listed below.

Naive Bayesian Classifier

The NBC is a probabilistic classifier based on Bayes’ theorem. In a particular

class variable, the method assumes that the value of a certain feature is

unrelated to the value of any other feature. The objective is to minimize

the probability of error in a classification by always choosing the state that

maximizes the posterior probability [49], which can be expressed by

P (c|x) = P (x|c)P (c)
P (x) (2.4)
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where P (c|x) is the posterior probability of class given a predictor, P (c)

is the prior probability of class, P (x|c) is the likelihood, and P (x) is the

prior probability of the predictor. In practice, P (x) is constant and can

be ignored. When dealing with continuous data, the likelihood of feature

x is assumed to be Gaussian, parameterized by µ (the mean) and σ (the

standard deviation). Letting x be a continuous attribute of the training

data, µc is the mean of the values in x labeled with class c, and σ2
c is the

variance of the value x labeled with class c, then the probability distribution

of a particular value v given a class c, p(x = v|c), can be computed by

p(x = v|c) = 1
2
√
πσ2

c

e
− (v−µc)2

2σ2
c . (2.5)

k-Nearest Neighbors

The k-NN algorithm is a non-parametric method in pattern recognition for

classification and regression [49]. It uses observations in the training set k

closest in input space to x to form Ŷ which is defined [50] as follows:

Ŷ (x) = 1
k

∑
xi∈Nk(x)

yi, (2.6)

where Nk(x) is the neighborhood of x defined by the k closest points xi in

the training sample. It provides scores in the range [0, 1]. The predicted

label comes from the majority vote of the nearest neighbors by calculating

the distance in a feature space. Some common distance functions are

the Euclidean, city block, Minkowski, and Chebychev distances which are
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defined by

D(x, q) =



√√√√ k∑
i=1

(xi − qi)2 for Euclidean distance, (2.7a)

k∑
i=1
|xi − qi| for city block distance, (2.7b)

p

√√√√ k∑
i=1
|xi − qi|p for Minkowski distance (2.7c)

maxi{|xi − qi|} for Chebychev distance. (2.7d)

The value of k should be set to an odd integer to avoid ties in binary

classification [49].

Figure (2.1) shows an example how to compute a particular point where

Euclidean distance is used. Assuming k = 5 is used, the 5 nearest points

from the green point consist of 3 blue and 2 red points. The k-NN score

for the green point to be classified as blue is 3
5 while red is 2

5 . Since there

are more blue points compared to the red, the k-NN will fully classify the

green point as blue.

Figure 2.1: An example for computing k-NN socres.
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Support Vector Machine

SVM is a supervised learning method that classifies data using the best

separation hyperplane which separates the data of a class from those of

another, and gives the largest margin between these two classes [51, 52].

The classification is performed by

class(x) = sign(h(x)) (2.8)

where h(x) is the separating hyperplane for the two classes. For linearly

separable data in dimension d, the hyperplane is expressed by

h(x) = wT
0 x + b0 (2.9)

where w0 ∈ Rd is the optimal weight vector, x ∈ Rd is the data, and b0

is the optimal bias. Since it may be difficult to separate the data in the

original input space, mapping the data into a higher dimensional space

through function ϕ is introduced (see Figure (2.2)). Then h(x) can be

Figure 2.2: Function ϕ transforms data from lower to higher dimensional
space. It is easier to separate the data in higher dimensional space.
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Figure 2.3: A simple perceptron

expressed as

h(x) = wT
0 ϕ(x) + b0. (2.10)

Finding an explicit ϕ is often difficult; instead, kernel [53, 54] K(x,xi) is

used to compute directly the dot product. Subsequently, h(x) is expressed

by

h(x) =
N∑
i=1

αiyiK(x,xi) + b0 (2.11)

where ai is the estimated SVM parameter, and yi ∈ {+1,−1} is the desired

class for the corresponding xi. The value of h(x) is the SVM evaluation

score and the sign is the predicted class [55].

Artificial Neural Networks

Artificial neural networks (ANNs) are models inspired by biological neural

networks. The idea started with a simple perceptron introduced by Frank

Rosenblatt in 1958 (Figure 2.3). Letting x = (x1, x2, ..., xm)T denote the

feature vector, w = (w1, w2, ..., wm)T the weight vector and n the iteration
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input layer       hidden layer      output layer 

Figure 2.4: Scheme of feed-forward neural networks

steps, then

v(n) =
m∑
i=1

wi(n)xi(n) + b(n), (2.12)

y(n) =


1 if v(n) > 0, (2.13a)

0 if v(n) < 0. (2.13b)

The concept is then expanded to the multi-layer perceptron. A popular

model is the feed-forward network [56, 57, 58] (Figure 2.4). In this network,

the information moves from the input nodes to the output node through

the hidden nodes in one direction. The structure is simplest when there are

no hidden nodes. Some important parameters for designing the network are:

the number of hidden layers and hidden neurons, the activation function in

the hidden layers and the output neurons, and the learning style (sequential

or batch learning).

Extreme Learning Machine

The extreme learning machines (ELM) are single-hidden layer feed-forward

neural networks (SLFNs) [57, 58] where the weights that connect in-

puts to hidden nodes are assigned randomly and learned in a single step.
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According to Weimin et al. [59], the ELM provides good generaliza-

tion performance at a fast learning speed. Given a training set ℵ =

(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, ..., N , activation function g(x), and hidden

node number N , the ELM algorithm can be summarized as follows [60]:

1. Randomly assign input weight wi and bias bi, i = 1, ...., N .

2. Calculate the hidden layer output matrix H.

3. Calculate the output weight β

β = H†T (2.14)

where T = [t1, ..., tN ]T , H† is the Moore–Penrose generalized inverse of

matrix H. The details about extreme learning machine can be found

in [60].

Random Forests

The RF is based on the voting of the most popular class from a large

number of trees [61]. Formally, it is defined as a classifier consisting of a

collection of tree-structured classifiers {h(x,Θk), k = 1, ...} where the Θk

are independent identically distributed random vectors and each tree casts

a unit vote for the most popular class at input x. The algorithm is chosen

due to its simplicity and popularity in machine learning. The RF algorithm

for classification [62] is as follows.

1. From the original data, draw ntree bootstrap samples
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2. For each of the boot straps sample, grow a classification tree without

pruning it. At each node, sample randomly mtry of the predictors and

select the best split from among those variables.

3. For predicting new data, aggregate the predictions of the ntree trees

through majority votes.

Two additional items of information from RF are:

1. Variable importance, which measures the importance of the predictor

variable

2. Proximity measure : the (i, j) element of the proximity matrix pro-

duced by random forest is the fraction of trees in which elements i

and j fall in the same terminal node.

2.2.2 Mixture Model

A mixture model represents the probability distribution of observations

in the overall population. This probabilistic model is formed by taking

linear combinations of basic distributions such as Gaussians [48, 50, 49].

Assuming there are K Gaussian densities, the mixture of Gaussians can be

represented by

p(x) =
K∑
k=1

wkN (x|µk,
∑
k). (2.15)

Each component of the mixture, i.e. Gaussian density N (x|µk,
∑
k), has its

own mean µk and covariance ∑k. The parameters wk are called mixture
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weights where their properties are:

K∑
k=1

wi = 1, (2.16)

0 ≤ wi ≤ 1. (2.17)

It should be noted that both p(x) and the individual Gaussian components

are normalized.

According to the sum and product rule, the marginal density for p(x)

can be expressed [48] by

p(x) =
K∑
k=1

p(k)p(x|k). (2.18)

Equation (2.18) is equivalent to Equation (2.15) where the prior probability

of picking the kth component, p(k), equals to wk and the probability of x

conditioned on k, p(x|k), equals to N (x|µk,
∑
k).

Generally, mixture models can use any component densities in place of

the Gaussian in Equation (2.15); however, the Gaussian mixture model is

most popular.

2.2.3 Reinforcement Learning

Reinforcement learning (RL) is a field of machine learning concerned with

how an agent interacts with its environment by taking actions so as to

maximize its reward (Figure (2.5)) [63] [64] [65]. An RL agent learns from

the consequences of its actions rather than from being explicitly taught, and

it selects its actions on basis of its past experiences (exploitation) and also
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by new choices (exploration) [66]. It is essentially trial and error learning.

Figure 2.5: Interaction between an agent and its environment

A set of possible states for an agent is denoted by S = {s1, s2, ...} and

the actions by A = {a1, a2, ...}. The state of an agent may change through a

transition function. The deterministic transition function can be expressed

by

f̄(s, a) = s′, s′ ∈ S (2.19)

and the non-deterministic by

f(s, a, s′) = P (st+1 = s′|st = s, at = a) ≡ P a
ss′ (2.20)

where P (a|b) =Probability of a being true under condition b. Equations

(2.19) and 2.20 denote an agent takes an action a to move from state s to

s′. Subsequently, the agent receives reward r one time-step later (i.e. at

s′). The reward for taking at at st at time-step t and reaching st+1 can be

expressed by

rt+1 = ρ(st, at, st+1) (2.21)

where ρ : S×A×S → R is named the reward function. For non-deterministic

transitions, the reward for taking a at s is characterized by the expected
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value of rt+1 over all possible new states:

E
[
rt+1

∣∣∣st = s
]

=
∑
s′

(
P a
ss′rt+1

∣∣∣st+1 = s′
)

=
∑
s′
P a
ss′ρ(s, a, s′). (2.22)

If the agent continues to make transitions, the total reward is expressed by

Rt = rt+1 + γrt+2 + γrt+3 + ...

=
∞∑
k=0

γkrt+k+1 (2.23)

where k is the index time steps after t, with k = 0 being first step and γ is

the discount rate, with 0 ≤ γ ≤ 1.

2.3 Level Set Method in Image Segmentation

The use of energy minimization in image segmentation has been intensively

studied, starting from the snake model [6]. Through variational methods,

the segmentation of a given image I : Ω → R is computed by contour

evolution using appropriate partial differential equations. In the snake

model proposed by Kass et al., an explicit (parametric) curve C : [0, 1]→ Ω

as described in Figure (2.6) is used to represent the contour which is evolved

by minimizing the energy functional

E(C) = −
∫
|∇I(C)|2ds+ v1

∫
|Cs|2ds+ v2

∫
|Css|2ds, (2.24)



22

(a) an open curve

(b) a closed curve

Figure 2.6: Curves with parameter ∈ [0, 1]. A simple closed curve holds
when C(0) = C(1).

where Cs and Css denote the first and second derivative with respect to

the curve parameter s. The first term in (2.24) is the external energy

which accounts for the image information, in the sense that the minimizing

contour will favor locations of large image gradient. The remaining two

terms, weighted by non-negative parameters v1 and v2, are internal energy

terms that measure the length of the contour and its stiffness.

Another way to implement curve C is by representing in implicit con-
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tours the zero level line of some embedding function φ : Ω→ R:

C = {x ∈ Ω|φ(x) = 0}. (2.25)

Figure (2.7) shows an example of a zero level set indicated by red lines and

its corresponding segmentation results.

(a) a zero level line in 3D plot (b) a zero level line in 2D plot (y-z plane)

(c) a zero level line in 2D plot (x-y plane) (d) a corresponding segmentation result

Figure 2.7: Implicit contours through zero level set lines. The red lines
indicate the isocontour where φ(x) = 0

Among various methods to evolve the contours implicitly, the level

set method (LSM) in image analysis has received much attention and is
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popularly used to minimize an energy functional when segmenting an object.

The basic idea of the LSM was first described in [7] and was popularized

by [8]. The curve evolves along the normal n with a speed F where the

following equation holds:
∂C
∂t

= F.n. (2.26)

Since

φ(C(t), t) = 0 (2.27)

at all times, the total time derivative of φ at locations of the contour follows

∂φ(C(t), t)
∂t

= ∇φ∂C
∂t

+ ∂φ

∂t

= ∇φF.n+ ∂φ

∂t

= 0. (2.28)

Recalling the definition of the normal

n = ∇φ
|∇φ|

(2.29)

we obtain the evolution equation for φ:

∂φ

∂t
= −|∇φ|F. (2.30)

The first applications of the level set formalism for image segmentation

were proposed by Caselles et al. [9] and Malladi et al. [67, 68, 69]. Subse-

quently, Caselles et al. [70, 10] and Kichenassamy et al. [71] independently
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proposed a level set formulation for (2.24) expressed by:

∂φ

∂t
= |∇φ|div

g(I) ∇φ
|∇φ|


= g(I)|∇φ|div

 ∇φ
|∇φ|

+∇g(I) · ∇φ, (2.31)

where g(I) is an edge-detector or edge-stop function (ESF). A common ESF

is

g(I) = 1
1 + |∇(Gσ ∗ I)|p , p = 1, 2, ... (2.32)

where I is an image on a domain Ω and Gσ is a Gaussian kernel with

standard deviation σ. For simplification, g(I) is written as g. This approach

is popular as the geodesic active contour.

Active Contour Model using Distance Regularized Level Set Evo-

lution

The traditional LSF requires reinitialization to avoid irregularities during

its evolution [72, 73]. Since reinitialization often leads to difficulties, Li

et al. [74] proposed the distance regularized level set evolution (DRLSE)

which removes the need for reinitialization.

Li et al. [74] introduced an energy functional E(φ) for a level set

function φ : Ω→ < on a domain Ω as

E(φ) = µRp(φ) + Eext(φ) (2.33)

where µ is a positive constant, Rp(φ) is the level set regularization term,



26

and Eext(φ) is the external energy. The regularization term Rp(φ) is defined

as

Rp(φ) ,
∫

Ω
p(|∇φ|)dx (2.34)

where p is a potential function p : [0,∞)→ < defined by

p =


1

(2π)2 (1− cos(2πs)) if s ≤ 1, (2.35a)

1
2(s− 1)2 if s > 1. (2.35b)

The general DRLSE in (2.33) can be applied to image segmentation in

the form of an active contour model utilizing edge-based information in the

external energy. For image segmentation, the external energy in (2.33) is

subsequently expanded by considering the length and area term which can

be expressed as

Eε(φ) = µ
∫

Ω
p(|∇φ|)dx + λ

∫
Ω
gδε(φ)|∇(φ)|dx + α

∫
Ω
gHε(−φ)dx (2.36)

where δε and Hε are defined [75] by

δε(x) =


1
2ε [1 + cos(πx

ε
)] if |x| ≤ ε, (2.37a)

0 if |x| > ε , (2.37b)

Hε(x) =



1
2(1 + x

ε
+ 1
π

sin(πx
ε

)) if |x| ≤ ε, (2.38a)

1 if x > ε , (2.38b)

0 if x < −ε . (2.38c)

The energy functional in (2.36) can be minimized by solving the gradient
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flow

∂φ

∂t
= µdiv(dp(|∇φ|)∇φ) + λδε(φ)div

g ∇φ
|∇φ|

+ αgδε(φ). (2.39)

The ESF g in either (2.39) or (2.31) plays an important role in stopping

contour evolution and can be explored further by considering not only

gradient information but also decision-boundary values in pixel classification.

Region-Based Active Contour Model

The active contour model in the original form in Equation (2.31) and in the

modified form in (2.39) utilize edge detector to stop the contour. Instead of

using gradient information, Chan and Vese [15] propose an active contour

model using region information based on the Mumford-Shah model [76].

Chan and Vese introduced an energy functional F (c1, c2, C) defined by

F (c1, c2, C) = µ.Length(C) + v.Area(inside(C))+

λ1

∫
inside(C)

|u0(x, y)− c1|2dxdy+

λ2

∫
outside(C)

|u0(x, y)− c2|2dxdy (2.40)

where C is the evolving curve, c1 and c2 are, respectively, the values of u

inside and outside of C, µ ≥ 0, v ≥ 0, λ1, λ2 > 0 are constants, and u0 is

the input image. The minimization problem is expressed by

inf
c1,c2,C

F (c1, c2, C)
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and can be accomplished by applying the level set method introduced by

Osher and Sethian [8]. The curve C is implicitly represented by the zero

level set of a Lipschitz function as shown in Equation (2.25). The sign of φ

indicates the inside or outside of C expressed by



C = ∂ω = (x, y) ∈ Ω : φ(x, y) = 0, (2.41a)

inside(C) = ω = (x, y) ∈ Ω : φ(x, y) > 0 , (2.41b)

outside(C) = Ω\ω̄ = (x, y) ∈ Ω : φ(x, y) < 0 . (2.41c)

The unknown variable C in Equation (2.40) subsequently can be re-

placed by the unknown variable φ as described in [75]. Using the Heaviside

function

H(z) =


1 if z ≥ 0 , (2.42a)

0 if z < 0 . (2.42b)

and the one-dimensional Dirac delta function

δ0(z) = d

dz
H(z) (2.43)

the energy functional in Equation (2.40) can be written as

F (c1, c2, φ) = µ
∫

Ω
δ(φ(x, y))|∇φ(x, y)|dxdy + v

∫
Ω
H(φ(x, y))dxdy+

λ1

∫
Ω
|u0(x, y)− c1|2H(φ(x, y))dxdy+

λ2

∫
Ω
|u0(x, y)− c2|2(1−H(φ(x, y)))dxdy. (2.44)

By considering the Mumford-Shah partition problem and keeping the φ

fixed, the constants c1 and c2 in Equation (2.44) can be written as functions
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of φ expressed by

c1(φ) =
∫

Ω u0(x, y)H(φ(x, y))dxdy∫
Ω H(φ(x, y))dxdy (2.45)

c2(φ) =
∫
Ω u0(x, y)(1−H(φ(x, y)))dxdy∫

Ω(1−H(φ(x, y)))dxdy (2.46)

To compute the unknown function φ with the help of the Euler-Lagrange

equation, the functions H and δ0 are regularized, denoted by Hε and δε, as

ε→ 0. Letting Hε be any regularization of H, and

δε = H ′ε, (2.47)

the approximation of Equation (2.44) can be expressed as

Fε(c1, c2, φ) = µ
∫

Ω
δε(φ(x, y))|∇φ(x, y)|dxdy + v

∫
Ω
Hε(φ(x, y))dxdy+

λ1

∫
Ω
|u0(x, y)− c1|2Hε(φ(x, y))dxdy+

λ2

∫
Ω
|u0(x, y)− c2|2(1−Hε(φ(x, y)))dxdy. (2.48)

In the approximation, Chan and Vese introduced the regularization of Hε,

Hε(z) = 1
2

1 + 2
π
arctan

(
z

e

). (2.49)

Minimizing Fε with respect to φ by keeping c1 and c2 fixed and considering

the associated Euler-Lagrange equation for φ, Chan and Vese introduced a
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gradient flow

∂φ

∂t
= δε(φ)

µ div
 ∇φ
|∇φ|

− v − λ1(u0 − c1)2 + λ2(u0 − c2)2

 = 0 in Ω,

δε(φ)
|∇φ|

∂φ

~n
= 0 on ∂Ω (2.50)

where δε is the regularized Dirac function, Ω is a bounded open subset of

R2 with ∂Ω its boundary, ~n denotes the exterior normal to the boundary,

and ∂φ
~n

denotes the normal derivative of φ at the boundary. Equation (2.50)

contains a number of parameters that should be tuned carefully in advance

[15].

2.4 Random Field Model and Graph Cut for

Image Segmentation

Image segmentation can be considered as a pixel labeling problem. For

binary segmentation, the task is done by classifying each pixel into a

background or foreground. Given the observed data of an input image,

X = {xi}i∈S , where xi is the data from ith site of the image set S,

and L = {li}i∈S is the corresponding label at the image site, the image

segmentation problem is to find L that maximizes the conditional probability

P (L|X) :

L∗ = arg max
L

P{L|X}. (2.51)

Let li be the label of the ith site of the image set S and Ni be the neighboring

sites of site i, as shown in Figure 2.8 [77]. The label set L = {li}i∈S is
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         site i             S - {i}            Ni 

Figure 2.8: Information for image labeling.

a Markov random field on S w.r.t. a neighborhood N if and only if the

following condition is satisfied:

P (li|lS−{i}) = P (li|lNi) (2.52)

where S − {i} is the set of all sites except the site i. When conditioned on

X, (X,L) is a conditional random field (CRF) [78, 79, 80, 77] if the random

variables li follows the Markov property:

P (li|X, lS−{i}) = P (li|X, lNi). (2.53)

The solution for the optimal L∗ can be done using discrete optimization

based on a particular energy functional. A common form for the energy

functional from literature [81, 82, 83] can be rewritten as

E(L) =
∑
p∈P

Dp(Lp) +
∑

(p,q)∈N
Vp,q(Lp, Lq), (2.54)
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where L = Lp ∈ P is a labeling of image P , Dp(.) is a data penalty function,

Vp,q is an interaction potential, and N is a set of all pairs of neighboring

pixels. The solution can be reached by applying standard minimum cut

algorithms [83] to optimize the energy functional over the segmentation.

The graph cut and level set methods have been widely used for energy-

based segmentation. Each method has its own properties and advantages

[84, 85]. The graph cut is based on discrete functional and the formulation

is convex. Its solution achieves the global minimum and is an integer. In

contrast, the level set method is a continuous functional. Its formulation

is non-convex and offers solutions that are local minima. Nevertheless,

the level set method for medical image segmentation has continued to be

researched intensively since it can achieve high accuracy particularly when

sub-pixel accuracy is required [85, 86].

2.5 Segmentation Quality Assessment

Segmentation results using a particular method can be evaluated by com-

paring with the ground truth. There are some ways to measure the accuracy

in the literature [87]. Three of them are briefly described here.

Suppose P1 as the extracted region by a proposed method and P2 as the

true region given by the reference standard. The union and the intersection

operations are the voxel-wise minimum and maximum operations, and |P |

denotes the number of voxels in the region P . The following indexes can be

calculated.
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1. Jaccard index (JI)

To evaluate the similarity between the segmentation result of a method

and the reference standard, the Jaccard index between the extracted

region and the corresponding reference standard is calculated by:

JI(P1, P2) = P1 ∩ P2

P1 ∪ P2
(2.55)

JI is 1 for a perfect segmentation result and 0 for the worst segmentation

where an extracted region and the ground truth do not overlap at all.

2. The Dice overlap (or similarity index, SI)

To account for the volume overlap, the Dice overlap (similarity index,

SI) between two regions is defined by:

SI(P1, P2) = 2|P1 ∩ P2|
|P1|+ |P2|

(2.56)

SI is a positive performance measure, where a higher value indicates

more accurate segmentation.

3. False positive and false negative Dice

To further characterize the segmentations by the different methods,

the false positive Dice (FPD) and the false negative Dice (FND)

are available as alternative measurements. Let P̄2 and P̄1 be the

complements of the gold standard and the segmentation results re-

spectively. FPD gives a measure of over-segmentation and FND of

under-segmentation. FPD is expressed by
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FPD(P1, P2) = 2|P1 ∩ P̄2|
|P1|+ |P2|

(2.57)

while FND is formulated by

FND(P1, P2) = 2|P̄1 ∩ P2|
|P1|+ |P2|

(2.58)

It is worth noting that Jaccard and the similarity index are equivalent

and can be expressed by

JI = SI
2− SI (2.59)

or

SI = 2JI
1 + JI (2.60)



Chapter 3
Combinatorial Method for Medical

Image Segmentation

3.1 Introduction

Methods in image segmentation have improved over time. While much effort

has been devoted to improving a particular method, not many studies have

been done on the combination of methods, organs, and modalities. Some

previous studies related to this issue can be found in the literatures such as

in [88, 89]. However, a framework that specifically utilizes the combination

of modalities and methods has not been studied.

In this chapter, the combination of segmentation methods and imaging

modality is studied. A general framework on combinatorial medical image

segmentation is proposed. However, this framework has not been fully

implemented yet. This chapters plays a role to introduce our core work.

Our work is limited to two popular approaches, machine learning

algorithms and the level set method. The investigation covers various

combinations for the two approaches and are discussed in the next three

35
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chapters.

3.2 Proposed Framework

We propose a framework that utilizes prior knowledge to determine the

optimal method to segment a medical image. In other words, given any

organ and an imaging modality, the system will recommend the suitable

method(s) to segment the image.

The recommendation involves the combination of different elements

as shown in Figure 3.1. The first element is an imaging modality, such as

Figure 3.1: An example of a combinatorial among modalities, organs, and
methods.

magnetic resonance imaging, computerised tomography, and ultrasound

imaging. The second element is an organ/tissue which is the object being
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diagnosed, e.g, brain tumor, liver tumor, pancreas, and renal cyst. The

third element is a method, e.g., the artificial neural networks, the level set

method, and the graph cuts.

The system is intended to work as follows. The inputs are the imaging

modality and the specific organ. Initially, the system has no knowledge

and no recommendation is given. In this case, a user is free to choose a

method randomly. Each time a method is executed, the system updates the

database with these elements: imaging modality, organ/tissue, method and

accuracy. Over time, for a particular case, i.e., a specific imaging modality

and organ/tissue, many segmentation methods may have been employed.

With a new segmentation application, the system will refer to the available

knowledge in the database to recommend a suitable segmentation method

by selecting one that generates the minimum error (maximum accuracy).

However, a user may choose another method to compare the result with

the recommended method. If the results are different, the new knowledge

can be added to the system, as shown in Figure 3.2.

The main engine in the framework is knowledge inference. Prior

knowledge is represented in such a way it can be retrieved easily with a

new case. Given a particular case with a known imaging modality and a

specific organ/tissue, the system should find the most suitable method which

generates minimum error. It is a field of artificial intelligence, i.e., knowledge

representation and reasoning. Some issues relating to this framework are

discussed in the following sections.
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Figure 3.2: Proposed framework.
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3.3 System Modeling

Each element in the system contains a set of possible words. A particular

word can be associated with a single node in a graph (Figure 3.3). The third

Figure 3.3: Three basic elements of the model.

element, i.e., the method to be used for segmentation, can be extended by

applying it more than once and each method can be associated with an

independent node.

Let G(V,E) be a graph where V and E represent the set vertices and



40

edges. Let sub graph Gi represent the element of the system with properties

n⋃
i=1

Gi = G (3.1)

n⋂
i=1

Gi = ∅ (3.2)

The first property ensures that the element is independent of others and

the second property ensures that all elements are part of the system with

a method applied a maximum of n − 2 times. Letting gi ∈ Gi be the

possible value of sub graph Gi, we can simplify the representation as an

n-dimensional vector g = (g1, ..., gn)T . Our goal is to find g such that the

result of the segmentation has minimum error, which can be expressed as:

arg min
g

Err(g). (3.3)

The final result should be evaluated by comparison with the ground truth.

There are some ways to measure the accuracy as described in Section 2.5.

3.4 Element Design

Implementing the model above requires many algorithms for image segmentation

from the basic algorithm to the sophisticated one. The problem that may

be faced is the connection between one element and the other which leads

to the second work, that is how to connect the elements which happens

when more than one segmentation method is applied.

In each method discussed in the literature review, we have to adjust
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the algorithm such that it can work together with other algorithms which

means that the output of one element may be the input for another element

as shown in Figure 3.4.

Formally, we have

F (g) = fn(g) ◦ fn−1(g) ◦ ...f1(g). (3.4)

where F is the composite, fi is a function representing an element. A

difficulty in connecting the elements is: setting the range of the previous

function, R, so that it matches with the input range of the next function,

D,

∀(fi−1, fi), Rfi−1 = Dfi . (3.5)

3.5 Segmentation Methods

The proposed framework uses segmentation methods as its basic engine. All

segmentation methods will have the same input, which is a subject-specific

image. Some sub-tasks related to this work are discussed below.

1. Implementing segmentation methods on various data sets

Various segmentation methods are required in the development of

the proposed framework. Some methods in the literature review

are implemented. Various organ or tissue datasets from National

University Hospital are used to test the proposed method.

2. Connecting two or more segmentation methods
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(a) Sequence of process.

(b) Sequence of function.

Figure 3.4: Sequence of process and function.
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This problem may be stated as follows: given as a set of methods, how

do we create a path based on this set? Let the number of methods be

n and for each defined path, and there is no repeated method. We can

create a combinatorial solution path containing at least one method

and at most n methods. The used methods indicate the length of a

solution path, `, and the total number of possible ways to create a

path is
n∑
`=1

P(n, `) (3.6)

where P(n, `) is the ` permutation of n.

The total number of possible paths rises exponentially with a factor

n. However, there is a chance to reduce the number of paths by

considering the following cases:

(a) in several references, the number of methods is usually not more

than four, as in [88, 90, 16]. Then, the number of possible paths

would be
4∑
`=1

P(n, `), n ≥ 4. (3.7)

This equation significantly reduces the number of possible paths

for n > 4.

(b) Each method is not used more than once. A method that is

applied before will not appear anymore in the next path. Hence,

the number of methods is decreased by one for the next node

in a path. The possible paths are shown in Figure 3.5. For

convenience of illustration, we choose ` = 4.

(c) Some methods usually appear before the others. For instance
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Figure 3.5: Path construction for ` = 4.

thresholding is utilized to obtain an initial result before a more

complex segmentation algorithm is applied.

(d) Some methods cannot be incorporated into a path. For example,

the level set method and graph cut cannot be combined because

the output of one method cannot be an input of another.

(e) For a certain method, some parameters need to be defined first

before applying to the algorithm. During trials, the parameters

and the performance are recorded. By recording all the trials,

the most appropriate parameters can be identified through the

image attributes (the modality and the organ/tissue).

3.6 Path Finding

The paths discussed above are the possible paths. Since our goal is not only

to create paths but also to obtain the best performance, the problem of

finding the path with the highest accuracy can be seen as an optimization
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problem as shown in Equation (3.3). However, this path is typically different

compared to the common path from a graph where every edge or node may

have a value. Let an image I have possible paths as described in Figure

3.6. The path performance cannot be determined iteratively based on the

Figure 3.6: Some paths, indicated with colored line.

visited node. Each path has a performance value and can only be computed

at the end of the path. It means the performance of P1, P2, P3 and P4 is

computed after visiting f1, f4, f4, and f4 consecutively.

During training, image I has various performances depending on the

path, namely η(P1), η(P2), η(P3), and η(P4). All trials are recorded and

distinguished by time. The best performance is chosen among the various

paths. Assume that the best performance is η(P4). Next, if there is a new

image which has identical attributes (organ/tissue and modality) with I,

the path P4 is recommended including its parameters for each method.

Otherwise, we have to find the most similar image before cloning the path.

Computing image similarity is a challenging task. Existing methods

such as using entropy introduced by Wachinger and Navab [91] is totally
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a content based method. There is no way to semantically measure the

similarity from a similar imaging modality, for example MRI TI weighted

and T2 weighted. An alternative approach is to utilize the content based

method which is widely used and easy to measure.

In the reinforcement learning approach [64], the trials for new paths

can be associated with the exploration. Initially, when no knowledge is

available, the trials may be done intensively. For a particular image with

an imaging modality and a specific organ/tissue, segmenting using various

methods and their combinations can be applied randomly. Each method is

used independently and evaluated by its performance, e.g., its accuracy.

When the system refers to the available knowledge in the database to

select a segmentation method which generates the highest rewards, this

procedure is known as exploitation. Balancing the trade-off between exploita-

tion and exploration is important. To avoid a large number of combinations,

some rules to select the next methods are available as described in Section

3.5. Moreover, each method generates errors which may be accumulated

along the path. Therefore, it is necessary to choose only a portion of the

best results for expanding the paths through a threshold, e.g., a percentage

of best methods or those with a particular accuracy level.

3.7 Implementation

The implementation of the proposed framework requires many algorithms

as the component of composite functions. In this thesis, we restrict the

combinations to two popular approaches; i.e., classification algorithms and
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active contour models using the level set methods.

We first propose a framework for combining standard classification

algorithms with the edge-based active contour model. The classifiers are

utilized to generate good initializations. Subsequently, more complicated

combinations are investigated.

With the gradient magnitude and class probability from classification

algorithms, we propose robust edge-stop functions and introduce them into

our combinational approach. This combination of algorithms can handle

medical images with poorly defined boundaries, particularly for the brain

and liver tumor as well as the renal cyst images.

We also propose enhancements to the conventional region-based active

contour model. Instead of using the original image, a map of class probability

scores from a classification algorithm is employed. Regularization functions

are introduced. This method can handle medical images with significant

intensity inhomogeneity.



Chapter 4
Active Contour with Initialization

from Classification Algorithms

4.1 Introduction

The use of energy minimization in image segmentation has been intensively

studied, starting from the snake model [6]. Among energy minimization

approaches, the level set method (LSM) has received much attention and is

used to minimize an energy functional when segmenting an object [8, 9, 10,

69].

Generally, image segmentation models using LSM can be classified as

edge-based models or region-based models [11, 12, 13]. The former utilizes

edge information [10] while the latter employs a region descriptor to control

the displacement of the active contour [76, 15]. Edge-based active contour

models are popular and powerful methods due to their ability to handle

poorly defined boundaries [69, 14]. However, one of the major drawbacks

of the model is that the initial contour should be close enough to the true

boundary to avoid a local minimum [92]. While the active contour segments

48
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an image by evolving an initial curve, machine learning (ML) segmentation

algorithms utilize training data to segment a region of interest on the

test data. ML algorithms are powerful in identifying complex patterns

automatically and allowing radiologists to analyze medical images [93].

An integration of ML algorithms with active contour models is an

alternative approach to obtain accurate segmentation results, particularly

on various types of medical images. Integrated methods have become popular

since they can incorporate the advantages of each component method. ML

algorithms can be utilized as an intermediate step to improve a simple

user initialization by generating a rough segmentation. Subsequently, the

active contour evolves the rough segmentation boundary to obtain the final

segmentation.

A number of studies have been reported in which only machine learning

is used for segmenting medical images. The k-nearest neighbors (k-NN)

was utilized by Martijin et al. [19] to segment white matter lesion and by

Kalid et al. [94] to segment brain abnormalities. The Bayesian classifier

was used by Lee et al. [95] as a part of their study to segment a brain. The

artificial neural network (ANN) was used by Wang et al. to segment cDNA

microarray [96] and by Selver et.al. to segment abdominal organs [97]. The

fuzzy c-means algorithm was employed by Hasan et al. [98] to segment

carotid artery ultrasound images and by Ji et al. [99] to segment the brain.

Shanmugam and Banu [100] utilized the extreme learning machine (ELM)

algorithm to segment retinal blood vessels. Zhang and Lu [101] combined the

ELM and the discriminative random fields to segment human knee cartilage

from multi-contrast MR images. Cordeiro et al. [102] applied the ELM
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to segment mammography images. In our previous work, we also utilized

the ELM to segment vocal cord images [16]. Our preliminary experiments

showed that the ELM outperforms the edge-based active contour model

using LSM.

The random forest (RF) is also a popular ML algorithm that is well

known for its ensemble learning. It was used by Ghose et al. [103] to

segment prostate images, Lempitsky et al. [104] to delineate of myocardium

in three-dimensional (3D) echocardiography, Cuingnet et al. [105] to segment

kidneys, and Azar et al. [106] to diagnose lymph diseases.

A number of studies that utilized both ML algorithms and the LSM have

been reported. Wang and Pan [107] incorporated local correntropy-based

k-means (LCK) clustering into the region-based level set segmentation

framework and tested their proposed method on images with different

organs/tissues (brain, retina blood vessels) and acquisition techniques.

They utilized LCK to update the level set function. Different from their

method, we let a machine learning algorithm fully complete the rough

segmentation and utilize its result as the initial contour for the LSM. This

idea is also different from Olivier et al.’s method [108] where supervised

binary classifiers are used to control the speed function of the active contour.

Bai et al. [109] used mean shift clustering and the region-scalable fitting

(RSF)-level set method. Li et al. [110] introduced a combination of the

support vector machine (SVM) and level set. They took the advantages of

both hierarchical and coupled level sets. Starting with SVM and hierarchical

level set segmentation, an improved initial curve placement for coupled level

sets is obtained. Lan et al. [111] combined contextual constraint neural
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networks (CCNN) and a level set evolution to segment femur and patella

images. Li et al. [88] integrated the spatial fuzzy clustering with the level

set method for medical image segmentation. Huang et al. [59, 112] used

the ELM and the LSM to detect and segment tumor liver images. These

studies used ML and the LSM; however, there is no study that discusses

the integration of various ML algorithms with the LSM and compares their

performances in an image database. Furthermore, no study is found in the

literature for integration of the k-NN, the RF, and the Bayesian classifier

(NBC) with the edge-based active contour model using the LSM.

4.2 Proposed Framework

Our framework comprises two main stages for segmenting images (Figure

4.1). Firstly, we apply a selected ML algorithm to classify pixels as back-

ground or foreground. Secondly, we apply results from the first stage to the

edge-based active contour model using the LSM.

In the pre-processing step, the images are normalized to [0,255]. Subse-

quently, the images are ready to be segmented using a selected ML algorithm.

Segmentation using ML algorithms comprises the following steps.

4.2.1 Initialization

From the pre-processing output, three images are selected randomly for

data training: from the beginning, in the middle, and the end of a dataset.

Subsequently, the images are marked using two colors, i.e, red and green
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Figure 4.1: Flowchart for the proposed framework

which indicate foreground and background, respectively. An example of

initialization can be seen in Figure 4.2(b).
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4.2.2 Training

The ML algorithm requires a feature vector which determines the success of

classification and regression. For a fair comparison of the integration of ML

algorithms with the LSM, we use the same feature vectors for all datasets.

The slices containing marked regions in the previous step are utilized to

build a model which corresponds to a particular ML algorithm.

Since we do not intend to design sophisticated feature vectors for a

specific segmentation problem, a simple feature vector containing an image

patch of size 3× 3 is used for all the experiments.

4.2.3 Testing

Since only the selected images have initializations, the remaining images

will utilize the slices containing marked regions for training purpose. The

function f in the previous step is utilized to classify pixels in the target

images. After applying an ML algorithm, rough segmented images are

obtained. Usually, the images contain a number of misclassified pixels

and appear as noisy pixels which can be seen in Figure 4.2(c). Further

smoothing can be done via morphological operators to reduce noise, i.e.,

erosion and dilation. The result of the first can be used as the initial contour

for curve evolution using the LSM while that of the second is considered as

the segmentation result using a particular ML algorithm (see Figure 4.2(d)).
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(a) (b)

(c) (d)

Figure 4.2: An example of: (a) an original image, (b) initializations, (c)
a binary classification result using NBC, (d) a segmentation result after
applying a morphological operator.
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4.3 Results and Discussions

We apply our framework in Section 4.2 to medical images using six ML

algorithms and the edge-based active contour model using the DRLSE. The

experiments as well as the results are described in this section.

4.3.1 Experimental Setup

The proposed approach is validated on three brain and three liver tumor

datasets from different patients. The liver datasets are computed tomog-

raphy (CT) images while the brain datasets are magnetic resonance (MR)

images. The resolution for all images are 512× 512. The number of slices

for each dataset are 14, 26, and 56 for the brain and 10, 8, and 8 for the

liver. For further discussion, the proposed framework is also validated on

three ultrasound (US) images containing renal cysts from different patients.

Different from CT and MR images, the US images comprise only a single

image for each patient. The resolution of the US images is 450× 600 pixels.

All the datasets are provided by our clinical collaborators.

We conduct experiments using a computer with CPU Intel Core i7

3820, 3.60 GHz and memory 32 GB, starting with pre-processing followed

by an initialization and a learning step. The six ML algorithms described in

Section 2.2 are utilized. The ML parameter values are determined carefully

based on preliminary experiments. They are iteratively adjusted until

performance is optimal. The optimal parameter values are given below.

1. k-NN : The number of neighbors, k, is set to 3 and the Euclidean
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distance is used.

2. SVM: The input data are centered at their mean and scaled to have

unit standard deviation. The kernel is the Gaussian radial basis

function with σ = 1. Sequential minimal optimization is used to find

the hyperplane. The parameter for the soft margin cost function is

set as C=1.

3. NBC: The normal (Gaussian) distribution is used to construct the

model. The parameters µ and σ are estimated using maximum likeli-

hood.

4. RF: The number of trees is set to 50. The number of predictors to

select at random for each decision split is set to 3 which is the square

root of the number of all predictors.

5. ELM: We normalize the feature values to [0,1]. The number of hidden

neurons assigned is 25 and the activation function is a sigmoidal

function.

6. ANN: The network comprises three layers, i.e., input, hidden, and out-

put layers where the number of neurons are 9, 10, and 1, respectively.

The Levenberg-Marquardt algorithm is used for the training.

For the active contour, the implementation of the DRLSE in the

form of edge-based active contour model is used. Similar to the machine

learning algorithms, all parameters are carefully chosen based on preliminary

experiments. They are iteratively adjusted until performance is optimal.

The parameters are: η = 0.04, λ = 5.0, γ = 1.5, ε = 1.5, and σ = 1.5.

We record the segmentation accuracy for quantitative measurement. Two
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popular metrics are used, i.e., the Jaccard index (JI) and the similarity

index (SI). For comparison purposes, the accuracy of the results from the

ML algorithm is also recorded.

4.3.2 Results

Experimental results for further analysis containing the Jaccard and the

Dice similarity index can be seen in Tables 4.1, 4.2 and 4.3.

Table 4.1: Segmentation performance for the liver tumor datasets (CT
images)

# ML
Using ML only Using ML + AC ∆ means

JI SI JI SI JI SI

1 k-NN 0.86±0.11 0.92±0.07 0.88±0.10 0.93±0.06 0.02 0.01

2 SVM 0.86±0.08 0.92±0.05 0.88±0.10 0.93±0.07 0.02 0.01

3 NBC 0.84±0.08 0.91±0.05 0.86±0.09 0.92±0.06 0.02 0.01

4 RF 0.84±0.11 0.91±0.07 0.89±0.09 0.94±0.05 0.05 0.03

5 ELM 0.86±0.10 0.92±0.07 0.87±0.10 0.93±0.06 0.01 0.01

6 ANN 0.83±0.19 0.89±0.19 0.85±0.19 0.90±0.19 0.02 0.01

4.3.3 Discussion

Evaluation for using AC only is not applicable because hand initialization

is only applied to three slices among a dataset. Manual initialization for

each slice is tedious task and not practical for clinical use. Based on the



58

Table 4.2: Segmentation performance for the brain tumor datasets (MR
images)

# ML
Using ML only Using ML + AC ∆ means

JI SI JI SI JI SI

1 k-NN 0.85±0.12 0.91±0.10 0.86±0.12 0.92±0.10 0.01 0.01

2 SVM 0.84±0.17 0.90±0.16 0.85±0.17 0.91±0.16 0.01 0.01

3 NBC 0.70±0.26 0.79±0.25 0.73±0.25 0.81±0.25 0.03 0.02

4 RF 0.81±0.14 0.88±0.12 0.85±0.13 0.91±0.11 0.04 0.03

5 ELM 0.78±0.25 0.85±0.26 0.80±0.25 0.86±0.26 0.02 0.01

6 ANN 0.78±0.23 0.85±0.22 0.80±0.23 0.86±0.22 0.02 0.01

Table 4.3: Segmentation performance for the renal cyst datasets (US
images)

# ML
Using ML only Using ML + AC ∆ means

JI SI JI SI JI SI

1 k-NN 0.79±0.03 0.88±0.02 0.84±0.02 0.91±0.01 0.05 0.03

2 SVM 0.80±0.06 0.89±0.04 0.85±0.01 0.92±0.01 0.05 0.03

3 NBC 0.52±0.45 0.58±0.50 0.56±0.49 0.61±0.53 0.04 0.03

4 RF 0.76±0.04 0.86±0.03 0.83±0.04 0.91±0.02 0.07 0.05

5 ELM 0.64±0.17 0.77±0.14 0.69±0.24 0.80±0.18 0.05 0.03

6 ANN 0.77±0.06 0.87±0.04 0.84±0.01 0.92±0.01 0.07 0.05
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initial marks comprising foreground and background regions, all pixels in

each image from a single dataset can be classified. After post processing,

i.e., applying a morphological operator, segmentations using ML algorithms

are obtained. They are presented in Table 4.1 for the liver tumor, Table 4.2

for the brain tumor, and Table 4.3 for the renal cysts.

As can be seen in Table 4.1, using only machine learning algorithms, JI

and SI are similar. Applying the edge-based active contour to those results

improve the accuracy by between 0.01 to 0.05 for JI and 0.01 to 0.03 for

SI. Similar improvements are also true of the brain tumor images (Table

4.2). Even though the accuracy using only machine learning algorithms has

a large range, it consistently increases by between 0.01 to 0.04 for JI and

0.01 to 0.03 for SI. The significant improvements appear in Table 4.3. JI

increases by between 0.04 to 0.07 while SI by 0.03 to 0.05. Except for the

NBC, the accuracy of all algorithms are similar for both JI and SI. Moreover,

the higher the JI or SI from using only machine learning algorithms is, the

higher the JI or SI from using machine learning algorithms and the active

contour model will be.

In general, we can see from the tables that k-NN and SVM are suffi-

ciently consistent to generate good results. In the liver tumor segmentation,

even though those methods do not give the highest accuracy for ML+AC,

their performance is just slightly less than the best accuracy. In the brain

tumor segmentation, those methods outperform others with or without us-

ing the active contour. In contrast, NBC generates poor results. It achieves

the lowest accuracy in segmenting all tumors and cysts, with or without

the active contour. Examples of qualitative results for the the selected ML
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algorithms are shown in Figures 4.3, 4.4, and 4.5. They show segmentation

results using ML only compared with those using ML + AC. The ground

truth, the segmentation results using ML only, and those using ML+AC

are indicated by the solid green, red dashed, and blue dot lines, respectively.

Note that the accuracy listed in Table 4.1 and Table 4.2 comes from the

average accuracy of a dataset which comprises many slices.

Generally, applying the active contour on a segmentation result using

an ML algorithm will improve accuracy but this is not always so. Figure

4.6 shows an example of this case where ambiguous pixels have resulted

in wrong segmentation. In the vicinity of the boundary, some pixels are

misclassified. The segmentation is generated using SVM (Figure 4.6 (a))

and SVM+AC (Figure 4.6 (b)). The misclassified pixels lead to the error

in the final segmentation as shown in the figure. The accuracy of the slice

using only SVM is 0.87 (JI) and 0.93 (SI) while using SVM+ AC is 0.83

(JI) and 0.90 (SI). This is a special case where applying the active contour

decreases the accuracy. This problem can be solved easily by adding more

strokes to indicate the foreground and background precisely. Another way

is to set parameters for the active contour. However, in practice we retain

the initializations from the three selected slices in the beginning and use

general settings for the active contour. Furthermore, in most of cases, the

accuracy increases although some pixels are misclassified.

Given that the performance of ML+AC methods analyzed above are

similar, using other measures such as computational time and ease-of-use

(i.e., limited use of parameter tuning) can be considered in the selection

process. Table 4.4 shows the computation time for each observation. As
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Figure 4.3: Segmentation results for the liver tumor.
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Figure 4.4: Segmentation results for the brain tumor.
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Figure 4.5: Segmentation results for the renal cyst.
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(a) (b)

Figure 4.6: Segmentation results using (a) only the SVM and (b) the SVM
+ AC. The green, magenta, and red line indicate the ground truth, the
result using only the SVM, and the result using the SVM+ AC, respectively.

can be seen, k-NN generally demonstrates the most efficient to complete

the segmentation tasks. It is worth to note that the number of images for

each of the liver as well as brain tumor are hundreds while the renal cyst

only three.

Based on the parameter setting, k-NN is intuitively easy to set. Given

the nature of the algorithm, it only requires the number of neighbors (k)

and the distance measurement (usually Euclidean distance). Since the

accuracy is also high, this algorithm is reasonable to be the first choice for

the integration.
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Table 4.4: Computational time to complete the segmentation tasks

# ML Algorithm Liver Tumor* Brain Tumor* Renal Cyst*

1 k-NN 150.55 678.49 19.78

2 SVM 185.45 1,125.21 20.31

3 NBC 232.78 1,642.58 19.28

4 RF 253.98 2,034.09 22.12

5 ELM 291.49 2,495.43 17.80

6 ANN 373.95 3,170.17 25.78

* The unit is in seconds and the best result is highlighted with
blue background.

4.4 Summary

The framework presents a new approach for multi-steps segmentation meth-

ods which is highly flexible. Different machine learning algorithms can be

chosen and integrated with the edge-based active contour model using the

LSM. We conducted experiments by applying the framework into the brain

tumor, liver tumor, and renal cyst datasets. ML algorithms can generate

good coarse initializations which are close enough to the true boundary. The

final result is obtained by applying the edge-based active contour model,

based on the coarse initialization.

Generally, the better the coarse initialization is, the better the final

result will be. The edge-based active contour which is implemented using

the LSM improves the accuracy of the final segmentation.
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Since there is no one ML algorithm that outperforms all the others, it is

important to choose an appropriate ML algorithm. Among the investigated

machine learning algorithms, the integration of the k-nearest neighbors and

support vector machines with the edge-based active contour generally gives

more accurate results.



Chapter 5
Active Contour with Gradient and

Class Probability

5.1 Introduction

We have integrated machine learning with the edge-based active contour

model in Chapter 4. The segmentation results obtained from machine

learning, which are close enough to the true boundaries, are utilized for

the initial contours of the edge-based active contour. In this chapter, we

integrate machine learning with the edge-based active contour more tightly

by utilizing the probability scores from a classification algorithm to stop

the contour evolution in edge-based active contour models.

Edge-based models are not sensitive to inhomogeneity of image in-

tensities, i.e., the overlapping of the intensity ranges, but are sensitive to

objects with poorly defined boundaries. In images where the intensities

change gradually in the vicinity of a poorly defined boundary, the edge-stop

function (ESF) fails to stop the contour [16].

To overcome the limitation of the traditional ESFs in edge-based active

67
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contour models, we propose a framework to construct a group of robust

ESFs that utilize probability scores instead of the predicted class labels

from a classifier. Since the scores fall in [0, 1], this task is similar to fuzzy

segmentation. Unlike the methods of [113, 114], which rely only on class

probability using Bayes’ rule, our framework is more flexible since it utilizes

the probability scores from any classifier. At the same time, we retain

gradient information to terminate contour evolution when there are no fuzzy

values due to distinct boundaries. These ideas differentiate our work from

[115], which relies on fuzzy energy and is considered a region-based level

set method.

5.2 Proposed Framework

Our new ESFs can be constructed from any classification algorithm and

applied to any edge-based model using an LSM. The proposed framework

is presented in Figure 5.1. In this chapter, two classification algorithms are

investigated to construct ESFs, namely, k-NN and SVM.

Evaluation scores from classifiers generally fall in the range [0, 1] or

(−∞,+∞). The scores of the k-NN classifier are of the first type and can

be considered probability scores while those of the SVM are of the second.

The latter can be converted to prior probability scores [116].

The traditional ESFs in Equation (2.32) have a drawback when applied

to an image containing an object with poorly defined boundaries. The

contour may fail to stop at the desired boundary because of the gradual

change in gradient. The binary classification of an image into background
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Figure 5.1: The proposed framework.

(class 0) and foreground (class 1) can be solved using a classifier. Instead

of binary classification, we utilize a smooth transition from the probability

scores to find the desired boundary. Probability scores which lie in the range

of [0, 1] can be obtained by applying a classification algorithm to all the

pixels. In the vicinity of the object boundary, the scores change from 1 to 0

(or vice versa) through a smooth transition. The chance that a boundary

exists is high when an ambiguous classification occurs, i.e., the probability

score is 0.5. In terms of energy minimization, a score of 0.5 should generate

the lowest energy. Furthermore, a membership of 0 or 1 should generate
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high energy because the region is not the desired boundary. We use the

fuzzy ESF ρ(s) : [0, 1]→ [0, 1]

ρ(s) = 4s2 − 4s+ 1 (5.1)

where s is the probability score for the foreground. It is worth noting the

properties of ρ in (5.1):

1. the domain as well as the range lie in [0, 1],

2. it is monotonically decreasing in [0, 0.5] and monotonically increasing

in [0.5, 1].

3. the following equations hold

lim
s→0

ρ(s) = 1, (5.2)

lim
s→0.5

ρ(s) = 0, (5.3)

lim
s→1

ρ(s) = 1. (5.4)

Any other functions having similar characteristics also can be employed as

ρ(s), e.g.,

ρ(s) = cos pπs, 0 ≤ s ≤ 1, p = 2, 4, 6, .... (5.5)

Subsequently, the fuzzy ESF is used to regularize function g in Equation

(2.32) to obtain gnew which can be simply expressed by

gnew = gρ. (5.6)
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A smoothing step, e.g., applying the Gaussian kernel, may be required for

highly noisy images to prevent the contour from stopping prematurely. The

fuzzy ESF, ρ, will force gnew to be close to 0 when ρ is very close to zero

even though g is much higher than 0, i.e., when the image intensity drops

gradually. Consequently, gnew will be close to 0 which will stop a contour

at the desired boundary. Therefore, function gnew should be used instead of

Equation (2.32) for objects with poorly defined boundaries.

5.3 Experimantal Setup

5.3.1 Data Set

To evaluate the effectiveness of the proposed framework, several medical

images containing objects with poorly defined boundaries are tested. The

images come from different patients. The medical images are computed

tomography (CT) scans of liver tumor (3 images), magnetic resonance

imaging (MRI) scans of brain tumor (5 images), and ultrasound (US) scans

of renal cyst (3 images). The resolution for CT, MRI, and US are 512×512,

512×512, and 450×600 pixels, respectively. The ground truths of the images

are drawn by an expert.

To segment an object, two marks are initially drawn to train the

classifier (Figures 5.2(a) and 5.3(a)). The red mark indicates the foreground

whose boundary is used to initialize the contour while the green mark denotes

the background. The red mark boundary is used as the initial contour as

well as training data for the classifier at the initial step.
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(a) Initializations 

 
              (c) Regularized Probability Score 

 
              (b) Gradient Map 

 
    (d) Regularized Gradient Map   

Figure 5.2: Gradient map, regularized probability score map, and their
integration.
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(a) (b)

(c) (d)

Figure 5.3: (a) User initialization containing red and green marks on
the brain tumour image, (b) an initial contour is generated from the red-
mark boundary, (c) the contour after 10 iterations, (d) the contour after
40 iterations. For convenience, images (b)−(d) are shown in contrast
enhancement.
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5.3.2 Parameter Setting and Quality Assessment

We implement the proposed ESFs in Matlab and utilize the DRLSE for

the implementation of the edge-based active contour model with parameter

values from Li et al. [74], unless otherwise stated. The default parameter

values are µ = 0.04, α = 1.5, ε = 1.5, and σ = 2.5. The value of λ is set to

3 for the liver tumor and 5 for the brain tumour. The number of neighbors,

k, in the fuzzy k-NN algorithm is set to a large value to allow fuzziness in

the vicinity of the boundaries. From our preliminary experiments, k ≥ 50

generates good results (Figure 5.4 and Tables 5.1 and 5.2).

Table 5.1: Preliminary results for the JI on the value of k

No Images
k =

5 20 35 50 65 80 95

1 Brain tumor (MRI) 0.84 0.85 0.86 0.87 0.88 0.89 0.89

2 Liver tumor (CT) 0.40 0.79 0.82 0.90 0.90 0.90 0.90

3 Renal cyst (US) 0.85 0.85 0.87 0.88 0.88 0.89 0.91

We use k = 99 for all the experiments to cover exactly one hundred

different membership values and generate smooth transitions between the

background and foreground. The kernel function in the SVM is linear

with scale parameter = 1. A feature vector, generated from a 3×3 image

patch, is used for all the experiments. Preliminary experiments show similar

results with Equations (5.1) and (5.5). We use function ρ in Equation (5.1)

without any intention to downplay the importance of Equation (5.5). We



75

(a) user initializations (b) k = 5

(c) k = 15 (d) k = 25

(e) k = 45 (f) k = 75

Figure 5.4: Maps of ρ using various k on a liver tumor image.
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Table 5.2: Preliminary results for the SI on the value of k

No Images
k =

5 20 35 50 65 80 95

1 Brain tumor (MRI) 0.91 0.92 0.93 0.93 0.94 0.94 0.94

2 Liver tumor (CT) 0.53 0.88 0.90 0.95 0.95 0.95 0.95

3 Renal cyst (US) 0.91 0.92 0.93 0.94 0.94 0.94 0.95

run the program on a PC with a 64-bit Windows 7 Enterprise, core i7-3820

3.60-GHz processor, and 32 GB RAM.

For comparison purposes, the images are also segmented using Chan-

Vese’s (C-V’s) method [15] as well as Li et al.’s method with the traditional

ESF [74]. For C-V’s method, the parameters for each modality are carefully

chosen. We iterate a range of values for a combination of the time step, the

length term coefficient, and the foreground and the background weights to

obtain a general setting [117, 118]. For Li et al.’s method, the parameters

are identical with our method. The iteration is stopped when the result

does not change for 5 consecutive iterations or a pre-defined maximum

number of iterations is reached.

Two common quantitative measurements are used, i.e., the Jaccard

index (JI) and the Dice coefficient which is also known as the similarity

index (SI). These are defined in Equations (2.55) and (2.56).
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5.3.3 How the Proposed Method Works

Maps of g can be used to visualize how our proposed ESFs work. A sample

of a MR brain tumor image is used (Figure 5.2(a)). The traditional g map,

which utilizes only gradient information, is generated based on Equation

(2.32) and shown in Figure 5.2(b). At the same time, applying a classification

algorithm, e.g., the SVM, to the image will produce the evaluation score of

each pixel. Subsequently, the evaluation score is converted to a probability

score. The fuzzy ESF (ρ) from Equation (5.1) is applied to the probability

score and the resulting ρ map is shown in Figure 5.2(c). Pixels with a high

likelihood to be background or foreground have higher ρ values and look

brighter. Finally, the gnew map (Figure 5.2(d)) based on Equation (5.6) is

used as the ESF of the edge-based active contour model. It is worth noting

that using only ρ as the ESF does not make the contour converge at the

desired boundary as shown in Figure 5.5.

5.4 Results and Discussions

Some of the segmentation results from our experiments using robust ESF

(Equation 5.6 ) are shown in Figures 5.6, 5.7, and 5.8 while the quantitative

results are presented in Tables 5.4 and 5.5. Table 5.3 lists the total of

the running time for each modality and the time spent for training. Table

5.4 shows the corresponding accuracy for all the methods. The proposed

method converges faster compared to Li et al.’s method and gives more

accurate segmentations. It is well known that region-based active contour

models and C-V’s method do not perform well with inhomogeneous images.
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(a) Synthetic image (b) Brain tumor

(c) Liver tumor (d) Renal cyst

Figure 5.5: Using only ρ as the stop function for various images does not
work. Red solid lines denote the final segmentation, blue dotted lines the
initialization contour, and green dashed lines the ground truth.
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(a) Proposed method (k-NN) (b) Proposed method (SVM)

(c) Chan-Vese’s method (d) Li et al.’s method

Figure 5.6: Segmentation results for the brain tumor using various methods
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(a) Proposed method (k-NN) (b) Proposed method (SVM)

(c) Chan-Vese’s method (d) Li et al.’s method

Figure 5.7: Segmentation results for the liver tumor using various methods
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(a) Proposed method (k-NN) (b) Proposed method (SVM)

(c) Chan-Vese’s method (d) Li et al.’s method

Figure 5.8: Segmentation results for the renal cyst using various methods
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Table 5.3: Computational time (in second)

# Images (Modality)
Proposed Method a C-V’s Li et al.’s

k-NN SVM Method Method

1 Brain tumor (MRI) 7.45 (2.11) 7.57 (3.34) 5.05 9.98

2 Liver tumor (CT) 5.49 (2.08) 6.27 (0.16) 3.23 9.58

3 Renal cyst (US) 7.04 (2.57) 6.75 (0.31) 12.11 8.07

a Numbers in brackets denote the training time.

In our experiments, C-V’s method generates poor results for the brain

tumor as well as the renal cyst images in the presence of inhomogeneity.

Some images are poorly segmented using the general parameter setting

(Figures 5.6(c) and 5.8(c)). The poor results can be avoided by applying a

specific setting for the images; however, setting parameters for each image

is a difficult and tedious task. It is also known that traditional edge-based

active contour models often fail to converge at a poorly defined boundary.

This is indeed the case in most of our experiments where the contours in Li

et al.’s method evolve beyond the desired boundary. These issues are solved

using the proposed method. The results confirm that the active contour

model using the proposed ESFs outperforms traditional region-based and

edge-based active contour models.

It is clear that function ρ plays an important role when a poorly defined

boundary is present. It generates a minimum value when the scores are

at the decision boundary. Furthermore, retaining the gradient information

is beneficial at clear boundaries since there are no fuzzy values. Function
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Table 5.4: Segmentation accuracy from various methods

# Images

Proposed Method Chan-Vese’s Li et al.’s

k-NN SVM Method Method

JI SI JI SI JI SI JI SI

1 Brain tumor 0.83 0.91 0.85 0.92 0.68 0.80 0.67 0.79

2 Liver tumor 0.93 0.97 0.94 0.97 0.92 0.96 0.37 0.49

3 Renal cyst 0.89 0.94 0.89 0.94 0.70 0.80 0.60 0.73

Table 5.5: Segmentation accuracy using Equation (5.5)

No Images Modality
k-NN SVM

JI SI JI SI

1 Brain tumor MRI 0.81 0.89 0.85 0.92

2 Liver tumor CT 0.93 0.96 0.94 0.97

3 Renal syst US 0.90 0.95 0.90 0.95

gnew incorporates both of these advantages to give accurate segmentation

results. In addition, the proposed framework is flexible and can be applied

to other models that utilize an ESF. Any classifier can be used to construct

an ESF using a family of functions ρ. Experiments on medical images using

different ρ based on Equation (5.5) for p = 4 with the corresponding data

test from Table 5.3 are presented in Table 5.5. The accuracy is similar

to that obtained with the use of Equation (5.1) which indicates that the
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proposed framework is not sensitive to the choice of a good ρ function.

An edge based active contour model is generally sensitive to initial-

ization. In addition, a probability score is sensitive to training data. The

foreground initialization in our experiments is used not only to initialize the

contour but also to learn the foreground pixels. It is worth noting that an

appropriate initialization is required, particularly for inhomogeneous objects.

Training data should cover the variety of the foreground to generate a good

segmentation result as shown in Figure 5.9(d).

It is worth noting that multi-class classification problem (the number

of labels is larger than 2) is very common and important. Even though the

nature for each classification type is different, the two-class classification

problem may be extended to more-class classification problem. Particularly,

the two machine learning algorithms which are used in the experiments

can be used for multi-class classification [119, 120, 121]. However, the level

set method only utilizes one level embedded function only to represent

the curve C, i.e., Equation (2.25). The curve separates the region between

φ(x) > 0 and φ(x) < 0. Consequently, there are only two regions (classes)

based on φ(x). This is a limitation in our proposed method where the

segmentation is only dedicated to two-class classification problem. Some

studies on multi-level set method [122, 123, 124] may be able to handle

multi-class classification; however, managing multi-level for the embedded

function may be complicated.
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(a) (b)

(c) (d)

Figure 5.9: Results from various initializations on the brain tumor image.
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5.5 Summary

We have proposed a framework to construct a group of robust ESFs for

edge-based active contour models which can be used to detect poorly defined

boundaries. The framework utilizes edge-based information from image

gradient values as well as probability scores from a classifier. Our framework

is sufficiently flexible to be applicable to other edge-based active contour

models that use ESFs and can be constructed from any classifier.

The proposed framework is tested on medical images comprising the

brain and liver tumor as well as renal cyst images. Experiments on these

images using the DRLSE for the implementation of the edge-based active

contour model as well as the k-NN and the SVM for the classification algo-

rithms confirm the effectiveness of our framework. The proposed framework

generates more accurate segmentation results compared to the traditional

edge-based active contour model (Li et al.’s method) as well as the region-

based active contour model (C-V’s method). Furthermore, the framework

converges faster compared to Li et al.’s method). Last but not least, the

ESFs in our framework is not sensitive to the choice of ρ function as long

as it follows the properties of a good ρ.



Chapter 6
Active Contour with Region of Class

Probability

6.1 Introduction

Generally, existing image segmentation models using level set methods

can be grouped into two categories: edge-based models and region-based

models [11, 12, 13, 14]. Edge-based models utilize edge information while

region-based models employ a region descriptor to control the motion of

the active contour [15]. Region-based models are not sensitive to objects

with poorly defined boundaries but are sensitive to inhomogeneity of image

intensities, i.e., the overlapping of the intensity ranges. Also, they are

sensitive to parameter tuning [17, 18] which is not desirable in practical

use.

Another popular approach is the use of machine learning algorithms to

classify each pixel based on training data. Many algorithms are found in

the literature; e.g., the k-nearest neighbors (k-NN), support vector machine

(SVM), extreme learning machine, etc [19, 16]. These algorithms can

87
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handle complex patterns, but further post-processing such as morphological

operations are often required to obtain the final solution without employing

an objective function.

To overcome the limitation of these approaches, a number of studies

include classifier probability scores from overall pixel classification instead

of pure intensity values [125, 126, 127, 128, 129]. Different from existing

methods, our framework works in a simpler manner. The scores are in a

matrix in the range of [0, 1] which are subsequently regularized by a non-

linear function. Finally, the region-based active contour model proposed by

Chan and Vese is applied to the matrix to find the optimal solution. The

solution thus converges faster and is less sensitive to parameter tuning of

the LSM without compromising accuracy.

6.2 Proposed Framework

The proposed framework can be constructed from any classification algo-

rithm and applied to any region-based model using an LSM. The k-NN

and SVM are selected to generate a matrix of classifier probability scores.

Probability scores from classification algorithms generally fall in the range

[0, 1] or (−∞,+∞). The scores of the k-NN are of the first type while those

of the SVM are of the second. Some methods are available to convert the

second type to prior probability score, e.g., the Platt method [116].

Originally, classifiers generate binary results which are obtained from

applying a hard limiter function for their probability scores. Let s ∈ [0, 1]

be a probability score and ρ a regularization function that maps s to a real
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value in [0, 1]. The traditional classifier generates binary results by applying

ρ(s) =


1 if s ≥ 1

2 , (6.1a)

0 if s < 1
2 . (6.1b)

Instead of refining these binary scores using machine learning algo-

rithms, we retain the probability scores to be processed further by applying

any region-based active contour model. The map of the probability scores

is used to replace the original image during computation.

The simplest function for ρ(s) is the identity function which can be

expressed by

ρ(s) = s. (6.2)

The plot of Equation (6.1) is shown in Figure 6.1(a) while that of Equation

(6.2) in Figure 6.1(b). The former is binary while the latter is linear.

Based on our preliminary results, a non-linear function ρ approximately

lying under ρ2 for s > 0.5 and above ρ2 for s < 0.5 produces better solutions.

It is worth noting the properties of a good ρ:

(a) the domain, s, as well as the range, ρ(s), lie in [0, 1],

(b) it is monotonically increasing,

(c) the following equations hold

lim
s→0

ρ(s) = 0, (6.3)

lim
s→0.5

ρ(s) = 0.5, (6.4)
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lim
s→1

ρ(s) = 1, (6.5)

(d) it should be close to 0.5 when s is in the vicinity of 0.5.

In our experiments, the implication

0 < |s− 0.5| < 0.1 =⇒ |ρ(s)− 0.5| < 0.015

holds. A function that meets these properties is

ρ(s) = 1 + (2s− 1)p
2 , for s ∈ [0, 1] and p = 3, 5, 7, .... (6.6)

Any other functions having similar characteristics also can be employed as

ρ(s), e.g.,

ρ(s) = 1− cospπs
2 , for s ∈ [0, 1] and p = 3, 5, 7, .... (6.7)

The plot of Equations (6.6) and (6.7), for p = 5, are shown in Figure 6.1 (c)

and (d), respectively. Both functions are non-linear.

The map of ρ is then fed to a region-based active contour model.

Through energy minimization using the level set method, the optimum

solution for the desired region can be obtained.

6.3 Experimental Setup

We apply our proposed method to several images for evaluation. The

experiments and results are described below.
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Figure 6.1: Various types for regularization function.
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6.3.1 Data Set

To evaluate the effectiveness of the proposed method, a number of medical

images are used. They are images of brain tumour (5 images), liver tumor

(3 images), and renal cyst (3 images) with respective modalities computed

tomography (CT), magnetic resonance imaging (MRI), and ultrasound

(US). The resolutions are listed in Table 6.1. All images come from different

patients and their ground truths are drawn by an expert.

Table 6.1: Image data set

No Images Modality Number of images Resolution

1 Renal syst US 3 450 ×6 00

2 Liver tumor CT 3 512 × 512

3 Brain tumor MRI 5 512 × 512

6.3.2 Parameter Tuning

The proposed method is implemented in Matlab. The region-based active

contour model from Chan and Vese implemented by Getreuer is utilized

[130]. Unless otherwise stated, the parameter values are listed in Table

6.2. The radial basis function is used as the kernel function in the SVM.

Since this study is not intended to design a sophisticated feature vector,

a simple vector containing an image patch of size 3× 3 is used for all the

experiments.

The segmentation starts with an initialization comprising two manually
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Table 6.2: Parameter setting for the experiments

Symbol Quantity Value

µ coefficient of the weighted length term 0.5

v coefficient of the weighted area term a 0

λ1 coefficient of inside fit penalty 1

λ2 coefficient of outside fit penalty 1

dt timestep parameter 1

k the number of neighbors in the fuzzy k-NN algorithm 8

a v = 0 means that the area term is not used for the experiments.

drawn marks to train the classifier (Figure 6.2). The green mark indicates

(a) User initialization (b) Binary segmentation result

Figure 6.2: User initialization and the corresponding binary result using
Equation (6.1).

the background and the red mark the foreground.
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(a) Linear function (b) Polynomial function

Figure 6.3: Regularized probability score map using Equations (a) 6.2
and (b) 6.6 in pseudo-color.

6.3.3 Quality Assessment

We compare our results with the original Chan-Vese method as well as

another method from the area-based cost function, i.e., the edge-based

active contour model proposed by Li et al. Different from our method,

which shares the same parameters tuning for all imaging modalities, the

original methods of Chan-Vese and the Li et al. use specific parameter

values for each imaging modality. The parameters are carefully chosen by

iterating the combination of them.

To evaluate the segmentation accuracy, two popular metrics are used,

i.e, the Jaccard index (JI) and the Dice coefficient, also known as the

similarity index (SI).
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6.3.4 How the Proposed Method Works

The ρ maps generated using Equations (6.1), (6.2), and (6.6) are shown in

Figures 6.2(b), 6.3(a), and (b), respectively. As can be seen, the original

binary result from a machine learning algorithm (Figure 6.2(b)) is very noisy

and it would be difficult to refine the solution. Applying a morphological

operator is commonly done to remove the noise, but there is no objective

function inside. In addition, applying Equation (6.1) ignores the degree of

certainty. A pixel in class one may come from either the absolute probability

score 1 or a real value in [0.5, 1).

A better map of ρ is obtained by applying a linear mapping as expressed

in Equation (6.2) (Figure 6.3(a)). Pixels whose scores are close to 0.5 are

shown in purple. Since we wish to emphasize the fuzziness, we introduce a

non-linear mapping which gives more weight for scores close to 0.5 through

either Equation (6.6) or (6.7). An example of a ρ map using Equation (6.6)

is shown in Figure 6.3(a). Pixels with high confidence of being background

are in green, and those with low confidence are in red. The regularized ρ

map is subsequently used to replace the original image (image u0) in the

Chan-Vese’s method where the level set method computation is applied on

the original image.

Based on experiments, the use of the regularized ρ map makes the

algorithm converge faster. Further more, the accuracy is also improved.

The detailed results for the computational time and accuracy are presented

in Sub Section 6.4.
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6.4 Results and Discussions

The optimum solution is obtained by applying the region-based active

contour model proposed by Chan and Vese (C-V) to ρ using Equation

(6.7) without any intention to downplay the importance of Equation (6.6).

The initial zero level set is obtained from the foreground boundary during

training. The map of ρ plays an important role in our method.

A number of qualitative segmentation results are shown in Figures 6.4,

6.5, and 6.6 while the quantitative results are listed in Tables 6.3 and 6.4.

Table 6.3: Comparison of segmentation accuracy

Exp. Images

Our Method C-V’s Li et al.’s

k-NN SVM Method Method

JI SI JI SI JI SI JI SI

1 Renal cyst 0.84 0.91 0.84 0.91 0.83 0.90 0.83 0.91

2 Liver tumor 0.93 0.97 0.93 0.96 0.66 0.70 0.68 0.77

3 Brain tumor 0.82 0.90 0.81 0.90 0.59 0.69 0.81 0.89

As can be seen in Table 6.3, our method using k-NN and SVM generate

similar results. Experiment 2, where the liver tumor images are used,

achieves the best performance compared to the brain tumor and renal cyst

images. Applying either the k-NN or SVM generates accuracy 0.93 for

JI. The slight difference for SI, i.e., 0.01, comes from the rounding of real

numbers.

For comparison purpose, the segmentation accuracy from C-V’s and Li
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(a) Proposed method (k-NN) (b) Proposed method (SVM)

(c) Chan-Vese’s method (d) Li et al.’s method

Figure 6.4: Segmentation results for the renal cyst using various methods
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(a) Proposed method (k-NN) (b) Proposed method (SVM)

(c) Chan-Vese’s method (d) Li et al.’s method

Figure 6.5: Segmentation results for the liver tumor using various methods
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(a) Proposed method (k-NN) (b) Proposed method (SVM)

(c) Chan-Vese’s method (d) Li et al.’s method

Figure 6.6: Segmentation results for the brain tumor using various methods
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Table 6.4: Segmentation accuracy using Equation (6.6)

No Images
k-NN SVM

JI SI JI SI

1 Renal cyst (US) 0.83 0.90 0.85 0.92

2 Liver tumor (CT) 0.93 0.96 0.93 0.96

3 Brain tumor (MRI) 0.81 0.89 0.81 0.90

et al.’s methods are also listed in Table 6.3. As can be seen, the proposed

method consistently generates higher accuracy. Compared to C-V’s method,

the proposed method significantly generates higher accuracy for segmenting

the brain and liver tumor images and slightly higher for the renal cyst. The

proposed method is also significantly better for segmenting the liver tumors

and slightly better for the remaining.

It is worth noting that in C-V’s and Li et al.’s methods, it is difficult to

find a general setting for parameter tuning even for the set of images in a

data volume. A set of parameters may generate a good result on a certain

slice but gives poor results for other slices. Some of the almost perfect

results from C-V’s method are shown Figure 6.5, and 6.6. The same is true

for Li et al.’s method when segmenting the brain tumors. Note that our

parameter values are the same overall imaging modalities, unlike the others.

The ρ map is less sensitive to parameter tuning compared to the pixel

intensities in the traditional C-V’s as well as Li et al.’s method. The key for

a good ρ map is the regularization function that emphasizes the ambiguity
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of the class probability. The experimental results using Equation (6.6) with

p = 5, which generate similar results, are shown in Table 6.4. The proposed

method is not sensitive to the choice of non-linear function as long as it

follows the properties of a good ρ.

The computational times to complete the task for all methods are

presented in Table 6.5. As can be seen, the proposed method generally

converges faster even though it requires training time. Compared to C-V’s

method, the proposed method using either k-NN or SVM is significantly

faster for segmenting the brain and liver tumors, and slightly longer for

renal cysts. In addition, the proposed method using either k-NN or SVM is

faster for all images compared to Li et al’s method.

Table 6.5: Computational time (in second)

No Images
Our Method a C-V’s Li et al.’s

k-NN SVM Method Method

1 Renal cyst (US) 3.80 (1.61) 8.91 (5.78) 8.74 11.40

2 Liver tumor (CT) 1.82 (1.10) 2.04 (1.20) 2.24 7.04

3 Brain tumor (MRI) 3.79 (1.56) 5.61 (2.93) 6.40 10.29

a Numbers in brackets denote the training time which are already included
in the computational time.

6.5 Summary

We have proposed a framework to integrate machine learning algorithms with

region-based active contour models. The framework utilizes classification



102

probability scores which are regularized using a non-linear mapping. Our

framework is flexible to be applied to any classifier integrated to region-based

active contour models.

An experimental implementation using the k-NN and the SVM inte-

grated to the C-V’s method confirms the effectiveness of our framework.

Three data sets of the brain and liver tumor as well as the renal cyst are

used in the experiments. The proposed method generally outperforms the

traditional C-V’s method as well as the Li et al.’s method, both in accuracy

and computational time.

The proposed method is not sensitive to the choice of regularization

function as long as it follows the properties of a good ρ. Experimental

results using polynomial and trigonometric function consistently show the

similar results.

The experiments also show that the solutions can be obtained easily

with a simple feature vector and lower sensitivity to parameter tuning.

All experiments, which cover several modalities containing tumor and cyst

images, utilize the same parameter tuning for the implementation of the

region-based active contour model using the LSM. This is almost impossible

in the traditional method such as C-V’s and Li et al.’s method where the

parameter tuning is a quite difficult task. Each parameter in the LSM

should be tuned carefully for different modalities, organs, or tumors.



Chapter 7
Conclusions and Future Work

7.1 Conclusions

Machine learning algorithms and the level set methods continue to play

increasingly important roles in medical image analysis. This thesis has

introduced a framework for combinatorial methods. Since there are numer-

ous possible combinations, only two popular approaches i.e., classification

algorithm and active contour are explored further by proposing several

ways to integrate classification algorithms with the active contour models

using the LSMs. The integration covers both the edge-based as well as

region-based active contour models.

First, we demonstrate how to integrate classification algorithms and

the edge-based active contour models in Chapter 4. A classifier is first

applied followed by the edge-based active contour model. classification

algorithms effectively generate results that can be employed as initial

contours. These contours are close enough to the true boundaries even with

minimal user initialization. The contours are subsequently evolved using

edge-based active contour models toward the true boundaries. In general,
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the better the initializations, the better the results. The experiments

using six selected classification algorithms confirm the effectiveness of our

framework to segment medical images. The use of the combination can

enhance the segmentation accuracy compared to that of a single algorithm.

Among the selected algorithms, the k-NN and the SVM combined with the

edge-based active contour model consistently demonstrates above-average

accuracy compared to the integration from NBC, ELM, ANN, and random

forests.

The integration above can be considered as a simple combination of

various methods. In the second work, which is described in Chapter 5, we

integrate the classification algorithm and level set methods more closely

to construct robust ESFs. Instead of refining the binary classification, we

retain the class probability score to be embedded in the edge-stop function

to control the contour motion. We introduce two fuzzy edge-stop functions

which are used to regularize the traditional ESF. These functions make the

contours stop precisely at poorly defined boundaries. Experimental results

also indicate that our proposed method outperforms the methods from Li

et. al and Chan-Vese. The edge-based active contour model using ESF

converges faster and gives more accurate segmentations.

The integration described in Chapter 4 and 5 combine classification

algorithms with the edge-based active contour models. In Chapter 6, we

extend our investigation to integrate classification algorithm with the region-

based active contour model. Similar to the previous work in Chapter 5,

classification algorithms are employed to generate maps of class probability

scores. Instead of being applied to pixel intensities, the region-based active
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contour employs the obtained maps. We also propose two functions to

regularize the maps before applying the region-based active contour model.

Empirical experiments confirm that the two functions effectively generate

better results compared to the traditional methods from Li et al. and

Chan-Vese. The proposed method generally converges faster even though

it requires training time. The segmentation results are more accurate

compared to the other selected methods. Moreover, parameter tuning is

not an issue any more since our framework utilize global setting for all the

experiments to generate the results while the others require tuning for each

modality and even for a particular image.

7.2 Future Work

Some directions for our future works which are apparent from my thesis

are described below.

1. Future investigation including implementation of other segmentation

techniques in Chapter 3

There are many possible combinations that can be explored further to

generate better accuracy and computational time. While combining

and integrating ML algorithm and active contour models are only small

parts of the possible combinations, research for not only combining

but also tightly integrating on other methods is still widely open.

2. Using various feature vectors in Chapter 4

The feature vectors can be enhanced by utilizing shape descriptors to
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learn an object form which may increase the segmentation accuracy.

The relation between organs and imaging modalities to predict the

appropriate segmentation methods may also be investigated.

3. Using deep learning for feature learning in Chapters 4, 5, and 6

The feature vector used in Chapters 4,5, and 6 is manually designed.

Recent approach for feature learning in deep learning may be imple-

mented to obtain better results.

4. Combining the methods in Chapter 4 and 5

In Chapter 4, classification algorithms are utilized to generate good

initialization followed by applying the traditional edge-based active

contour model. On the other hand, the work in Chapter 5 utilize

the boundary of user’s initial marks followed by enhanced edge-based

contour model containing a robust ESF. The advantage from each

work can be combined by generating initializations as described in

Chapter 4 followed by applying an edge-based active contour model

with a robust ESF.

5. Integrating the fuzzy ESF with the contour speed

The fuzzy ESF in Chapter 5 is utilized only to stop contour only

and implicitly control the contour speed. The fuzzy ESF may be

embedded explicitly to the contour speed equation.

6. Applying the methods to larger datasets

In our work, the datasets are limited particularly for the ground-truth.

Applying the proposed methods for larger datasets can be investigated
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to cover problems that may not appear in smaller datasets.

7. Extending the methods to 3D segmentation

We work on 2D segmentation for all works in this thesis. Extending the

proposed method to 3D segmentation is also possible to be investigated

by considering the existing works in segmentation, e.g., 3D level set

segmentation.
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